xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MDBuilder.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/ModuleSummaryIndexYAML.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Errc.h"
89 #include "llvm/Support/Error.h"
90 #include "llvm/Support/FileSystem.h"
91 #include "llvm/Support/GlobPattern.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/TargetParser/Triple.h"
94 #include "llvm/Transforms/IPO.h"
95 #include "llvm/Transforms/IPO/FunctionAttrs.h"
96 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
97 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
104 
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
107 
108 #define DEBUG_TYPE "wholeprogramdevirt"
109 
110 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
111 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
112 STATISTIC(NumBranchFunnel, "Number of branch funnels");
113 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
114 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
115 STATISTIC(NumVirtConstProp1Bit,
116           "Number of 1 bit virtual constant propagations");
117 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
118 
119 static cl::opt<PassSummaryAction> ClSummaryAction(
120     "wholeprogramdevirt-summary-action",
121     cl::desc("What to do with the summary when running this pass"),
122     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
123                clEnumValN(PassSummaryAction::Import, "import",
124                           "Import typeid resolutions from summary and globals"),
125                clEnumValN(PassSummaryAction::Export, "export",
126                           "Export typeid resolutions to summary and globals")),
127     cl::Hidden);
128 
129 static cl::opt<std::string> ClReadSummary(
130     "wholeprogramdevirt-read-summary",
131     cl::desc(
132         "Read summary from given bitcode or YAML file before running pass"),
133     cl::Hidden);
134 
135 static cl::opt<std::string> ClWriteSummary(
136     "wholeprogramdevirt-write-summary",
137     cl::desc("Write summary to given bitcode or YAML file after running pass. "
138              "Output file format is deduced from extension: *.bc means writing "
139              "bitcode, otherwise YAML"),
140     cl::Hidden);
141 
142 static cl::opt<unsigned>
143     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
144                 cl::init(10),
145                 cl::desc("Maximum number of call targets per "
146                          "call site to enable branch funnels"));
147 
148 static cl::opt<bool>
149     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
150                        cl::desc("Print index-based devirtualization messages"));
151 
152 /// Provide a way to force enable whole program visibility in tests.
153 /// This is needed to support legacy tests that don't contain
154 /// !vcall_visibility metadata (the mere presense of type tests
155 /// previously implied hidden visibility).
156 static cl::opt<bool>
157     WholeProgramVisibility("whole-program-visibility", cl::Hidden,
158                            cl::desc("Enable whole program visibility"));
159 
160 /// Provide a way to force disable whole program for debugging or workarounds,
161 /// when enabled via the linker.
162 static cl::opt<bool> DisableWholeProgramVisibility(
163     "disable-whole-program-visibility", cl::Hidden,
164     cl::desc("Disable whole program visibility (overrides enabling options)"));
165 
166 /// Provide way to prevent certain function from being devirtualized
167 static cl::list<std::string>
168     SkipFunctionNames("wholeprogramdevirt-skip",
169                       cl::desc("Prevent function(s) from being devirtualized"),
170                       cl::Hidden, cl::CommaSeparated);
171 
172 /// Mechanism to add runtime checking of devirtualization decisions, optionally
173 /// trapping or falling back to indirect call on any that are not correct.
174 /// Trapping mode is useful for debugging undefined behavior leading to failures
175 /// with WPD. Fallback mode is useful for ensuring safety when whole program
176 /// visibility may be compromised.
177 enum WPDCheckMode { None, Trap, Fallback };
178 static cl::opt<WPDCheckMode> DevirtCheckMode(
179     "wholeprogramdevirt-check", cl::Hidden,
180     cl::desc("Type of checking for incorrect devirtualizations"),
181     cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
182                clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
183                clEnumValN(WPDCheckMode::Fallback, "fallback",
184                           "Fallback to indirect when incorrect")));
185 
186 namespace {
187 struct PatternList {
188   std::vector<GlobPattern> Patterns;
189   template <class T> void init(const T &StringList) {
190     for (const auto &S : StringList)
191       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
192         Patterns.push_back(std::move(*Pat));
193   }
194   bool match(StringRef S) {
195     for (const GlobPattern &P : Patterns)
196       if (P.match(S))
197         return true;
198     return false;
199   }
200 };
201 } // namespace
202 
203 // Find the minimum offset that we may store a value of size Size bits at. If
204 // IsAfter is set, look for an offset before the object, otherwise look for an
205 // offset after the object.
206 uint64_t
207 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
208                                      bool IsAfter, uint64_t Size) {
209   // Find a minimum offset taking into account only vtable sizes.
210   uint64_t MinByte = 0;
211   for (const VirtualCallTarget &Target : Targets) {
212     if (IsAfter)
213       MinByte = std::max(MinByte, Target.minAfterBytes());
214     else
215       MinByte = std::max(MinByte, Target.minBeforeBytes());
216   }
217 
218   // Build a vector of arrays of bytes covering, for each target, a slice of the
219   // used region (see AccumBitVector::BytesUsed in
220   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
221   // this aligns the used regions to start at MinByte.
222   //
223   // In this example, A, B and C are vtables, # is a byte already allocated for
224   // a virtual function pointer, AAAA... (etc.) are the used regions for the
225   // vtables and Offset(X) is the value computed for the Offset variable below
226   // for X.
227   //
228   //                    Offset(A)
229   //                    |       |
230   //                            |MinByte
231   // A: ################AAAAAAAA|AAAAAAAA
232   // B: ########BBBBBBBBBBBBBBBB|BBBB
233   // C: ########################|CCCCCCCCCCCCCCCC
234   //            |   Offset(B)   |
235   //
236   // This code produces the slices of A, B and C that appear after the divider
237   // at MinByte.
238   std::vector<ArrayRef<uint8_t>> Used;
239   for (const VirtualCallTarget &Target : Targets) {
240     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
241                                        : Target.TM->Bits->Before.BytesUsed;
242     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
243                               : MinByte - Target.minBeforeBytes();
244 
245     // Disregard used regions that are smaller than Offset. These are
246     // effectively all-free regions that do not need to be checked.
247     if (VTUsed.size() > Offset)
248       Used.push_back(VTUsed.slice(Offset));
249   }
250 
251   if (Size == 1) {
252     // Find a free bit in each member of Used.
253     for (unsigned I = 0;; ++I) {
254       uint8_t BitsUsed = 0;
255       for (auto &&B : Used)
256         if (I < B.size())
257           BitsUsed |= B[I];
258       if (BitsUsed != 0xff)
259         return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
260     }
261   } else {
262     // Find a free (Size/8) byte region in each member of Used.
263     // FIXME: see if alignment helps.
264     for (unsigned I = 0;; ++I) {
265       for (auto &&B : Used) {
266         unsigned Byte = 0;
267         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
268           if (B[I + Byte])
269             goto NextI;
270           ++Byte;
271         }
272       }
273       return (MinByte + I) * 8;
274     NextI:;
275     }
276   }
277 }
278 
279 void wholeprogramdevirt::setBeforeReturnValues(
280     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
281     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
282   if (BitWidth == 1)
283     OffsetByte = -(AllocBefore / 8 + 1);
284   else
285     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
286   OffsetBit = AllocBefore % 8;
287 
288   for (VirtualCallTarget &Target : Targets) {
289     if (BitWidth == 1)
290       Target.setBeforeBit(AllocBefore);
291     else
292       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
293   }
294 }
295 
296 void wholeprogramdevirt::setAfterReturnValues(
297     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
298     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
299   if (BitWidth == 1)
300     OffsetByte = AllocAfter / 8;
301   else
302     OffsetByte = (AllocAfter + 7) / 8;
303   OffsetBit = AllocAfter % 8;
304 
305   for (VirtualCallTarget &Target : Targets) {
306     if (BitWidth == 1)
307       Target.setAfterBit(AllocAfter);
308     else
309       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
310   }
311 }
312 
313 VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
314     : Fn(Fn), TM(TM),
315       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()),
316       WasDevirt(false) {}
317 
318 namespace {
319 
320 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
321 // tables, and the ByteOffset is the offset in bytes from the address point to
322 // the virtual function pointer.
323 struct VTableSlot {
324   Metadata *TypeID;
325   uint64_t ByteOffset;
326 };
327 
328 } // end anonymous namespace
329 
330 namespace llvm {
331 
332 template <> struct DenseMapInfo<VTableSlot> {
333   static VTableSlot getEmptyKey() {
334     return {DenseMapInfo<Metadata *>::getEmptyKey(),
335             DenseMapInfo<uint64_t>::getEmptyKey()};
336   }
337   static VTableSlot getTombstoneKey() {
338     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
339             DenseMapInfo<uint64_t>::getTombstoneKey()};
340   }
341   static unsigned getHashValue(const VTableSlot &I) {
342     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
343            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
344   }
345   static bool isEqual(const VTableSlot &LHS,
346                       const VTableSlot &RHS) {
347     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
348   }
349 };
350 
351 template <> struct DenseMapInfo<VTableSlotSummary> {
352   static VTableSlotSummary getEmptyKey() {
353     return {DenseMapInfo<StringRef>::getEmptyKey(),
354             DenseMapInfo<uint64_t>::getEmptyKey()};
355   }
356   static VTableSlotSummary getTombstoneKey() {
357     return {DenseMapInfo<StringRef>::getTombstoneKey(),
358             DenseMapInfo<uint64_t>::getTombstoneKey()};
359   }
360   static unsigned getHashValue(const VTableSlotSummary &I) {
361     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
362            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
363   }
364   static bool isEqual(const VTableSlotSummary &LHS,
365                       const VTableSlotSummary &RHS) {
366     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
367   }
368 };
369 
370 } // end namespace llvm
371 
372 namespace {
373 
374 // Returns true if the function must be unreachable based on ValueInfo.
375 //
376 // In particular, identifies a function as unreachable in the following
377 // conditions
378 //   1) All summaries are live.
379 //   2) All function summaries indicate it's unreachable
380 //   3) There is no non-function with the same GUID (which is rare)
381 bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
382   if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
383     // Returns false if ValueInfo is absent, or the summary list is empty
384     // (e.g., function declarations).
