xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/ADT/iterator_range.h"
63 #include "llvm/Analysis/AssumptionCache.h"
64 #include "llvm/Analysis/BasicAliasAnalysis.h"
65 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
66 #include "llvm/Analysis/TypeMetadataUtils.h"
67 #include "llvm/Bitcode/BitcodeReader.h"
68 #include "llvm/Bitcode/BitcodeWriter.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugLoc.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/InstrTypes.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MDBuilder.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/ModuleSummaryIndexYAML.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/Pass.h"
89 #include "llvm/PassRegistry.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Errc.h"
93 #include "llvm/Support/Error.h"
94 #include "llvm/Support/FileSystem.h"
95 #include "llvm/Support/GlobPattern.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Transforms/IPO.h"
98 #include "llvm/Transforms/IPO/FunctionAttrs.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
101 #include "llvm/Transforms/Utils/Evaluator.h"
102 #include <algorithm>
103 #include <cstddef>
104 #include <map>
105 #include <set>
106 #include <string>
107 
108 using namespace llvm;
109 using namespace wholeprogramdevirt;
110 
111 #define DEBUG_TYPE "wholeprogramdevirt"
112 
113 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
114 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
115 STATISTIC(NumBranchFunnel, "Number of branch funnels");
116 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
117 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
118 STATISTIC(NumVirtConstProp1Bit,
119           "Number of 1 bit virtual constant propagations");
120 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
121 
122 static cl::opt<PassSummaryAction> ClSummaryAction(
123     "wholeprogramdevirt-summary-action",
124     cl::desc("What to do with the summary when running this pass"),
125     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
126                clEnumValN(PassSummaryAction::Import, "import",
127                           "Import typeid resolutions from summary and globals"),
128                clEnumValN(PassSummaryAction::Export, "export",
129                           "Export typeid resolutions to summary and globals")),
130     cl::Hidden);
131 
132 static cl::opt<std::string> ClReadSummary(
133     "wholeprogramdevirt-read-summary",
134     cl::desc(
135         "Read summary from given bitcode or YAML file before running pass"),
136     cl::Hidden);
137 
138 static cl::opt<std::string> ClWriteSummary(
139     "wholeprogramdevirt-write-summary",
140     cl::desc("Write summary to given bitcode or YAML file after running pass. "
141              "Output file format is deduced from extension: *.bc means writing "
142              "bitcode, otherwise YAML"),
143     cl::Hidden);
144 
145 static cl::opt<unsigned>
146     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
147                 cl::init(10),
148                 cl::desc("Maximum number of call targets per "
149                          "call site to enable branch funnels"));
150 
151 static cl::opt<bool>
152     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
153                        cl::desc("Print index-based devirtualization messages"));
154 
155 /// Provide a way to force enable whole program visibility in tests.
156 /// This is needed to support legacy tests that don't contain
157 /// !vcall_visibility metadata (the mere presense of type tests
158 /// previously implied hidden visibility).
159 static cl::opt<bool>
160     WholeProgramVisibility("whole-program-visibility", cl::Hidden,
161                            cl::desc("Enable whole program visibility"));
162 
163 /// Provide a way to force disable whole program for debugging or workarounds,
164 /// when enabled via the linker.
165 static cl::opt<bool> DisableWholeProgramVisibility(
166     "disable-whole-program-visibility", cl::Hidden,
167     cl::desc("Disable whole program visibility (overrides enabling options)"));
168 
169 /// Provide way to prevent certain function from being devirtualized
170 static cl::list<std::string>
171     SkipFunctionNames("wholeprogramdevirt-skip",
172                       cl::desc("Prevent function(s) from being devirtualized"),
173                       cl::Hidden, cl::CommaSeparated);
174 
175 /// Mechanism to add runtime checking of devirtualization decisions, optionally
176 /// trapping or falling back to indirect call on any that are not correct.
177 /// Trapping mode is useful for debugging undefined behavior leading to failures
178 /// with WPD. Fallback mode is useful for ensuring safety when whole program
179 /// visibility may be compromised.
180 enum WPDCheckMode { None, Trap, Fallback };
181 static cl::opt<WPDCheckMode> DevirtCheckMode(
182     "wholeprogramdevirt-check", cl::Hidden,
183     cl::desc("Type of checking for incorrect devirtualizations"),
184     cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
185                clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
186                clEnumValN(WPDCheckMode::Fallback, "fallback",
187                           "Fallback to indirect when incorrect")));
188 
189 namespace {
190 struct PatternList {
191   std::vector<GlobPattern> Patterns;
192   template <class T> void init(const T &StringList) {
193     for (const auto &S : StringList)
194       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
195         Patterns.push_back(std::move(*Pat));
196   }
197   bool match(StringRef S) {
198     for (const GlobPattern &P : Patterns)
199       if (P.match(S))
200         return true;
201     return false;
202   }
203 };
204 } // namespace
205 
206 // Find the minimum offset that we may store a value of size Size bits at. If
207 // IsAfter is set, look for an offset before the object, otherwise look for an
208 // offset after the object.
209 uint64_t
210 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
211                                      bool IsAfter, uint64_t Size) {
212   // Find a minimum offset taking into account only vtable sizes.
213   uint64_t MinByte = 0;
214   for (const VirtualCallTarget &Target : Targets) {
215     if (IsAfter)
216       MinByte = std::max(MinByte, Target.minAfterBytes());
217     else
218       MinByte = std::max(MinByte, Target.minBeforeBytes());
219   }
220 
221   // Build a vector of arrays of bytes covering, for each target, a slice of the
222   // used region (see AccumBitVector::BytesUsed in
223   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
224   // this aligns the used regions to start at MinByte.
225   //
226   // In this example, A, B and C are vtables, # is a byte already allocated for
227   // a virtual function pointer, AAAA... (etc.) are the used regions for the
228   // vtables and Offset(X) is the value computed for the Offset variable below
229   // for X.
230   //
231   //                    Offset(A)
232   //                    |       |
233   //                            |MinByte
234   // A: ################AAAAAAAA|AAAAAAAA
235   // B: ########BBBBBBBBBBBBBBBB|BBBB
236   // C: ########################|CCCCCCCCCCCCCCCC
237   //            |   Offset(B)   |
238   //
239   // This code produces the slices of A, B and C that appear after the divider
240   // at MinByte.
241   std::vector<ArrayRef<uint8_t>> Used;
242   for (const VirtualCallTarget &Target : Targets) {
243     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
244                                        : Target.TM->Bits->Before.BytesUsed;
245     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
246                               : MinByte - Target.minBeforeBytes();
247 
248     // Disregard used regions that are smaller than Offset. These are
249     // effectively all-free regions that do not need to be checked.
250     if (VTUsed.size() > Offset)
251       Used.push_back(VTUsed.slice(Offset));
252   }
253 
254   if (Size == 1) {
255     // Find a free bit in each member of Used.
256     for (unsigned I = 0;; ++I) {
257       uint8_t BitsUsed = 0;
258       for (auto &&B : Used)
259         if (I < B.size())
260           BitsUsed |= B[I];
261       if (BitsUsed != 0xff)
262         return (MinByte + I) * 8 + countTrailingZeros(uint8_t(~BitsUsed));
263     }
264   } else {
265     // Find a free (Size/8) byte region in each member of Used.
266     // FIXME: see if alignment helps.
267     for (unsigned I = 0;; ++I) {
268       for (auto &&B : Used) {
269         unsigned Byte = 0;
270         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
271           if (B[I + Byte])
272             goto NextI;
273           ++Byte;
274         }
275       }
276       return (MinByte + I) * 8;
277     NextI:;
278     }
279   }
280 }
281 
282 void wholeprogramdevirt::setBeforeReturnValues(
283     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
284     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
285   if (BitWidth == 1)
286     OffsetByte = -(AllocBefore / 8 + 1);
287   else
288     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
289   OffsetBit = AllocBefore % 8;
290 
291   for (VirtualCallTarget &Target : Targets) {
292     if (BitWidth == 1)
293       Target.setBeforeBit(AllocBefore);
294     else
295       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
296   }
297 }
298 
299 void wholeprogramdevirt::setAfterReturnValues(
300     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
301     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
302   if (BitWidth == 1)
303     OffsetByte = AllocAfter / 8;
304   else
305     OffsetByte = (AllocAfter + 7) / 8;
306   OffsetBit = AllocAfter % 8;
307 
308   for (VirtualCallTarget &Target : Targets) {
309     if (BitWidth == 1)
310       Target.setAfterBit(AllocAfter);
311     else
312       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
313   }
314 }
315 
316 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
317     : Fn(Fn), TM(TM),
318       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
319 
320 namespace {
321 
322 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
323 // tables, and the ByteOffset is the offset in bytes from the address point to
324 // the virtual function pointer.
325 struct VTableSlot {
326   Metadata *TypeID;
327   uint64_t ByteOffset;
328 };
329 
330 } // end anonymous namespace
331 
332 namespace llvm {
333 
334 template <> struct DenseMapInfo<VTableSlot> {
335   static VTableSlot getEmptyKey() {
336     return {DenseMapInfo<Metadata *>::getEmptyKey(),
337             DenseMapInfo<uint64_t>::getEmptyKey()};
338   }
339   static VTableSlot getTombstoneKey() {
340     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
341             DenseMapInfo<uint64_t>::getTombstoneKey()};
342   }
343   static unsigned getHashValue(const VTableSlot &I) {
344     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
345            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
346   }
347   static bool isEqual(const VTableSlot &LHS,
348                       const VTableSlot &RHS) {
349     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
350   }
351 };
352 
353 template <> struct DenseMapInfo<VTableSlotSummary> {
354   static VTableSlotSummary getEmptyKey() {
355     return {DenseMapInfo<StringRef>::getEmptyKey(),
356             DenseMapInfo<uint64_t>::getEmptyKey()};
357   }
358   static VTableSlotSummary getTombstoneKey() {
359     return {DenseMapInfo<StringRef>::getTombstoneKey(),
360             DenseMapInfo<uint64_t>::getTombstoneKey()};
361   }
362   static unsigned getHashValue(const VTableSlotSummary &I) {
363     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
364            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
365   }
366   static bool isEqual(const VTableSlotSummary &LHS,
367                       const VTableSlotSummary &RHS) {
368     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
369   }
370 };
371 
372 } // end namespace llvm
373 
374 namespace {
375 
376 // Returns true if the function must be unreachable based on ValueInfo.
