1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines. 28 // During regular LTO, the pass determines the best optimization for each 29 // virtual call and applies the resolutions directly to virtual calls that are 30 // eligible for virtual call optimization (i.e. calls that use either of the 31 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 32 // ThinLTO, the pass operates in two phases: 33 // - Export phase: this is run during the thin link over a single merged module 34 // that contains all vtables with !type metadata that participate in the link. 35 // The pass computes a resolution for each virtual call and stores it in the 36 // type identifier summary. 37 // - Import phase: this is run during the thin backends over the individual 38 // modules. The pass applies the resolutions previously computed during the 39 // import phase to each eligible virtual call. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 44 #include "llvm/ADT/ArrayRef.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/DenseMapInfo.h" 47 #include "llvm/ADT/DenseSet.h" 48 #include "llvm/ADT/MapVector.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/BasicAliasAnalysis.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/TypeMetadataUtils.h" 55 #include "llvm/IR/CallSite.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalVariable.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/LLVMContext.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ModuleSummaryIndexYAML.h" 73 #include "llvm/Pass.h" 74 #include "llvm/PassRegistry.h" 75 #include "llvm/PassSupport.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Error.h" 78 #include "llvm/Support/FileSystem.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Transforms/IPO.h" 81 #include "llvm/Transforms/IPO/FunctionAttrs.h" 82 #include "llvm/Transforms/Utils/Evaluator.h" 83 #include <algorithm> 84 #include <cstddef> 85 #include <map> 86 #include <set> 87 #include <string> 88 89 using namespace llvm; 90 using namespace wholeprogramdevirt; 91 92 #define DEBUG_TYPE "wholeprogramdevirt" 93 94 static cl::opt<PassSummaryAction> ClSummaryAction( 95 "wholeprogramdevirt-summary-action", 96 cl::desc("What to do with the summary when running this pass"), 97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 98 clEnumValN(PassSummaryAction::Import, "import", 99 "Import typeid resolutions from summary and globals"), 100 clEnumValN(PassSummaryAction::Export, "export", 101 "Export typeid resolutions to summary and globals")), 102 cl::Hidden); 103 104 static cl::opt<std::string> ClReadSummary( 105 "wholeprogramdevirt-read-summary", 106 cl::desc("Read summary from given YAML file before running pass"), 107 cl::Hidden); 108 109 static cl::opt<std::string> ClWriteSummary( 110 "wholeprogramdevirt-write-summary", 111 cl::desc("Write summary to given YAML file after running pass"), 112 cl::Hidden); 113 114 static cl::opt<unsigned> 115 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 116 cl::init(10), cl::ZeroOrMore, 117 cl::desc("Maximum number of call targets per " 118 "call site to enable branch funnels")); 119 120 // Find the minimum offset that we may store a value of size Size bits at. If 121 // IsAfter is set, look for an offset before the object, otherwise look for an 122 // offset after the object. 123 uint64_t 124 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 125 bool IsAfter, uint64_t Size) { 126 // Find a minimum offset taking into account only vtable sizes. 127 uint64_t MinByte = 0; 128 for (const VirtualCallTarget &Target : Targets) { 129 if (IsAfter) 130 MinByte = std::max(MinByte, Target.minAfterBytes()); 131 else 132 MinByte = std::max(MinByte, Target.minBeforeBytes()); 133 } 134 135 // Build a vector of arrays of bytes covering, for each target, a slice of the 136 // used region (see AccumBitVector::BytesUsed in 137 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 138 // this aligns the used regions to start at MinByte. 139 // 140 // In this example, A, B and C are vtables, # is a byte already allocated for 141 // a virtual function pointer, AAAA... (etc.) are the used regions for the 142 // vtables and Offset(X) is the value computed for the Offset variable below 143 // for X. 144 // 145 // Offset(A) 146 // | | 147 // |MinByte 148 // A: ################AAAAAAAA|AAAAAAAA 149 // B: ########BBBBBBBBBBBBBBBB|BBBB 150 // C: ########################|CCCCCCCCCCCCCCCC 151 // | Offset(B) | 152 // 153 // This code produces the slices of A, B and C that appear after the divider 154 // at MinByte. 155 std::vector<ArrayRef<uint8_t>> Used; 156 for (const VirtualCallTarget &Target : Targets) { 157 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 158 : Target.TM->Bits->Before.BytesUsed; 159 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 160 : MinByte - Target.minBeforeBytes(); 161 162 // Disregard used regions that are smaller than Offset. These are 163 // effectively all-free regions that do not need to be checked. 164 if (VTUsed.size() > Offset) 165 Used.push_back(VTUsed.slice(Offset)); 166 } 167 168 if (Size == 1) { 169 // Find a free bit in each member of Used. 170 for (unsigned I = 0;; ++I) { 171 uint8_t BitsUsed = 0; 172 for (auto &&B : Used) 173 if (I < B.size()) 174 BitsUsed |= B[I]; 175 if (BitsUsed != 0xff) 176 return (MinByte + I) * 8 + 177 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 178 } 179 } else { 180 // Find a free (Size/8) byte region in each member of Used. 181 // FIXME: see if alignment helps. 182 for (unsigned I = 0;; ++I) { 183 for (auto &&B : Used) { 184 unsigned Byte = 0; 185 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 186 if (B[I + Byte]) 187 goto NextI; 188 ++Byte; 189 } 190 } 191 return (MinByte + I) * 8; 192 NextI:; 193 } 194 } 195 } 196 197 void wholeprogramdevirt::setBeforeReturnValues( 198 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 199 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 200 if (BitWidth == 1) 201 OffsetByte = -(AllocBefore / 8 + 1); 202 else 203 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 204 OffsetBit = AllocBefore % 8; 205 206 for (VirtualCallTarget &Target : Targets) { 207 if (BitWidth == 1) 208 Target.setBeforeBit(AllocBefore); 209 else 210 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 211 } 212 } 213 214 void wholeprogramdevirt::setAfterReturnValues( 215 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 216 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 217 if (BitWidth == 1) 218 OffsetByte = AllocAfter / 8; 219 else 220 OffsetByte = (AllocAfter + 7) / 8; 221 OffsetBit = AllocAfter % 8; 222 223 for (VirtualCallTarget &Target : Targets) { 224 if (BitWidth == 1) 225 Target.setAfterBit(AllocAfter); 226 else 227 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 228 } 229 } 230 231 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 232 : Fn(Fn), TM(TM), 233 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 234 235 namespace { 236 237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 238 // tables, and the ByteOffset is the offset in bytes from the address point to 239 // the virtual function pointer. 