385     return false;
386   }
387 
388   for (const auto &Summary : TheFnVI.getSummaryList()) {
389     // Conservatively returns false if any non-live functions are seen.
390     // In general either all summaries should be live or all should be dead.
391     if (!Summary->isLive())
392       return false;
393     if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
394       if (!FS->fflags().MustBeUnreachable)
395         return false;
396     }
397     // Be conservative if a non-function has the same GUID (which is rare).
398     else
399       return false;
400   }
401   // All function summaries are live and all of them agree that the function is
402   // unreachble.
403   return true;
404 }
405 
406 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
407 // the indirect virtual call.
408 struct VirtualCallSite {
409   Value *VTable = nullptr;
410   CallBase &CB;
411 
412   // If non-null, this field points to the associated unsafe use count stored in
413   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
414   // of that field for details.
415   unsigned *NumUnsafeUses = nullptr;
416 
417   void
418   emitRemark(const StringRef OptName, const StringRef TargetName,
419              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
420     Function *F = CB.getCaller();
421     DebugLoc DLoc = CB.getDebugLoc();
422     BasicBlock *Block = CB.getParent();
423 
424     using namespace ore;
425     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
426                       << NV("Optimization", OptName)
427                       << ": devirtualized a call to "
428                       << NV("FunctionName", TargetName));
429   }
430 
431   void replaceAndErase(
432       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
433       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
434       Value *New) {
435     if (RemarksEnabled)
436       emitRemark(OptName, TargetName, OREGetter);
437     CB.replaceAllUsesWith(New);
438     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
439       BranchInst::Create(II->getNormalDest(), &CB);
440       II->getUnwindDest()->removePredecessor(II->getParent());
441     }
442     CB.eraseFromParent();
443     // This use is no longer unsafe.
444     if (NumUnsafeUses)
445       --*NumUnsafeUses;
446   }
447 };
448 
449 // Call site information collected for a specific VTableSlot and possibly a list
450 // of constant integer arguments. The grouping by arguments is handled by the
451 // VTableSlotInfo class.
452 struct CallSiteInfo {
453   /// The set of call sites for this slot. Used during regular LTO and the
454   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
455   /// call sites that appear in the merged module itself); in each of these
456   /// cases we are directly operating on the call sites at the IR level.
457   std::vector<VirtualCallSite> CallSites;
458 
459   /// Whether all call sites represented by this CallSiteInfo, including those
460   /// in summaries, have been devirtualized. This starts off as true because a
461   /// default constructed CallSiteInfo represents no call sites.
462   bool AllCallSitesDevirted = true;
463 
464   // These fields are used during the export phase of ThinLTO and reflect
465   // information collected from function summaries.
466 
467   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
468   /// this slot.
469   bool SummaryHasTypeTestAssumeUsers = false;
470 
471   /// CFI-specific: a vector containing the list of function summaries that use
472   /// the llvm.type.checked.load intrinsic and therefore will require
473   /// resolutions for llvm.type.test in order to implement CFI checks if
474   /// devirtualization was unsuccessful. If devirtualization was successful, the
475   /// pass will clear this vector by calling markDevirt(). If at the end of the
476   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
477   /// to each of the function summaries in the vector.
478   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
479   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
480 
481   bool isExported() const {
482     return SummaryHasTypeTestAssumeUsers ||
483            !SummaryTypeCheckedLoadUsers.empty();
484   }
485 
486   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
487     SummaryTypeCheckedLoadUsers.push_back(FS);
488     AllCallSitesDevirted = false;
489   }
490 
491   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
492     SummaryTypeTestAssumeUsers.push_back(FS);
493     SummaryHasTypeTestAssumeUsers = true;
494     AllCallSitesDevirted = false;
495   }
496 
497   void markDevirt() {
498     AllCallSitesDevirted = true;
499 
500     // As explained in the comment for SummaryTypeCheckedLoadUsers.
501     SummaryTypeCheckedLoadUsers.clear();
502   }
503 };
504 
505 // Call site information collected for a specific VTableSlot.
506 struct VTableSlotInfo {
507   // The set of call sites which do not have all constant integer arguments
508   // (excluding "this").
509   CallSiteInfo CSInfo;
510 
511   // The set of call sites with all constant integer arguments (excluding
512   // "this"), grouped by argument list.
513   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
514 
515   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
516 
517 private:
518   CallSiteInfo &findCallSiteInfo(CallBase &CB);
519 };
520 
521 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
522   std::vector<uint64_t> Args;
523   auto *CBType = dyn_cast<IntegerType>(CB.getType());
524   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
525     return CSInfo;
526   for (auto &&Arg : drop_begin(CB.args())) {
527     auto *CI = dyn_cast<ConstantInt>(Arg);
528     if (!CI || CI->getBitWidth() > 64)
529       return CSInfo;
530     Args.push_back(CI->getZExtValue());
531   }
532   return ConstCSInfo[Args];
533 }
534 
535 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
536                                  unsigned *NumUnsafeUses) {
537   auto &CSI = findCallSiteInfo(CB);
538   CSI.AllCallSitesDevirted = false;
539   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
540 }
541 
542 struct DevirtModule {
543   Module &M;
544   function_ref<AAResults &(Function &)> AARGetter;
545   function_ref<DominatorTree &(Function &)> LookupDomTree;
546 
547   ModuleSummaryIndex *ExportSummary;
548   const ModuleSummaryIndex *ImportSummary;
549 
550   IntegerType *Int8Ty;
551   PointerType *Int8PtrTy;
552   IntegerType *Int32Ty;
553   IntegerType *Int64Ty;
554   IntegerType *IntPtrTy;
555   /// Sizeless array type, used for imported vtables. This provides a signal
556   /// to analyzers that these imports may alias, as they do for example
557   /// when multiple unique return values occur in the same vtable.
558   ArrayType *Int8Arr0Ty;
559 
560   bool RemarksEnabled;
561   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
562 
563   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
564 
565   // Calls that have already been optimized. We may add a call to multiple
566   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
567   // optimize a call more than once.
568   SmallPtrSet<CallBase *, 8> OptimizedCalls;
569 
570   // Store calls that had their ptrauth bundle removed. They are to be deleted
571   // at the end of the optimization.
572   SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
573 
574   // This map keeps track of the number of "unsafe" uses of a loaded function
575   // pointer. The key is the associated llvm.type.test intrinsic call generated
576   // by this pass. An unsafe use is one that calls the loaded function pointer
577   // directly. Every time we eliminate an unsafe use (for example, by
578   // devirtualizing it or by applying virtual constant propagation), we
579   // decrement the value stored in this map. If a value reaches zero, we can
580   // eliminate the type check by RAUWing the associated llvm.type.test call with
581   // true.
582   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
583   PatternList FunctionsToSkip;
584 
585   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
586                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
587                function_ref<DominatorTree &(Function &)> LookupDomTree,
588                ModuleSummaryIndex *ExportSummary,
589                const ModuleSummaryIndex *ImportSummary)
590       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
591         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
592         Int8Ty(Type::getInt8Ty(M.getContext())),
593         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
594         Int32Ty(Type::getInt32Ty(M.getContext())),
595         Int64Ty(Type::getInt64Ty(M.getContext())),
596         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
597         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
598         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
599     assert(!(ExportSummary && ImportSummary));
600     FunctionsToSkip.init(SkipFunctionNames);
601   }
602 
603   bool areRemarksEnabled();
604 
605   void
606   scanTypeTestUsers(Function *TypeTestFunc,
607                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
608   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
609 
610   void buildTypeIdentifierMap(
611       std::vector<VTableBits> &Bits,
612       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
613 
614   bool
615   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
616                             const std::set<TypeMemberInfo> &TypeMemberInfos,
617                             uint64_t ByteOffset,
618                             ModuleSummaryIndex *ExportSummary);
619 
620   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
621                              bool &IsExported);
622   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
623                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
624                            VTableSlotInfo &SlotInfo,
625                            WholeProgramDevirtResolution *Res);
626 
627   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
628                               bool &IsExported);
629   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
630                             VTableSlotInfo &SlotInfo,
631                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
632 
633   bool tryEvaluateFunctionsWithArgs(
634       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
635       ArrayRef<uint64_t> Args);
636 
637   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
638                              uint64_t TheRetVal);
639   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
640                            CallSiteInfo &CSInfo,
641                            WholeProgramDevirtResolution::ByArg *Res);
642 
643   // Returns the global symbol name that is used to export information about the
644   // given vtable slot and list of arguments.
645   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
646                             StringRef Name);
647 
648   bool shouldExportConstantsAsAbsoluteSymbols();
649 
650   // This function is called during the export phase to create a symbol
651   // definition containing information about the given vtable slot and list of
652   // arguments.
653   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654                     Constant *C);
655   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
656                       uint32_t Const, uint32_t &Storage);
657 
658   // This function is called during the import phase to create a reference to
659   // the symbol definition created during the export phase.
660   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
661                          StringRef Name);
662   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
663                            StringRef Name, IntegerType *IntTy,
664                            uint32_t Storage);
665 
666   Constant *getMemberAddr(const TypeMemberInfo *M);
667 
668   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
669                             Constant *UniqueMemberAddr);
670   bool tryUniqueRetValOpt(unsigned BitWidth,
671                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
672                           CallSiteInfo &CSInfo,
673                           WholeProgramDevirtResolution::ByArg *Res,
674                           VTableSlot Slot, ArrayRef<uint64_t> Args);
675 
676   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
677                              Constant *Byte, Constant *Bit);
678   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
679                            VTableSlotInfo &SlotInfo,
680                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
681 
682   void rebuildGlobal(VTableBits &B);
683 
684   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
685   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
686 
687   // If we were able to eliminate all unsafe uses for a type checked load,
688   // eliminate the associated type tests by replacing them with true.
689   void removeRedundantTypeTests();
690 
691   bool run();
692 
693   // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
694   //
695   // Caller guarantees that `ExportSummary` is not nullptr.