377 //
378 // In particular, identifies a function as unreachable in the following
379 // conditions
380 //   1) All summaries are live.
381 //   2) All function summaries indicate it's unreachable
382 bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
383   if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
384     // Returns false if ValueInfo is absent, or the summary list is empty
385     // (e.g., function declarations).
386     return false;
387   }
388 
389   for (const auto &Summary : TheFnVI.getSummaryList()) {
390     // Conservatively returns false if any non-live functions are seen.
391     // In general either all summaries should be live or all should be dead.
392     if (!Summary->isLive())
393       return false;
394     if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) {
395       if (!FS->fflags().MustBeUnreachable)
396         return false;
397     }
398     // Do nothing if a non-function has the same GUID (which is rare).
399     // This is correct since non-function summaries are not relevant.
400   }
401   // All function summaries are live and all of them agree that the function is
402   // unreachble.
403   return true;
404 }
405 
406 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
407 // the indirect virtual call.
408 struct VirtualCallSite {
409   Value *VTable = nullptr;
410   CallBase &CB;
411 
412   // If non-null, this field points to the associated unsafe use count stored in
413   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
414   // of that field for details.
415   unsigned *NumUnsafeUses = nullptr;
416 
417   void
418   emitRemark(const StringRef OptName, const StringRef TargetName,
419              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
420     Function *F = CB.getCaller();
421     DebugLoc DLoc = CB.getDebugLoc();
422     BasicBlock *Block = CB.getParent();
423 
424     using namespace ore;
425     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
426                       << NV("Optimization", OptName)
427                       << ": devirtualized a call to "
428                       << NV("FunctionName", TargetName));
429   }
430 
431   void replaceAndErase(
432       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
433       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
434       Value *New) {
435     if (RemarksEnabled)
436       emitRemark(OptName, TargetName, OREGetter);
437     CB.replaceAllUsesWith(New);
438     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
439       BranchInst::Create(II->getNormalDest(), &CB);
440       II->getUnwindDest()->removePredecessor(II->getParent());
441     }
442     CB.eraseFromParent();
443     // This use is no longer unsafe.
444     if (NumUnsafeUses)
445       --*NumUnsafeUses;
446   }
447 };
448 
449 // Call site information collected for a specific VTableSlot and possibly a list
450 // of constant integer arguments. The grouping by arguments is handled by the
451 // VTableSlotInfo class.
452 struct CallSiteInfo {
453   /// The set of call sites for this slot. Used during regular LTO and the
454   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
455   /// call sites that appear in the merged module itself); in each of these
456   /// cases we are directly operating on the call sites at the IR level.
457   std::vector<VirtualCallSite> CallSites;
458 
459   /// Whether all call sites represented by this CallSiteInfo, including those
460   /// in summaries, have been devirtualized. This starts off as true because a
461   /// default constructed CallSiteInfo represents no call sites.
462   bool AllCallSitesDevirted = true;
463 
464   // These fields are used during the export phase of ThinLTO and reflect
465   // information collected from function summaries.
466 
467   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
468   /// this slot.
469   bool SummaryHasTypeTestAssumeUsers = false;
470 
471   /// CFI-specific: a vector containing the list of function summaries that use
472   /// the llvm.type.checked.load intrinsic and therefore will require
473   /// resolutions for llvm.type.test in order to implement CFI checks if
474   /// devirtualization was unsuccessful. If devirtualization was successful, the
475   /// pass will clear this vector by calling markDevirt(). If at the end of the
476   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
477   /// to each of the function summaries in the vector.
478   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
479   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
480 
481   bool isExported() const {
482     return SummaryHasTypeTestAssumeUsers ||
483            !SummaryTypeCheckedLoadUsers.empty();
484   }
485 
486   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
487     SummaryTypeCheckedLoadUsers.push_back(FS);
488     AllCallSitesDevirted = false;
489   }
490 
491   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
492     SummaryTypeTestAssumeUsers.push_back(FS);
493     SummaryHasTypeTestAssumeUsers = true;
494     AllCallSitesDevirted = false;
495   }
496 
497   void markDevirt() {
498     AllCallSitesDevirted = true;
499 
500     // As explained in the comment for SummaryTypeCheckedLoadUsers.
501     SummaryTypeCheckedLoadUsers.clear();
502   }
503 };
504 
505 // Call site information collected for a specific VTableSlot.
506 struct VTableSlotInfo {
507   // The set of call sites which do not have all constant integer arguments
508   // (excluding "this").
509   CallSiteInfo CSInfo;
510 
511   // The set of call sites with all constant integer arguments (excluding
512   // "this"), grouped by argument list.
513   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
514 
515   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
516 
517 private:
518   CallSiteInfo &findCallSiteInfo(CallBase &CB);
519 };
520 
521 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
522   std::vector<uint64_t> Args;
523   auto *CBType = dyn_cast<IntegerType>(CB.getType());
524   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
525     return CSInfo;
526   for (auto &&Arg : drop_begin(CB.args())) {
527     auto *CI = dyn_cast<ConstantInt>(Arg);
528     if (!CI || CI->getBitWidth() > 64)
529       return CSInfo;
530     Args.push_back(CI->getZExtValue());
531   }
532   return ConstCSInfo[Args];
533 }
534 
535 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
536                                  unsigned *NumUnsafeUses) {
537   auto &CSI = findCallSiteInfo(CB);
538   CSI.AllCallSitesDevirted = false;
539   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
540 }
541 
542 struct DevirtModule {
543   Module &M;
544   function_ref<AAResults &(Function &)> AARGetter;
545   function_ref<DominatorTree &(Function &)> LookupDomTree;
546 
547   ModuleSummaryIndex *ExportSummary;
548   const ModuleSummaryIndex *ImportSummary;
549 
550   IntegerType *Int8Ty;
551   PointerType *Int8PtrTy;
552   IntegerType *Int32Ty;
553   IntegerType *Int64Ty;
554   IntegerType *IntPtrTy;
555   /// Sizeless array type, used for imported vtables. This provides a signal
556   /// to analyzers that these imports may alias, as they do for example
557   /// when multiple unique return values occur in the same vtable.
558   ArrayType *Int8Arr0Ty;
559 
560   bool RemarksEnabled;
561   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
562 
563   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
564 
565   // Calls that have already been optimized. We may add a call to multiple
566   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
567   // optimize a call more than once.
568   SmallPtrSet<CallBase *, 8> OptimizedCalls;
569 
570   // This map keeps track of the number of "unsafe" uses of a loaded function
571   // pointer. The key is the associated llvm.type.test intrinsic call generated
572   // by this pass. An unsafe use is one that calls the loaded function pointer
573   // directly. Every time we eliminate an unsafe use (for example, by
574   // devirtualizing it or by applying virtual constant propagation), we
575   // decrement the value stored in this map. If a value reaches zero, we can
576   // eliminate the type check by RAUWing the associated llvm.type.test call with
577   // true.
578   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
579   PatternList FunctionsToSkip;
580 
581   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
582                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
583                function_ref<DominatorTree &(Function &)> LookupDomTree,
584                ModuleSummaryIndex *ExportSummary,
585                const ModuleSummaryIndex *ImportSummary)
586       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
587         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
588         Int8Ty(Type::getInt8Ty(M.getContext())),
589         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
590         Int32Ty(Type::getInt32Ty(M.getContext())),
591         Int64Ty(Type::getInt64Ty(M.getContext())),
592         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
593         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
594         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
595     assert(!(ExportSummary && ImportSummary));
596     FunctionsToSkip.init(SkipFunctionNames);
597   }
598 
599   bool areRemarksEnabled();
600 
601   void
602   scanTypeTestUsers(Function *TypeTestFunc,
603                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
604   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
605 
606   void buildTypeIdentifierMap(
607       std::vector<VTableBits> &Bits,
608       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
609 
610   bool
611   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
612                             const std::set<TypeMemberInfo> &TypeMemberInfos,
613                             uint64_t ByteOffset,
614                             ModuleSummaryIndex *ExportSummary);
615 
616   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
617                              bool &IsExported);
618   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
619                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
620                            VTableSlotInfo &SlotInfo,
621                            WholeProgramDevirtResolution *Res);
622 
623   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
624                               bool &IsExported);
625   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
626                             VTableSlotInfo &SlotInfo,
627                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
628 
629   bool tryEvaluateFunctionsWithArgs(
630       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
631       ArrayRef<uint64_t> Args);
632 
633   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
634                              uint64_t TheRetVal);
635   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
636                            CallSiteInfo &CSInfo,
637                            WholeProgramDevirtResolution::ByArg *Res);
638 
639   // Returns the global symbol name that is used to export information about the
640   // given vtable slot and list of arguments.
641   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
642                             StringRef Name);
643 
644   bool shouldExportConstantsAsAbsoluteSymbols();
645 
646   // This function is called during the export phase to create a symbol
647   // definition containing information about the given vtable slot and list of
648   // arguments.
