xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Errc.h"
91 #include "llvm/Support/Error.h"
92 #include "llvm/Support/FileSystem.h"
93 #include "llvm/Support/GlobPattern.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
104 
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
107 
108 #define DEBUG_TYPE "wholeprogramdevirt"
109 
110 static cl::opt<PassSummaryAction> ClSummaryAction(
111     "wholeprogramdevirt-summary-action",
112     cl::desc("What to do with the summary when running this pass"),
113     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
114                clEnumValN(PassSummaryAction::Import, "import",
115                           "Import typeid resolutions from summary and globals"),
116                clEnumValN(PassSummaryAction::Export, "export",
117                           "Export typeid resolutions to summary and globals")),
118     cl::Hidden);
119 
120 static cl::opt<std::string> ClReadSummary(
121     "wholeprogramdevirt-read-summary",
122     cl::desc(
123         "Read summary from given bitcode or YAML file before running pass"),
124     cl::Hidden);
125 
126 static cl::opt<std::string> ClWriteSummary(
127     "wholeprogramdevirt-write-summary",
128     cl::desc("Write summary to given bitcode or YAML file after running pass. "
129              "Output file format is deduced from extension: *.bc means writing "
130              "bitcode, otherwise YAML"),
131     cl::Hidden);
132 
133 static cl::opt<unsigned>
134     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
135                 cl::init(10), cl::ZeroOrMore,
136                 cl::desc("Maximum number of call targets per "
137                          "call site to enable branch funnels"));
138 
139 static cl::opt<bool>
140     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
141                        cl::init(false), cl::ZeroOrMore,
142                        cl::desc("Print index-based devirtualization messages"));
143 
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
148 static cl::opt<bool>
149     WholeProgramVisibility("whole-program-visibility", cl::init(false),
150                            cl::Hidden, cl::ZeroOrMore,
151                            cl::desc("Enable whole program visibility"));
152 
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 static cl::opt<bool> DisableWholeProgramVisibility(
156     "disable-whole-program-visibility", cl::init(false), cl::Hidden,
157     cl::ZeroOrMore,
158     cl::desc("Disable whole program visibility (overrides enabling options)"));
159 
160 /// Provide way to prevent certain function from being devirtualized
161 static cl::list<std::string>
162     SkipFunctionNames("wholeprogramdevirt-skip",
163                       cl::desc("Prevent function(s) from being devirtualized"),
164                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
165 
166 /// Mechanism to add runtime checking of devirtualization decisions, trapping on
167 /// any that are not correct. Useful for debugging undefined behavior leading to
168 /// failures with WPD.
169 static cl::opt<bool>
170     CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden,
171                 cl::ZeroOrMore,
172                 cl::desc("Add code to trap on incorrect devirtualizations"));
173 
174 namespace {
175 struct PatternList {
176   std::vector<GlobPattern> Patterns;
177   template <class T> void init(const T &StringList) {
178     for (const auto &S : StringList)
179       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
180         Patterns.push_back(std::move(*Pat));
181   }
182   bool match(StringRef S) {
183     for (const GlobPattern &P : Patterns)
184       if (P.match(S))
185         return true;
186     return false;
187   }
188 };
189 } // namespace
190 
191 // Find the minimum offset that we may store a value of size Size bits at. If
192 // IsAfter is set, look for an offset before the object, otherwise look for an
193 // offset after the object.
194 uint64_t
195 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
196                                      bool IsAfter, uint64_t Size) {
197   // Find a minimum offset taking into account only vtable sizes.
198   uint64_t MinByte = 0;
199   for (const VirtualCallTarget &Target : Targets) {
200     if (IsAfter)
201       MinByte = std::max(MinByte, Target.minAfterBytes());
202     else
203       MinByte = std::max(MinByte, Target.minBeforeBytes());
204   }
205 
206   // Build a vector of arrays of bytes covering, for each target, a slice of the
207   // used region (see AccumBitVector::BytesUsed in
208   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
209   // this aligns the used regions to start at MinByte.
210   //
211   // In this example, A, B and C are vtables, # is a byte already allocated for
212   // a virtual function pointer, AAAA... (etc.) are the used regions for the
213   // vtables and Offset(X) is the value computed for the Offset variable below
214   // for X.
215   //
216   //                    Offset(A)
217   //                    |       |
218   //                            |MinByte
219   // A: ################AAAAAAAA|AAAAAAAA
220   // B: ########BBBBBBBBBBBBBBBB|BBBB
221   // C: ########################|CCCCCCCCCCCCCCCC
222   //            |   Offset(B)   |
223   //
224   // This code produces the slices of A, B and C that appear after the divider
225   // at MinByte.
226   std::vector<ArrayRef<uint8_t>> Used;
227   for (const VirtualCallTarget &Target : Targets) {
228     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
229                                        : Target.TM->Bits->Before.BytesUsed;
230     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
231                               : MinByte - Target.minBeforeBytes();
232 
233     // Disregard used regions that are smaller than Offset. These are
234     // effectively all-free regions that do not need to be checked.
235     if (VTUsed.size() > Offset)
236       Used.push_back(VTUsed.slice(Offset));
237   }
238 
239   if (Size == 1) {
240     // Find a free bit in each member of Used.
241     for (unsigned I = 0;; ++I) {
242       uint8_t BitsUsed = 0;
243       for (auto &&B : Used)
244         if (I < B.size())
245           BitsUsed |= B[I];
246       if (BitsUsed != 0xff)
247         return (MinByte + I) * 8 +
248                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
249     }
250   } else {
251     // Find a free (Size/8) byte region in each member of Used.
252     // FIXME: see if alignment helps.
253     for (unsigned I = 0;; ++I) {
254       for (auto &&B : Used) {
255         unsigned Byte = 0;
256         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
257           if (B[I + Byte])
258             goto NextI;
259           ++Byte;
260         }
261       }
262       return (MinByte + I) * 8;
263     NextI:;
264     }
265   }
266 }
267 
268 void wholeprogramdevirt::setBeforeReturnValues(
269     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
270     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
271   if (BitWidth == 1)
272     OffsetByte = -(AllocBefore / 8 + 1);
273   else
274     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
275   OffsetBit = AllocBefore % 8;
276 
277   for (VirtualCallTarget &Target : Targets) {
278     if (BitWidth == 1)
279       Target.setBeforeBit(AllocBefore);
280     else
281       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
282   }
283 }
284 
285 void wholeprogramdevirt::setAfterReturnValues(
286     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
287     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
288   if (BitWidth == 1)
289     OffsetByte = AllocAfter / 8;
290   else
291     OffsetByte = (AllocAfter + 7) / 8;
292   OffsetBit = AllocAfter % 8;
293 
294   for (VirtualCallTarget &Target : Targets) {
295     if (BitWidth == 1)
296       Target.setAfterBit(AllocAfter);
297     else
298       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
299   }
300 }
301 
302 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
303     : Fn(Fn), TM(TM),
304       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
305 
306 namespace {
307 
308 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
309 // tables, and the ByteOffset is the offset in bytes from the address point to
310 // the virtual function pointer.
311 struct VTableSlot {
312   Metadata *TypeID;
313   uint64_t ByteOffset;
314 };
315 
316 } // end anonymous namespace
317 
318 namespace llvm {
319 
320 template <> struct DenseMapInfo<VTableSlot> {
321   static VTableSlot getEmptyKey() {
322     return {DenseMapInfo<Metadata *>::getEmptyKey(),
323             DenseMapInfo<uint64_t>::getEmptyKey()};
324   }
325   static VTableSlot getTombstoneKey() {
326     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
327             DenseMapInfo<uint64_t>::getTombstoneKey()};
328   }
329   static unsigned getHashValue(const VTableSlot &I) {
330     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
331            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
332   }
333   static bool isEqual(const VTableSlot &LHS,
334                       const VTableSlot &RHS) {
335     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
336   }
337 };
338 
339 template <> struct DenseMapInfo<VTableSlotSummary> {
340   static VTableSlotSummary getEmptyKey() {
341     return {DenseMapInfo<StringRef>::getEmptyKey(),
342             DenseMapInfo<uint64_t>::getEmptyKey()};
343   }
344   static VTableSlotSummary getTombstoneKey() {
345     return {DenseMapInfo<StringRef>::getTombstoneKey(),
346             DenseMapInfo<uint64_t>::getTombstoneKey()};
347   }
348   static unsigned getHashValue(const VTableSlotSummary &I) {
349     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
350            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
351   }
352   static bool isEqual(const VTableSlotSummary &LHS,
353                       const VTableSlotSummary &RHS) {
354     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
355   }
356 };
357 
358 } // end namespace llvm
359 
360 namespace {
361 
362 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
363 // the indirect virtual call.
364 struct VirtualCallSite {
365   Value *VTable = nullptr;
366   CallBase &CB;
367 
368   // If non-null, this field points to the associated unsafe use count stored in
369   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
370   // of that field for details.