696   static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
697                                            ModuleSummaryIndex *ExportSummary);
698 
699   // Returns true if the function definition must be unreachable.
700   //
701   // Note if this helper function returns true, `F` is guaranteed
702   // to be unreachable; if it returns false, `F` might still
703   // be unreachable but not covered by this helper function.
704   //
705   // Implementation-wise, if function definition is present, IR is analyzed; if
706   // not, look up function flags from ExportSummary as a fallback.
707   static bool mustBeUnreachableFunction(Function *const F,
708                                         ModuleSummaryIndex *ExportSummary);
709 
710   // Lower the module using the action and summary passed as command line
711   // arguments. For testing purposes only.
712   static bool
713   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
714                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
715                 function_ref<DominatorTree &(Function &)> LookupDomTree);
716 };
717 
718 struct DevirtIndex {
719   ModuleSummaryIndex &ExportSummary;
720   // The set in which to record GUIDs exported from their module by
721   // devirtualization, used by client to ensure they are not internalized.
722   std::set<GlobalValue::GUID> &ExportedGUIDs;
723   // A map in which to record the information necessary to locate the WPD
724   // resolution for local targets in case they are exported by cross module
725   // importing.
726   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
727 
728   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
729 
730   PatternList FunctionsToSkip;
731 
732   DevirtIndex(
733       ModuleSummaryIndex &ExportSummary,
734       std::set<GlobalValue::GUID> &ExportedGUIDs,
735       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
736       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
737         LocalWPDTargetsMap(LocalWPDTargetsMap) {
738     FunctionsToSkip.init(SkipFunctionNames);
739   }
740 
741   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
742                                  const TypeIdCompatibleVtableInfo TIdInfo,
743                                  uint64_t ByteOffset);
744 
745   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
746                            VTableSlotSummary &SlotSummary,
747                            VTableSlotInfo &SlotInfo,
748                            WholeProgramDevirtResolution *Res,
749                            std::set<ValueInfo> &DevirtTargets);
750 
751   void run();
752 };
753 } // end anonymous namespace
754 
755 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
756                                               ModuleAnalysisManager &AM) {
757   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
758   auto AARGetter = [&](Function &F) -> AAResults & {
759     return FAM.getResult<AAManager>(F);
760   };
761   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
762     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
763   };
764   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
765     return FAM.getResult<DominatorTreeAnalysis>(F);
766   };
767   if (UseCommandLine) {
768     if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
769       return PreservedAnalyses::all();
770     return PreservedAnalyses::none();
771   }
772   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
773                     ImportSummary)
774            .run())
775     return PreservedAnalyses::all();
776   return PreservedAnalyses::none();
777 }
778 
779 namespace llvm {
780 // Enable whole program visibility if enabled by client (e.g. linker) or
781 // internal option, and not force disabled.
782 bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
783   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
784          !DisableWholeProgramVisibility;
785 }
786 
787 /// If whole program visibility asserted, then upgrade all public vcall
788 /// visibility metadata on vtable definitions to linkage unit visibility in
789 /// Module IR (for regular or hybrid LTO).
790 void updateVCallVisibilityInModule(
791     Module &M, bool WholeProgramVisibilityEnabledInLTO,
792     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
793   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
794     return;
795   for (GlobalVariable &GV : M.globals()) {
796     // Add linkage unit visibility to any variable with type metadata, which are
797     // the vtable definitions. We won't have an existing vcall_visibility
798     // metadata on vtable definitions with public visibility.
799     if (GV.hasMetadata(LLVMContext::MD_type) &&
800         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
801         // Don't upgrade the visibility for symbols exported to the dynamic
802         // linker, as we have no information on their eventual use.
803         !DynamicExportSymbols.count(GV.getGUID()))
804       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
805   }
806 }
807 
808 void updatePublicTypeTestCalls(Module &M,
809                                bool WholeProgramVisibilityEnabledInLTO) {
810   Function *PublicTypeTestFunc =
811       M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
812   if (!PublicTypeTestFunc)
813     return;
814   if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
815     Function *TypeTestFunc =
816         Intrinsic::getDeclaration(&M, Intrinsic::type_test);
817     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
818       auto *CI = cast<CallInst>(U.getUser());
819       auto *NewCI = CallInst::Create(
820           TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
821           std::nullopt, "", CI);
822       CI->replaceAllUsesWith(NewCI);
823       CI->eraseFromParent();
824     }
825   } else {
826     auto *True = ConstantInt::getTrue(M.getContext());
827     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
828       auto *CI = cast<CallInst>(U.getUser());
829       CI->replaceAllUsesWith(True);
830       CI->eraseFromParent();
831     }
832   }
833 }
834 
835 /// If whole program visibility asserted, then upgrade all public vcall
836 /// visibility metadata on vtable definition summaries to linkage unit
837 /// visibility in Module summary index (for ThinLTO).
838 void updateVCallVisibilityInIndex(
839     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
840     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
841   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
842     return;
843   for (auto &P : Index) {
844     // Don't upgrade the visibility for symbols exported to the dynamic
845     // linker, as we have no information on their eventual use.
846     if (DynamicExportSymbols.count(P.first))
847       continue;
848     for (auto &S : P.second.SummaryList) {
849       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
850       if (!GVar ||
851           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
852         continue;
853       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
854     }
855   }
856 }
857 
858 void runWholeProgramDevirtOnIndex(
859     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
860     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
861   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
862 }
863 
864 void updateIndexWPDForExports(
865     ModuleSummaryIndex &Summary,
866     function_ref<bool(StringRef, ValueInfo)> isExported,
867     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
868   for (auto &T : LocalWPDTargetsMap) {
869     auto &VI = T.first;
870     // This was enforced earlier during trySingleImplDevirt.
871     assert(VI.getSummaryList().size() == 1 &&
872            "Devirt of local target has more than one copy");
873     auto &S = VI.getSummaryList()[0];
874     if (!isExported(S->modulePath(), VI))
875       continue;
876 
877     // It's been exported by a cross module import.
878     for (auto &SlotSummary : T.second) {
879       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
880       assert(TIdSum);
881       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
882       assert(WPDRes != TIdSum->WPDRes.end());
883       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
884           WPDRes->second.SingleImplName,
885           Summary.getModuleHash(S->modulePath()));
886     }
887   }
888 }
889 
890 } // end namespace llvm
891 
892 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
893   // Check that summary index contains regular LTO module when performing
894   // export to prevent occasional use of index from pure ThinLTO compilation
895   // (-fno-split-lto-module). This kind of summary index is passed to
896   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
897   const auto &ModPaths = Summary->modulePaths();
898   if (ClSummaryAction != PassSummaryAction::Import &&
899       !ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
900     return createStringError(
901         errc::invalid_argument,
902         "combined summary should contain Regular LTO module");
903   return ErrorSuccess();
904 }
905 
906 bool DevirtModule::runForTesting(
907     Module &M, function_ref<AAResults &(Function &)> AARGetter,
908     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
909     function_ref<DominatorTree &(Function &)> LookupDomTree) {
910   std::unique_ptr<ModuleSummaryIndex> Summary =
911       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
912 
913   // Handle the command-line summary arguments. This code is for testing
914   // purposes only, so we handle errors directly.
915   if (!ClReadSummary.empty()) {
916     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
917                           ": ");
918     auto ReadSummaryFile =
919         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
920     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
921             getModuleSummaryIndex(*ReadSummaryFile)) {
922       Summary = std::move(*SummaryOrErr);
923       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
924     } else {
925       // Try YAML if we've failed with bitcode.
926       consumeError(SummaryOrErr.takeError());
927       yaml::Input In(ReadSummaryFile->getBuffer());
928       In >> *Summary;
929       ExitOnErr(errorCodeToError(In.error()));
930     }
931   }
932 
933   bool Changed =
934       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
935                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
936                                                                 : nullptr,
937                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
938                                                                 : nullptr)
939           .run();
940 
941   if (!ClWriteSummary.empty()) {
942     ExitOnError ExitOnErr(
943         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
944     std::error_code EC;
945     if (StringRef(ClWriteSummary).endswith(".bc")) {
946       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
947       ExitOnErr(errorCodeToError(EC));
948       writeIndexToFile(*Summary, OS);
949     } else {
950       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
951       ExitOnErr(errorCodeToError(EC));
952       yaml::Output Out(OS);
953       Out << *Summary;
954     }
955   }
956 
957   return Changed;
958 }
959 
960 void DevirtModule::buildTypeIdentifierMap(
961     std::vector<VTableBits> &Bits,
962     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
963   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
964   Bits.reserve(M.global_size());
965   SmallVector<MDNode *, 2> Types;
966   for (GlobalVariable &GV : M.globals()) {
967     Types.clear();
968     GV.getMetadata(LLVMContext::MD_type, Types);
969     if (GV.isDeclaration() || Types.empty())
970       continue;
971 
972     VTableBits *&BitsPtr = GVToBits[&GV];
973     if (!BitsPtr) {
974       Bits.emplace_back();
975       Bits.back().GV = &GV;
976       Bits.back().ObjectSize =
977           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
978       BitsPtr = &Bits.back();
979     }
980 
981     for (MDNode *Type : Types) {
982       auto TypeID = Type->getOperand(1).get();
983 
984       uint64_t Offset =
985           cast<ConstantInt>(
986               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
987               ->getZExtValue();
988 
989       TypeIdMap[TypeID].insert({BitsPtr, Offset});
990     }
991   }
992 }
993 
994 bool DevirtModule::tryFindVirtualCallTargets(
995     std::vector<VirtualCallTarget> &TargetsForSlot,
996     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
997     ModuleSummaryIndex *ExportSummary) {
998   for (const TypeMemberInfo &TM : TypeMemberInfos) {
999     if (!TM.Bits->GV->isConstant())
1000       return false;
1001 
1002     // We cannot perform whole program devirtualization analysis on a vtable
1003     // with public LTO visibility.