240 struct VTableSlot { 241 Metadata *TypeID; 242 uint64_t ByteOffset; 243 }; 244 245 } // end anonymous namespace 246 247 namespace llvm { 248 249 template <> struct DenseMapInfo<VTableSlot> { 250 static VTableSlot getEmptyKey() { 251 return {DenseMapInfo<Metadata *>::getEmptyKey(), 252 DenseMapInfo<uint64_t>::getEmptyKey()}; 253 } 254 static VTableSlot getTombstoneKey() { 255 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 256 DenseMapInfo<uint64_t>::getTombstoneKey()}; 257 } 258 static unsigned getHashValue(const VTableSlot &I) { 259 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 260 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 261 } 262 static bool isEqual(const VTableSlot &LHS, 263 const VTableSlot &RHS) { 264 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 265 } 266 }; 267 268 } // end namespace llvm 269 270 namespace { 271 272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 273 // the indirect virtual call. 274 struct VirtualCallSite { 275 Value *VTable; 276 CallSite CS; 277 278 // If non-null, this field points to the associated unsafe use count stored in 279 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 280 // of that field for details. 281 unsigned *NumUnsafeUses; 282 283 void 284 emitRemark(const StringRef OptName, const StringRef TargetName, 285 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 286 Function *F = CS.getCaller(); 287 DebugLoc DLoc = CS->getDebugLoc(); 288 BasicBlock *Block = CS.getParent(); 289 290 using namespace ore; 291 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 292 << NV("Optimization", OptName) 293 << ": devirtualized a call to " 294 << NV("FunctionName", TargetName)); 295 } 296 297 void replaceAndErase( 298 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 299 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 300 Value *New) { 301 if (RemarksEnabled) 302 emitRemark(OptName, TargetName, OREGetter); 303 CS->replaceAllUsesWith(New); 304 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 305 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 306 II->getUnwindDest()->removePredecessor(II->getParent()); 307 } 308 CS->eraseFromParent(); 309 // This use is no longer unsafe. 310 if (NumUnsafeUses) 311 --*NumUnsafeUses; 312 } 313 }; 314 315 // Call site information collected for a specific VTableSlot and possibly a list 316 // of constant integer arguments. The grouping by arguments is handled by the 317 // VTableSlotInfo class. 318 struct CallSiteInfo { 319 /// The set of call sites for this slot. Used during regular LTO and the 320 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 321 /// call sites that appear in the merged module itself); in each of these 322 /// cases we are directly operating on the call sites at the IR level. 323 std::vector<VirtualCallSite> CallSites; 324 325 /// Whether all call sites represented by this CallSiteInfo, including those 326 /// in summaries, have been devirtualized. This starts off as true because a 327 /// default constructed CallSiteInfo represents no call sites. 328 bool AllCallSitesDevirted = true; 329 330 // These fields are used during the export phase of ThinLTO and reflect 331 // information collected from function summaries. 332 333 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 334 /// this slot. 335 bool SummaryHasTypeTestAssumeUsers = false; 336 337 /// CFI-specific: a vector containing the list of function summaries that use 338 /// the llvm.type.checked.load intrinsic and therefore will require 339 /// resolutions for llvm.type.test in order to implement CFI checks if 340 /// devirtualization was unsuccessful. If devirtualization was successful, the 341 /// pass will clear this vector by calling markDevirt(). If at the end of the 342 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 343 /// to each of the function summaries in the vector. 344 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 345 346 bool isExported() const { 347 return SummaryHasTypeTestAssumeUsers || 348 !SummaryTypeCheckedLoadUsers.empty(); 349 } 350 351 void markSummaryHasTypeTestAssumeUsers() { 352 SummaryHasTypeTestAssumeUsers = true; 353 AllCallSitesDevirted = false; 354 } 355 356 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 357 SummaryTypeCheckedLoadUsers.push_back(FS); 358 AllCallSitesDevirted = false; 359 } 360 361 void markDevirt() { 362 AllCallSitesDevirted = true; 363 364 // As explained in the comment for SummaryTypeCheckedLoadUsers. 365 SummaryTypeCheckedLoadUsers.clear(); 366 } 367 }; 368 369 // Call site information collected for a specific VTableSlot. 370 struct VTableSlotInfo { 371 // The set of call sites which do not have all constant integer arguments 372 // (excluding "this"). 373 CallSiteInfo CSInfo; 374 375 // The set of call sites with all constant integer arguments (excluding 376 // "this"), grouped by argument list. 377 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 378 379 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 380 381 private: 382 CallSiteInfo &findCallSiteInfo(CallSite CS); 383 }; 384 385 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 386 std::vector<uint64_t> Args; 387 auto *CI = dyn_cast<IntegerType>(CS.getType()); 388 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 389 return CSInfo; 390 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 391 auto *CI = dyn_cast<ConstantInt>(Arg); 392 if (!CI || CI->getBitWidth() > 64) 393 return CSInfo; 394 Args.push_back(CI->getZExtValue()); 395 } 396 return ConstCSInfo[Args]; 397 } 398 399 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 400 unsigned *NumUnsafeUses) { 401 auto &CSI = findCallSiteInfo(CS); 402 CSI.AllCallSitesDevirted = false; 403 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 404 } 405 406 struct DevirtModule { 407 Module &M; 408 function_ref<AAResults &(Function &)> AARGetter; 409 function_ref<DominatorTree &(Function &)> LookupDomTree; 410 411 ModuleSummaryIndex *ExportSummary; 412 const ModuleSummaryIndex *ImportSummary; 413 414 IntegerType *Int8Ty; 415 PointerType *Int8PtrTy; 416 IntegerType *Int32Ty; 417 IntegerType *Int64Ty; 418 IntegerType *IntPtrTy; 419 420 bool RemarksEnabled; 421 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 422 423 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 424 425 // This map keeps track of the number of "unsafe" uses of a loaded function 426 // pointer. The key is the associated llvm.type.test intrinsic call generated 427 // by this pass. An unsafe use is one that calls the loaded function pointer 428 // directly. Every time we eliminate an unsafe use (for example, by 429 // devirtualizing it or by applying virtual constant propagation), we 430 // decrement the value stored in this map. If a value reaches zero, we can 431 // eliminate the type check by RAUWing the associated llvm.type.test call with 432 // true. 433 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 434 435 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 436 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 437 function_ref<DominatorTree &(Function &)> LookupDomTree, 438 ModuleSummaryIndex *ExportSummary, 439 const ModuleSummaryIndex *ImportSummary) 440 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 441 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 442 Int8Ty(Type::getInt8Ty(M.getContext())), 443 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 444 Int32Ty(Type::getInt32Ty(M.getContext())), 445 Int64Ty(Type::getInt64Ty(M.getContext())), 446 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 447 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 448 assert(!