371   unsigned *NumUnsafeUses = nullptr;
372 
373   void
374   emitRemark(const StringRef OptName, const StringRef TargetName,
375              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
376     Function *F = CB.getCaller();
377     DebugLoc DLoc = CB.getDebugLoc();
378     BasicBlock *Block = CB.getParent();
379 
380     using namespace ore;
381     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
382                       << NV("Optimization", OptName)
383                       << ": devirtualized a call to "
384                       << NV("FunctionName", TargetName));
385   }
386 
387   void replaceAndErase(
388       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
389       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
390       Value *New) {
391     if (RemarksEnabled)
392       emitRemark(OptName, TargetName, OREGetter);
393     CB.replaceAllUsesWith(New);
394     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
395       BranchInst::Create(II->getNormalDest(), &CB);
396       II->getUnwindDest()->removePredecessor(II->getParent());
397     }
398     CB.eraseFromParent();
399     // This use is no longer unsafe.
400     if (NumUnsafeUses)
401       --*NumUnsafeUses;
402   }
403 };
404 
405 // Call site information collected for a specific VTableSlot and possibly a list
406 // of constant integer arguments. The grouping by arguments is handled by the
407 // VTableSlotInfo class.
408 struct CallSiteInfo {
409   /// The set of call sites for this slot. Used during regular LTO and the
410   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
411   /// call sites that appear in the merged module itself); in each of these
412   /// cases we are directly operating on the call sites at the IR level.
413   std::vector<VirtualCallSite> CallSites;
414 
415   /// Whether all call sites represented by this CallSiteInfo, including those
416   /// in summaries, have been devirtualized. This starts off as true because a
417   /// default constructed CallSiteInfo represents no call sites.
418   bool AllCallSitesDevirted = true;
419 
420   // These fields are used during the export phase of ThinLTO and reflect
421   // information collected from function summaries.
422 
423   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
424   /// this slot.
425   bool SummaryHasTypeTestAssumeUsers = false;
426 
427   /// CFI-specific: a vector containing the list of function summaries that use
428   /// the llvm.type.checked.load intrinsic and therefore will require
429   /// resolutions for llvm.type.test in order to implement CFI checks if
430   /// devirtualization was unsuccessful. If devirtualization was successful, the
431   /// pass will clear this vector by calling markDevirt(). If at the end of the
432   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
433   /// to each of the function summaries in the vector.
434   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
435   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
436 
437   bool isExported() const {
438     return SummaryHasTypeTestAssumeUsers ||
439            !SummaryTypeCheckedLoadUsers.empty();
440   }
441 
442   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
443     SummaryTypeCheckedLoadUsers.push_back(FS);
444     AllCallSitesDevirted = false;
445   }
446 
447   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
448     SummaryTypeTestAssumeUsers.push_back(FS);
449     SummaryHasTypeTestAssumeUsers = true;
450     AllCallSitesDevirted = false;
451   }
452 
453   void markDevirt() {
454     AllCallSitesDevirted = true;
455 
456     // As explained in the comment for SummaryTypeCheckedLoadUsers.
457     SummaryTypeCheckedLoadUsers.clear();
458   }
459 };
460 
461 // Call site information collected for a specific VTableSlot.
462 struct VTableSlotInfo {
463   // The set of call sites which do not have all constant integer arguments
464   // (excluding "this").
465   CallSiteInfo CSInfo;
466 
467   // The set of call sites with all constant integer arguments (excluding
468   // "this"), grouped by argument list.
469   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
470 
471   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
472 
473 private:
474   CallSiteInfo &findCallSiteInfo(CallBase &CB);
475 };
476 
477 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
478   std::vector<uint64_t> Args;
479   auto *CBType = dyn_cast<IntegerType>(CB.getType());
480   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
481     return CSInfo;
482   for (auto &&Arg : drop_begin(CB.args())) {
483     auto *CI = dyn_cast<ConstantInt>(Arg);
484     if (!CI || CI->getBitWidth() > 64)
485       return CSInfo;
486     Args.push_back(CI->getZExtValue());
487   }
488   return ConstCSInfo[Args];
489 }
490 
491 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
492                                  unsigned *NumUnsafeUses) {
493   auto &CSI = findCallSiteInfo(CB);
494   CSI.AllCallSitesDevirted = false;
495   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
496 }
497 
498 struct DevirtModule {
499   Module &M;
500   function_ref<AAResults &(Function &)> AARGetter;
501   function_ref<DominatorTree &(Function &)> LookupDomTree;
502 
503   ModuleSummaryIndex *ExportSummary;
504   const ModuleSummaryIndex *ImportSummary;
505 
506   IntegerType *Int8Ty;
507   PointerType *Int8PtrTy;
508   IntegerType *Int32Ty;
509   IntegerType *Int64Ty;
510   IntegerType *IntPtrTy;
511   /// Sizeless array type, used for imported vtables. This provides a signal
512   /// to analyzers that these imports may alias, as they do for example
513   /// when multiple unique return values occur in the same vtable.
514   ArrayType *Int8Arr0Ty;
515 
516   bool RemarksEnabled;
517   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
518 
519   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
520 
521   // Calls that have already been optimized. We may add a call to multiple
522   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
523   // optimize a call more than once.
524   SmallPtrSet<CallBase *, 8> OptimizedCalls;
525 
526   // This map keeps track of the number of "unsafe" uses of a loaded function
527   // pointer. The key is the associated llvm.type.test intrinsic call generated
528   // by this pass. An unsafe use is one that calls the loaded function pointer
529   // directly. Every time we eliminate an unsafe use (for example, by
530   // devirtualizing it or by applying virtual constant propagation), we
531   // decrement the value stored in this map. If a value reaches zero, we can
532   // eliminate the type check by RAUWing the associated llvm.type.test call with
533   // true.
534   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
535   PatternList FunctionsToSkip;
536 
537   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
538                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
539                function_ref<DominatorTree &(Function &)> LookupDomTree,
540                ModuleSummaryIndex *ExportSummary,
541                const ModuleSummaryIndex *ImportSummary)
542       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
543         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
544         Int8Ty(Type::getInt8Ty(M.getContext())),
545         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
546         Int32Ty(Type::getInt32Ty(M.getContext())),
547         Int64Ty(Type::getInt64Ty(M.getContext())),
548         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
549         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
550         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
551     assert(!(ExportSummary && ImportSummary));
552     FunctionsToSkip.init(SkipFunctionNames);
553   }
554 
555   bool areRemarksEnabled();
556 
557   void
558   scanTypeTestUsers(Function *TypeTestFunc,
559                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
560   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
561 
562   void buildTypeIdentifierMap(
563       std::vector<VTableBits> &Bits,
564       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
565   bool
566   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
567                             const std::set<TypeMemberInfo> &TypeMemberInfos,
568                             uint64_t ByteOffset);
569 
570   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
571                              bool &IsExported);
572   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
573                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
574                            VTableSlotInfo &SlotInfo,
575                            WholeProgramDevirtResolution *Res);
576 
577   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
578                               bool &IsExported);
579   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
580                             VTableSlotInfo &SlotInfo,
581                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
582 
583   bool tryEvaluateFunctionsWithArgs(
584       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
585       ArrayRef<uint64_t> Args);
586 
587   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
588                              uint64_t TheRetVal);
589   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
590                            CallSiteInfo &CSInfo,
591                            WholeProgramDevirtResolution::ByArg *Res);
592 
593   // Returns the global symbol name that is used to export information about the
594   // given vtable slot and list of arguments.
595   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
596                             StringRef Name);
597 
598   bool shouldExportConstantsAsAbsoluteSymbols();
599 
600   // This function is called during the export phase to create a symbol
601   // definition containing information about the given vtable slot and list of
602   // arguments.
603   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
604                     Constant *C);
605   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
606                       uint32_t Const, uint32_t &Storage);
607 
608   // This function is called during the import phase to create a reference to
609   // the symbol definition created during the export phase.
610   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
611                          StringRef Name);
612   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
613                            StringRef Name, IntegerType *IntTy,
614                            uint32_t Storage);
615 
616   Constant *getMemberAddr(const TypeMemberInfo *M);
617 
618   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
619                             Constant *UniqueMemberAddr);
620   bool tryUniqueRetValOpt(unsigned BitWidth,
621                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622                           CallSiteInfo &CSInfo,
623                           WholeProgramDevirtResolution::ByArg *Res,
624                           VTableSlot Slot, ArrayRef<uint64_t> Args);
625 
626   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
627                              Constant *Byte, Constant *Bit);
628   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
629                            VTableSlotInfo &SlotInfo,
630                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
631 
632   void rebuildGlobal(VTableBits &B);
633 
634   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
635   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
636 
637   // If we were able to eliminate all unsafe uses for a type checked load,
638   // eliminate the associated type tests by replacing them with true.