1004     if (TM.Bits->GV->getVCallVisibility() ==
1005         GlobalObject::VCallVisibilityPublic)
1006       return false;
1007 
1008     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1009                                        TM.Offset + ByteOffset, M, TM.Bits->GV);
1010     if (!Ptr)
1011       return false;
1012 
1013     auto C = Ptr->stripPointerCasts();
1014     // Make sure this is a function or alias to a function.
1015     auto Fn = dyn_cast<Function>(C);
1016     auto A = dyn_cast<GlobalAlias>(C);
1017     if (!Fn && A)
1018       Fn = dyn_cast<Function>(A->getAliasee());
1019 
1020     if (!Fn)
1021       return false;
1022 
1023     if (FunctionsToSkip.match(Fn->getName()))
1024       return false;
1025 
1026     // We can disregard __cxa_pure_virtual as a possible call target, as
1027     // calls to pure virtuals are UB.
1028     if (Fn->getName() == "__cxa_pure_virtual")
1029       continue;
1030 
1031     // We can disregard unreachable functions as possible call targets, as
1032     // unreachable functions shouldn't be called.
1033     if (mustBeUnreachableFunction(Fn, ExportSummary))
1034       continue;
1035 
1036     // Save the symbol used in the vtable to use as the devirtualization
1037     // target.
1038     auto GV = dyn_cast<GlobalValue>(C);
1039     assert(GV);
1040     TargetsForSlot.push_back({GV, &TM});
1041   }
1042 
1043   // Give up if we couldn't find any targets.
1044   return !TargetsForSlot.empty();
1045 }
1046 
1047 bool DevirtIndex::tryFindVirtualCallTargets(
1048     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
1049     uint64_t ByteOffset) {
1050   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1051     // Find a representative copy of the vtable initializer.
1052     // We can have multiple available_externally, linkonce_odr and weak_odr
1053     // vtable initializers. We can also have multiple external vtable
1054     // initializers in the case of comdats, which we cannot check here.
1055     // The linker should give an error in this case.
1056     //
1057     // Also, handle the case of same-named local Vtables with the same path
1058     // and therefore the same GUID. This can happen if there isn't enough
1059     // distinguishing path when compiling the source file. In that case we
1060     // conservatively return false early.
1061     const GlobalVarSummary *VS = nullptr;
1062     bool LocalFound = false;
1063     for (const auto &S : P.VTableVI.getSummaryList()) {
1064       if (GlobalValue::isLocalLinkage(S->linkage())) {
1065         if (LocalFound)
1066           return false;
1067         LocalFound = true;
1068       }
1069       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1070       if (!CurVS->vTableFuncs().empty() ||
1071           // Previously clang did not attach the necessary type metadata to
1072           // available_externally vtables, in which case there would not
1073           // be any vtable functions listed in the summary and we need
1074           // to treat this case conservatively (in case the bitcode is old).
1075           // However, we will also not have any vtable functions in the
1076           // case of a pure virtual base class. In that case we do want
1077           // to set VS to avoid treating it conservatively.
1078           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1079         VS = CurVS;
1080         // We cannot perform whole program devirtualization analysis on a vtable
1081         // with public LTO visibility.
1082         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1083           return false;
1084       }
1085     }
1086     // There will be no VS if all copies are available_externally having no
1087     // type metadata. In that case we can't safely perform WPD.
1088     if (!VS)
1089       return false;
1090     if (!VS->isLive())
1091       continue;
1092     for (auto VTP : VS->vTableFuncs()) {
1093       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1094         continue;
1095 
1096       if (mustBeUnreachableFunction(VTP.FuncVI))
1097         continue;
1098 
1099       TargetsForSlot.push_back(VTP.FuncVI);
1100     }
1101   }
1102 
1103   // Give up if we couldn't find any targets.
1104   return !TargetsForSlot.empty();
1105 }
1106 
1107 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1108                                          Constant *TheFn, bool &IsExported) {
1109   // Don't devirtualize function if we're told to skip it
1110   // in -wholeprogramdevirt-skip.
1111   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1112     return;
1113   auto Apply = [&](CallSiteInfo &CSInfo) {
1114     for (auto &&VCallSite : CSInfo.CallSites) {
1115       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1116         continue;
1117 
1118       if (RemarksEnabled)
1119         VCallSite.emitRemark("single-impl",
1120                              TheFn->stripPointerCasts()->getName(), OREGetter);
1121       NumSingleImpl++;
1122       auto &CB = VCallSite.CB;
1123       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1124       IRBuilder<> Builder(&CB);
1125       Value *Callee =
1126           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1127 
1128       // If trap checking is enabled, add support to compare the virtual
1129       // function pointer to the devirtualized target. In case of a mismatch,
1130       // perform a debug trap.
1131       if (DevirtCheckMode == WPDCheckMode::Trap) {
1132         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1133         Instruction *ThenTerm =
1134             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1135         Builder.SetInsertPoint(ThenTerm);
1136         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1137         auto *CallTrap = Builder.CreateCall(TrapFn);
1138         CallTrap->setDebugLoc(CB.getDebugLoc());
1139       }
1140 
1141       // If fallback checking is enabled, add support to compare the virtual
1142       // function pointer to the devirtualized target. In case of a mismatch,
1143       // fall back to indirect call.
1144       if (DevirtCheckMode == WPDCheckMode::Fallback) {
1145         MDNode *Weights =
1146             MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
1147         // Version the indirect call site. If the called value is equal to the
1148         // given callee, 'NewInst' will be executed, otherwise the original call
1149         // site will be executed.
1150         CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1151         NewInst.setCalledOperand(Callee);
1152         // Since the new call site is direct, we must clear metadata that
1153         // is only appropriate for indirect calls. This includes !prof and
1154         // !callees metadata.
1155         NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1156         NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1157         // Additionally, we should remove them from the fallback indirect call,
1158         // so that we don't attempt to perform indirect call promotion later.
1159         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1160         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1161       }
1162 
1163       // In either trapping or non-checking mode, devirtualize original call.
1164       else {
1165         // Devirtualize unconditionally.
1166         CB.setCalledOperand(Callee);
1167         // Since the call site is now direct, we must clear metadata that
1168         // is only appropriate for indirect calls. This includes !prof and
1169         // !callees metadata.
1170         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1171         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1172         if (CB.getCalledOperand() &&
1173             CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1174           auto *NewCS =
1175               CallBase::removeOperandBundle(&CB, LLVMContext::OB_ptrauth, &CB);
1176           CB.replaceAllUsesWith(NewCS);
1177           // Schedule for deletion at the end of pass run.
1178           CallsWithPtrAuthBundleRemoved.push_back(&CB);
1179         }
1180       }
1181 
1182       // This use is no longer unsafe.
1183       if (VCallSite.NumUnsafeUses)
1184         --*VCallSite.NumUnsafeUses;
1185     }
1186     if (CSInfo.isExported())
1187       IsExported = true;
1188     CSInfo.markDevirt();
1189   };
1190   Apply(SlotInfo.CSInfo);
1191   for (auto &P : SlotInfo.ConstCSInfo)
1192     Apply(P.second);
1193 }
1194 
1195 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1196   // We can't add calls if we haven't seen a definition
1197   if (Callee.getSummaryList().empty())
1198     return false;
1199 
1200   // Insert calls into the summary index so that the devirtualized targets
1201   // are eligible for import.
1202   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1203   // to better ensure we have the opportunity to inline them.
1204   bool IsExported = false;
1205   auto &S = Callee.getSummaryList()[0];
1206   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1207   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1208     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1209       FS->addCall({Callee, CI});
1210       IsExported |= S->modulePath() != FS->modulePath();
1211     }
1212     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1213       FS->addCall({Callee, CI});
1214       IsExported |= S->modulePath() != FS->modulePath();
1215     }
1216   };
1217   AddCalls(SlotInfo.CSInfo);
1218   for (auto &P : SlotInfo.ConstCSInfo)
1219     AddCalls(P.second);
1220   return IsExported;
1221 }
1222 
1223 bool DevirtModule::trySingleImplDevirt(
1224     ModuleSummaryIndex *ExportSummary,
1225     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1226     WholeProgramDevirtResolution *Res) {
1227   // See if the program contains a single implementation of this virtual
1228   // function.
1229   auto *TheFn = TargetsForSlot[0].Fn;
1230   for (auto &&Target : TargetsForSlot)
1231     if (TheFn != Target.Fn)
1232       return false;
1233 
1234   // If so, update each call site to call that implementation directly.
1235   if (RemarksEnabled || AreStatisticsEnabled())
1236     TargetsForSlot[0].WasDevirt = true;
1237 
1238   bool IsExported = false;
1239   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1240   if (!IsExported)
1241     return false;
1242 
1243   // If the only implementation has local linkage, we must promote to external
1244   // to make it visible to thin LTO objects. We can only get here during the
1245   // ThinLTO export phase.
1246   if (TheFn->hasLocalLinkage()) {
1247     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1248 
1249     // Since we are renaming the function, any comdats with the same name must
1250     // also be renamed. This is required when targeting COFF, as the comdat name
1251     // must match one of the names of the symbols in the comdat.
1252     if (Comdat *C = TheFn->getComdat()) {
1253       if (C->getName() == TheFn->getName()) {
1254         Comdat *NewC = M.getOrInsertComdat(NewName);
1255         NewC->setSelectionKind(C->getSelectionKind());
1256         for (GlobalObject &GO : M.global_objects())
1257           if (GO.getComdat() == C)
1258             GO.setComdat(NewC);
1259       }
1260     }
1261 
1262     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1263     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1264     TheFn->setName(NewName);
1265   }
1266   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1267     // Any needed promotion of 'TheFn' has already been done during
1268     // LTO unit split, so we can ignore return value of AddCalls.
1269     AddCalls(SlotInfo, TheFnVI);
1270 
1271   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1272   Res->SingleImplName = std::string(TheFn->getName());
1273 
1274   return true;
1275 }
1276 
1277 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1278                                       VTableSlotSummary &SlotSummary,
1279                                       VTableSlotInfo &SlotInfo,
1280                                       WholeProgramDevirtResolution *Res,
1281                                       std::set<ValueInfo> &DevirtTargets) {
1282   // See if the program contains a single implementation of this virtual
1283   // function.