(ExportSummary && ImportSummary)); 449 } 450 451 bool areRemarksEnabled(); 452 453 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 454 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 455 456 void buildTypeIdentifierMap( 457 std::vector<VTableBits> &Bits, 458 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 459 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 460 bool 461 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 462 const std::set<TypeMemberInfo> &TypeMemberInfos, 463 uint64_t ByteOffset); 464 465 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 466 bool &IsExported); 467 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 468 VTableSlotInfo &SlotInfo, 469 WholeProgramDevirtResolution *Res); 470 471 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 472 bool &IsExported); 473 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 474 VTableSlotInfo &SlotInfo, 475 WholeProgramDevirtResolution *Res, VTableSlot Slot); 476 477 bool tryEvaluateFunctionsWithArgs( 478 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 479 ArrayRef<uint64_t> Args); 480 481 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 482 uint64_t TheRetVal); 483 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 484 CallSiteInfo &CSInfo, 485 WholeProgramDevirtResolution::ByArg *Res); 486 487 // Returns the global symbol name that is used to export information about the 488 // given vtable slot and list of arguments. 489 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 490 StringRef Name); 491 492 bool shouldExportConstantsAsAbsoluteSymbols(); 493 494 // This function is called during the export phase to create a symbol 495 // definition containing information about the given vtable slot and list of 496 // arguments. 497 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 498 Constant *C); 499 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 500 uint32_t Const, uint32_t &Storage); 501 502 // This function is called during the import phase to create a reference to 503 // the symbol definition created during the export phase. 504 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 505 StringRef Name); 506 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 507 StringRef Name, IntegerType *IntTy, 508 uint32_t Storage); 509 510 Constant *getMemberAddr(const TypeMemberInfo *M); 511 512 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 513 Constant *UniqueMemberAddr); 514 bool tryUniqueRetValOpt(unsigned BitWidth, 515 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 516 CallSiteInfo &CSInfo, 517 WholeProgramDevirtResolution::ByArg *Res, 518 VTableSlot Slot, ArrayRef<uint64_t> Args); 519 520 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 521 Constant *Byte, Constant *Bit); 522 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 523 VTableSlotInfo &SlotInfo, 524 WholeProgramDevirtResolution *Res, VTableSlot Slot); 525 526 void rebuildGlobal(VTableBits &B); 527 528 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 529 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 530 531 // If we were able to eliminate all unsafe uses for a type checked load, 532 // eliminate the associated type tests by replacing them with true. 533 void removeRedundantTypeTests(); 534 535 bool run(); 536 537 // Lower the module using the action and summary passed as command line 538 // arguments. For testing purposes only. 539 static bool 540 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 541 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 542 function_ref<DominatorTree &(Function &)> LookupDomTree); 543 }; 544 545 struct WholeProgramDevirt : public ModulePass { 546 static char ID; 547 548 bool UseCommandLine = false; 549 550 ModuleSummaryIndex *ExportSummary; 551 const ModuleSummaryIndex *ImportSummary; 552 553 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 554 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 555 } 556 557 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 558 const ModuleSummaryIndex *ImportSummary) 559 : ModulePass(ID), ExportSummary(ExportSummary), 560 ImportSummary(ImportSummary) { 561 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 562 } 563 564 bool runOnModule(Module &M) override { 565 if (skipModule(M)) 566 return false; 567 568 // In the new pass manager, we can request the optimization 569 // remark emitter pass on a per-function-basis, which the 570 // OREGetter will do for us. 571 // In the old pass manager, this is harder, so we just build 572 // an optimization remark emitter on the fly, when we need it. 573 std::unique_ptr<OptimizationRemarkEmitter> ORE; 574 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 575 ORE = make_unique<OptimizationRemarkEmitter>(F); 576 return *ORE; 577 }; 578 579 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 580 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 581 }; 582 583 if (UseCommandLine) 584 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 585 LookupDomTree); 586 587 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 588 ExportSummary, ImportSummary) 589 .run(); 590 } 591 592 void getAnalysisUsage(AnalysisUsage &AU) const override { 593 AU.addRequired<AssumptionCacheTracker>(); 594 AU.addRequired<TargetLibraryInfoWrapperPass>(); 595 AU.addRequired<DominatorTreeWrapperPass>(); 596 } 597 }; 598 599 } // end anonymous namespace 600 601 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 602 "Whole program devirtualization", false, false) 603 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 604 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 605 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 606 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 607 "Whole program devirtualization", false, false) 608 char WholeProgramDevirt::ID = 0; 609 610 ModulePass * 611 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 612 const ModuleSummaryIndex *ImportSummary) { 613 return new WholeProgramDevirt(ExportSummary, ImportSummary); 614 } 615 616 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 617 ModuleAnalysisManager &AM) { 618 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 619 auto AARGetter = [&](Function &F) -> AAResults & { 620 return FAM.getResult<AAManager>(F); 621 }; 622 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 623 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 624 }; 625 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 626 return FAM.getResult<DominatorTreeAnalysis>(F); 627 }; 628 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 629 ImportSummary) 630 .run()) 631 return PreservedAnalyses::all(); 632 return PreservedAnalyses::none(); 633 } 634 635 bool DevirtModule::runForTesting( 636 Module &M, function_ref<AAResults &(Function &)> AARGetter, 637 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 638 function_ref<DominatorTree &(Function &)> LookupDomTree) { 639 ModuleSummaryIndex Summary(/*HaveGVs=*/false); 640 641 // Handle the command-line summary arguments. This code is for testing 642 // purposes only, so we handle errors directly. 