649   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
650                     Constant *C);
651   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652                       uint32_t Const, uint32_t &Storage);
653 
654   // This function is called during the import phase to create a reference to
655   // the symbol definition created during the export phase.
656   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
657                          StringRef Name);
658   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
659                            StringRef Name, IntegerType *IntTy,
660                            uint32_t Storage);
661 
662   Constant *getMemberAddr(const TypeMemberInfo *M);
663 
664   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
665                             Constant *UniqueMemberAddr);
666   bool tryUniqueRetValOpt(unsigned BitWidth,
667                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
668                           CallSiteInfo &CSInfo,
669                           WholeProgramDevirtResolution::ByArg *Res,
670                           VTableSlot Slot, ArrayRef<uint64_t> Args);
671 
672   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
673                              Constant *Byte, Constant *Bit);
674   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
675                            VTableSlotInfo &SlotInfo,
676                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
677 
678   void rebuildGlobal(VTableBits &B);
679 
680   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
681   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
682 
683   // If we were able to eliminate all unsafe uses for a type checked load,
684   // eliminate the associated type tests by replacing them with true.
685   void removeRedundantTypeTests();
686 
687   bool run();
688 
689   // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
690   //
691   // Caller guarantees that `ExportSummary` is not nullptr.
692   static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
693                                            ModuleSummaryIndex *ExportSummary);
694 
695   // Returns true if the function definition must be unreachable.
696   //
697   // Note if this helper function returns true, `F` is guaranteed
698   // to be unreachable; if it returns false, `F` might still
699   // be unreachable but not covered by this helper function.
700   //
701   // Implementation-wise, if function definition is present, IR is analyzed; if
702   // not, look up function flags from ExportSummary as a fallback.
703   static bool mustBeUnreachableFunction(Function *const F,
704                                         ModuleSummaryIndex *ExportSummary);
705 
706   // Lower the module using the action and summary passed as command line
707   // arguments. For testing purposes only.
708   static bool
709   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
710                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
711                 function_ref<DominatorTree &(Function &)> LookupDomTree);
712 };
713 
714 struct DevirtIndex {
715   ModuleSummaryIndex &ExportSummary;
716   // The set in which to record GUIDs exported from their module by
717   // devirtualization, used by client to ensure they are not internalized.
718   std::set<GlobalValue::GUID> &ExportedGUIDs;
719   // A map in which to record the information necessary to locate the WPD
720   // resolution for local targets in case they are exported by cross module
721   // importing.
722   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
723 
724   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
725 
726   PatternList FunctionsToSkip;
727 
728   DevirtIndex(
729       ModuleSummaryIndex &ExportSummary,
730       std::set<GlobalValue::GUID> &ExportedGUIDs,
731       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
732       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
733         LocalWPDTargetsMap(LocalWPDTargetsMap) {
734     FunctionsToSkip.init(SkipFunctionNames);
735   }
736 
737   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
738                                  const TypeIdCompatibleVtableInfo TIdInfo,
739                                  uint64_t ByteOffset);
740 
741   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
742                            VTableSlotSummary &SlotSummary,
743                            VTableSlotInfo &SlotInfo,
744                            WholeProgramDevirtResolution *Res,
745                            std::set<ValueInfo> &DevirtTargets);
746 
747   void run();
748 };
749 } // end anonymous namespace
750 
751 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
752                                               ModuleAnalysisManager &AM) {
753   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
754   auto AARGetter = [&](Function &F) -> AAResults & {
755     return FAM.getResult<AAManager>(F);
756   };
757   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
758     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
759   };
760   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
761     return FAM.getResult<DominatorTreeAnalysis>(F);
762   };
763   if (UseCommandLine) {
764     if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
765       return PreservedAnalyses::all();
766     return PreservedAnalyses::none();
767   }
768   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
769                     ImportSummary)
770            .run())
771     return PreservedAnalyses::all();
772   return PreservedAnalyses::none();
773 }
774 
775 namespace llvm {
776 // Enable whole program visibility if enabled by client (e.g. linker) or
777 // internal option, and not force disabled.
778 bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
779   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
780          !DisableWholeProgramVisibility;
781 }
782 
783 /// If whole program visibility asserted, then upgrade all public vcall
784 /// visibility metadata on vtable definitions to linkage unit visibility in
785 /// Module IR (for regular or hybrid LTO).
786 void updateVCallVisibilityInModule(
787     Module &M, bool WholeProgramVisibilityEnabledInLTO,
788     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
789   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
790     return;
791   for (GlobalVariable &GV : M.globals()) {
792     // Add linkage unit visibility to any variable with type metadata, which are
793     // the vtable definitions. We won't have an existing vcall_visibility
794     // metadata on vtable definitions with public visibility.
795     if (GV.hasMetadata(LLVMContext::MD_type) &&
796         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
797         // Don't upgrade the visibility for symbols exported to the dynamic
798         // linker, as we have no information on their eventual use.
799         !DynamicExportSymbols.count(GV.getGUID()))
800       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
801   }
802 }
803 
804 void updatePublicTypeTestCalls(Module &M,
805                                bool WholeProgramVisibilityEnabledInLTO) {
806   Function *PublicTypeTestFunc =
807       M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
808   if (!PublicTypeTestFunc)
809     return;
810   if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
811     Function *TypeTestFunc =
812         Intrinsic::getDeclaration(&M, Intrinsic::type_test);
813     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
814       auto *CI = cast<CallInst>(U.getUser());
815       auto *NewCI = CallInst::Create(
816           TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
817           std::nullopt, "", CI);
818       CI->replaceAllUsesWith(NewCI);
819       CI->eraseFromParent();
820     }
821   } else {
822     auto *True = ConstantInt::getTrue(M.getContext());
823     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
824       auto *CI = cast<CallInst>(U.getUser());
825       CI->replaceAllUsesWith(True);
826       CI->eraseFromParent();
827     }
828   }
829 }
830 
831 /// If whole program visibility asserted, then upgrade all public vcall
832 /// visibility metadata on vtable definition summaries to linkage unit
833 /// visibility in Module summary index (for ThinLTO).
834 void updateVCallVisibilityInIndex(
835     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
836     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
837   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
838     return;
839   for (auto &P : Index) {
840     // Don't upgrade the visibility for symbols exported to the dynamic
841     // linker, as we have no information on their eventual use.
842     if (DynamicExportSymbols.count(P.first))
843       continue;
844     for (auto &S : P.second.SummaryList) {
845       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
846       if (!GVar ||
847           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
848         continue;
849       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
850     }
851   }
852 }
853 
854 void runWholeProgramDevirtOnIndex(
855     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
856     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
857   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
858 }
859 
860 void updateIndexWPDForExports(
861     ModuleSummaryIndex &Summary,
862     function_ref<bool(StringRef, ValueInfo)> isExported,
863     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
864   for (auto &T : LocalWPDTargetsMap) {
865     auto &VI = T.first;
866     // This was enforced earlier during trySingleImplDevirt.
867     assert(VI.getSummaryList().size() == 1 &&
868            "Devirt of local target has more than one copy");
869     auto &S = VI.getSummaryList()[0];
870     if (!isExported(S->modulePath(), VI))
871       continue;
872 
873     // It's been exported by a cross module import.
874     for (auto &SlotSummary : T.second) {
875       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
876       assert(TIdSum);
877       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
878       assert(WPDRes != TIdSum->WPDRes.end());
879       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
880           WPDRes->second.SingleImplName,
881           Summary.getModuleHash(S->modulePath()));
882     }
883   }
884 }
885 
886 } // end namespace llvm
887 
888 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
889   // Check that summary index contains regular LTO module when performing
890   // export to prevent occasional use of index from pure ThinLTO compilation
891   // (-fno-split-lto-module). This kind of summary index is passed to
892   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
893   const auto &ModPaths = Summary->modulePaths();
894   if (ClSummaryAction != PassSummaryAction::Import &&
895       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
896           ModPaths.end())
897     return createStringError(
898         errc::invalid_argument,
899         "combined summary should contain Regular LTO module");
900   return ErrorSuccess();
901 }
902 
903 bool DevirtModule::runForTesting(
904     Module &M, function_ref<AAResults &(Function &)> AARGetter,
905     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
906     function_ref<DominatorTree &(Function &)> LookupDomTree) {
907   std::unique_ptr<ModuleSummaryIndex> Summary =
908       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
909 
910   // Handle the command-line summary arguments. This code is for testing
911   // purposes only, so we handle errors directly.
912   if (!ClReadSummary.empty()) {
913     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
914                           ": ");
915     auto ReadSummaryFile =
916         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
917     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
918             getModuleSummaryIndex(*ReadSummaryFile)) {
919       Summary = std::move(*SummaryOrErr);
920       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
921     } else {
922       // Try YAML if we've failed with bitcode.