1284   auto TheFn = TargetsForSlot[0];
1285   for (auto &&Target : TargetsForSlot)
1286     if (TheFn != Target)
1287       return false;
1288 
1289   // Don't devirtualize if we don't have target definition.
1290   auto Size = TheFn.getSummaryList().size();
1291   if (!Size)
1292     return false;
1293 
1294   // Don't devirtualize function if we're told to skip it
1295   // in -wholeprogramdevirt-skip.
1296   if (FunctionsToSkip.match(TheFn.name()))
1297     return false;
1298 
1299   // If the summary list contains multiple summaries where at least one is
1300   // a local, give up, as we won't know which (possibly promoted) name to use.
1301   for (const auto &S : TheFn.getSummaryList())
1302     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1303       return false;
1304 
1305   // Collect functions devirtualized at least for one call site for stats.
1306   if (PrintSummaryDevirt || AreStatisticsEnabled())
1307     DevirtTargets.insert(TheFn);
1308 
1309   auto &S = TheFn.getSummaryList()[0];
1310   bool IsExported = AddCalls(SlotInfo, TheFn);
1311   if (IsExported)
1312     ExportedGUIDs.insert(TheFn.getGUID());
1313 
1314   // Record in summary for use in devirtualization during the ThinLTO import
1315   // step.
1316   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1317   if (GlobalValue::isLocalLinkage(S->linkage())) {
1318     if (IsExported)
1319       // If target is a local function and we are exporting it by
1320       // devirtualizing a call in another module, we need to record the
1321       // promoted name.
1322       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1323           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1324     else {
1325       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1326       Res->SingleImplName = std::string(TheFn.name());
1327     }
1328   } else
1329     Res->SingleImplName = std::string(TheFn.name());
1330 
1331   // Name will be empty if this thin link driven off of serialized combined
1332   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1333   // legacy LTO API anyway.
1334   assert(!Res->SingleImplName.empty());
1335 
1336   return true;
1337 }
1338 
1339 void DevirtModule::tryICallBranchFunnel(
1340     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1341     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1342   Triple T(M.getTargetTriple());
1343   if (T.getArch() != Triple::x86_64)
1344     return;
1345 
1346   if (TargetsForSlot.size() > ClThreshold)
1347     return;
1348 
1349   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1350   if (!HasNonDevirt)
1351     for (auto &P : SlotInfo.ConstCSInfo)
1352       if (!P.second.AllCallSitesDevirted) {
1353         HasNonDevirt = true;
1354         break;
1355       }
1356 
1357   if (!HasNonDevirt)
1358     return;
1359 
1360   FunctionType *FT =
1361       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1362   Function *JT;
1363   if (isa<MDString>(Slot.TypeID)) {
1364     JT = Function::Create(FT, Function::ExternalLinkage,
1365                           M.getDataLayout().getProgramAddressSpace(),
1366                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1367     JT->setVisibility(GlobalValue::HiddenVisibility);
1368   } else {
1369     JT = Function::Create(FT, Function::InternalLinkage,
1370                           M.getDataLayout().getProgramAddressSpace(),
1371                           "branch_funnel", &M);
1372   }
1373   JT->addParamAttr(0, Attribute::Nest);
1374 
1375   std::vector<Value *> JTArgs;
1376   JTArgs.push_back(JT->arg_begin());
1377   for (auto &T : TargetsForSlot) {
1378     JTArgs.push_back(getMemberAddr(T.TM));
1379     JTArgs.push_back(T.Fn);
1380   }
1381 
1382   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1383   Function *Intr =
1384       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1385 
1386   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1387   CI->setTailCallKind(CallInst::TCK_MustTail);
1388   ReturnInst::Create(M.getContext(), nullptr, BB);
1389 
1390   bool IsExported = false;
1391   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1392   if (IsExported)
1393     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1394 }
1395 
1396 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1397                                           Constant *JT, bool &IsExported) {
1398   auto Apply = [&](CallSiteInfo &CSInfo) {
1399     if (CSInfo.isExported())
1400       IsExported = true;
1401     if (CSInfo.AllCallSitesDevirted)
1402       return;
1403 
1404     std::map<CallBase *, CallBase *> CallBases;
1405     for (auto &&VCallSite : CSInfo.CallSites) {
1406       CallBase &CB = VCallSite.CB;
1407 
1408       if (CallBases.find(&CB) != CallBases.end()) {
1409         // When finding devirtualizable calls, it's possible to find the same
1410         // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1411         // calls, which can cause duplicate call sites to be recorded in
1412         // [Const]CallSites. If we've already found one of these
1413         // call instances, just ignore it. It will be replaced later.
1414         continue;
1415       }
1416 
1417       // Jump tables are only profitable if the retpoline mitigation is enabled.
1418       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1419       if (!FSAttr.isValid() ||
1420           !FSAttr.getValueAsString().contains("+retpoline"))
1421         continue;
1422 
1423       NumBranchFunnel++;
1424       if (RemarksEnabled)
1425         VCallSite.emitRemark("branch-funnel",
1426                              JT->stripPointerCasts()->getName(), OREGetter);
1427 
1428       // Pass the address of the vtable in the nest register, which is r10 on
1429       // x86_64.
1430       std::vector<Type *> NewArgs;
1431       NewArgs.push_back(Int8PtrTy);
1432       append_range(NewArgs, CB.getFunctionType()->params());
1433       FunctionType *NewFT =
1434           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1435                             CB.getFunctionType()->isVarArg());
1436       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1437 
1438       IRBuilder<> IRB(&CB);
1439       std::vector<Value *> Args;
1440       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1441       llvm::append_range(Args, CB.args());
1442 
1443       CallBase *NewCS = nullptr;
1444       if (isa<CallInst>(CB))
1445         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1446       else
1447         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1448                                  cast<InvokeInst>(CB).getNormalDest(),
1449                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1450       NewCS->setCallingConv(CB.getCallingConv());
1451 
1452       AttributeList Attrs = CB.getAttributes();
1453       std::vector<AttributeSet> NewArgAttrs;
1454       NewArgAttrs.push_back(AttributeSet::get(
1455           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1456                               M.getContext(), Attribute::Nest)}));
1457       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1458         NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1459       NewCS->setAttributes(
1460           AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1461                              Attrs.getRetAttrs(), NewArgAttrs));
1462 
1463       CallBases[&CB] = NewCS;
1464 
1465       // This use is no longer unsafe.
1466       if (VCallSite.NumUnsafeUses)
1467         --*VCallSite.NumUnsafeUses;
1468     }
1469     // Don't mark as devirtualized because there may be callers compiled without
1470     // retpoline mitigation, which would mean that they are lowered to
1471     // llvm.type.test and therefore require an llvm.type.test resolution for the
1472     // type identifier.
1473 
1474     std::for_each(CallBases.begin(), CallBases.end(), [](auto &CBs) {
1475       CBs.first->replaceAllUsesWith(CBs.second);
1476       CBs.first->eraseFromParent();
1477     });
1478   };
1479   Apply(SlotInfo.CSInfo);
1480   for (auto &P : SlotInfo.ConstCSInfo)
1481     Apply(P.second);
1482 }
1483 
1484 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1485     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1486     ArrayRef<uint64_t> Args) {
1487   // Evaluate each function and store the result in each target's RetVal
1488   // field.
1489   for (VirtualCallTarget &Target : TargetsForSlot) {
1490     // TODO: Skip for now if the vtable symbol was an alias to a function,
1491     // need to evaluate whether it would be correct to analyze the aliasee
1492     // function for this optimization.
1493     auto Fn = dyn_cast<Function>(Target.Fn);
1494     if (!Fn)
1495       return false;
1496 
1497     if (Fn->arg_size() != Args.size() + 1)
1498       return false;
1499 
1500     Evaluator Eval(M.getDataLayout(), nullptr);
1501     SmallVector<Constant *, 2> EvalArgs;
1502     EvalArgs.push_back(
1503         Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1504     for (unsigned I = 0; I != Args.size(); ++I) {
1505       auto *ArgTy =
1506           dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1507       if (!ArgTy)
1508         return false;
1509       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1510     }
1511 
1512     Constant *RetVal;
1513     if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1514         !isa<ConstantInt>(RetVal))
1515       return false;
1516     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1517   }
1518   return true;
1519 }
1520 
1521 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1522                                          uint64_t TheRetVal) {
1523   for (auto Call : CSInfo.CallSites) {
1524     if (!OptimizedCalls.insert(&Call.CB).second)
1525       continue;
1526     NumUniformRetVal++;
1527     Call.replaceAndErase(
1528         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1529         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1530   }
1531   CSInfo.markDevirt();
1532 }
1533 
1534 bool DevirtModule::tryUniformRetValOpt(
1535     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1536     WholeProgramDevirtResolution::ByArg *Res) {
1537   // Uniform return value optimization. If all functions return the same
1538   // constant, replace all calls with that constant.