643 if (!ClReadSummary.empty()) { 644 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 645 ": "); 646 auto ReadSummaryFile = 647 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 648 649 yaml::Input In(ReadSummaryFile->getBuffer()); 650 In >> Summary; 651 ExitOnErr(errorCodeToError(In.error())); 652 } 653 654 bool Changed = 655 DevirtModule( 656 M, AARGetter, OREGetter, LookupDomTree, 657 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 658 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 659 .run(); 660 661 if (!ClWriteSummary.empty()) { 662 ExitOnError ExitOnErr( 663 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 664 std::error_code EC; 665 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 666 ExitOnErr(errorCodeToError(EC)); 667 668 yaml::Output Out(OS); 669 Out << Summary; 670 } 671 672 return Changed; 673 } 674 675 void DevirtModule::buildTypeIdentifierMap( 676 std::vector<VTableBits> &Bits, 677 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 678 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 679 Bits.reserve(M.getGlobalList().size()); 680 SmallVector<MDNode *, 2> Types; 681 for (GlobalVariable &GV : M.globals()) { 682 Types.clear(); 683 GV.getMetadata(LLVMContext::MD_type, Types); 684 if (GV.isDeclaration() || Types.empty()) 685 continue; 686 687 VTableBits *&BitsPtr = GVToBits[&GV]; 688 if (!BitsPtr) { 689 Bits.emplace_back(); 690 Bits.back().GV = &GV; 691 Bits.back().ObjectSize = 692 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 693 BitsPtr = &Bits.back(); 694 } 695 696 for (MDNode *Type : Types) { 697 auto TypeID = Type->getOperand(1).get(); 698 699 uint64_t Offset = 700 cast<ConstantInt>( 701 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 702 ->getZExtValue(); 703 704 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 705 } 706 } 707 } 708 709 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 710 if (I->getType()->isPointerTy()) { 711 if (Offset == 0) 712 return I; 713 return nullptr; 714 } 715 716 const DataLayout &DL = M.getDataLayout(); 717 718 if (auto *C = dyn_cast<ConstantStruct>(I)) { 719 const StructLayout *SL = DL.getStructLayout(C->getType()); 720 if (Offset >= SL->getSizeInBytes()) 721 return nullptr; 722 723 unsigned Op = SL->getElementContainingOffset(Offset); 724 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 725 Offset - SL->getElementOffset(Op)); 726 } 727 if (auto *C = dyn_cast<ConstantArray>(I)) { 728 ArrayType *VTableTy = C->getType(); 729 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 730 731 unsigned Op = Offset / ElemSize; 732 if (Op >= C->getNumOperands()) 733 return nullptr; 734 735 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 736 Offset % ElemSize); 737 } 738 return nullptr; 739 } 740 741 bool DevirtModule::tryFindVirtualCallTargets( 742 std::vector<VirtualCallTarget> &TargetsForSlot, 743 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 744 for (const TypeMemberInfo &TM : TypeMemberInfos) { 745 if (!TM.Bits->GV->isConstant()) 746 return false; 747 748 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 749 TM.Offset + ByteOffset); 750 if (!Ptr) 751 return false; 752 753 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 754 if (!Fn) 755 return false; 756 757 // We can disregard __cxa_pure_virtual as a possible call target, as 758 // calls to pure virtuals are UB. 759 if (Fn->getName() == "__cxa_pure_virtual") 760 continue; 761 762 TargetsForSlot.push_back({Fn, &TM}); 763 } 764 765 // Give up if we couldn't find any targets. 766 return !TargetsForSlot.empty(); 767 } 768 769 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 770 Constant *TheFn, bool &IsExported) { 771 auto Apply = [&](CallSiteInfo &CSInfo) { 772 for (auto &&VCallSite : CSInfo.CallSites) { 773 if (RemarksEnabled) 774 VCallSite.emitRemark("single-impl", 775 TheFn->stripPointerCasts()->getName(), OREGetter); 776 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 777 TheFn, VCallSite.CS.getCalledValue()->getType())); 778 // This use is no longer unsafe. 779 if (VCallSite.NumUnsafeUses) 780 --*VCallSite.NumUnsafeUses; 781 } 782 if (CSInfo.isExported()) 783 IsExported = true; 784 CSInfo.markDevirt(); 785 }; 786 Apply(SlotInfo.CSInfo); 787 for (auto &P : SlotInfo.ConstCSInfo) 788 Apply(P.second); 789 } 790 791 bool DevirtModule::trySingleImplDevirt( 792 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 793 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 794 // See if the program contains a single implementation of this virtual 795 // function. 796 Function *TheFn = TargetsForSlot[0].Fn; 797 for (auto &&Target : TargetsForSlot) 798 if (TheFn != Target.Fn) 799 return false; 800 801 // If so, update each call site to call that implementation directly. 802 if (RemarksEnabled) 803 TargetsForSlot[0].WasDevirt = true; 804 805 bool IsExported = false; 806 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 807 if (!IsExported) 808 return false; 809 810 // If the only implementation has local linkage, we must promote to external 811 // to make it visible to thin LTO objects. We can only get here during the 812 // ThinLTO export phase. 813 if (TheFn->hasLocalLinkage()) { 814 std::string NewName = (TheFn->getName() + "$merged").str(); 815 816 // Since we are renaming the function, any comdats with the same name must 817 // also be renamed. This is required when targeting COFF, as the comdat name 818 // must match one of the names of the symbols in the comdat. 819 if (Comdat *C = TheFn->getComdat()) { 820 if (C->getName() == TheFn->getName()) { 821 Comdat *NewC = M.getOrInsertComdat(NewName); 822 NewC->setSelectionKind(C->getSelectionKind()); 823 for (GlobalObject &GO : M.global_objects()) 824 if (GO.getComdat() == C) 825 GO.setComdat(NewC); 826 } 827 } 828 829 TheFn->setLinkage(GlobalValue::ExternalLinkage); 830 TheFn->setVisibility(GlobalValue::HiddenVisibility); 831 TheFn->setName(NewName); 832 } 833 834 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 835 Res->SingleImplName = TheFn->getName(); 836 837 return true; 838 } 839 840 void DevirtModule::tryICallBranchFunnel( 841 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 842 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 843 Triple T(M.getTargetTriple()); 844 if (T.getArch() != Triple::x86_64) 845 return; 846 847 if (TargetsForSlot.size() > ClThreshold) 848 return; 849 850 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 851 if (!HasNonDevirt) 852 for (auto &P : SlotInfo.ConstCSInfo) 853 if (!P.second.AllCallSitesDevirted) { 854 HasNonDevirt = true; 855 break; 856 } 857 858 if (!HasNonDevirt) 859 return; 860 861 FunctionType *FT = 862 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 863 Function *JT; 864 if (isa<MDString>(Slot.TypeID)) { 865 JT = Function::Create(FT, Function::ExternalLinkage, 866 M.getDataLayout().getProgramAddressSpace(), 867 getGlobalName(Slot, {}, "branch_funnel"), &M); 868 JT->setVisibility(GlobalValue::HiddenVisibility); 869 } else { 870 JT = Function::Create(FT, Function::InternalLinkage, 871 M.getDataLayout().getProgramAddressSpace(), 872 "branch_funnel", &M); 873 } 874 JT->addAttribute(1, Attribute::Nest); 875 876 std::vector<Value *> JTArgs; 877 JTArgs.push_back(JT->arg_begin()); 878 for (auto &T : TargetsForSlot) { 879 JTArgs.push_back(getMemberAddr(T.TM)); 880 JTArgs.push_back(T.Fn); 881 } 882 883 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 884 Function *Intr = 885 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 886 887 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 888 CI->setTailCallKind(CallInst::TCK_MustTail); 889 ReturnInst::Create(M.getContext(), nullptr, BB); 890 891 bool IsExported = false; 892 applyICallBranchFunnel(SlotInfo, JT, IsExported); 893 if (IsExported) 894 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 895 } 896 897 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 898 Constant *JT, bool &IsExported) { 899 auto Apply = [&](CallSiteInfo &CSInfo) { 900 if (CSInfo.isExported()) 901 IsExported = true; 902 if (CSInfo.AllCallSitesDevirted) 903 return; 904 for (auto &&VCallSite : CSInfo.CallSites) { 905 CallSite CS = VCallSite.CS; 906 907 // Jump tables are only profitable if the retpoline mitigation is enabled. 