923       consumeError(SummaryOrErr.takeError());
924       yaml::Input In(ReadSummaryFile->getBuffer());
925       In >> *Summary;
926       ExitOnErr(errorCodeToError(In.error()));
927     }
928   }
929 
930   bool Changed =
931       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
932                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
933                                                                 : nullptr,
934                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
935                                                                 : nullptr)
936           .run();
937 
938   if (!ClWriteSummary.empty()) {
939     ExitOnError ExitOnErr(
940         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
941     std::error_code EC;
942     if (StringRef(ClWriteSummary).endswith(".bc")) {
943       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
944       ExitOnErr(errorCodeToError(EC));
945       writeIndexToFile(*Summary, OS);
946     } else {
947       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
948       ExitOnErr(errorCodeToError(EC));
949       yaml::Output Out(OS);
950       Out << *Summary;
951     }
952   }
953 
954   return Changed;
955 }
956 
957 void DevirtModule::buildTypeIdentifierMap(
958     std::vector<VTableBits> &Bits,
959     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
960   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
961   Bits.reserve(M.getGlobalList().size());
962   SmallVector<MDNode *, 2> Types;
963   for (GlobalVariable &GV : M.globals()) {
964     Types.clear();
965     GV.getMetadata(LLVMContext::MD_type, Types);
966     if (GV.isDeclaration() || Types.empty())
967       continue;
968 
969     VTableBits *&BitsPtr = GVToBits[&GV];
970     if (!BitsPtr) {
971       Bits.emplace_back();
972       Bits.back().GV = &GV;
973       Bits.back().ObjectSize =
974           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
975       BitsPtr = &Bits.back();
976     }
977 
978     for (MDNode *Type : Types) {
979       auto TypeID = Type->getOperand(1).get();
980 
981       uint64_t Offset =
982           cast<ConstantInt>(
983               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
984               ->getZExtValue();
985 
986       TypeIdMap[TypeID].insert({BitsPtr, Offset});
987     }
988   }
989 }
990 
991 bool DevirtModule::tryFindVirtualCallTargets(
992     std::vector<VirtualCallTarget> &TargetsForSlot,
993     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
994     ModuleSummaryIndex *ExportSummary) {
995   for (const TypeMemberInfo &TM : TypeMemberInfos) {
996     if (!TM.Bits->GV->isConstant())
997       return false;
998 
999     // We cannot perform whole program devirtualization analysis on a vtable
1000     // with public LTO visibility.
1001     if (TM.Bits->GV->getVCallVisibility() ==
1002         GlobalObject::VCallVisibilityPublic)
1003       return false;
1004 
1005     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1006                                        TM.Offset + ByteOffset, M);
1007     if (!Ptr)
1008       return false;
1009 
1010     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
1011     if (!Fn)
1012       return false;
1013 
1014     if (FunctionsToSkip.match(Fn->getName()))
1015       return false;
1016 
1017     // We can disregard __cxa_pure_virtual as a possible call target, as
1018     // calls to pure virtuals are UB.
1019     if (Fn->getName() == "__cxa_pure_virtual")
1020       continue;
1021 
1022     // We can disregard unreachable functions as possible call targets, as
1023     // unreachable functions shouldn't be called.
1024     if (mustBeUnreachableFunction(Fn, ExportSummary))
1025       continue;
1026 
1027     TargetsForSlot.push_back({Fn, &TM});
1028   }
1029 
1030   // Give up if we couldn't find any targets.
1031   return !TargetsForSlot.empty();
1032 }
1033 
1034 bool DevirtIndex::tryFindVirtualCallTargets(
1035     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
1036     uint64_t ByteOffset) {
1037   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1038     // Find a representative copy of the vtable initializer.
1039     // We can have multiple available_externally, linkonce_odr and weak_odr
1040     // vtable initializers. We can also have multiple external vtable
1041     // initializers in the case of comdats, which we cannot check here.
1042     // The linker should give an error in this case.
1043     //
1044     // Also, handle the case of same-named local Vtables with the same path
1045     // and therefore the same GUID. This can happen if there isn't enough
1046     // distinguishing path when compiling the source file. In that case we
1047     // conservatively return false early.
1048     const GlobalVarSummary *VS = nullptr;
1049     bool LocalFound = false;
1050     for (const auto &S : P.VTableVI.getSummaryList()) {
1051       if (GlobalValue::isLocalLinkage(S->linkage())) {
1052         if (LocalFound)
1053           return false;
1054         LocalFound = true;
1055       }
1056       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1057       if (!CurVS->vTableFuncs().empty() ||
1058           // Previously clang did not attach the necessary type metadata to
1059           // available_externally vtables, in which case there would not
1060           // be any vtable functions listed in the summary and we need
1061           // to treat this case conservatively (in case the bitcode is old).
1062           // However, we will also not have any vtable functions in the
1063           // case of a pure virtual base class. In that case we do want
1064           // to set VS to avoid treating it conservatively.
1065           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1066         VS = CurVS;
1067         // We cannot perform whole program devirtualization analysis on a vtable
1068         // with public LTO visibility.
1069         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1070           return false;
1071       }
1072     }
1073     // There will be no VS if all copies are available_externally having no
1074     // type metadata. In that case we can't safely perform WPD.
1075     if (!VS)
1076       return false;
1077     if (!VS->isLive())
1078       continue;
1079     for (auto VTP : VS->vTableFuncs()) {
1080       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1081         continue;
1082 
1083       if (mustBeUnreachableFunction(VTP.FuncVI))
1084         continue;
1085 
1086       TargetsForSlot.push_back(VTP.FuncVI);
1087     }
1088   }
1089 
1090   // Give up if we couldn't find any targets.
1091   return !TargetsForSlot.empty();
1092 }
1093 
1094 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1095                                          Constant *TheFn, bool &IsExported) {
1096   // Don't devirtualize function if we're told to skip it
1097   // in -wholeprogramdevirt-skip.
1098   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1099     return;
1100   auto Apply = [&](CallSiteInfo &CSInfo) {
1101     for (auto &&VCallSite : CSInfo.CallSites) {
1102       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1103         continue;
1104 
1105       if (RemarksEnabled)
1106         VCallSite.emitRemark("single-impl",
1107                              TheFn->stripPointerCasts()->getName(), OREGetter);
1108       NumSingleImpl++;
1109       auto &CB = VCallSite.CB;
1110       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1111       IRBuilder<> Builder(&CB);
1112       Value *Callee =
1113           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1114 
1115       // If trap checking is enabled, add support to compare the virtual
1116       // function pointer to the devirtualized target. In case of a mismatch,
1117       // perform a debug trap.
1118       if (DevirtCheckMode == WPDCheckMode::Trap) {
1119         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1120         Instruction *ThenTerm =
1121             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1122         Builder.SetInsertPoint(ThenTerm);
1123         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1124         auto *CallTrap = Builder.CreateCall(TrapFn);
1125         CallTrap->setDebugLoc(CB.getDebugLoc());
1126       }
1127 
1128       // If fallback checking is enabled, add support to compare the virtual
1129       // function pointer to the devirtualized target. In case of a mismatch,
1130       // fall back to indirect call.
1131       if (DevirtCheckMode == WPDCheckMode::Fallback) {
1132         MDNode *Weights =
1133             MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
1134         // Version the indirect call site. If the called value is equal to the
1135         // given callee, 'NewInst' will be executed, otherwise the original call
1136         // site will be executed.
1137         CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1138         NewInst.setCalledOperand(Callee);
1139         // Since the new call site is direct, we must clear metadata that
1140         // is only appropriate for indirect calls. This includes !prof and
1141         // !callees metadata.
1142         NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1143         NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1144         // Additionally, we should remove them from the fallback indirect call,
1145         // so that we don't attempt to perform indirect call promotion later.
1146         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1147         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1148       }
1149 
1150       // In either trapping or non-checking mode, devirtualize original call.
1151       else {
1152         // Devirtualize unconditionally.
1153         CB.setCalledOperand(Callee);
1154         // Since the call site is now direct, we must clear metadata that
1155         // is only appropriate for indirect calls. This includes !prof and
1156         // !callees metadata.
1157         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1158         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1159       }
1160 
1161       // This use is no longer unsafe.
1162       if (VCallSite.NumUnsafeUses)
1163         --*VCallSite.NumUnsafeUses;
1164     }
1165     if (CSInfo.isExported())
1166       IsExported = true;
1167     CSInfo.markDevirt();
1168   };
1169   Apply(SlotInfo.CSInfo);
1170   for (auto &P : SlotInfo.ConstCSInfo)
1171     Apply(P.second);
1172 }
1173 
1174 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1175   // We can't add calls if we haven't seen a definition
1176   if (Callee.getSummaryList().empty())
1177     return false;
1178 
1179   // Insert calls into the summary index so that the devirtualized targets
1180   // are eligible for import.
1181   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1182   // to better ensure we have the opportunity to inline them.
1183   bool IsExported = false;
1184   auto &S = Callee.getSummaryList()[0];
1185   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1186   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1187     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1188       FS->addCall({Callee, CI});
1189       IsExported |= S->modulePath() != FS->modulePath();
1190     }
1191     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1192       FS->addCall({Callee, CI});
1193       IsExported |= S->modulePath() != FS->modulePath();
1194     }
1195   };
1196   AddCalls(SlotInfo.CSInfo);
1197   for (auto &P : SlotInfo.ConstCSInfo)
1198     AddCalls(P.second);
1199   return IsExported;
1200 }
1201 
1202 bool DevirtModule::trySingleImplDevirt(
1203     ModuleSummaryIndex *ExportSummary,
1204     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1205     WholeProgramDevirtResolution *Res) {
1206   // See if the program contains a single implementation of this virtual
1207   // function.
1208   Function *TheFn = TargetsForSlot[0].Fn;
1209   for (auto &&Target : TargetsForSlot)
1210     if (TheFn != Target.Fn)
1211       return false;
1212 
1213   // If so, update each call site to call that implementation directly.
1214   if (RemarksEnabled || AreStatisticsEnabled())
1215     TargetsForSlot[0].WasDevirt = true;
1216 
1217   bool IsExported = false;
1218   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1219   if (!IsExported)
1220     return false;
1221 
1222   // If the only implementation has local linkage, we must promote to external
1223   // to make it visible to thin LTO objects. We can only get here during the
1224   // ThinLTO export phase.