1539   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1540   for (const VirtualCallTarget &Target : TargetsForSlot)
1541     if (Target.RetVal != TheRetVal)
1542       return false;
1543 
1544   if (CSInfo.isExported()) {
1545     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1546     Res->Info = TheRetVal;
1547   }
1548 
1549   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1550   if (RemarksEnabled || AreStatisticsEnabled())
1551     for (auto &&Target : TargetsForSlot)
1552       Target.WasDevirt = true;
1553   return true;
1554 }
1555 
1556 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1557                                         ArrayRef<uint64_t> Args,
1558                                         StringRef Name) {
1559   std::string FullName = "__typeid_";
1560   raw_string_ostream OS(FullName);
1561   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1562   for (uint64_t Arg : Args)
1563     OS << '_' << Arg;
1564   OS << '_' << Name;
1565   return OS.str();
1566 }
1567 
1568 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1569   Triple T(M.getTargetTriple());
1570   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1571 }
1572 
1573 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1574                                 StringRef Name, Constant *C) {
1575   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1576                                         getGlobalName(Slot, Args, Name), C, &M);
1577   GA->setVisibility(GlobalValue::HiddenVisibility);
1578 }
1579 
1580 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1581                                   StringRef Name, uint32_t Const,
1582                                   uint32_t &Storage) {
1583   if (shouldExportConstantsAsAbsoluteSymbols()) {
1584     exportGlobal(
1585         Slot, Args, Name,
1586         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1587     return;
1588   }
1589 
1590   Storage = Const;
1591 }
1592 
1593 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1594                                      StringRef Name) {
1595   Constant *C =
1596       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1597   auto *GV = dyn_cast<GlobalVariable>(C);
1598   if (GV)
1599     GV->setVisibility(GlobalValue::HiddenVisibility);
1600   return C;
1601 }
1602 
1603 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1604                                        StringRef Name, IntegerType *IntTy,
1605                                        uint32_t Storage) {
1606   if (!shouldExportConstantsAsAbsoluteSymbols())
1607     return ConstantInt::get(IntTy, Storage);
1608 
1609   Constant *C = importGlobal(Slot, Args, Name);
1610   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1611   C = ConstantExpr::getPtrToInt(C, IntTy);
1612 
1613   // We only need to set metadata if the global is newly created, in which
1614   // case it would not have hidden visibility.
1615   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1616     return C;
1617 
1618   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1619     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1620     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1621     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1622                     MDNode::get(M.getContext(), {MinC, MaxC}));
1623   };
1624   unsigned AbsWidth = IntTy->getBitWidth();
1625   if (AbsWidth == IntPtrTy->getBitWidth())
1626     SetAbsRange(~0ull, ~0ull); // Full set.
1627   else
1628     SetAbsRange(0, 1ull << AbsWidth);
1629   return C;
1630 }
1631 
1632 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1633                                         bool IsOne,
1634                                         Constant *UniqueMemberAddr) {
1635   for (auto &&Call : CSInfo.CallSites) {
1636     if (!OptimizedCalls.insert(&Call.CB).second)
1637       continue;
1638     IRBuilder<> B(&Call.CB);
1639     Value *Cmp =
1640         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1641                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1642     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1643     NumUniqueRetVal++;
1644     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1645                          Cmp);
1646   }
1647   CSInfo.markDevirt();
1648 }
1649 
1650 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1651   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1652   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1653                                         ConstantInt::get(Int64Ty, M->Offset));
1654 }
1655 
1656 bool DevirtModule::tryUniqueRetValOpt(
1657     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1658     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1659     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1660   // IsOne controls whether we look for a 0 or a 1.
1661   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1662     const TypeMemberInfo *UniqueMember = nullptr;
1663     for (const VirtualCallTarget &Target : TargetsForSlot) {
1664       if (Target.RetVal == (IsOne ? 1 : 0)) {
1665         if (UniqueMember)
1666           return false;
1667         UniqueMember = Target.TM;
1668       }
1669     }
1670 
1671     // We should have found a unique member or bailed out by now. We already
1672     // checked for a uniform return value in tryUniformRetValOpt.
1673     assert(UniqueMember);
1674 
1675     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1676     if (CSInfo.isExported()) {
1677       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1678       Res->Info = IsOne;
1679 
1680       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1681     }
1682 
1683     // Replace each call with the comparison.
1684     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1685                          UniqueMemberAddr);
1686 
1687     // Update devirtualization statistics for targets.
1688     if (RemarksEnabled || AreStatisticsEnabled())
1689       for (auto &&Target : TargetsForSlot)
1690         Target.WasDevirt = true;
1691 
1692     return true;
1693   };
1694 
1695   if (BitWidth == 1) {
1696     if (tryUniqueRetValOptFor(true))
1697       return true;
1698     if (tryUniqueRetValOptFor(false))
1699       return true;
1700   }
1701   return false;
1702 }
1703 
1704 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1705                                          Constant *Byte, Constant *Bit) {
1706   for (auto Call : CSInfo.CallSites) {
1707     if (!OptimizedCalls.insert(&Call.CB).second)
1708       continue;
1709     auto *RetType = cast<IntegerType>(Call.CB.getType());
1710     IRBuilder<> B(&Call.CB);
1711     Value *Addr =
1712         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1713     if (RetType->getBitWidth() == 1) {
1714       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1715       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1716       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1717       NumVirtConstProp1Bit++;
1718       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1719                            OREGetter, IsBitSet);
1720     } else {
1721       Value *Val = B.CreateLoad(RetType, Addr);
1722       NumVirtConstProp++;
1723       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1724                            OREGetter, Val);
1725     }
1726   }
1727   CSInfo.markDevirt();
1728 }
1729 
1730 bool DevirtModule::tryVirtualConstProp(
1731     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1732     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1733   // TODO: Skip for now if the vtable symbol was an alias to a function,
1734   // need to evaluate whether it would be correct to analyze the aliasee
1735   // function for this optimization.
1736   auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1737   if (!Fn)
1738     return false;
1739   // This only works if the function returns an integer.
1740   auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1741   if (!RetType)
1742     return false;
1743   unsigned BitWidth = RetType->getBitWidth();
1744   if (BitWidth > 64)
1745     return false;
1746 
1747   // Make sure that each function is defined, does not access memory, takes at
1748   // least one argument, does not use its first argument (which we assume is
1749   // 'this'), and has the same return type.
1750   //
1751   // Note that we test whether this copy of the function is readnone, rather
1752   // than testing function attributes, which must hold for any copy of the
1753   // function, even a less optimized version substituted at link time. This is
1754   // sound because the virtual constant propagation optimizations effectively
1755   // inline all implementations of the virtual function into each call site,
1756   // rather than using function attributes to perform local optimization.
1757   for (VirtualCallTarget &Target : TargetsForSlot) {
1758     // TODO: Skip for now if the vtable symbol was an alias to a function,
1759     // need to evaluate whether it would be correct to analyze the aliasee
1760     // function for this optimization.
1761     auto Fn = dyn_cast<Function>(Target.Fn);
1762     if (!Fn)
1763       return false;
1764 
1765     if (Fn->isDeclaration() ||
1766         !computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1767              .doesNotAccessMemory() ||
1768         Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1769         Fn->getReturnType() != RetType)
1770       return false;
1771   }
1772 
1773   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1774     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1775       continue;
1776 
1777     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1778     if (Res)
1779       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1780 
1781     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1782       continue;
1783 
1784     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1785                            ResByArg, Slot, CSByConstantArg.first))
1786       continue;
1787 
1788     // Find an allocation offset in bits in all vtables associated with the
1789     // type.
1790     uint64_t AllocBefore =
1791         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1792     uint64_t AllocAfter =
1793         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1794 
1795     // Calculate the total amount of padding needed to store a value at both
1796     // ends of the object.
1797     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1798     for (auto &&Target : TargetsForSlot) {
1799       TotalPaddingBefore += std::max<int64_t>(
1800           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1801       TotalPaddingAfter += std::max<int64_t>(
1802           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1803     }
1804 
1805     // If the amount of padding is too large, give up.
1806     // FIXME: do something smarter here.
1807     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1808       continue;
1809 
1810     // Calculate the offset to the value as a (possibly negative) byte offset
1811     // and (if applicable) a bit offset, and store the values in the targets.
1812     int64_t OffsetByte;
1813     uint64_t OffsetBit;
1814     if (TotalPaddingBefore <= TotalPaddingAfter)
1815       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1816                             OffsetBit);
1817     else
1818       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1819                            OffsetBit);
1820 
1821     if (RemarksEnabled || AreStatisticsEnabled())
1822       for (auto &&Target : TargetsForSlot)
1823         Target.WasDevirt = true;
1824 
1825 
1826     if (CSByConstantArg.second.isExported()) {
1827       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1828       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1829                      ResByArg->Byte);
1830       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1831                      ResByArg->Bit);
1832     }
1833 
1834     // Rewrite each call to a load from OffsetByte/OffsetBit.
1835     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1836     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1837     applyVirtualConstProp(CSByConstantArg.second,
1838                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1839   }
1840   return true;
1841 }
1842 
1843 void DevirtModule::rebuildGlobal(VTableBits &B) {
1844   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1845     return;
1846 
1847   // Align the before byte array to the global's minimum alignment so that we
1848   // don't break any alignment requirements on the global.
1849   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1850       B.GV->getAlign(), B.GV->getValueType());
1851   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1852 
1853   // Before was stored in reverse order; flip it now.
1854   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1855     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1856 
1857   // Build an anonymous global containing the before bytes, followed by the
1858   // original initializer, followed by the after bytes.
1859   auto NewInit = ConstantStruct::getAnon(
1860       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1861        B.GV->getInitializer(),
1862        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1863   auto NewGV =
1864       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1865                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1866   NewGV->setSection(B.GV->getSection());
1867   NewGV->setComdat(B.GV->getComdat());
1868   NewGV->setAlignment(B.GV->getAlign());
1869 
1870   // Copy the original vtable's metadata to the anonymous global, adjusting
1871   // offsets as required.
1872   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1873 
1874   // Build an alias named after the original global, pointing at the second
1875   // element (the original initializer).
1876   auto Alias = GlobalAlias::create(
1877       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1878       ConstantExpr::getGetElementPtr(
1879           NewInit->getType(), NewGV,
1880           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1881                                ConstantInt::get(Int32Ty, 1)}),
1882       &M);
1883   Alias->setVisibility(B.GV->getVisibility());
1884   Alias->takeName(B.GV);
1885 
1886   B.GV->replaceAllUsesWith(Alias);
1887   B.GV->eraseFromParent();
1888 }
1889 
1890 bool DevirtModule::areRemarksEnabled() {
1891   const auto &FL = M.getFunctionList();
1892   for (const Function &Fn : FL) {
1893     if (Fn.empty())
1894       continue;
1895     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1896     return DI.isEnabled();
1897   }
1898   return false;
1899 }
1900 
1901 void DevirtModule::scanTypeTestUsers(
1902     Function *TypeTestFunc,
1903     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1904   // Find all virtual calls via a virtual table pointer %p under an assumption
1905   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1906   // points to a member of the type identifier %md. Group calls by (type ID,
1907   // offset) pair (effectively the identity of the virtual function) and store
1908   // to CallSlots.