908 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 909 if (FSAttr.hasAttribute(Attribute::None) || 910 !FSAttr.getValueAsString().contains("+retpoline")) 911 continue; 912 913 if (RemarksEnabled) 914 VCallSite.emitRemark("branch-funnel", 915 JT->stripPointerCasts()->getName(), OREGetter); 916 917 // Pass the address of the vtable in the nest register, which is r10 on 918 // x86_64. 919 std::vector<Type *> NewArgs; 920 NewArgs.push_back(Int8PtrTy); 921 for (Type *T : CS.getFunctionType()->params()) 922 NewArgs.push_back(T); 923 FunctionType *NewFT = 924 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 925 CS.getFunctionType()->isVarArg()); 926 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 927 928 IRBuilder<> IRB(CS.getInstruction()); 929 std::vector<Value *> Args; 930 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 931 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 932 Args.push_back(CS.getArgOperand(I)); 933 934 CallSite NewCS; 935 if (CS.isCall()) 936 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 937 else 938 NewCS = IRB.CreateInvoke( 939 NewFT, IRB.CreateBitCast(JT, NewFTPtr), 940 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 941 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 942 NewCS.setCallingConv(CS.getCallingConv()); 943 944 AttributeList Attrs = CS.getAttributes(); 945 std::vector<AttributeSet> NewArgAttrs; 946 NewArgAttrs.push_back(AttributeSet::get( 947 M.getContext(), ArrayRef<Attribute>{Attribute::get( 948 M.getContext(), Attribute::Nest)})); 949 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 950 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 951 NewCS.setAttributes( 952 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 953 Attrs.getRetAttributes(), NewArgAttrs)); 954 955 CS->replaceAllUsesWith(NewCS.getInstruction()); 956 CS->eraseFromParent(); 957 958 // This use is no longer unsafe. 959 if (VCallSite.NumUnsafeUses) 960 --*VCallSite.NumUnsafeUses; 961 } 962 // Don't mark as devirtualized because there may be callers compiled without 963 // retpoline mitigation, which would mean that they are lowered to 964 // llvm.type.test and therefore require an llvm.type.test resolution for the 965 // type identifier. 966 }; 967 Apply(SlotInfo.CSInfo); 968 for (auto &P : SlotInfo.ConstCSInfo) 969 Apply(P.second); 970 } 971 972 bool DevirtModule::tryEvaluateFunctionsWithArgs( 973 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 974 ArrayRef<uint64_t> Args) { 975 // Evaluate each function and store the result in each target's RetVal 976 // field. 977 for (VirtualCallTarget &Target : TargetsForSlot) { 978 if (Target.Fn->arg_size() != Args.size() + 1) 979 return false; 980 981 Evaluator Eval(M.getDataLayout(), nullptr); 982 SmallVector<Constant *, 2> EvalArgs; 983 EvalArgs.push_back( 984 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 985 for (unsigned I = 0; I != Args.size(); ++I) { 986 auto *ArgTy = dyn_cast<IntegerType>( 987 Target.Fn->getFunctionType()->getParamType(I + 1)); 988 if (!ArgTy) 989 return false; 990 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 991 } 992 993 Constant *RetVal; 994 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 995 !isa<ConstantInt>(RetVal)) 996 return false; 997 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 998 } 999 return true; 1000 } 1001 1002 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1003 uint64_t TheRetVal) { 1004 for (auto Call : CSInfo.CallSites) 1005 Call.replaceAndErase( 1006 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1007 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1008 CSInfo.markDevirt(); 1009 } 1010 1011 bool DevirtModule::tryUniformRetValOpt( 1012 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1013 WholeProgramDevirtResolution::ByArg *Res) { 1014 // Uniform return value optimization. If all functions return the same 1015 // constant, replace all calls with that constant. 1016 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1017 for (const VirtualCallTarget &Target : TargetsForSlot) 1018 if (Target.RetVal != TheRetVal) 1019 return false; 1020 1021 if (CSInfo.isExported()) { 1022 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1023 Res->Info = TheRetVal; 1024 } 1025 1026 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1027 if (RemarksEnabled) 1028 for (auto &&Target : TargetsForSlot) 1029 Target.WasDevirt = true; 1030 return true; 1031 } 1032 1033 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1034 ArrayRef<uint64_t> Args, 1035 StringRef Name) { 1036 std::string FullName = "__typeid_"; 1037 raw_string_ostream OS(FullName); 1038 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1039 for (uint64_t Arg : Args) 1040 OS << '_' << Arg; 1041 OS << '_' << Name; 1042 return OS.str(); 1043 } 1044 1045 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1046 Triple T(M.getTargetTriple()); 1047 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1048 T.getObjectFormat() == Triple::ELF; 1049 } 1050 1051 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1052 StringRef Name, Constant *C) { 1053 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1054 getGlobalName(Slot, Args, Name), C, &M); 1055 GA->setVisibility(GlobalValue::HiddenVisibility); 1056 } 1057 1058 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1059 StringRef Name, uint32_t Const, 1060 uint32_t &Storage) { 1061 if (shouldExportConstantsAsAbsoluteSymbols()) { 1062 exportGlobal( 1063 Slot, Args, Name, 1064 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1065 return; 1066 } 1067 1068 Storage = Const; 1069 } 1070 1071 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1072 StringRef Name) { 1073 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1074 auto *GV = dyn_cast<GlobalVariable>(C); 1075 if (GV) 1076 GV->setVisibility(GlobalValue::HiddenVisibility); 1077 return C; 1078 } 1079 1080 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1081 StringRef Name, IntegerType *IntTy, 1082 uint32_t Storage) { 1083 if (!shouldExportConstantsAsAbsoluteSymbols()) 1084 return ConstantInt::get(IntTy, Storage); 1085 1086 Constant *C = importGlobal(Slot, Args, Name); 1087 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1088 C = ConstantExpr::getPtrToInt(C, IntTy); 1089 1090 // We only need to set metadata if the global is newly created, in which 1091 // case it would not have hidden visibility. 1092 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1093 return C; 1094 1095 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1096 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1097 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1098 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1099 MDNode::get(M.getContext(), {MinC, MaxC})); 1100 }; 1101 unsigned AbsWidth = IntTy->getBitWidth(); 1102 if (AbsWidth == IntPtrTy->getBitWidth()) 1103 SetAbsRange(~0ull, ~0ull); // Full set. 1104 else 1105 SetAbsRange(0, 1ull << AbsWidth); 1106 return C; 1107 } 1108 1109 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1110 bool IsOne, 1111 Constant *UniqueMemberAddr) { 1112 for (auto &&Call : CSInfo.CallSites) { 1113 IRBuilder<> B(Call.CS.getInstruction()); 1114 Value *Cmp = 1115 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1116 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1117 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1118 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1119 Cmp); 1120 } 1121 CSInfo.markDevirt(); 1122 } 1123 1124 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1125 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1126 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1127 ConstantInt::get(Int64Ty, M->Offset)); 1128 } 1129 1130 bool DevirtModule::tryUniqueRetValOpt( 1131 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1132 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1133 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1134 // IsOne controls whether we look for a 0 or a 1. 