1225   if (TheFn->hasLocalLinkage()) {
1226     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1227 
1228     // Since we are renaming the function, any comdats with the same name must
1229     // also be renamed. This is required when targeting COFF, as the comdat name
1230     // must match one of the names of the symbols in the comdat.
1231     if (Comdat *C = TheFn->getComdat()) {
1232       if (C->getName() == TheFn->getName()) {
1233         Comdat *NewC = M.getOrInsertComdat(NewName);
1234         NewC->setSelectionKind(C->getSelectionKind());
1235         for (GlobalObject &GO : M.global_objects())
1236           if (GO.getComdat() == C)
1237             GO.setComdat(NewC);
1238       }
1239     }
1240 
1241     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1242     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1243     TheFn->setName(NewName);
1244   }
1245   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1246     // Any needed promotion of 'TheFn' has already been done during
1247     // LTO unit split, so we can ignore return value of AddCalls.
1248     AddCalls(SlotInfo, TheFnVI);
1249 
1250   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1251   Res->SingleImplName = std::string(TheFn->getName());
1252 
1253   return true;
1254 }
1255 
1256 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1257                                       VTableSlotSummary &SlotSummary,
1258                                       VTableSlotInfo &SlotInfo,
1259                                       WholeProgramDevirtResolution *Res,
1260                                       std::set<ValueInfo> &DevirtTargets) {
1261   // See if the program contains a single implementation of this virtual
1262   // function.
1263   auto TheFn = TargetsForSlot[0];
1264   for (auto &&Target : TargetsForSlot)
1265     if (TheFn != Target)
1266       return false;
1267 
1268   // Don't devirtualize if we don't have target definition.
1269   auto Size = TheFn.getSummaryList().size();
1270   if (!Size)
1271     return false;
1272 
1273   // Don't devirtualize function if we're told to skip it
1274   // in -wholeprogramdevirt-skip.
1275   if (FunctionsToSkip.match(TheFn.name()))
1276     return false;
1277 
1278   // If the summary list contains multiple summaries where at least one is
1279   // a local, give up, as we won't know which (possibly promoted) name to use.
1280   for (const auto &S : TheFn.getSummaryList())
1281     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1282       return false;
1283 
1284   // Collect functions devirtualized at least for one call site for stats.
1285   if (PrintSummaryDevirt || AreStatisticsEnabled())
1286     DevirtTargets.insert(TheFn);
1287 
1288   auto &S = TheFn.getSummaryList()[0];
1289   bool IsExported = AddCalls(SlotInfo, TheFn);
1290   if (IsExported)
1291     ExportedGUIDs.insert(TheFn.getGUID());
1292 
1293   // Record in summary for use in devirtualization during the ThinLTO import
1294   // step.
1295   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1296   if (GlobalValue::isLocalLinkage(S->linkage())) {
1297     if (IsExported)
1298       // If target is a local function and we are exporting it by
1299       // devirtualizing a call in another module, we need to record the
1300       // promoted name.
1301       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1302           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1303     else {
1304       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1305       Res->SingleImplName = std::string(TheFn.name());
1306     }
1307   } else
1308     Res->SingleImplName = std::string(TheFn.name());
1309 
1310   // Name will be empty if this thin link driven off of serialized combined
1311   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1312   // legacy LTO API anyway.
1313   assert(!Res->SingleImplName.empty());
1314 
1315   return true;
1316 }
1317 
1318 void DevirtModule::tryICallBranchFunnel(
1319     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1320     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1321   Triple T(M.getTargetTriple());
1322   if (T.getArch() != Triple::x86_64)
1323     return;
1324 
1325   if (TargetsForSlot.size() > ClThreshold)
1326     return;
1327 
1328   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1329   if (!HasNonDevirt)
1330     for (auto &P : SlotInfo.ConstCSInfo)
1331       if (!P.second.AllCallSitesDevirted) {
1332         HasNonDevirt = true;
1333         break;
1334       }
1335 
1336   if (!HasNonDevirt)
1337     return;
1338 
1339   FunctionType *FT =
1340       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1341   Function *JT;
1342   if (isa<MDString>(Slot.TypeID)) {
1343     JT = Function::Create(FT, Function::ExternalLinkage,
1344                           M.getDataLayout().getProgramAddressSpace(),
1345                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1346     JT->setVisibility(GlobalValue::HiddenVisibility);
1347   } else {
1348     JT = Function::Create(FT, Function::InternalLinkage,
1349                           M.getDataLayout().getProgramAddressSpace(),
1350                           "branch_funnel", &M);
1351   }
1352   JT->addParamAttr(0, Attribute::Nest);
1353 
1354   std::vector<Value *> JTArgs;
1355   JTArgs.push_back(JT->arg_begin());
1356   for (auto &T : TargetsForSlot) {
1357     JTArgs.push_back(getMemberAddr(T.TM));
1358     JTArgs.push_back(T.Fn);
1359   }
1360 
1361   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1362   Function *Intr =
1363       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1364 
1365   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1366   CI->setTailCallKind(CallInst::TCK_MustTail);
1367   ReturnInst::Create(M.getContext(), nullptr, BB);
1368 
1369   bool IsExported = false;
1370   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1371   if (IsExported)
1372     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1373 }
1374 
1375 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1376                                           Constant *JT, bool &IsExported) {
1377   auto Apply = [&](CallSiteInfo &CSInfo) {
1378     if (CSInfo.isExported())
1379       IsExported = true;
1380     if (CSInfo.AllCallSitesDevirted)
1381       return;
1382     for (auto &&VCallSite : CSInfo.CallSites) {
1383       CallBase &CB = VCallSite.CB;
1384 
1385       // Jump tables are only profitable if the retpoline mitigation is enabled.
1386       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1387       if (!FSAttr.isValid() ||
1388           !FSAttr.getValueAsString().contains("+retpoline"))
1389         continue;
1390 
1391       NumBranchFunnel++;
1392       if (RemarksEnabled)
1393         VCallSite.emitRemark("branch-funnel",
1394                              JT->stripPointerCasts()->getName(), OREGetter);
1395 
1396       // Pass the address of the vtable in the nest register, which is r10 on
1397       // x86_64.
1398       std::vector<Type *> NewArgs;
1399       NewArgs.push_back(Int8PtrTy);
1400       append_range(NewArgs, CB.getFunctionType()->params());
1401       FunctionType *NewFT =
1402           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1403                             CB.getFunctionType()->isVarArg());
1404       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1405 
1406       IRBuilder<> IRB(&CB);
1407       std::vector<Value *> Args;
1408       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1409       llvm::append_range(Args, CB.args());
1410 
1411       CallBase *NewCS = nullptr;
1412       if (isa<CallInst>(CB))
1413         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1414       else
1415         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1416                                  cast<InvokeInst>(CB).getNormalDest(),
1417                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1418       NewCS->setCallingConv(CB.getCallingConv());
1419 
1420       AttributeList Attrs = CB.getAttributes();
1421       std::vector<AttributeSet> NewArgAttrs;
1422       NewArgAttrs.push_back(AttributeSet::get(
1423           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1424                               M.getContext(), Attribute::Nest)}));
1425       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1426         NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1427       NewCS->setAttributes(
1428           AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1429                              Attrs.getRetAttrs(), NewArgAttrs));
1430 
1431       CB.replaceAllUsesWith(NewCS);
1432       CB.eraseFromParent();
1433 
1434       // This use is no longer unsafe.
1435       if (VCallSite.NumUnsafeUses)
1436         --*VCallSite.NumUnsafeUses;
1437     }
1438     // Don't mark as devirtualized because there may be callers compiled without
1439     // retpoline mitigation, which would mean that they are lowered to
1440     // llvm.type.test and therefore require an llvm.type.test resolution for the
1441     // type identifier.
1442   };
1443   Apply(SlotInfo.CSInfo);
1444   for (auto &P : SlotInfo.ConstCSInfo)
1445     Apply(P.second);
1446 }
1447 
1448 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1449     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1450     ArrayRef<uint64_t> Args) {
1451   // Evaluate each function and store the result in each target's RetVal
1452   // field.
1453   for (VirtualCallTarget &Target : TargetsForSlot) {
1454     if (Target.Fn->arg_size() != Args.size() + 1)
1455       return false;
1456 
1457     Evaluator Eval(M.getDataLayout(), nullptr);
1458     SmallVector<Constant *, 2> EvalArgs;
1459     EvalArgs.push_back(
1460         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1461     for (unsigned I = 0; I != Args.size(); ++I) {
1462       auto *ArgTy = dyn_cast<IntegerType>(
1463           Target.Fn->getFunctionType()->getParamType(I + 1));
1464       if (!ArgTy)
1465         return false;
1466       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1467     }
1468 
1469     Constant *RetVal;
1470     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1471         !isa<ConstantInt>(RetVal))
1472       return false;
1473     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1474   }
1475   return true;
1476 }
1477 
1478 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1479                                          uint64_t TheRetVal) {
1480   for (auto Call : CSInfo.CallSites) {
1481     if (!OptimizedCalls.insert(&Call.CB).second)
1482       continue;
1483     NumUniformRetVal++;
1484     Call.replaceAndErase(
1485         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1486         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1487   }
1488   CSInfo.markDevirt();
1489 }
1490 
1491 bool DevirtModule::tryUniformRetValOpt(
1492     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1493     WholeProgramDevirtResolution::ByArg *Res) {
1494   // Uniform return value optimization. If all functions return the same
1495   // constant, replace all calls with that constant.