1909   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1910     auto *CI = dyn_cast<CallInst>(U.getUser());
1911     if (!CI)
1912       continue;
1913 
1914     // Search for virtual calls based on %p and add them to DevirtCalls.
1915     SmallVector<DevirtCallSite, 1> DevirtCalls;
1916     SmallVector<CallInst *, 1> Assumes;
1917     auto &DT = LookupDomTree(*CI->getFunction());
1918     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1919 
1920     Metadata *TypeId =
1921         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1922     // If we found any, add them to CallSlots.
1923     if (!Assumes.empty()) {
1924       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1925       for (DevirtCallSite Call : DevirtCalls)
1926         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1927     }
1928 
1929     auto RemoveTypeTestAssumes = [&]() {
1930       // We no longer need the assumes or the type test.
1931       for (auto *Assume : Assumes)
1932         Assume->eraseFromParent();
1933       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1934       // may use the vtable argument later.
1935       if (CI->use_empty())
1936         CI->eraseFromParent();
1937     };
1938 
1939     // At this point we could remove all type test assume sequences, as they
1940     // were originally inserted for WPD. However, we can keep these in the
1941     // code stream for later analysis (e.g. to help drive more efficient ICP
1942     // sequences). They will eventually be removed by a second LowerTypeTests
1943     // invocation that cleans them up. In order to do this correctly, the first
1944     // LowerTypeTests invocation needs to know that they have "Unknown" type
1945     // test resolution, so that they aren't treated as Unsat and lowered to
1946     // False, which will break any uses on assumes. Below we remove any type
1947     // test assumes that will not be treated as Unknown by LTT.
1948 
1949     // The type test assumes will be treated by LTT as Unsat if the type id is
1950     // not used on a global (in which case it has no entry in the TypeIdMap).
1951     if (!TypeIdMap.count(TypeId))
1952       RemoveTypeTestAssumes();
1953 
1954     // For ThinLTO importing, we need to remove the type test assumes if this is
1955     // an MDString type id without a corresponding TypeIdSummary. Any
1956     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1957     // type test assumes can be kept. If the MDString type id is missing a
1958     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1959     // exporting phase of WPD from analyzing it), then it would be treated as
1960     // Unsat by LTT and we need to remove its type test assumes here. If not
1961     // used on a vcall we don't need them for later optimization use in any
1962     // case.
1963     else if (ImportSummary && isa<MDString>(TypeId)) {
1964       const TypeIdSummary *TidSummary =
1965           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
1966       if (!TidSummary)
1967         RemoveTypeTestAssumes();
1968       else
1969         // If one was created it should not be Unsat, because if we reached here
1970         // the type id was used on a global.
1971         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
1972     }
1973   }
1974 }
1975 
1976 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1977   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1978 
1979   for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
1980     auto *CI = dyn_cast<CallInst>(U.getUser());
1981     if (!CI)
1982       continue;
1983 
1984     Value *Ptr = CI->getArgOperand(0);
1985     Value *Offset = CI->getArgOperand(1);
1986     Value *TypeIdValue = CI->getArgOperand(2);
1987     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1988 
1989     SmallVector<DevirtCallSite, 1> DevirtCalls;
1990     SmallVector<Instruction *, 1> LoadedPtrs;
1991     SmallVector<Instruction *, 1> Preds;
1992     bool HasNonCallUses = false;
1993     auto &DT = LookupDomTree(*CI->getFunction());
1994     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1995                                                HasNonCallUses, CI, DT);
1996 
1997     // Start by generating "pessimistic" code that explicitly loads the function
1998     // pointer from the vtable and performs the type check. If possible, we will
1999     // eliminate the load and the type check later.
2000 
2001     // If possible, only generate the load at the point where it is used.
2002     // This helps avoid unnecessary spills.
2003     IRBuilder<> LoadB(
2004         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2005 
2006     Value *LoadedValue = nullptr;
2007     if (TypeCheckedLoadFunc->getIntrinsicID() ==
2008         Intrinsic::type_checked_load_relative) {
2009       Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
2010       Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int32Ty));
2011       LoadedValue = LoadB.CreateLoad(Int32Ty, GEPPtr);
2012       LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2013       GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2014       LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2015       LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2016     } else {
2017       Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
2018       Value *GEPPtr =
2019           LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
2020       LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
2021     }
2022 
2023     for (Instruction *LoadedPtr : LoadedPtrs) {
2024       LoadedPtr->replaceAllUsesWith(LoadedValue);
2025       LoadedPtr->eraseFromParent();
2026     }
2027 
2028     // Likewise for the type test.
2029     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2030     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2031 
2032     for (Instruction *Pred : Preds) {
2033       Pred->replaceAllUsesWith(TypeTestCall);
2034       Pred->eraseFromParent();
2035     }
2036 
2037     // We have already erased any extractvalue instructions that refer to the
2038     // intrinsic call, but the intrinsic may have other non-extractvalue uses
2039     // (although this is unlikely). In that case, explicitly build a pair and
2040     // RAUW it.
2041     if (!CI->use_empty()) {
2042       Value *Pair = PoisonValue::get(CI->getType());
2043       IRBuilder<> B(CI);
2044       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2045       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2046       CI->replaceAllUsesWith(Pair);
2047     }
2048 
2049     // The number of unsafe uses is initially the number of uses.
2050     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2051     NumUnsafeUses = DevirtCalls.size();
2052 
2053     // If the function pointer has a non-call user, we cannot eliminate the type
2054     // check, as one of those users may eventually call the pointer. Increment
2055     // the unsafe use count to make sure it cannot reach zero.
2056     if (HasNonCallUses)
2057       ++NumUnsafeUses;
2058     for (DevirtCallSite Call : DevirtCalls) {
2059       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2060                                                    &NumUnsafeUses);
2061     }
2062 
2063     CI->eraseFromParent();
2064   }
2065 }
2066 
2067 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2068   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2069   if (!TypeId)
2070     return;
2071   const TypeIdSummary *TidSummary =
2072       ImportSummary->getTypeIdSummary(TypeId->getString());
2073   if (!TidSummary)
2074     return;
2075   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2076   if (ResI == TidSummary->WPDRes.end())
2077     return;
2078   const WholeProgramDevirtResolution &Res = ResI->second;
2079 
2080   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2081     assert(!Res.SingleImplName.empty());
2082     // The type of the function in the declaration is irrelevant because every
2083     // call site will cast it to the correct type.
2084     Constant *SingleImpl =
2085         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2086                                              Type::getVoidTy(M.getContext()))
2087                            .getCallee());
2088 
2089     // This is the import phase so we should not be exporting anything.
2090     bool IsExported = false;
2091     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2092     assert(!IsExported);
2093   }
2094 
2095   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2096     auto I = Res.ResByArg.find(CSByConstantArg.first);
2097     if (I == Res.ResByArg.end())
2098       continue;
2099     auto &ResByArg = I->second;
2100     // FIXME: We should figure out what to do about the "function name" argument
2101     // to the apply* functions, as the function names are unavailable during the
2102     // importing phase. For now we just pass the empty string. This does not
2103     // impact correctness because the function names are just used for remarks.
2104     switch (ResByArg.TheKind) {
2105     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2106       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2107       break;
2108     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2109       Constant *UniqueMemberAddr =
2110           importGlobal(Slot, CSByConstantArg.first, "unique_member");
2111       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2112                            UniqueMemberAddr);
2113       break;
2114     }
2115     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2116       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2117                                       Int32Ty, ResByArg.Byte);
2118       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2119                                      ResByArg.Bit);
2120       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2121       break;
2122     }
2123     default:
2124       break;
2125     }
2126   }
2127 
2128   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2129     // The type of the function is irrelevant, because it's bitcast at calls
2130     // anyhow.
2131     Constant *JT = cast<Constant>(
2132         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2133                               Type::getVoidTy(M.getContext()))
2134             .getCallee());
2135     bool IsExported = false;
2136     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2137     assert(!IsExported);
2138   }
2139 }
2140 
2141 void DevirtModule::removeRedundantTypeTests() {
2142   auto True = ConstantInt::getTrue(M.getContext());
2143   for (auto &&U : NumUnsafeUsesForTypeTest) {
2144     if (U.second == 0) {
2145       U.first->replaceAllUsesWith(True);
2146       U.first->eraseFromParent();
2147     }
2148   }
2149 }
2150 
2151 ValueInfo
2152 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2153                                       ModuleSummaryIndex *ExportSummary) {
2154   assert((ExportSummary != nullptr) &&
2155          "Caller guarantees ExportSummary is not nullptr");
2156 
2157   const auto TheFnGUID = TheFn->getGUID();
2158   const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2159   // Look up ValueInfo with the GUID in the current linkage.
2160   ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2161   // If no entry is found and GUID is different from GUID computed using
2162   // exported name, look up ValueInfo with the exported name unconditionally.
2163   // This is a fallback.
2164   //
2165   // The reason to have a fallback:
2166   // 1. LTO could enable global value internalization via
2167   // `enable-lto-internalization`.
2168   // 2. The GUID in ExportedSummary is computed using exported name.
2169   if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2170     TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2171   }
2172   return TheFnVI;
2173 }
2174 
2175 bool DevirtModule::mustBeUnreachableFunction(
2176     Function *const F, ModuleSummaryIndex *ExportSummary) {
2177   // First, learn unreachability by analyzing function IR.
2178   if (!F->isDeclaration()) {
2179     // A function must be unreachable if its entry block ends with an
2180     // 'unreachable'.
2181     return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2182   }
2183   // Learn unreachability from ExportSummary if ExportSummary is present.