1135 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1136 const TypeMemberInfo *UniqueMember = nullptr; 1137 for (const VirtualCallTarget &Target : TargetsForSlot) { 1138 if (Target.RetVal == (IsOne ? 1 : 0)) { 1139 if (UniqueMember) 1140 return false; 1141 UniqueMember = Target.TM; 1142 } 1143 } 1144 1145 // We should have found a unique member or bailed out by now. We already 1146 // checked for a uniform return value in tryUniformRetValOpt. 1147 assert(UniqueMember); 1148 1149 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1150 if (CSInfo.isExported()) { 1151 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1152 Res->Info = IsOne; 1153 1154 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1155 } 1156 1157 // Replace each call with the comparison. 1158 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1159 UniqueMemberAddr); 1160 1161 // Update devirtualization statistics for targets. 1162 if (RemarksEnabled) 1163 for (auto &&Target : TargetsForSlot) 1164 Target.WasDevirt = true; 1165 1166 return true; 1167 }; 1168 1169 if (BitWidth == 1) { 1170 if (tryUniqueRetValOptFor(true)) 1171 return true; 1172 if (tryUniqueRetValOptFor(false)) 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1179 Constant *Byte, Constant *Bit) { 1180 for (auto Call : CSInfo.CallSites) { 1181 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1182 IRBuilder<> B(Call.CS.getInstruction()); 1183 Value *Addr = 1184 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1185 if (RetType->getBitWidth() == 1) { 1186 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1187 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1188 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1189 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1190 OREGetter, IsBitSet); 1191 } else { 1192 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1193 Value *Val = B.CreateLoad(RetType, ValAddr); 1194 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1195 OREGetter, Val); 1196 } 1197 } 1198 CSInfo.markDevirt(); 1199 } 1200 1201 bool DevirtModule::tryVirtualConstProp( 1202 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1203 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1204 // This only works if the function returns an integer. 1205 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1206 if (!RetType) 1207 return false; 1208 unsigned BitWidth = RetType->getBitWidth(); 1209 if (BitWidth > 64) 1210 return false; 1211 1212 // Make sure that each function is defined, does not access memory, takes at 1213 // least one argument, does not use its first argument (which we assume is 1214 // 'this'), and has the same return type. 1215 // 1216 // Note that we test whether this copy of the function is readnone, rather 1217 // than testing function attributes, which must hold for any copy of the 1218 // function, even a less optimized version substituted at link time. This is 1219 // sound because the virtual constant propagation optimizations effectively 1220 // inline all implementations of the virtual function into each call site, 1221 // rather than using function attributes to perform local optimization. 1222 for (VirtualCallTarget &Target : TargetsForSlot) { 1223 if (Target.Fn->isDeclaration() || 1224 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1225 MAK_ReadNone || 1226 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1227 Target.Fn->getReturnType() != RetType) 1228 return false; 1229 } 1230 1231 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1232 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1233 continue; 1234 1235 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1236 if (Res) 1237 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1238 1239 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1240 continue; 1241 1242 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1243 ResByArg, Slot, CSByConstantArg.first)) 1244 continue; 1245 1246 // Find an allocation offset in bits in all vtables associated with the 1247 // type. 1248 uint64_t AllocBefore = 1249 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1250 uint64_t AllocAfter = 1251 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1252 1253 // Calculate the total amount of padding needed to store a value at both 1254 // ends of the object. 1255 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1256 for (auto &&Target : TargetsForSlot) { 1257 TotalPaddingBefore += std::max<int64_t>( 1258 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1259 TotalPaddingAfter += std::max<int64_t>( 1260 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1261 } 1262 1263 // If the amount of padding is too large, give up. 1264 // FIXME: do something smarter here. 1265 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1266 continue; 1267 1268 // Calculate the offset to the value as a (possibly negative) byte offset 1269 // and (if applicable) a bit offset, and store the values in the targets. 1270 int64_t OffsetByte; 1271 uint64_t OffsetBit; 1272 if (TotalPaddingBefore <= TotalPaddingAfter) 1273 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1274 OffsetBit); 1275 else 1276 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1277 OffsetBit); 1278 1279 if (RemarksEnabled) 1280 for (auto &&Target : TargetsForSlot) 1281 Target.WasDevirt = true; 1282 1283 1284 if (CSByConstantArg.second.isExported()) { 1285 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1286 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1287 ResByArg->Byte); 1288 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1289 ResByArg->Bit); 1290 } 1291 1292 // Rewrite each call to a load from OffsetByte/OffsetBit. 1293 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1294 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1295 applyVirtualConstProp(CSByConstantArg.second, 1296 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1297 } 1298 return true; 1299 } 1300 1301 void DevirtModule::rebuildGlobal(VTableBits &B) { 1302 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1303 return; 1304 1305 // Align each byte array to pointer width. 1306 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1307 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1308 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1309 1310 // Before was stored in reverse order; flip it now. 1311 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1312 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1313 1314 // Build an anonymous global containing the before bytes, followed by the 1315 // original initializer, followed by the after bytes. 