639   void removeRedundantTypeTests();
640 
641   bool run();
642 
643   // Lower the module using the action and summary passed as command line
644   // arguments. For testing purposes only.
645   static bool
646   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
647                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
648                 function_ref<DominatorTree &(Function &)> LookupDomTree);
649 };
650 
651 struct DevirtIndex {
652   ModuleSummaryIndex &ExportSummary;
653   // The set in which to record GUIDs exported from their module by
654   // devirtualization, used by client to ensure they are not internalized.
655   std::set<GlobalValue::GUID> &ExportedGUIDs;
656   // A map in which to record the information necessary to locate the WPD
657   // resolution for local targets in case they are exported by cross module
658   // importing.
659   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
660 
661   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
662 
663   PatternList FunctionsToSkip;
664 
665   DevirtIndex(
666       ModuleSummaryIndex &ExportSummary,
667       std::set<GlobalValue::GUID> &ExportedGUIDs,
668       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
669       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
670         LocalWPDTargetsMap(LocalWPDTargetsMap) {
671     FunctionsToSkip.init(SkipFunctionNames);
672   }
673 
674   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
675                                  const TypeIdCompatibleVtableInfo TIdInfo,
676                                  uint64_t ByteOffset);
677 
678   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
679                            VTableSlotSummary &SlotSummary,
680                            VTableSlotInfo &SlotInfo,
681                            WholeProgramDevirtResolution *Res,
682                            std::set<ValueInfo> &DevirtTargets);
683 
684   void run();
685 };
686 
687 struct WholeProgramDevirt : public ModulePass {
688   static char ID;
689 
690   bool UseCommandLine = false;
691 
692   ModuleSummaryIndex *ExportSummary = nullptr;
693   const ModuleSummaryIndex *ImportSummary = nullptr;
694 
695   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
696     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
697   }
698 
699   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
700                      const ModuleSummaryIndex *ImportSummary)
701       : ModulePass(ID), ExportSummary(ExportSummary),
702         ImportSummary(ImportSummary) {
703     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
704   }
705 
706   bool runOnModule(Module &M) override {
707     if (skipModule(M))
708       return false;
709 
710     // In the new pass manager, we can request the optimization
711     // remark emitter pass on a per-function-basis, which the
712     // OREGetter will do for us.
713     // In the old pass manager, this is harder, so we just build
714     // an optimization remark emitter on the fly, when we need it.
715     std::unique_ptr<OptimizationRemarkEmitter> ORE;
716     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
717       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
718       return *ORE;
719     };
720 
721     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
722       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
723     };
724 
725     if (UseCommandLine)
726       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
727                                          LookupDomTree);
728 
729     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
730                         ExportSummary, ImportSummary)
731         .run();
732   }
733 
734   void getAnalysisUsage(AnalysisUsage &AU) const override {
735     AU.addRequired<AssumptionCacheTracker>();
736     AU.addRequired<TargetLibraryInfoWrapperPass>();
737     AU.addRequired<DominatorTreeWrapperPass>();
738   }
739 };
740 
741 } // end anonymous namespace
742 
743 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
744                       "Whole program devirtualization", false, false)
745 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
746 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
747 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
748 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
749                     "Whole program devirtualization", false, false)
750 char WholeProgramDevirt::ID = 0;
751 
752 ModulePass *
753 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
754                                    const ModuleSummaryIndex *ImportSummary) {
755   return new WholeProgramDevirt(ExportSummary, ImportSummary);
756 }
757 
758 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
759                                               ModuleAnalysisManager &AM) {
760   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
761   auto AARGetter = [&](Function &F) -> AAResults & {
762     return FAM.getResult<AAManager>(F);
763   };
764   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
765     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
766   };
767   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
768     return FAM.getResult<DominatorTreeAnalysis>(F);
769   };
770   if (UseCommandLine) {
771     if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
772       return PreservedAnalyses::all();
773     return PreservedAnalyses::none();
774   }
775   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
776                     ImportSummary)
777            .run())
778     return PreservedAnalyses::all();
779   return PreservedAnalyses::none();
780 }
781 
782 // Enable whole program visibility if enabled by client (e.g. linker) or
783 // internal option, and not force disabled.
784 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
785   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
786          !DisableWholeProgramVisibility;
787 }
788 
789 namespace llvm {
790 
791 /// If whole program visibility asserted, then upgrade all public vcall
792 /// visibility metadata on vtable definitions to linkage unit visibility in
793 /// Module IR (for regular or hybrid LTO).
794 void updateVCallVisibilityInModule(
795     Module &M, bool WholeProgramVisibilityEnabledInLTO,
796     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
797   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
798     return;
799   for (GlobalVariable &GV : M.globals())
800     // Add linkage unit visibility to any variable with type metadata, which are
801     // the vtable definitions. We won't have an existing vcall_visibility
802     // metadata on vtable definitions with public visibility.
803     if (GV.hasMetadata(LLVMContext::MD_type) &&
804         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
805         // Don't upgrade the visibility for symbols exported to the dynamic
806         // linker, as we have no information on their eventual use.
807         !DynamicExportSymbols.count(GV.getGUID()))
808       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
809 }
810 
811 /// If whole program visibility asserted, then upgrade all public vcall
812 /// visibility metadata on vtable definition summaries to linkage unit
813 /// visibility in Module summary index (for ThinLTO).
814 void updateVCallVisibilityInIndex(
815     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
816     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
817   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
818     return;
819   for (auto &P : Index) {
820     for (auto &S : P.second.SummaryList) {
821       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
822       if (!GVar ||
823           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic ||
824           // Don't upgrade the visibility for symbols exported to the dynamic
825           // linker, as we have no information on their eventual use.
826           DynamicExportSymbols.count(P.first))
827         continue;
828       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
829     }
830   }
831 }
832 
833 void runWholeProgramDevirtOnIndex(
834     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
835     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
836   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
837 }
838 
839 void updateIndexWPDForExports(
840     ModuleSummaryIndex &Summary,
841     function_ref<bool(StringRef, ValueInfo)> isExported,
842     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
843   for (auto &T : LocalWPDTargetsMap) {
844     auto &VI = T.first;
845     // This was enforced earlier during trySingleImplDevirt.
846     assert(VI.getSummaryList().size() == 1 &&
847            "Devirt of local target has more than one copy");
848     auto &S = VI.getSummaryList()[0];
849     if (!isExported(S->modulePath(), VI))
850       continue;
851 
852     // It's been exported by a cross module import.
853     for (auto &SlotSummary : T.second) {
854       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
855       assert(TIdSum);
856       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
857       assert(WPDRes != TIdSum->WPDRes.end());
858       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
859           WPDRes->second.SingleImplName,
860           Summary.getModuleHash(S->modulePath()));
861     }
862   }
863 }
864 
865 } // end namespace llvm
866 
867 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
868   // Check that summary index contains regular LTO module when performing
869   // export to prevent occasional use of index from pure ThinLTO compilation
870   // (-fno-split-lto-module). This kind of summary index is passed to
871   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
872   const auto &ModPaths = Summary->modulePaths();
873   if (ClSummaryAction != PassSummaryAction::Import &&
874       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
875           ModPaths.end())
876     return createStringError(
877         errc::invalid_argument,
878         "combined summary should contain Regular LTO module");
879   return ErrorSuccess();
880 }
881 
882 bool DevirtModule::runForTesting(
883     Module &M, function_ref<AAResults &(Function &)> AARGetter,
884     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
885     function_ref<DominatorTree &(Function &)> LookupDomTree) {
886   std::unique_ptr<ModuleSummaryIndex> Summary =
887       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
888 
889   // Handle the command-line summary arguments. This code is for testing
890   // purposes only, so we handle errors directly.
891   if (!ClReadSummary.empty()) {
892     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
893                           ": ");
894     auto ReadSummaryFile =
895         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
896     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
897             getModuleSummaryIndex(*ReadSummaryFile)) {
898       Summary = std::move(*SummaryOrErr);
899       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
900     } else {
901       // Try YAML if we've failed with bitcode.