1496   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1497   for (const VirtualCallTarget &Target : TargetsForSlot)
1498     if (Target.RetVal != TheRetVal)
1499       return false;
1500 
1501   if (CSInfo.isExported()) {
1502     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1503     Res->Info = TheRetVal;
1504   }
1505 
1506   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1507   if (RemarksEnabled || AreStatisticsEnabled())
1508     for (auto &&Target : TargetsForSlot)
1509       Target.WasDevirt = true;
1510   return true;
1511 }
1512 
1513 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1514                                         ArrayRef<uint64_t> Args,
1515                                         StringRef Name) {
1516   std::string FullName = "__typeid_";
1517   raw_string_ostream OS(FullName);
1518   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1519   for (uint64_t Arg : Args)
1520     OS << '_' << Arg;
1521   OS << '_' << Name;
1522   return OS.str();
1523 }
1524 
1525 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1526   Triple T(M.getTargetTriple());
1527   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1528 }
1529 
1530 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1531                                 StringRef Name, Constant *C) {
1532   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1533                                         getGlobalName(Slot, Args, Name), C, &M);
1534   GA->setVisibility(GlobalValue::HiddenVisibility);
1535 }
1536 
1537 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1538                                   StringRef Name, uint32_t Const,
1539                                   uint32_t &Storage) {
1540   if (shouldExportConstantsAsAbsoluteSymbols()) {
1541     exportGlobal(
1542         Slot, Args, Name,
1543         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1544     return;
1545   }
1546 
1547   Storage = Const;
1548 }
1549 
1550 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1551                                      StringRef Name) {
1552   Constant *C =
1553       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1554   auto *GV = dyn_cast<GlobalVariable>(C);
1555   if (GV)
1556     GV->setVisibility(GlobalValue::HiddenVisibility);
1557   return C;
1558 }
1559 
1560 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1561                                        StringRef Name, IntegerType *IntTy,
1562                                        uint32_t Storage) {
1563   if (!shouldExportConstantsAsAbsoluteSymbols())
1564     return ConstantInt::get(IntTy, Storage);
1565 
1566   Constant *C = importGlobal(Slot, Args, Name);
1567   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1568   C = ConstantExpr::getPtrToInt(C, IntTy);
1569 
1570   // We only need to set metadata if the global is newly created, in which
1571   // case it would not have hidden visibility.
1572   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1573     return C;
1574 
1575   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1576     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1577     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1578     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1579                     MDNode::get(M.getContext(), {MinC, MaxC}));
1580   };
1581   unsigned AbsWidth = IntTy->getBitWidth();
1582   if (AbsWidth == IntPtrTy->getBitWidth())
1583     SetAbsRange(~0ull, ~0ull); // Full set.
1584   else
1585     SetAbsRange(0, 1ull << AbsWidth);
1586   return C;
1587 }
1588 
1589 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1590                                         bool IsOne,
1591                                         Constant *UniqueMemberAddr) {
1592   for (auto &&Call : CSInfo.CallSites) {
1593     if (!OptimizedCalls.insert(&Call.CB).second)
1594       continue;
1595     IRBuilder<> B(&Call.CB);
1596     Value *Cmp =
1597         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1598                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1599     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1600     NumUniqueRetVal++;
1601     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1602                          Cmp);
1603   }
1604   CSInfo.markDevirt();
1605 }
1606 
1607 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1608   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1609   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1610                                         ConstantInt::get(Int64Ty, M->Offset));
1611 }
1612 
1613 bool DevirtModule::tryUniqueRetValOpt(
1614     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1615     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1616     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1617   // IsOne controls whether we look for a 0 or a 1.
1618   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1619     const TypeMemberInfo *UniqueMember = nullptr;
1620     for (const VirtualCallTarget &Target : TargetsForSlot) {
1621       if (Target.RetVal == (IsOne ? 1 : 0)) {
1622         if (UniqueMember)
1623           return false;
1624         UniqueMember = Target.TM;
1625       }
1626     }
1627 
1628     // We should have found a unique member or bailed out by now. We already
1629     // checked for a uniform return value in tryUniformRetValOpt.
1630     assert(UniqueMember);
1631 
1632     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1633     if (CSInfo.isExported()) {
1634       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1635       Res->Info = IsOne;
1636 
1637       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1638     }
1639 
1640     // Replace each call with the comparison.
1641     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1642                          UniqueMemberAddr);
1643 
1644     // Update devirtualization statistics for targets.
1645     if (RemarksEnabled || AreStatisticsEnabled())
1646       for (auto &&Target : TargetsForSlot)
1647         Target.WasDevirt = true;
1648 
1649     return true;
1650   };
1651 
1652   if (BitWidth == 1) {
1653     if (tryUniqueRetValOptFor(true))
1654       return true;
1655     if (tryUniqueRetValOptFor(false))
1656       return true;
1657   }
1658   return false;
1659 }
1660 
1661 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1662                                          Constant *Byte, Constant *Bit) {
1663   for (auto Call : CSInfo.CallSites) {
1664     if (!OptimizedCalls.insert(&Call.CB).second)
1665       continue;
1666     auto *RetType = cast<IntegerType>(Call.CB.getType());
1667     IRBuilder<> B(&Call.CB);
1668     Value *Addr =
1669         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1670     if (RetType->getBitWidth() == 1) {
1671       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1672       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1673       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1674       NumVirtConstProp1Bit++;
1675       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1676                            OREGetter, IsBitSet);
1677     } else {
1678       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1679       Value *Val = B.CreateLoad(RetType, ValAddr);
1680       NumVirtConstProp++;
1681       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1682                            OREGetter, Val);
1683     }
1684   }
1685   CSInfo.markDevirt();
1686 }
1687 
1688 bool DevirtModule::tryVirtualConstProp(
1689     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1690     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1691   // This only works if the function returns an integer.
1692   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1693   if (!RetType)
1694     return false;
1695   unsigned BitWidth = RetType->getBitWidth();
1696   if (BitWidth > 64)
1697     return false;
1698 
1699   // Make sure that each function is defined, does not access memory, takes at
1700   // least one argument, does not use its first argument (which we assume is
1701   // 'this'), and has the same return type.
1702   //
1703   // Note that we test whether this copy of the function is readnone, rather
1704   // than testing function attributes, which must hold for any copy of the
1705   // function, even a less optimized version substituted at link time. This is
1706   // sound because the virtual constant propagation optimizations effectively
1707   // inline all implementations of the virtual function into each call site,
1708   // rather than using function attributes to perform local optimization.
1709   for (VirtualCallTarget &Target : TargetsForSlot) {
1710     if (Target.Fn->isDeclaration() ||
1711         !computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn))
1712              .doesNotAccessMemory() ||
1713         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1714         Target.Fn->getReturnType() != RetType)
1715       return false;
1716   }
1717 
1718   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1719     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1720       continue;
1721 
1722     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1723     if (Res)
1724       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1725 
1726     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1727       continue;
1728 
1729     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1730                            ResByArg, Slot, CSByConstantArg.first))
1731       continue;
1732 
1733     // Find an allocation offset in bits in all vtables associated with the
1734     // type.
1735     uint64_t AllocBefore =
1736         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1737     uint64_t AllocAfter =
1738         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1739 
1740     // Calculate the total amount of padding needed to store a value at both
1741     // ends of the object.
1742     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1743     for (auto &&Target : TargetsForSlot) {
1744       TotalPaddingBefore += std::max<int64_t>(
1745           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1746       TotalPaddingAfter += std::max<int64_t>(
1747           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1748     }
1749 
1750     // If the amount of padding is too large, give up.
1751     // FIXME: do something smarter here.
1752     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1753       continue;
1754 
1755     // Calculate the offset to the value as a (possibly negative) byte offset
1756     // and (if applicable) a bit offset, and store the values in the targets.
1757     int64_t OffsetByte;
1758     uint64_t OffsetBit;
1759     if (TotalPaddingBefore <= TotalPaddingAfter)
1760       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1761                             OffsetBit);
1762     else
1763       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1764                            OffsetBit);
1765 
1766     if (RemarksEnabled || AreStatisticsEnabled())
1767       for (auto &&Target : TargetsForSlot)
1768         Target.WasDevirt = true;
1769 
1770 
1771     if (CSByConstantArg.second.isExported()) {
1772       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1773       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1774                      ResByArg->Byte);
1775       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1776                      ResByArg->Bit);
1777     }
1778 
1779     // Rewrite each call to a load from OffsetByte/OffsetBit.
1780     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1781     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1782     applyVirtualConstProp(CSByConstantArg.second,
1783                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1784   }
1785   return true;
1786 }
1787 
1788 void DevirtModule::rebuildGlobal(VTableBits &B) {
1789   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1790     return;
1791 
1792   // Align the before byte array to the global's minimum alignment so that we
1793   // don't break any alignment requirements on the global.
1794   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1795       B.GV->getAlign(), B.GV->getValueType());
1796   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1797 
1798   // Before was stored in reverse order; flip it now.
1799   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1800     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1801 
1802   // Build an anonymous global containing the before bytes, followed by the
1803   // original initializer, followed by the after bytes.
1804   auto NewInit = ConstantStruct::getAnon(
1805       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1806        B.GV->getInitializer(),
1807        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1808   auto NewGV =
1809       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1810                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1811   NewGV->setSection(B.GV->getSection());
1812   NewGV->setComdat(B.GV->getComdat());
1813   NewGV->setAlignment(B.GV->getAlign());
1814 
1815   // Copy the original vtable's metadata to the anonymous global, adjusting
1816   // offsets as required.
1817   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1818 
1819   // Build an alias named after the original global, pointing at the second
1820   // element (the original initializer).