2184   return ExportSummary &&
2185          ::mustBeUnreachableFunction(
2186              DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2187 }
2188 
2189 bool DevirtModule::run() {
2190   // If only some of the modules were split, we cannot correctly perform
2191   // this transformation. We already checked for the presense of type tests
2192   // with partially split modules during the thin link, and would have emitted
2193   // an error if any were found, so here we can simply return.
2194   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2195       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2196     return false;
2197 
2198   Function *TypeTestFunc =
2199       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2200   Function *TypeCheckedLoadFunc =
2201       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2202   Function *TypeCheckedLoadRelativeFunc =
2203       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2204   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2205 
2206   // Normally if there are no users of the devirtualization intrinsics in the
2207   // module, this pass has nothing to do. But if we are exporting, we also need
2208   // to handle any users that appear only in the function summaries.
2209   if (!ExportSummary &&
2210       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2211        AssumeFunc->use_empty()) &&
2212       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2213       (!TypeCheckedLoadRelativeFunc ||
2214        TypeCheckedLoadRelativeFunc->use_empty()))
2215     return false;
2216 
2217   // Rebuild type metadata into a map for easy lookup.
2218   std::vector<VTableBits> Bits;
2219   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2220   buildTypeIdentifierMap(Bits, TypeIdMap);
2221 
2222   if (TypeTestFunc && AssumeFunc)
2223     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2224 
2225   if (TypeCheckedLoadFunc)
2226     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2227 
2228   if (TypeCheckedLoadRelativeFunc)
2229     scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2230 
2231   if (ImportSummary) {
2232     for (auto &S : CallSlots)
2233       importResolution(S.first, S.second);
2234 
2235     removeRedundantTypeTests();
2236 
2237     // We have lowered or deleted the type intrinsics, so we will no longer have
2238     // enough information to reason about the liveness of virtual function
2239     // pointers in GlobalDCE.
2240     for (GlobalVariable &GV : M.globals())
2241       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2242 
2243     // The rest of the code is only necessary when exporting or during regular
2244     // LTO, so we are done.
2245     return true;
2246   }
2247 
2248   if (TypeIdMap.empty())
2249     return true;
2250 
2251   // Collect information from summary about which calls to try to devirtualize.
2252   if (ExportSummary) {
2253     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2254     for (auto &P : TypeIdMap) {
2255       if (auto *TypeId = dyn_cast<MDString>(P.first))
2256         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2257             TypeId);
2258     }
2259 
2260     for (auto &P : *ExportSummary) {
2261       for (auto &S : P.second.SummaryList) {
2262         auto *FS = dyn_cast<FunctionSummary>(S.get());
2263         if (!FS)
2264           continue;
2265         // FIXME: Only add live functions.
2266         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2267           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2268             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2269           }
2270         }
2271         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2272           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2273             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2274           }
2275         }
2276         for (const FunctionSummary::ConstVCall &VC :
2277              FS->type_test_assume_const_vcalls()) {
2278           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2279             CallSlots[{MD, VC.VFunc.Offset}]
2280                 .ConstCSInfo[VC.Args]
2281                 .addSummaryTypeTestAssumeUser(FS);
2282           }
2283         }
2284         for (const FunctionSummary::ConstVCall &VC :
2285              FS->type_checked_load_const_vcalls()) {
2286           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2287             CallSlots[{MD, VC.VFunc.Offset}]
2288                 .ConstCSInfo[VC.Args]
2289                 .addSummaryTypeCheckedLoadUser(FS);
2290           }
2291         }
2292       }
2293     }
2294   }
2295 
2296   // For each (type, offset) pair:
2297   bool DidVirtualConstProp = false;
2298   std::map<std::string, GlobalValue *> DevirtTargets;
2299   for (auto &S : CallSlots) {
2300     // Search each of the members of the type identifier for the virtual
2301     // function implementation at offset S.first.ByteOffset, and add to
2302     // TargetsForSlot.
2303     std::vector<VirtualCallTarget> TargetsForSlot;
2304     WholeProgramDevirtResolution *Res = nullptr;
2305     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2306     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2307         TypeMemberInfos.size())
2308       // For any type id used on a global's type metadata, create the type id
2309       // summary resolution regardless of whether we can devirtualize, so that
2310       // lower type tests knows the type id is not Unsat. If it was not used on
2311       // a global's type metadata, the TypeIdMap entry set will be empty, and
2312       // we don't want to create an entry (with the default Unknown type
2313       // resolution), which can prevent detection of the Unsat.
2314       Res = &ExportSummary
2315                  ->getOrInsertTypeIdSummary(
2316                      cast<MDString>(S.first.TypeID)->getString())
2317                  .WPDRes[S.first.ByteOffset];
2318     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2319                                   S.first.ByteOffset, ExportSummary)) {
2320 
2321       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2322         DidVirtualConstProp |=
2323             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2324 
2325         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2326       }
2327 
2328       // Collect functions devirtualized at least for one call site for stats.
2329       if (RemarksEnabled || AreStatisticsEnabled())
2330         for (const auto &T : TargetsForSlot)
2331           if (T.WasDevirt)
2332             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2333     }
2334 
2335     // CFI-specific: if we are exporting and any llvm.type.checked.load
2336     // intrinsics were *not* devirtualized, we need to add the resulting
2337     // llvm.type.test intrinsics to the function summaries so that the
2338     // LowerTypeTests pass will export them.
2339     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2340       auto GUID =
2341           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2342       for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2343         FS->addTypeTest(GUID);
2344       for (auto &CCS : S.second.ConstCSInfo)
2345         for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2346           FS->addTypeTest(GUID);
2347     }
2348   }
2349 
2350   if (RemarksEnabled) {
2351     // Generate remarks for each devirtualized function.
2352     for (const auto &DT : DevirtTargets) {
2353       GlobalValue *GV = DT.second;
2354       auto F = dyn_cast<Function>(GV);
2355       if (!F) {
2356         auto A = dyn_cast<GlobalAlias>(GV);
2357         assert(A && isa<Function>(A->getAliasee()));
2358         F = dyn_cast<Function>(A->getAliasee());
2359         assert(F);
2360       }
2361 
2362       using namespace ore;
2363       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2364                         << "devirtualized "
2365                         << NV("FunctionName", DT.first));
2366     }
2367   }
2368 
2369   NumDevirtTargets += DevirtTargets.size();
2370 
2371   removeRedundantTypeTests();
2372 
2373   // Rebuild each global we touched as part of virtual constant propagation to
2374   // include the before and after bytes.
2375   if (DidVirtualConstProp)
2376     for (VTableBits &B : Bits)
2377       rebuildGlobal(B);
2378 
2379   // We have lowered or deleted the type intrinsics, so we will no longer have
2380   // enough information to reason about the liveness of virtual function
2381   // pointers in GlobalDCE.
2382   for (GlobalVariable &GV : M.globals())
2383     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2384 
2385   for (auto *CI : CallsWithPtrAuthBundleRemoved)
2386     CI->eraseFromParent();
2387 
2388   return true;
2389 }
2390 
2391 void DevirtIndex::run() {
2392   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2393     return;
2394 
2395   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2396   for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2397     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2398     // Create the type id summary resolution regardlness of whether we can
2399     // devirtualize, so that lower type tests knows the type id is used on
2400     // a global and not Unsat. We do this here rather than in the loop over the
2401     // CallSlots, since that handling will only see type tests that directly
2402     // feed assumes, and we would miss any that aren't currently handled by WPD
2403     // (such as type tests that feed assumes via phis).
2404     ExportSummary.getOrInsertTypeIdSummary(P.first);
2405   }
2406 
2407   // Collect information from summary about which calls to try to devirtualize.
2408   for (auto &P : ExportSummary) {
2409     for (auto &S : P.second.SummaryList) {
2410       auto *FS = dyn_cast<FunctionSummary>(S.get());
2411       if (!FS)
2412         continue;
2413       // FIXME: Only add live functions.
2414       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2415         for (StringRef Name : NameByGUID[VF.GUID]) {
2416           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2417         }
2418       }
2419       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2420         for (StringRef Name : NameByGUID[VF.GUID]) {
2421           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2422         }
2423       }
2424       for (const FunctionSummary::ConstVCall &VC :
2425            FS->type_test_assume_const_vcalls()) {
2426         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2427           CallSlots[{Name, VC.VFunc.Offset}]
2428               .ConstCSInfo[VC.Args]
2429               .addSummaryTypeTestAssumeUser(FS);
2430         }
2431       }
2432       for (const FunctionSummary::ConstVCall &VC :
2433            FS->type_checked_load_const_vcalls()) {
2434         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2435           CallSlots[{Name, VC.VFunc.Offset}]
2436               .ConstCSInfo[VC.Args]
2437               .addSummaryTypeCheckedLoadUser(FS);
2438         }
2439       }
2440     }
2441   }
2442 
2443   std::set<ValueInfo> DevirtTargets;
2444   // For each (type, offset) pair:
2445   for (auto &S : CallSlots) {
2446     // Search each of the members of the type identifier for the virtual
2447     // function implementation at offset S.first.ByteOffset, and add to
2448     // TargetsForSlot.
2449     std::vector<ValueInfo> TargetsForSlot;
2450     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2451     assert(TidSummary);
2452     // The type id summary would have been created while building the NameByGUID
2453     // map earlier.
2454     WholeProgramDevirtResolution *Res =
2455         &ExportSummary.getTypeIdSummary(S.first.TypeID)
2456              ->WPDRes[S.first.ByteOffset];
2457     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2458                                   S.first.ByteOffset)) {
2459 
2460       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2461                                DevirtTargets))
2462         continue;
2463     }
2464   }
2465 
2466   // Optionally have the thin link print message for each devirtualized
2467   // function.
2468   if (PrintSummaryDevirt)
2469     for (const auto &DT : DevirtTargets)
2470       errs() << "Devirtualized call to " << DT << "\n";
2471 
2472   NumDevirtTargets += DevirtTargets.size();
2473 }
2474