902       consumeError(SummaryOrErr.takeError());
903       yaml::Input In(ReadSummaryFile->getBuffer());
904       In >> *Summary;
905       ExitOnErr(errorCodeToError(In.error()));
906     }
907   }
908 
909   bool Changed =
910       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
911                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
912                                                                 : nullptr,
913                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
914                                                                 : nullptr)
915           .run();
916 
917   if (!ClWriteSummary.empty()) {
918     ExitOnError ExitOnErr(
919         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
920     std::error_code EC;
921     if (StringRef(ClWriteSummary).endswith(".bc")) {
922       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
923       ExitOnErr(errorCodeToError(EC));
924       WriteIndexToFile(*Summary, OS);
925     } else {
926       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
927       ExitOnErr(errorCodeToError(EC));
928       yaml::Output Out(OS);
929       Out << *Summary;
930     }
931   }
932 
933   return Changed;
934 }
935 
936 void DevirtModule::buildTypeIdentifierMap(
937     std::vector<VTableBits> &Bits,
938     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
939   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
940   Bits.reserve(M.getGlobalList().size());
941   SmallVector<MDNode *, 2> Types;
942   for (GlobalVariable &GV : M.globals()) {
943     Types.clear();
944     GV.getMetadata(LLVMContext::MD_type, Types);
945     if (GV.isDeclaration() || Types.empty())
946       continue;
947 
948     VTableBits *&BitsPtr = GVToBits[&GV];
949     if (!BitsPtr) {
950       Bits.emplace_back();
951       Bits.back().GV = &GV;
952       Bits.back().ObjectSize =
953           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
954       BitsPtr = &Bits.back();
955     }
956 
957     for (MDNode *Type : Types) {
958       auto TypeID = Type->getOperand(1).get();
959 
960       uint64_t Offset =
961           cast<ConstantInt>(
962               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
963               ->getZExtValue();
964 
965       TypeIdMap[TypeID].insert({BitsPtr, Offset});
966     }
967   }
968 }
969 
970 bool DevirtModule::tryFindVirtualCallTargets(
971     std::vector<VirtualCallTarget> &TargetsForSlot,
972     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
973   for (const TypeMemberInfo &TM : TypeMemberInfos) {
974     if (!TM.Bits->GV->isConstant())
975       return false;
976 
977     // We cannot perform whole program devirtualization analysis on a vtable
978     // with public LTO visibility.
979     if (TM.Bits->GV->getVCallVisibility() ==
980         GlobalObject::VCallVisibilityPublic)
981       return false;
982 
983     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
984                                        TM.Offset + ByteOffset, M);
985     if (!Ptr)
986       return false;
987 
988     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
989     if (!Fn)
990       return false;
991 
992     if (FunctionsToSkip.match(Fn->getName()))
993       return false;
994 
995     // We can disregard __cxa_pure_virtual as a possible call target, as
996     // calls to pure virtuals are UB.
997     if (Fn->getName() == "__cxa_pure_virtual")
998       continue;
999 
1000     TargetsForSlot.push_back({Fn, &TM});
1001   }
1002 
1003   // Give up if we couldn't find any targets.
1004   return !TargetsForSlot.empty();
1005 }
1006 
1007 bool DevirtIndex::tryFindVirtualCallTargets(
1008     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
1009     uint64_t ByteOffset) {
1010   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1011     // Find a representative copy of the vtable initializer.
1012     // We can have multiple available_externally, linkonce_odr and weak_odr
1013     // vtable initializers. We can also have multiple external vtable
1014     // initializers in the case of comdats, which we cannot check here.
1015     // The linker should give an error in this case.
1016     //
1017     // Also, handle the case of same-named local Vtables with the same path
1018     // and therefore the same GUID. This can happen if there isn't enough
1019     // distinguishing path when compiling the source file. In that case we
1020     // conservatively return false early.
1021     const GlobalVarSummary *VS = nullptr;
1022     bool LocalFound = false;
1023     for (auto &S : P.VTableVI.getSummaryList()) {
1024       if (GlobalValue::isLocalLinkage(S->linkage())) {
1025         if (LocalFound)
1026           return false;
1027         LocalFound = true;
1028       }
1029       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1030       if (!CurVS->vTableFuncs().empty() ||
1031           // Previously clang did not attach the necessary type metadata to
1032           // available_externally vtables, in which case there would not
1033           // be any vtable functions listed in the summary and we need
1034           // to treat this case conservatively (in case the bitcode is old).
1035           // However, we will also not have any vtable functions in the
1036           // case of a pure virtual base class. In that case we do want
1037           // to set VS to avoid treating it conservatively.
1038           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1039         VS = CurVS;
1040         // We cannot perform whole program devirtualization analysis on a vtable
1041         // with public LTO visibility.
1042         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1043           return false;
1044       }
1045     }
1046     // There will be no VS if all copies are available_externally having no
1047     // type metadata. In that case we can't safely perform WPD.
1048     if (!VS)
1049       return false;
1050     if (!VS->isLive())
1051       continue;
1052     for (auto VTP : VS->vTableFuncs()) {
1053       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1054         continue;
1055 
1056       TargetsForSlot.push_back(VTP.FuncVI);
1057     }
1058   }
1059 
1060   // Give up if we couldn't find any targets.
1061   return !TargetsForSlot.empty();
1062 }
1063 
1064 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1065                                          Constant *TheFn, bool &IsExported) {
1066   // Don't devirtualize function if we're told to skip it
1067   // in -wholeprogramdevirt-skip.
1068   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1069     return;
1070   auto Apply = [&](CallSiteInfo &CSInfo) {
1071     for (auto &&VCallSite : CSInfo.CallSites) {
1072       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1073         continue;
1074 
1075       if (RemarksEnabled)
1076         VCallSite.emitRemark("single-impl",
1077                              TheFn->stripPointerCasts()->getName(), OREGetter);
1078       auto &CB = VCallSite.CB;
1079       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1080       IRBuilder<> Builder(&CB);
1081       Value *Callee =
1082           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1083 
1084       // If checking is enabled, add support to compare the virtual function
1085       // pointer to the devirtualized target. In case of a mismatch, perform a
1086       // debug trap.
1087       if (CheckDevirt) {
1088         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1089         Instruction *ThenTerm =
1090             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1091         Builder.SetInsertPoint(ThenTerm);
1092         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1093         auto *CallTrap = Builder.CreateCall(TrapFn);
1094         CallTrap->setDebugLoc(CB.getDebugLoc());
1095       }
1096 
1097       // Devirtualize.
1098       CB.setCalledOperand(Callee);
1099 
1100       // This use is no longer unsafe.
1101       if (VCallSite.NumUnsafeUses)
1102         --*VCallSite.NumUnsafeUses;
1103     }
1104     if (CSInfo.isExported())
1105       IsExported = true;
1106     CSInfo.markDevirt();
1107   };
1108   Apply(SlotInfo.CSInfo);
1109   for (auto &P : SlotInfo.ConstCSInfo)
1110     Apply(P.second);
1111 }
1112 
1113 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1114   // We can't add calls if we haven't seen a definition
1115   if (Callee.getSummaryList().empty())
1116     return false;
1117 
1118   // Insert calls into the summary index so that the devirtualized targets
1119   // are eligible for import.
1120   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1121   // to better ensure we have the opportunity to inline them.
1122   bool IsExported = false;
1123   auto &S = Callee.getSummaryList()[0];
1124   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1125   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1126     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1127       FS->addCall({Callee, CI});
1128       IsExported |= S->modulePath() != FS->modulePath();
1129     }
1130     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1131       FS->addCall({Callee, CI});
1132       IsExported |= S->modulePath() != FS->modulePath();
1133     }
1134   };
1135   AddCalls(SlotInfo.CSInfo);
1136   for (auto &P : SlotInfo.ConstCSInfo)
1137     AddCalls(P.second);
1138   return IsExported;
1139 }
1140 
1141 bool DevirtModule::trySingleImplDevirt(
1142     ModuleSummaryIndex *ExportSummary,
1143     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1144     WholeProgramDevirtResolution *Res) {
1145   // See if the program contains a single implementation of this virtual
1146   // function.
1147   Function *TheFn = TargetsForSlot[0].Fn;
1148   for (auto &&Target : TargetsForSlot)
1149     if (TheFn != Target.Fn)
1150       return false;
1151 
1152   // If so, update each call site to call that implementation directly.
1153   if (RemarksEnabled)
1154     TargetsForSlot[0].WasDevirt = true;
1155 
1156   bool IsExported = false;
1157   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1158   if (!IsExported)
1159     return false;
1160 
1161   // If the only implementation has local linkage, we must promote to external
1162   // to make it visible to thin LTO objects. We can only get here during the
1163   // ThinLTO export phase.
1164   if (TheFn->hasLocalLinkage()) {
1165     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1166 
1167     // Since we are renaming the function, any comdats with the same name must
1168     // also be renamed. This is required when targeting COFF, as the comdat name
1169     // must match one of the names of the symbols in the comdat.
1170     if (Comdat *C = TheFn->getComdat()) {
1171       if (C->getName() == TheFn->getName()) {
1172         Comdat *NewC = M.getOrInsertComdat(NewName);
1173         NewC->setSelectionKind(C->getSelectionKind());
1174         for (GlobalObject &GO : M.global_objects())
1175           if (GO.getComdat() == C)
1176             GO.setComdat(NewC);
1177       }
1178     }
1179 
1180     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1181     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1182     TheFn->setName(NewName);
1183   }
1184   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1185     // Any needed promotion of 'TheFn' has already been done during
1186     // LTO unit split, so we can ignore return value of AddCalls.