1821   auto Alias = GlobalAlias::create(
1822       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1823       ConstantExpr::getGetElementPtr(
1824           NewInit->getType(), NewGV,
1825           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1826                                ConstantInt::get(Int32Ty, 1)}),
1827       &M);
1828   Alias->setVisibility(B.GV->getVisibility());
1829   Alias->takeName(B.GV);
1830 
1831   B.GV->replaceAllUsesWith(Alias);
1832   B.GV->eraseFromParent();
1833 }
1834 
1835 bool DevirtModule::areRemarksEnabled() {
1836   const auto &FL = M.getFunctionList();
1837   for (const Function &Fn : FL) {
1838     if (Fn.empty())
1839       continue;
1840     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1841     return DI.isEnabled();
1842   }
1843   return false;
1844 }
1845 
1846 void DevirtModule::scanTypeTestUsers(
1847     Function *TypeTestFunc,
1848     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1849   // Find all virtual calls via a virtual table pointer %p under an assumption
1850   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1851   // points to a member of the type identifier %md. Group calls by (type ID,
1852   // offset) pair (effectively the identity of the virtual function) and store
1853   // to CallSlots.
1854   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1855     auto *CI = dyn_cast<CallInst>(U.getUser());
1856     if (!CI)
1857       continue;
1858 
1859     // Search for virtual calls based on %p and add them to DevirtCalls.
1860     SmallVector<DevirtCallSite, 1> DevirtCalls;
1861     SmallVector<CallInst *, 1> Assumes;
1862     auto &DT = LookupDomTree(*CI->getFunction());
1863     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1864 
1865     Metadata *TypeId =
1866         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1867     // If we found any, add them to CallSlots.
1868     if (!Assumes.empty()) {
1869       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1870       for (DevirtCallSite Call : DevirtCalls)
1871         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1872     }
1873 
1874     auto RemoveTypeTestAssumes = [&]() {
1875       // We no longer need the assumes or the type test.
1876       for (auto *Assume : Assumes)
1877         Assume->eraseFromParent();
1878       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1879       // may use the vtable argument later.
1880       if (CI->use_empty())
1881         CI->eraseFromParent();
1882     };
1883 
1884     // At this point we could remove all type test assume sequences, as they
1885     // were originally inserted for WPD. However, we can keep these in the
1886     // code stream for later analysis (e.g. to help drive more efficient ICP
1887     // sequences). They will eventually be removed by a second LowerTypeTests
1888     // invocation that cleans them up. In order to do this correctly, the first
1889     // LowerTypeTests invocation needs to know that they have "Unknown" type
1890     // test resolution, so that they aren't treated as Unsat and lowered to
1891     // False, which will break any uses on assumes. Below we remove any type
1892     // test assumes that will not be treated as Unknown by LTT.
1893 
1894     // The type test assumes will be treated by LTT as Unsat if the type id is
1895     // not used on a global (in which case it has no entry in the TypeIdMap).
1896     if (!TypeIdMap.count(TypeId))
1897       RemoveTypeTestAssumes();
1898 
1899     // For ThinLTO importing, we need to remove the type test assumes if this is
1900     // an MDString type id without a corresponding TypeIdSummary. Any
1901     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1902     // type test assumes can be kept. If the MDString type id is missing a
1903     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1904     // exporting phase of WPD from analyzing it), then it would be treated as
1905     // Unsat by LTT and we need to remove its type test assumes here. If not
1906     // used on a vcall we don't need them for later optimization use in any
1907     // case.
1908     else if (ImportSummary && isa<MDString>(TypeId)) {
1909       const TypeIdSummary *TidSummary =
1910           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
1911       if (!TidSummary)
1912         RemoveTypeTestAssumes();
1913       else
1914         // If one was created it should not be Unsat, because if we reached here
1915         // the type id was used on a global.
1916         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
1917     }
1918   }
1919 }
1920 
1921 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1922   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1923 
1924   for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
1925     auto *CI = dyn_cast<CallInst>(U.getUser());
1926     if (!CI)
1927       continue;
1928 
1929     Value *Ptr = CI->getArgOperand(0);
1930     Value *Offset = CI->getArgOperand(1);
1931     Value *TypeIdValue = CI->getArgOperand(2);
1932     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1933 
1934     SmallVector<DevirtCallSite, 1> DevirtCalls;
1935     SmallVector<Instruction *, 1> LoadedPtrs;
1936     SmallVector<Instruction *, 1> Preds;
1937     bool HasNonCallUses = false;
1938     auto &DT = LookupDomTree(*CI->getFunction());
1939     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1940                                                HasNonCallUses, CI, DT);
1941 
1942     // Start by generating "pessimistic" code that explicitly loads the function
1943     // pointer from the vtable and performs the type check. If possible, we will
1944     // eliminate the load and the type check later.
1945 
1946     // If possible, only generate the load at the point where it is used.
1947     // This helps avoid unnecessary spills.
1948     IRBuilder<> LoadB(
1949         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1950     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1951     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1952     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1953 
1954     for (Instruction *LoadedPtr : LoadedPtrs) {
1955       LoadedPtr->replaceAllUsesWith(LoadedValue);
1956       LoadedPtr->eraseFromParent();
1957     }
1958 
1959     // Likewise for the type test.
1960     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1961     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1962 
1963     for (Instruction *Pred : Preds) {
1964       Pred->replaceAllUsesWith(TypeTestCall);
1965       Pred->eraseFromParent();
1966     }
1967 
1968     // We have already erased any extractvalue instructions that refer to the
1969     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1970     // (although this is unlikely). In that case, explicitly build a pair and
1971     // RAUW it.
1972     if (!CI->use_empty()) {
1973       Value *Pair = PoisonValue::get(CI->getType());
1974       IRBuilder<> B(CI);
1975       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1976       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1977       CI->replaceAllUsesWith(Pair);
1978     }
1979 
1980     // The number of unsafe uses is initially the number of uses.
1981     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1982     NumUnsafeUses = DevirtCalls.size();
1983 
1984     // If the function pointer has a non-call user, we cannot eliminate the type
1985     // check, as one of those users may eventually call the pointer. Increment
1986     // the unsafe use count to make sure it cannot reach zero.
1987     if (HasNonCallUses)
1988       ++NumUnsafeUses;
1989     for (DevirtCallSite Call : DevirtCalls) {
1990       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
1991                                                    &NumUnsafeUses);
1992     }
1993 
1994     CI->eraseFromParent();
1995   }
1996 }
1997 
1998 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1999   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2000   if (!TypeId)
2001     return;
2002   const TypeIdSummary *TidSummary =
2003       ImportSummary->getTypeIdSummary(TypeId->getString());
2004   if (!TidSummary)
2005     return;
2006   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2007   if (ResI == TidSummary->WPDRes.end())
2008     return;
2009   const WholeProgramDevirtResolution &Res = ResI->second;
2010 
2011   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2012     assert(!Res.SingleImplName.empty());
2013     // The type of the function in the declaration is irrelevant because every
2014     // call site will cast it to the correct type.
2015     Constant *SingleImpl =
2016         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2017                                              Type::getVoidTy(M.getContext()))
2018                            .getCallee());
2019 
2020     // This is the import phase so we should not be exporting anything.
2021     bool IsExported = false;
2022     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2023     assert(!IsExported);
2024   }
2025 
2026   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2027     auto I = Res.ResByArg.find(CSByConstantArg.first);
2028     if (I == Res.ResByArg.end())
2029       continue;
2030     auto &ResByArg = I->second;
2031     // FIXME: We should figure out what to do about the "function name" argument
2032     // to the apply* functions, as the function names are unavailable during the
2033     // importing phase. For now we just pass the empty string. This does not
2034     // impact correctness because the function names are just used for remarks.
2035     switch (ResByArg.TheKind) {
2036     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2037       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2038       break;
2039     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2040       Constant *UniqueMemberAddr =
2041           importGlobal(Slot, CSByConstantArg.first, "unique_member");
2042       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2043                            UniqueMemberAddr);
2044       break;
2045     }
2046     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2047       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2048                                       Int32Ty, ResByArg.Byte);
2049       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2050                                      ResByArg.Bit);
2051       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2052       break;
2053     }
2054     default:
2055       break;
2056     }
2057   }
2058 
2059   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2060     // The type of the function is irrelevant, because it's bitcast at calls
2061     // anyhow.
2062     Constant *JT = cast<Constant>(
2063         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2064                               Type::getVoidTy(M.getContext()))
2065             .getCallee());
2066     bool IsExported = false;
2067     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2068     assert(!IsExported);
2069   }
2070 }
2071 
2072 void DevirtModule::removeRedundantTypeTests() {
2073   auto True = ConstantInt::getTrue(M.getContext());
2074   for (auto &&U : NumUnsafeUsesForTypeTest) {
2075     if (U.second == 0) {
2076       U.first->replaceAllUsesWith(True);
2077       U.first->eraseFromParent();
2078     }
2079   }
2080 }
2081 
2082 ValueInfo
2083 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2084                                       ModuleSummaryIndex *ExportSummary) {
2085   assert((ExportSummary != nullptr) &&
2086          "Caller guarantees ExportSummary is not nullptr");
2087 
2088   const auto TheFnGUID = TheFn->getGUID();
2089   const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2090   // Look up ValueInfo with the GUID in the current linkage.
2091   ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2092   // If no entry is found and GUID is different from GUID computed using
2093   // exported name, look up ValueInfo with the exported name unconditionally.
2094   // This is a fallback.
2095   //
2096   // The reason to have a fallback:
2097   // 1. LTO could enable global value internalization via
2098   // `enable-lto-internalization`.
2099   // 2. The GUID in ExportedSummary is computed using exported name.