1316 auto NewInit = ConstantStruct::getAnon( 1317 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1318 B.GV->getInitializer(), 1319 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1320 auto NewGV = 1321 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1322 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1323 NewGV->setSection(B.GV->getSection()); 1324 NewGV->setComdat(B.GV->getComdat()); 1325 1326 // Copy the original vtable's metadata to the anonymous global, adjusting 1327 // offsets as required. 1328 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1329 1330 // Build an alias named after the original global, pointing at the second 1331 // element (the original initializer). 1332 auto Alias = GlobalAlias::create( 1333 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1334 ConstantExpr::getGetElementPtr( 1335 NewInit->getType(), NewGV, 1336 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1337 ConstantInt::get(Int32Ty, 1)}), 1338 &M); 1339 Alias->setVisibility(B.GV->getVisibility()); 1340 Alias->takeName(B.GV); 1341 1342 B.GV->replaceAllUsesWith(Alias); 1343 B.GV->eraseFromParent(); 1344 } 1345 1346 bool DevirtModule::areRemarksEnabled() { 1347 const auto &FL = M.getFunctionList(); 1348 for (const Function &Fn : FL) { 1349 const auto &BBL = Fn.getBasicBlockList(); 1350 if (BBL.empty()) 1351 continue; 1352 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1353 return DI.isEnabled(); 1354 } 1355 return false; 1356 } 1357 1358 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1359 Function *AssumeFunc) { 1360 // Find all virtual calls via a virtual table pointer %p under an assumption 1361 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1362 // points to a member of the type identifier %md. Group calls by (type ID, 1363 // offset) pair (effectively the identity of the virtual function) and store 1364 // to CallSlots. 1365 DenseSet<CallSite> SeenCallSites; 1366 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1367 I != E;) { 1368 auto CI = dyn_cast<CallInst>(I->getUser()); 1369 ++I; 1370 if (!CI) 1371 continue; 1372 1373 // Search for virtual calls based on %p and add them to DevirtCalls. 1374 SmallVector<DevirtCallSite, 1> DevirtCalls; 1375 SmallVector<CallInst *, 1> Assumes; 1376 auto &DT = LookupDomTree(*CI->getFunction()); 1377 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1378 1379 // If we found any, add them to CallSlots. 1380 if (!Assumes.empty()) { 1381 Metadata *TypeId = 1382 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1383 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1384 for (DevirtCallSite Call : DevirtCalls) { 1385 // Only add this CallSite if we haven't seen it before. The vtable 1386 // pointer may have been CSE'd with pointers from other call sites, 1387 // and we don't want to process call sites multiple times. We can't 1388 // just skip the vtable Ptr if it has been seen before, however, since 1389 // it may be shared by type tests that dominate different calls. 1390 if (SeenCallSites.insert(Call.CS).second) 1391 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1392 } 1393 } 1394 1395 // We no longer need the assumes or the type test. 1396 for (auto Assume : Assumes) 1397 Assume->eraseFromParent(); 1398 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1399 // may use the vtable argument later. 1400 if (CI->use_empty()) 1401 CI->eraseFromParent(); 1402 } 1403 } 1404 1405 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1406 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1407 1408 for (auto I = TypeCheckedLoadFunc->use_begin(), 1409 E = TypeCheckedLoadFunc->use_end(); 1410 I != E;) { 1411 auto CI = dyn_cast<CallInst>(I->getUser()); 1412 ++I; 1413 if (!CI) 1414 continue; 1415 1416 Value *Ptr = CI->getArgOperand(0); 1417 Value *Offset = CI->getArgOperand(1); 1418 Value *TypeIdValue = CI->getArgOperand(2); 1419 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1420 1421 SmallVector<DevirtCallSite, 1> DevirtCalls; 1422 SmallVector<Instruction *, 1> LoadedPtrs; 1423 SmallVector<Instruction *, 1> Preds; 1424 bool HasNonCallUses = false; 1425 auto &DT = LookupDomTree(*CI->getFunction()); 1426 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1427 HasNonCallUses, CI, DT); 1428 1429 // Start by generating "pessimistic" code that explicitly loads the function 1430 // pointer from the vtable and performs the type check. If possible, we will 1431 // eliminate the load and the type check later. 1432 1433 // If possible, only generate the load at the point where it is used. 1434 // This helps avoid unnecessary spills. 1435 IRBuilder<> LoadB( 1436 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1437 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1438 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1439 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1440 1441 for (Instruction *LoadedPtr : LoadedPtrs) { 1442 LoadedPtr->replaceAllUsesWith(LoadedValue); 1443 LoadedPtr->eraseFromParent(); 1444 } 1445 1446 // Likewise for the type test. 1447 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1448 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1449 1450 for (Instruction *Pred : Preds) { 1451 Pred->replaceAllUsesWith(TypeTestCall); 1452 Pred->eraseFromParent(); 1453 } 1454 1455 // We have already erased any extractvalue instructions that refer to the 1456 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1457 // (although this is unlikely). In that case, explicitly build a pair and 1458 // RAUW it. 1459 if (!CI->use_empty()) { 1460 Value *Pair = UndefValue::get(CI->getType()); 1461 IRBuilder<> B(CI); 1462 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1463 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1464 CI->replaceAllUsesWith(Pair); 1465 } 1466 1467 // The number of unsafe uses is initially the number of uses. 1468 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1469 NumUnsafeUses = DevirtCalls.size(); 1470 1471 // If the function pointer has a non-call user, we cannot eliminate the type 1472 // check, as one of those users may eventually call the pointer. Increment 1473 // the unsafe use count to make sure it cannot reach zero. 1474 if (HasNonCallUses) 1475 ++NumUnsafeUses; 1476 for (DevirtCallSite Call : DevirtCalls) { 1477 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1478 &NumUnsafeUses); 1479 } 1480 1481 CI->eraseFromParent(); 1482 } 1483 } 1484 1485 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1486 const TypeIdSummary *TidSummary = 1487 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1488 if (!TidSummary) 1489 return; 1490 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1491 if (ResI == TidSummary->WPDRes.end()) 1492 return; 1493 const WholeProgramDevirtResolution &Res = ResI->second; 1494 1495 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1496 // The type of the function in the declaration is irrelevant because every 1497 // call site will cast it to the correct type. 1498 Constant *SingleImpl = 1499 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1500 Type::getVoidTy(M.getContext())) 1501 .getCallee()); 1502 1503 // This is the import phase so we should not be exporting anything. 1504 bool IsExported = false; 1505 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1506 assert(!IsExported); 1507 } 1508 1509 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1510 auto I = Res.ResByArg.find(CSByConstantArg.first); 1511 if (I == Res.ResByArg.end()) 1512 continue; 1513 auto &ResByArg = I->second; 1514 // FIXME: We should figure out what to do about the "function name" argument 1515 // to the apply* functions, as the function names are unavailable during the 1516 // importing phase. For now we just pass the empty string. This does not 1517 // impact correctness because the function names are just used for remarks. 