1187     AddCalls(SlotInfo, TheFnVI);
1188 
1189   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1190   Res->SingleImplName = std::string(TheFn->getName());
1191 
1192   return true;
1193 }
1194 
1195 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1196                                       VTableSlotSummary &SlotSummary,
1197                                       VTableSlotInfo &SlotInfo,
1198                                       WholeProgramDevirtResolution *Res,
1199                                       std::set<ValueInfo> &DevirtTargets) {
1200   // See if the program contains a single implementation of this virtual
1201   // function.
1202   auto TheFn = TargetsForSlot[0];
1203   for (auto &&Target : TargetsForSlot)
1204     if (TheFn != Target)
1205       return false;
1206 
1207   // Don't devirtualize if we don't have target definition.
1208   auto Size = TheFn.getSummaryList().size();
1209   if (!Size)
1210     return false;
1211 
1212   // Don't devirtualize function if we're told to skip it
1213   // in -wholeprogramdevirt-skip.
1214   if (FunctionsToSkip.match(TheFn.name()))
1215     return false;
1216 
1217   // If the summary list contains multiple summaries where at least one is
1218   // a local, give up, as we won't know which (possibly promoted) name to use.
1219   for (auto &S : TheFn.getSummaryList())
1220     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1221       return false;
1222 
1223   // Collect functions devirtualized at least for one call site for stats.
1224   if (PrintSummaryDevirt)
1225     DevirtTargets.insert(TheFn);
1226 
1227   auto &S = TheFn.getSummaryList()[0];
1228   bool IsExported = AddCalls(SlotInfo, TheFn);
1229   if (IsExported)
1230     ExportedGUIDs.insert(TheFn.getGUID());
1231 
1232   // Record in summary for use in devirtualization during the ThinLTO import
1233   // step.
1234   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1235   if (GlobalValue::isLocalLinkage(S->linkage())) {
1236     if (IsExported)
1237       // If target is a local function and we are exporting it by
1238       // devirtualizing a call in another module, we need to record the
1239       // promoted name.
1240       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1241           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1242     else {
1243       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1244       Res->SingleImplName = std::string(TheFn.name());
1245     }
1246   } else
1247     Res->SingleImplName = std::string(TheFn.name());
1248 
1249   // Name will be empty if this thin link driven off of serialized combined
1250   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1251   // legacy LTO API anyway.
1252   assert(!Res->SingleImplName.empty());
1253 
1254   return true;
1255 }
1256 
1257 void DevirtModule::tryICallBranchFunnel(
1258     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1259     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1260   Triple T(M.getTargetTriple());
1261   if (T.getArch() != Triple::x86_64)
1262     return;
1263 
1264   if (TargetsForSlot.size() > ClThreshold)
1265     return;
1266 
1267   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1268   if (!HasNonDevirt)
1269     for (auto &P : SlotInfo.ConstCSInfo)
1270       if (!P.second.AllCallSitesDevirted) {
1271         HasNonDevirt = true;
1272         break;
1273       }
1274 
1275   if (!HasNonDevirt)
1276     return;
1277 
1278   FunctionType *FT =
1279       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1280   Function *JT;
1281   if (isa<MDString>(Slot.TypeID)) {
1282     JT = Function::Create(FT, Function::ExternalLinkage,
1283                           M.getDataLayout().getProgramAddressSpace(),
1284                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1285     JT->setVisibility(GlobalValue::HiddenVisibility);
1286   } else {
1287     JT = Function::Create(FT, Function::InternalLinkage,
1288                           M.getDataLayout().getProgramAddressSpace(),
1289                           "branch_funnel", &M);
1290   }
1291   JT->addAttribute(1, Attribute::Nest);
1292 
1293   std::vector<Value *> JTArgs;
1294   JTArgs.push_back(JT->arg_begin());
1295   for (auto &T : TargetsForSlot) {
1296     JTArgs.push_back(getMemberAddr(T.TM));
1297     JTArgs.push_back(T.Fn);
1298   }
1299 
1300   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1301   Function *Intr =
1302       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1303 
1304   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1305   CI->setTailCallKind(CallInst::TCK_MustTail);
1306   ReturnInst::Create(M.getContext(), nullptr, BB);
1307 
1308   bool IsExported = false;
1309   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1310   if (IsExported)
1311     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1312 }
1313 
1314 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1315                                           Constant *JT, bool &IsExported) {
1316   auto Apply = [&](CallSiteInfo &CSInfo) {
1317     if (CSInfo.isExported())
1318       IsExported = true;
1319     if (CSInfo.AllCallSitesDevirted)
1320       return;
1321     for (auto &&VCallSite : CSInfo.CallSites) {
1322       CallBase &CB = VCallSite.CB;
1323 
1324       // Jump tables are only profitable if the retpoline mitigation is enabled.
1325       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1326       if (!FSAttr.isValid() ||
1327           !FSAttr.getValueAsString().contains("+retpoline"))
1328         continue;
1329 
1330       if (RemarksEnabled)
1331         VCallSite.emitRemark("branch-funnel",
1332                              JT->stripPointerCasts()->getName(), OREGetter);
1333 
1334       // Pass the address of the vtable in the nest register, which is r10 on
1335       // x86_64.
1336       std::vector<Type *> NewArgs;
1337       NewArgs.push_back(Int8PtrTy);
1338       append_range(NewArgs, CB.getFunctionType()->params());
1339       FunctionType *NewFT =
1340           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1341                             CB.getFunctionType()->isVarArg());
1342       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1343 
1344       IRBuilder<> IRB(&CB);
1345       std::vector<Value *> Args;
1346       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1347       llvm::append_range(Args, CB.args());
1348 
1349       CallBase *NewCS = nullptr;
1350       if (isa<CallInst>(CB))
1351         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1352       else
1353         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1354                                  cast<InvokeInst>(CB).getNormalDest(),
1355                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1356       NewCS->setCallingConv(CB.getCallingConv());
1357 
1358       AttributeList Attrs = CB.getAttributes();
1359       std::vector<AttributeSet> NewArgAttrs;
1360       NewArgAttrs.push_back(AttributeSet::get(
1361           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1362                               M.getContext(), Attribute::Nest)}));
1363       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1364         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1365       NewCS->setAttributes(
1366           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1367                              Attrs.getRetAttributes(), NewArgAttrs));
1368 
1369       CB.replaceAllUsesWith(NewCS);
1370       CB.eraseFromParent();
1371 
1372       // This use is no longer unsafe.
1373       if (VCallSite.NumUnsafeUses)
1374         --*VCallSite.NumUnsafeUses;
1375     }
1376     // Don't mark as devirtualized because there may be callers compiled without
1377     // retpoline mitigation, which would mean that they are lowered to
1378     // llvm.type.test and therefore require an llvm.type.test resolution for the
1379     // type identifier.
1380   };
1381   Apply(SlotInfo.CSInfo);
1382   for (auto &P : SlotInfo.ConstCSInfo)
1383     Apply(P.second);
1384 }
1385 
1386 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1387     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1388     ArrayRef<uint64_t> Args) {
1389   // Evaluate each function and store the result in each target's RetVal
1390   // field.
1391   for (VirtualCallTarget &Target : TargetsForSlot) {
1392     if (Target.Fn->arg_size() != Args.size() + 1)
1393       return false;
1394 
1395     Evaluator Eval(M.getDataLayout(), nullptr);
1396     SmallVector<Constant *, 2> EvalArgs;
1397     EvalArgs.push_back(
1398         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1399     for (unsigned I = 0; I != Args.size(); ++I) {
1400       auto *ArgTy = dyn_cast<IntegerType>(
1401           Target.Fn->getFunctionType()->getParamType(I + 1));
1402       if (!ArgTy)
1403         return false;
1404       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1405     }
1406 
1407     Constant *RetVal;
1408     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1409         !isa<ConstantInt>(RetVal))
1410       return false;
1411     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1412   }
1413   return true;
1414 }
1415 
1416 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1417                                          uint64_t TheRetVal) {
1418   for (auto Call : CSInfo.CallSites) {
1419     if (!OptimizedCalls.insert(&Call.CB).second)
1420       continue;
1421     Call.replaceAndErase(
1422         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1423         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1424   }
1425   CSInfo.markDevirt();
1426 }
1427 
1428 bool DevirtModule::tryUniformRetValOpt(
1429     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1430     WholeProgramDevirtResolution::ByArg *Res) {
1431   // Uniform return value optimization. If all functions return the same
1432   // constant, replace all calls with that constant.