2100   if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2101     TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2102   }
2103   return TheFnVI;
2104 }
2105 
2106 bool DevirtModule::mustBeUnreachableFunction(
2107     Function *const F, ModuleSummaryIndex *ExportSummary) {
2108   // First, learn unreachability by analyzing function IR.
2109   if (!F->isDeclaration()) {
2110     // A function must be unreachable if its entry block ends with an
2111     // 'unreachable'.
2112     return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2113   }
2114   // Learn unreachability from ExportSummary if ExportSummary is present.
2115   return ExportSummary &&
2116          ::mustBeUnreachableFunction(
2117              DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2118 }
2119 
2120 bool DevirtModule::run() {
2121   // If only some of the modules were split, we cannot correctly perform
2122   // this transformation. We already checked for the presense of type tests
2123   // with partially split modules during the thin link, and would have emitted
2124   // an error if any were found, so here we can simply return.
2125   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2126       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2127     return false;
2128 
2129   Function *TypeTestFunc =
2130       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2131   Function *TypeCheckedLoadFunc =
2132       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2133   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2134 
2135   // Normally if there are no users of the devirtualization intrinsics in the
2136   // module, this pass has nothing to do. But if we are exporting, we also need
2137   // to handle any users that appear only in the function summaries.
2138   if (!ExportSummary &&
2139       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2140        AssumeFunc->use_empty()) &&
2141       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
2142     return false;
2143 
2144   // Rebuild type metadata into a map for easy lookup.
2145   std::vector<VTableBits> Bits;
2146   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2147   buildTypeIdentifierMap(Bits, TypeIdMap);
2148 
2149   if (TypeTestFunc && AssumeFunc)
2150     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2151 
2152   if (TypeCheckedLoadFunc)
2153     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2154 
2155   if (ImportSummary) {
2156     for (auto &S : CallSlots)
2157       importResolution(S.first, S.second);
2158 
2159     removeRedundantTypeTests();
2160 
2161     // We have lowered or deleted the type intrinsics, so we will no longer have
2162     // enough information to reason about the liveness of virtual function
2163     // pointers in GlobalDCE.
2164     for (GlobalVariable &GV : M.globals())
2165       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2166 
2167     // The rest of the code is only necessary when exporting or during regular
2168     // LTO, so we are done.
2169     return true;
2170   }
2171 
2172   if (TypeIdMap.empty())
2173     return true;
2174 
2175   // Collect information from summary about which calls to try to devirtualize.
2176   if (ExportSummary) {
2177     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2178     for (auto &P : TypeIdMap) {
2179       if (auto *TypeId = dyn_cast<MDString>(P.first))
2180         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2181             TypeId);
2182     }
2183 
2184     for (auto &P : *ExportSummary) {
2185       for (auto &S : P.second.SummaryList) {
2186         auto *FS = dyn_cast<FunctionSummary>(S.get());
2187         if (!FS)
2188           continue;
2189         // FIXME: Only add live functions.
2190         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2191           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2192             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2193           }
2194         }
2195         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2196           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2197             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2198           }
2199         }
2200         for (const FunctionSummary::ConstVCall &VC :
2201              FS->type_test_assume_const_vcalls()) {
2202           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2203             CallSlots[{MD, VC.VFunc.Offset}]
2204                 .ConstCSInfo[VC.Args]
2205                 .addSummaryTypeTestAssumeUser(FS);
2206           }
2207         }
2208         for (const FunctionSummary::ConstVCall &VC :
2209              FS->type_checked_load_const_vcalls()) {
2210           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2211             CallSlots[{MD, VC.VFunc.Offset}]
2212                 .ConstCSInfo[VC.Args]
2213                 .addSummaryTypeCheckedLoadUser(FS);
2214           }
2215         }
2216       }
2217     }
2218   }
2219 
2220   // For each (type, offset) pair:
2221   bool DidVirtualConstProp = false;
2222   std::map<std::string, Function*> DevirtTargets;
2223   for (auto &S : CallSlots) {
2224     // Search each of the members of the type identifier for the virtual
2225     // function implementation at offset S.first.ByteOffset, and add to
2226     // TargetsForSlot.
2227     std::vector<VirtualCallTarget> TargetsForSlot;
2228     WholeProgramDevirtResolution *Res = nullptr;
2229     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2230     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2231         TypeMemberInfos.size())
2232       // For any type id used on a global's type metadata, create the type id
2233       // summary resolution regardless of whether we can devirtualize, so that
2234       // lower type tests knows the type id is not Unsat. If it was not used on
2235       // a global's type metadata, the TypeIdMap entry set will be empty, and
2236       // we don't want to create an entry (with the default Unknown type
2237       // resolution), which can prevent detection of the Unsat.
2238       Res = &ExportSummary
2239                  ->getOrInsertTypeIdSummary(
2240                      cast<MDString>(S.first.TypeID)->getString())
2241                  .WPDRes[S.first.ByteOffset];
2242     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2243                                   S.first.ByteOffset, ExportSummary)) {
2244 
2245       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2246         DidVirtualConstProp |=
2247             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2248 
2249         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2250       }
2251 
2252       // Collect functions devirtualized at least for one call site for stats.
2253       if (RemarksEnabled || AreStatisticsEnabled())
2254         for (const auto &T : TargetsForSlot)
2255           if (T.WasDevirt)
2256             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2257     }
2258 
2259     // CFI-specific: if we are exporting and any llvm.type.checked.load
2260     // intrinsics were *not* devirtualized, we need to add the resulting
2261     // llvm.type.test intrinsics to the function summaries so that the
2262     // LowerTypeTests pass will export them.
2263     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2264       auto GUID =
2265           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2266       for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2267         FS->addTypeTest(GUID);
2268       for (auto &CCS : S.second.ConstCSInfo)
2269         for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2270           FS->addTypeTest(GUID);
2271     }
2272   }
2273 
2274   if (RemarksEnabled) {
2275     // Generate remarks for each devirtualized function.
2276     for (const auto &DT : DevirtTargets) {
2277       Function *F = DT.second;
2278 
2279       using namespace ore;
2280       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2281                         << "devirtualized "
2282                         << NV("FunctionName", DT.first));
2283     }
2284   }
2285 
2286   NumDevirtTargets += DevirtTargets.size();
2287 
2288   removeRedundantTypeTests();
2289 
2290   // Rebuild each global we touched as part of virtual constant propagation to
2291   // include the before and after bytes.
2292   if (DidVirtualConstProp)
2293     for (VTableBits &B : Bits)
2294       rebuildGlobal(B);
2295 
2296   // We have lowered or deleted the type intrinsics, so we will no longer have
2297   // enough information to reason about the liveness of virtual function
2298   // pointers in GlobalDCE.
2299   for (GlobalVariable &GV : M.globals())
2300     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2301 
2302   return true;
2303 }
2304 
2305 void DevirtIndex::run() {
2306   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2307     return;
2308 
2309   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2310   for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2311     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2312     // Create the type id summary resolution regardlness of whether we can
2313     // devirtualize, so that lower type tests knows the type id is used on
2314     // a global and not Unsat. We do this here rather than in the loop over the
2315     // CallSlots, since that handling will only see type tests that directly
2316     // feed assumes, and we would miss any that aren't currently handled by WPD
2317     // (such as type tests that feed assumes via phis).
2318     ExportSummary.getOrInsertTypeIdSummary(P.first);
2319   }
2320 
2321   // Collect information from summary about which calls to try to devirtualize.
2322   for (auto &P : ExportSummary) {
2323     for (auto &S : P.second.SummaryList) {
2324       auto *FS = dyn_cast<FunctionSummary>(S.get());
2325       if (!FS)
2326         continue;
2327       // FIXME: Only add live functions.
2328       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2329         for (StringRef Name : NameByGUID[VF.GUID]) {
2330           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2331         }
2332       }
2333       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2334         for (StringRef Name : NameByGUID[VF.GUID]) {
2335           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2336         }
2337       }
2338       for (const FunctionSummary::ConstVCall &VC :
2339            FS->type_test_assume_const_vcalls()) {
2340         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2341           CallSlots[{Name, VC.VFunc.Offset}]
2342               .ConstCSInfo[VC.Args]
2343               .addSummaryTypeTestAssumeUser(FS);
2344         }
2345       }
2346       for (const FunctionSummary::ConstVCall &VC :
2347            FS->type_checked_load_const_vcalls()) {
2348         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2349           CallSlots[{Name, VC.VFunc.Offset}]
2350               .ConstCSInfo[VC.Args]
2351               .addSummaryTypeCheckedLoadUser(FS);
2352         }
2353       }
2354     }
2355   }
2356 
2357   std::set<ValueInfo> DevirtTargets;
2358   // For each (type, offset) pair:
2359   for (auto &S : CallSlots) {
2360     // Search each of the members of the type identifier for the virtual
2361     // function implementation at offset S.first.ByteOffset, and add to
2362     // TargetsForSlot.
2363     std::vector<ValueInfo> TargetsForSlot;
2364     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2365     assert(TidSummary);
2366     // The type id summary would have been created while building the NameByGUID
2367     // map earlier.
2368     WholeProgramDevirtResolution *Res =
2369         &ExportSummary.getTypeIdSummary(S.first.TypeID)
2370              ->WPDRes[S.first.ByteOffset];
2371     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2372                                   S.first.ByteOffset)) {
2373 
2374       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2375                                DevirtTargets))
2376         continue;
2377     }
2378   }
2379 
2380   // Optionally have the thin link print message for each devirtualized
2381   // function.
2382   if (PrintSummaryDevirt)
2383     for (const auto &DT : DevirtTargets)
2384       errs() << "Devirtualized call to " << DT << "\n";
2385 
2386   NumDevirtTargets += DevirtTargets.size();
2387 }
2388