1518 switch (ResByArg.TheKind) { 1519 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1520 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1521 break; 1522 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1523 Constant *UniqueMemberAddr = 1524 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1525 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1526 UniqueMemberAddr); 1527 break; 1528 } 1529 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1530 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1531 Int32Ty, ResByArg.Byte); 1532 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1533 ResByArg.Bit); 1534 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1535 break; 1536 } 1537 default: 1538 break; 1539 } 1540 } 1541 1542 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1543 // The type of the function is irrelevant, because it's bitcast at calls 1544 // anyhow. 1545 Constant *JT = cast<Constant>( 1546 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1547 Type::getVoidTy(M.getContext())) 1548 .getCallee()); 1549 bool IsExported = false; 1550 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1551 assert(!IsExported); 1552 } 1553 } 1554 1555 void DevirtModule::removeRedundantTypeTests() { 1556 auto True = ConstantInt::getTrue(M.getContext()); 1557 for (auto &&U : NumUnsafeUsesForTypeTest) { 1558 if (U.second == 0) { 1559 U.first->replaceAllUsesWith(True); 1560 U.first->eraseFromParent(); 1561 } 1562 } 1563 } 1564 1565 bool DevirtModule::run() { 1566 // If only some of the modules were split, we cannot correctly perform 1567 // this transformation. We already checked for the presense of type tests 1568 // with partially split modules during the thin link, and would have emitted 1569 // an error if any were found, so here we can simply return. 1570 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1571 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1572 return false; 1573 1574 Function *TypeTestFunc = 1575 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1576 Function *TypeCheckedLoadFunc = 1577 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1578 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1579 1580 // Normally if there are no users of the devirtualization intrinsics in the 1581 // module, this pass has nothing to do. But if we are exporting, we also need 1582 // to handle any users that appear only in the function summaries. 1583 if (!ExportSummary && 1584 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1585 AssumeFunc->use_empty()) && 1586 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1587 return false; 1588 1589 if (TypeTestFunc && AssumeFunc) 1590 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1591 1592 if (TypeCheckedLoadFunc) 1593 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1594 1595 if (ImportSummary) { 1596 for (auto &S : CallSlots) 1597 importResolution(S.first, S.second); 1598 1599 removeRedundantTypeTests(); 1600 1601 // The rest of the code is only necessary when exporting or during regular 1602 // LTO, so we are done. 1603 return true; 1604 } 1605 1606 // Rebuild type metadata into a map for easy lookup. 1607 std::vector<VTableBits> Bits; 1608 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1609 buildTypeIdentifierMap(Bits, TypeIdMap); 1610 if (TypeIdMap.empty()) 1611 return true; 1612 1613 // Collect information from summary about which calls to try to devirtualize. 1614 if (ExportSummary) { 1615 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1616 for (auto &P : TypeIdMap) { 1617 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1618 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1619 TypeId); 1620 } 1621 1622 for (auto &P : *ExportSummary) { 1623 for (auto &S : P.second.SummaryList) { 1624 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1625 if (!FS) 1626 continue; 1627 // FIXME: Only add live functions. 1628 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1629 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1630 CallSlots[{MD, VF.Offset}] 1631 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1632 } 1633 } 1634 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1635 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1636 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1637 } 1638 } 1639 for (const FunctionSummary::ConstVCall &VC : 1640 FS->type_test_assume_const_vcalls()) { 1641 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1642 CallSlots[{MD, VC.VFunc.Offset}] 1643 .ConstCSInfo[VC.Args] 1644 .markSummaryHasTypeTestAssumeUsers(); 1645 } 1646 } 1647 for (const FunctionSummary::ConstVCall &VC : 1648 FS->type_checked_load_const_vcalls()) { 1649 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1650 CallSlots[{MD, VC.VFunc.Offset}] 1651 .ConstCSInfo[VC.Args] 1652 .addSummaryTypeCheckedLoadUser(FS); 1653 } 1654 } 1655 } 1656 } 1657 } 1658 1659 // For each (type, offset) pair: 1660 bool DidVirtualConstProp = false; 1661 std::map<std::string, Function*> DevirtTargets; 1662 for (auto &S : CallSlots) { 1663 // Search each of the members of the type identifier for the virtual 1664 // function implementation at offset S.first.ByteOffset, and add to 1665 // TargetsForSlot. 1666 std::vector<VirtualCallTarget> TargetsForSlot; 1667 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1668 S.first.ByteOffset)) { 1669 WholeProgramDevirtResolution *Res = nullptr; 1670 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1671 Res = &ExportSummary 1672 ->getOrInsertTypeIdSummary( 1673 cast<MDString>(S.first.TypeID)->getString()) 1674 .WPDRes[S.first.ByteOffset]; 1675 1676 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1677 DidVirtualConstProp |= 1678 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1679 1680 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1681 } 1682 1683 // Collect functions devirtualized at least for one call site for stats. 1684 if (RemarksEnabled) 1685 for (const auto &T : TargetsForSlot) 1686 if (T.WasDevirt) 1687 DevirtTargets[T.Fn->getName()] = T.Fn; 1688 } 1689 1690 // CFI-specific: if we are exporting and any llvm.type.checked.load 1691 // intrinsics were *not* devirtualized, we need to add the resulting 1692 // llvm.type.test intrinsics to the function summaries so that the 1693 // LowerTypeTests pass will export them. 1694 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1695 auto GUID = 1696 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1697 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1698 FS->addTypeTest(GUID); 1699 for (auto &CCS : S.second.ConstCSInfo) 1700 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1701 FS->addTypeTest(GUID); 1702 } 1703 } 1704 1705 if (RemarksEnabled) { 1706 // Generate remarks for each devirtualized function. 1707 for (const auto &DT : DevirtTargets) { 1708 Function *F = DT.second; 1709 1710 using namespace ore; 1711 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1712 << "devirtualized " 1713 << NV("FunctionName", F->getName())); 1714 } 1715 } 1716 1717 removeRedundantTypeTests(); 1718 1719 // Rebuild each global we touched as part of virtual constant propagation to 1720 // include the before and after bytes. 1721 if (DidVirtualConstProp) 1722 for (VTableBits &B : Bits) 1723 rebuildGlobal(B); 1724 1725 return true; 1726 } 1727