1433   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1434   for (const VirtualCallTarget &Target : TargetsForSlot)
1435     if (Target.RetVal != TheRetVal)
1436       return false;
1437 
1438   if (CSInfo.isExported()) {
1439     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1440     Res->Info = TheRetVal;
1441   }
1442 
1443   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1444   if (RemarksEnabled)
1445     for (auto &&Target : TargetsForSlot)
1446       Target.WasDevirt = true;
1447   return true;
1448 }
1449 
1450 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1451                                         ArrayRef<uint64_t> Args,
1452                                         StringRef Name) {
1453   std::string FullName = "__typeid_";
1454   raw_string_ostream OS(FullName);
1455   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1456   for (uint64_t Arg : Args)
1457     OS << '_' << Arg;
1458   OS << '_' << Name;
1459   return OS.str();
1460 }
1461 
1462 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1463   Triple T(M.getTargetTriple());
1464   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1465 }
1466 
1467 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1468                                 StringRef Name, Constant *C) {
1469   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1470                                         getGlobalName(Slot, Args, Name), C, &M);
1471   GA->setVisibility(GlobalValue::HiddenVisibility);
1472 }
1473 
1474 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1475                                   StringRef Name, uint32_t Const,
1476                                   uint32_t &Storage) {
1477   if (shouldExportConstantsAsAbsoluteSymbols()) {
1478     exportGlobal(
1479         Slot, Args, Name,
1480         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1481     return;
1482   }
1483 
1484   Storage = Const;
1485 }
1486 
1487 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1488                                      StringRef Name) {
1489   Constant *C =
1490       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1491   auto *GV = dyn_cast<GlobalVariable>(C);
1492   if (GV)
1493     GV->setVisibility(GlobalValue::HiddenVisibility);
1494   return C;
1495 }
1496 
1497 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1498                                        StringRef Name, IntegerType *IntTy,
1499                                        uint32_t Storage) {
1500   if (!shouldExportConstantsAsAbsoluteSymbols())
1501     return ConstantInt::get(IntTy, Storage);
1502 
1503   Constant *C = importGlobal(Slot, Args, Name);
1504   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1505   C = ConstantExpr::getPtrToInt(C, IntTy);
1506 
1507   // We only need to set metadata if the global is newly created, in which
1508   // case it would not have hidden visibility.
1509   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1510     return C;
1511 
1512   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1513     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1514     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1515     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1516                     MDNode::get(M.getContext(), {MinC, MaxC}));
1517   };
1518   unsigned AbsWidth = IntTy->getBitWidth();
1519   if (AbsWidth == IntPtrTy->getBitWidth())
1520     SetAbsRange(~0ull, ~0ull); // Full set.
1521   else
1522     SetAbsRange(0, 1ull << AbsWidth);
1523   return C;
1524 }
1525 
1526 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1527                                         bool IsOne,
1528                                         Constant *UniqueMemberAddr) {
1529   for (auto &&Call : CSInfo.CallSites) {
1530     if (!OptimizedCalls.insert(&Call.CB).second)
1531       continue;
1532     IRBuilder<> B(&Call.CB);
1533     Value *Cmp =
1534         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1535                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1536     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1537     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1538                          Cmp);
1539   }
1540   CSInfo.markDevirt();
1541 }
1542 
1543 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1544   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1545   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1546                                         ConstantInt::get(Int64Ty, M->Offset));
1547 }
1548 
1549 bool DevirtModule::tryUniqueRetValOpt(
1550     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1551     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1552     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1553   // IsOne controls whether we look for a 0 or a 1.
1554   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1555     const TypeMemberInfo *UniqueMember = nullptr;
1556     for (const VirtualCallTarget &Target : TargetsForSlot) {
1557       if (Target.RetVal == (IsOne ? 1 : 0)) {
1558         if (UniqueMember)
1559           return false;
1560         UniqueMember = Target.TM;
1561       }
1562     }
1563 
1564     // We should have found a unique member or bailed out by now. We already
1565     // checked for a uniform return value in tryUniformRetValOpt.
1566     assert(UniqueMember);
1567 
1568     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1569     if (CSInfo.isExported()) {
1570       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1571       Res->Info = IsOne;
1572 
1573       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1574     }
1575 
1576     // Replace each call with the comparison.
1577     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1578                          UniqueMemberAddr);
1579 
1580     // Update devirtualization statistics for targets.
1581     if (RemarksEnabled)
1582       for (auto &&Target : TargetsForSlot)
1583         Target.WasDevirt = true;
1584 
1585     return true;
1586   };
1587 
1588   if (BitWidth == 1) {
1589     if (tryUniqueRetValOptFor(true))
1590       return true;
1591     if (tryUniqueRetValOptFor(false))
1592       return true;
1593   }
1594   return false;
1595 }
1596 
1597 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1598                                          Constant *Byte, Constant *Bit) {
1599   for (auto Call : CSInfo.CallSites) {
1600     if (!OptimizedCalls.insert(&Call.CB).second)
1601       continue;
1602     auto *RetType = cast<IntegerType>(Call.CB.getType());
1603     IRBuilder<> B(&Call.CB);
1604     Value *Addr =
1605         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1606     if (RetType->getBitWidth() == 1) {
1607       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1608       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1609       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1610       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1611                            OREGetter, IsBitSet);
1612     } else {
1613       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1614       Value *Val = B.CreateLoad(RetType, ValAddr);
1615       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1616                            OREGetter, Val);
1617     }
1618   }
1619   CSInfo.markDevirt();
1620 }
1621 
1622 bool DevirtModule::tryVirtualConstProp(
1623     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1624     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1625   // This only works if the function returns an integer.
1626   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1627   if (!RetType)
1628     return false;
1629   unsigned BitWidth = RetType->getBitWidth();
1630   if (BitWidth > 64)
1631     return false;
1632 
1633   // Make sure that each function is defined, does not access memory, takes at
1634   // least one argument, does not use its first argument (which we assume is
1635   // 'this'), and has the same return type.
1636   //
1637   // Note that we test whether this copy of the function is readnone, rather
1638   // than testing function attributes, which must hold for any copy of the
1639   // function, even a less optimized version substituted at link time. This is
1640   // sound because the virtual constant propagation optimizations effectively
1641   // inline all implementations of the virtual function into each call site,
1642   // rather than using function attributes to perform local optimization.
1643   for (VirtualCallTarget &Target : TargetsForSlot) {
1644     if (Target.Fn->isDeclaration() ||
1645         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1646             MAK_ReadNone ||
1647         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1648         Target.Fn->getReturnType() != RetType)
1649       return false;
1650   }
1651 
1652   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1653     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1654       continue;
1655 
1656     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1657     if (Res)
1658       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1659 
1660     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1661       continue;
1662 
1663     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1664                            ResByArg, Slot, CSByConstantArg.first))
1665       continue;
1666 
1667     // Find an allocation offset in bits in all vtables associated with the
1668     // type.
1669     uint64_t AllocBefore =
1670         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1671     uint64_t AllocAfter =
1672         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1673 
1674     // Calculate the total amount of padding needed to store a value at both
1675     // ends of the object.
1676     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1677     for (auto &&Target : TargetsForSlot) {
1678       TotalPaddingBefore += std::max<int64_t>(
1679           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1680       TotalPaddingAfter += std::max<int64_t>(
1681           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1682     }
1683 
1684     // If the amount of padding is too large, give up.
1685     // FIXME: do something smarter here.
1686     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1687       continue;
1688 
1689     // Calculate the offset to the value as a (possibly negative) byte offset
1690     // and (if applicable) a bit offset, and store the values in the targets.
1691     int64_t OffsetByte;
1692     uint64_t OffsetBit;
1693     if (TotalPaddingBefore <= TotalPaddingAfter)
1694       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1695                             OffsetBit);
1696     else
1697       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1698                            OffsetBit);
1699 
1700     if (RemarksEnabled)
1701       for (auto &&Target : TargetsForSlot)
1702         Target.WasDevirt = true;
1703 
1704 
1705     if (CSByConstantArg.second.isExported()) {
1706       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1707       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1708                      ResByArg->Byte);
1709       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1710                      ResByArg->Bit);
1711     }
1712 
1713     // Rewrite each call to a load from OffsetByte/OffsetBit.
1714     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1715     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1716     applyVirtualConstProp(CSByConstantArg.second,
1717                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1718   }
1719   return true;
1720 }
1721 
1722 void DevirtModule::rebuildGlobal(VTableBits &B) {
1723   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1724     return;
1725 
1726   // Align the before byte array to the global's minimum alignment so that we
1727   // don't break any alignment requirements on the global.
1728   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1729       B.GV->getAlign(), B.GV->getValueType());
1730   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1731 
1732   // Before was stored in reverse order; flip it now.
1733   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1734     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1735 
1736   // Build an anonymous global containing the before bytes, followed by the
1737   // original initializer, followed by the after bytes.
1738   auto NewInit = ConstantStruct::getAnon(
1739       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1740        B.GV->getInitializer(),
1741        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1742   auto NewGV =
1743       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1744                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1745   NewGV->setSection(B.GV->getSection());
1746   NewGV->setComdat(B.GV->getComdat());
1747   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1748 
1749   // Copy the original vtable's metadata to the anonymous global, adjusting
1750   // offsets as required.
1751   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1752 
1753   // Build an alias named after the original global, pointing at the second
1754   // element (the original initializer).
1755   auto Alias = GlobalAlias::create(
1756       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1757       ConstantExpr::getGetElementPtr(
1758           NewInit->getType(), NewGV,
1759           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1760                                ConstantInt::get(Int32Ty, 1)}),
1761       &M);
1762   Alias->setVisibility(B.GV->getVisibility());
1763   Alias->takeName(B.GV);
1764 
1765   B.GV->replaceAllUsesWith(Alias);
1766   B.GV->eraseFromParent();
1767 }
1768 
1769 bool DevirtModule::areRemarksEnabled() {
1770   const auto &FL = M.getFunctionList();
1771   for (const Function &Fn : FL) {
1772     const auto &BBL = Fn.getBasicBlockList();
1773     if (BBL.empty())
1774       continue;
1775     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1776     return DI.isEnabled();
1777   }
1778   return false;
1779 }
1780 
1781 void DevirtModule::scanTypeTestUsers(
1782     Function *TypeTestFunc,
1783     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1784   // Find all virtual calls via a virtual table pointer %p under an assumption
1785   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1786   // points to a member of the type identifier %md. Group calls by (type ID,
1787   // offset) pair (effectively the identity of the virtual function) and store
1788   // to CallSlots.
1789   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1790        I != E;) {
1791     auto CI = dyn_cast<CallInst>(I->getUser());
1792     ++I;
1793     if (!CI)
1794       continue;
1795 
1796     // Search for virtual calls based on %p and add them to DevirtCalls.
1797     SmallVector<DevirtCallSite, 1> DevirtCalls;
1798     SmallVector<CallInst *, 1> Assumes;
1799     auto &DT = LookupDomTree(*CI->getFunction());
1800     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1801 
1802     Metadata *TypeId =
1803         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1804     // If we found any, add them to CallSlots.
1805     if (!Assumes.empty()) {
1806       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1807       for (DevirtCallSite Call : DevirtCalls)
1808         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1809     }
1810 
1811     auto RemoveTypeTestAssumes = [&]() {
1812       // We no longer need the assumes or the type test.
1813       for (auto Assume : Assumes)
1814         Assume->eraseFromParent();
1815       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1816       // may use the vtable argument later.
1817       if (CI->use_empty())
1818         CI->eraseFromParent();
1819     };
1820 
1821     // At this point we could remove all type test assume sequences, as they
1822     // were originally inserted for WPD. However, we can keep these in the
1823     // code stream for later analysis (e.g. to help drive more efficient ICP
1824     // sequences). They will eventually be removed by a second LowerTypeTests
1825     // invocation that cleans them up. In order to do this correctly, the first
1826     // LowerTypeTests invocation needs to know that they have "Unknown" type
1827     // test resolution, so that they aren't treated as Unsat and lowered to
1828     // False, which will break any uses on assumes. Below we remove any type
1829     // test assumes that will not be treated as Unknown by LTT.
1830 
1831     // The type test assumes will be treated by LTT as Unsat if the type id is
1832     // not used on a global (in which case it has no entry in the TypeIdMap).
1833     if (!TypeIdMap.count(TypeId))
1834       RemoveTypeTestAssumes();
1835 
1836     // For ThinLTO importing, we need to remove the type test assumes if this is
1837     // an MDString type id without a corresponding TypeIdSummary. Any
1838     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1839     // type test assumes can be kept. If the MDString type id is missing a
1840     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1841     // exporting phase of WPD from analyzing it), then it would be treated as
1842     // Unsat by LTT and we need to remove its type test assumes here. If not
1843     // used on a vcall we don't need them for later optimization use in any
1844     // case.
1845     else if (ImportSummary && isa<MDString>(TypeId)) {
1846       const TypeIdSummary *TidSummary =
1847           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
1848       if (!TidSummary)
1849         RemoveTypeTestAssumes();
1850       else
1851         // If one was created it should not be Unsat, because if we reached here
1852         // the type id was used on a global.
1853         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
1854     }
1855   }
1856 }
1857 
1858 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1859   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1860 
1861   for (auto I = TypeCheckedLoadFunc->use_begin(),
1862             E = TypeCheckedLoadFunc->use_end();
1863        I != E;) {
1864     auto CI = dyn_cast<CallInst>(I->getUser());
1865     ++I;
1866     if (!CI)
1867       continue;
1868 
1869     Value *Ptr = CI->getArgOperand(0);
1870     Value *Offset = CI->getArgOperand(1);
1871     Value *TypeIdValue = CI->getArgOperand(2);
1872     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1873 
1874     SmallVector<DevirtCallSite, 1> DevirtCalls;
1875     SmallVector<Instruction *, 1> LoadedPtrs;
1876     SmallVector<Instruction *, 1> Preds;
1877     bool HasNonCallUses = false;
1878     auto &DT = LookupDomTree(*CI->getFunction());
1879     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1880                                                HasNonCallUses, CI, DT);
1881 
1882     // Start by generating "pessimistic" code that explicitly loads the function
1883     // pointer from the vtable and performs the type check. If possible, we will
1884     // eliminate the load and the type check later.
1885 
1886     // If possible, only generate the load at the point where it is used.
1887     // This helps avoid unnecessary spills.
1888     IRBuilder<> LoadB(
1889         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1890     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1891     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1892     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1893 
1894     for (Instruction *LoadedPtr : LoadedPtrs) {
1895       LoadedPtr->replaceAllUsesWith(LoadedValue);
1896       LoadedPtr->eraseFromParent();
1897     }
1898 
1899     // Likewise for the type test.
1900     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1901     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1902 
1903     for (Instruction *Pred : Preds) {
1904       Pred->replaceAllUsesWith(TypeTestCall);
1905       Pred->eraseFromParent();
1906     }
1907 
1908     // We have already erased any extractvalue instructions that refer to the
1909     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1910     // (although this is unlikely). In that case, explicitly build a pair and
1911     // RAUW it.
1912     if (!CI->use_empty()) {
1913       Value *Pair = UndefValue::get(CI->getType());
1914       IRBuilder<> B(CI);
1915       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1916       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1917       CI->replaceAllUsesWith(Pair);
1918     }
1919 
1920     // The number of unsafe uses is initially the number of uses.
1921     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1922     NumUnsafeUses = DevirtCalls.size();
1923 
1924     // If the function pointer has a non-call user, we cannot eliminate the type
1925     // check, as one of those users may eventually call the pointer. Increment
1926     // the unsafe use count to make sure it cannot reach zero.
1927     if (HasNonCallUses)
1928       ++NumUnsafeUses;
1929     for (DevirtCallSite Call : DevirtCalls) {
1930       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
1931                                                    &NumUnsafeUses);
1932     }
1933 
1934     CI->eraseFromParent();
1935   }
1936 }
1937 
1938 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1939   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1940   if (!TypeId)
1941     return;
1942   const TypeIdSummary *TidSummary =
1943       ImportSummary->getTypeIdSummary(TypeId->getString());
1944   if (!TidSummary)
1945     return;
1946   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1947   if (ResI == TidSummary->WPDRes.end())
1948     return;
1949   const WholeProgramDevirtResolution &Res = ResI->second;
1950 
1951   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1952     assert(!Res.SingleImplName.empty());
1953     // The type of the function in the declaration is irrelevant because every
1954     // call site will cast it to the correct type.
1955     Constant *SingleImpl =
1956         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1957                                              Type::getVoidTy(M.getContext()))
1958                            .getCallee());
1959 
1960     // This is the import phase so we should not be exporting anything.
1961     bool IsExported = false;
1962     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1963     assert(!IsExported);
1964   }
1965 
1966   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1967     auto I = Res.ResByArg.find(CSByConstantArg.first);
1968     if (I == Res.ResByArg.end())
1969       continue;
1970     auto &ResByArg = I->second;
1971     // FIXME: We should figure out what to do about the "function name" argument
1972     // to the apply* functions, as the function names are unavailable during the
1973     // importing phase. For now we just pass the empty string. This does not
1974     // impact correctness because the function names are just used for remarks.
1975     switch (ResByArg.TheKind) {
1976     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1977       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1978       break;
1979     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1980       Constant *UniqueMemberAddr =
1981           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1982       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1983                            UniqueMemberAddr);
1984       break;
1985     }
1986     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1987       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1988                                       Int32Ty, ResByArg.Byte);
1989       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1990                                      ResByArg.Bit);
1991       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1992       break;
1993     }
1994     default:
1995       break;
1996     }
1997   }
1998 
1999   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2000     // The type of the function is irrelevant, because it's bitcast at calls
2001     // anyhow.
2002     Constant *JT = cast<Constant>(
2003         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2004                               Type::getVoidTy(M.getContext()))
2005             .getCallee());
2006     bool IsExported = false;
2007     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2008     assert(!IsExported);
2009   }
2010 }
2011 
2012 void DevirtModule::removeRedundantTypeTests() {
2013   auto True = ConstantInt::getTrue(M.getContext());
2014   for (auto &&U : NumUnsafeUsesForTypeTest) {
2015     if (U.second == 0) {
2016       U.first->replaceAllUsesWith(True);
2017       U.first->eraseFromParent();
2018     }
2019   }
2020 }
2021 
2022 bool DevirtModule::run() {
2023   // If only some of the modules were split, we cannot correctly perform
2024   // this transformation. We already checked for the presense of type tests
2025   // with partially split modules during the thin link, and would have emitted
2026   // an error if any were found, so here we can simply return.
2027   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2028       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2029     return false;
2030 
2031   Function *TypeTestFunc =
2032       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2033   Function *TypeCheckedLoadFunc =
2034       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2035   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2036 
2037   // Normally if there are no users of the devirtualization intrinsics in the
2038   // module, this pass has nothing to do. But if we are exporting, we also need
2039   // to handle any users that appear only in the function summaries.
2040   if (!ExportSummary &&
2041       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2042        AssumeFunc->use_empty()) &&
2043       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
2044     return false;
2045 
2046   // Rebuild type metadata into a map for easy lookup.
2047   std::vector<VTableBits> Bits;
2048   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2049   buildTypeIdentifierMap(Bits, TypeIdMap);
2050 
2051   if (TypeTestFunc && AssumeFunc)
2052     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2053 
2054   if (TypeCheckedLoadFunc)
2055     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2056 
2057   if (ImportSummary) {
2058     for (auto &S : CallSlots)
2059       importResolution(S.first, S.second);
2060 
2061     removeRedundantTypeTests();
2062 
2063     // We have lowered or deleted the type instrinsics, so we will no
2064     // longer have enough information to reason about the liveness of virtual
2065     // function pointers in GlobalDCE.
2066     for (GlobalVariable &GV : M.globals())
2067       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2068 
2069     // The rest of the code is only necessary when exporting or during regular
2070     // LTO, so we are done.
2071     return true;
2072   }
2073 
2074   if (TypeIdMap.empty())
2075     return true;
2076 
2077   // Collect information from summary about which calls to try to devirtualize.
2078   if (ExportSummary) {
2079     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2080     for (auto &P : TypeIdMap) {
2081       if (auto *TypeId = dyn_cast<MDString>(P.first))
2082         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2083             TypeId);
2084     }
2085 
2086     for (auto &P : *ExportSummary) {
2087       for (auto &S : P.second.SummaryList) {
2088         auto *FS = dyn_cast<FunctionSummary>(S.get());
2089         if (!FS)
2090           continue;
2091         // FIXME: Only add live functions.
2092         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2093           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2094             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2095           }
2096         }
2097         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2098           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2099             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2100           }
2101         }
2102         for (const FunctionSummary::ConstVCall &VC :
2103              FS->type_test_assume_const_vcalls()) {
2104           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2105             CallSlots[{MD, VC.VFunc.Offset}]
2106                 .ConstCSInfo[VC.Args]
2107                 .addSummaryTypeTestAssumeUser(FS);
2108           }
2109         }
2110         for (const FunctionSummary::ConstVCall &VC :
2111              FS->type_checked_load_const_vcalls()) {
2112           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2113             CallSlots[{MD, VC.VFunc.Offset}]
2114                 .ConstCSInfo[VC.Args]
2115                 .addSummaryTypeCheckedLoadUser(FS);
2116           }
2117         }
2118       }
2119     }
2120   }
2121 
2122   // For each (type, offset) pair:
2123   bool DidVirtualConstProp = false;
2124   std::map<std::string, Function*> DevirtTargets;
2125   for (auto &S : CallSlots) {
2126     // Search each of the members of the type identifier for the virtual
2127     // function implementation at offset S.first.ByteOffset, and add to
2128     // TargetsForSlot.
2129     std::vector<VirtualCallTarget> TargetsForSlot;
2130     WholeProgramDevirtResolution *Res = nullptr;
2131     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2132     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2133         TypeMemberInfos.size())
2134       // For any type id used on a global's type metadata, create the type id
2135       // summary resolution regardless of whether we can devirtualize, so that
2136       // lower type tests knows the type id is not Unsat. If it was not used on
2137       // a global's type metadata, the TypeIdMap entry set will be empty, and
2138       // we don't want to create an entry (with the default Unknown type
2139       // resolution), which can prevent detection of the Unsat.
2140       Res = &ExportSummary
2141                  ->getOrInsertTypeIdSummary(
2142                      cast<MDString>(S.first.TypeID)->getString())
2143                  .WPDRes[S.first.ByteOffset];
2144     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2145                                   S.first.ByteOffset)) {
2146 
2147       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2148         DidVirtualConstProp |=
2149             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2150 
2151         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2152       }
2153 
2154       // Collect functions devirtualized at least for one call site for stats.
2155       if (RemarksEnabled)
2156         for (const auto &T : TargetsForSlot)
2157           if (T.WasDevirt)
2158             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2159     }
2160 
2161     // CFI-specific: if we are exporting and any llvm.type.checked.load
2162     // intrinsics were *not* devirtualized, we need to add the resulting
2163     // llvm.type.test intrinsics to the function summaries so that the
2164     // LowerTypeTests pass will export them.
2165     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2166       auto GUID =
2167           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2168       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2169         FS->addTypeTest(GUID);
2170       for (auto &CCS : S.second.ConstCSInfo)
2171         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2172           FS->addTypeTest(GUID);
2173     }
2174   }
2175 
2176   if (RemarksEnabled) {
2177     // Generate remarks for each devirtualized function.
2178     for (const auto &DT : DevirtTargets) {
2179       Function *F = DT.second;
2180 
2181       using namespace ore;
2182       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2183                         << "devirtualized "
2184                         << NV("FunctionName", DT.first));
2185     }
2186   }
2187 
2188   removeRedundantTypeTests();
2189 
2190   // Rebuild each global we touched as part of virtual constant propagation to
2191   // include the before and after bytes.
2192   if (DidVirtualConstProp)
2193     for (VTableBits &B : Bits)
2194       rebuildGlobal(B);
2195 
2196   // We have lowered or deleted the type instrinsics, so we will no
2197   // longer have enough information to reason about the liveness of virtual
2198   // function pointers in GlobalDCE.
2199   for (GlobalVariable &GV : M.globals())
2200     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2201 
2202   return true;
2203 }
2204 
2205 void DevirtIndex::run() {
2206   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2207     return;
2208 
2209   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2210   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2211     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2212   }
2213 
2214   // Collect information from summary about which calls to try to devirtualize.
2215   for (auto &P : ExportSummary) {
2216     for (auto &S : P.second.SummaryList) {
2217       auto *FS = dyn_cast<FunctionSummary>(S.get());
2218       if (!FS)
2219         continue;
2220       // FIXME: Only add live functions.
2221       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2222         for (StringRef Name : NameByGUID[VF.GUID]) {
2223           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2224         }
2225       }
2226       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2227         for (StringRef Name : NameByGUID[VF.GUID]) {
2228           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2229         }
2230       }
2231       for (const FunctionSummary::ConstVCall &VC :
2232            FS->type_test_assume_const_vcalls()) {
2233         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2234           CallSlots[{Name, VC.VFunc.Offset}]
2235               .ConstCSInfo[VC.Args]
2236               .addSummaryTypeTestAssumeUser(FS);
2237         }
2238       }
2239       for (const FunctionSummary::ConstVCall &VC :
2240            FS->type_checked_load_const_vcalls()) {
2241         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2242           CallSlots[{Name, VC.VFunc.Offset}]
2243               .ConstCSInfo[VC.Args]
2244               .addSummaryTypeCheckedLoadUser(FS);
2245         }
2246       }
2247     }
2248   }
2249 
2250   std::set<ValueInfo> DevirtTargets;
2251   // For each (type, offset) pair:
2252   for (auto &S : CallSlots) {
2253     // Search each of the members of the type identifier for the virtual
2254     // function implementation at offset S.first.ByteOffset, and add to
2255     // TargetsForSlot.
2256     std::vector<ValueInfo> TargetsForSlot;
2257     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2258     assert(TidSummary);
2259     // Create the type id summary resolution regardlness of whether we can
2260     // devirtualize, so that lower type tests knows the type id is used on
2261     // a global and not Unsat.
2262     WholeProgramDevirtResolution *Res =
2263         &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2264              .WPDRes[S.first.ByteOffset];
2265     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2266                                   S.first.ByteOffset)) {
2267 
2268       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2269                                DevirtTargets))
2270         continue;
2271     }
2272   }
2273 
2274   // Optionally have the thin link print message for each devirtualized
2275   // function.
2276   if (PrintSummaryDevirt)
2277     for (const auto &DT : DevirtTargets)
2278       errs() << "Devirtualized call to " << DT << "\n";
2279 }
2280