xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Transforms/IPO.h"
24 #include "llvm/Transforms/IPO/FunctionAttrs.h"
25 #include "llvm/Transforms/IPO/FunctionImport.h"
26 #include "llvm/Transforms/IPO/LowerTypeTests.h"
27 #include "llvm/Transforms/Utils/Cloning.h"
28 #include "llvm/Transforms/Utils/ModuleUtils.h"
29 using namespace llvm;
30 
31 namespace {
32 
33 // Determine if a promotion alias should be created for a symbol name.
34 static bool allowPromotionAlias(const std::string &Name) {
35   // Promotion aliases are used only in inline assembly. It's safe to
36   // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
37   // and MCAsmInfoXCOFF::isAcceptableChar().
38   for (const char &C : Name) {
39     if (isAlnum(C) || C == '_' || C == '.')
40       continue;
41     return false;
42   }
43   return true;
44 }
45 
46 // Promote each local-linkage entity defined by ExportM and used by ImportM by
47 // changing visibility and appending the given ModuleId.
48 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
49                       SetVector<GlobalValue *> &PromoteExtra) {
50   DenseMap<const Comdat *, Comdat *> RenamedComdats;
51   for (auto &ExportGV : ExportM.global_values()) {
52     if (!ExportGV.hasLocalLinkage())
53       continue;
54 
55     auto Name = ExportGV.getName();
56     GlobalValue *ImportGV = nullptr;
57     if (!PromoteExtra.count(&ExportGV)) {
58       ImportGV = ImportM.getNamedValue(Name);
59       if (!ImportGV)
60         continue;
61       ImportGV->removeDeadConstantUsers();
62       if (ImportGV->use_empty()) {
63         ImportGV->eraseFromParent();
64         continue;
65       }
66     }
67 
68     std::string OldName = Name.str();
69     std::string NewName = (Name + ModuleId).str();
70 
71     if (const auto *C = ExportGV.getComdat())
72       if (C->getName() == Name)
73         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
74 
75     ExportGV.setName(NewName);
76     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
77     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
78 
79     if (ImportGV) {
80       ImportGV->setName(NewName);
81       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
82     }
83 
84     if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
85       // Create a local alias with the original name to avoid breaking
86       // references from inline assembly.
87       std::string Alias =
88           ".lto_set_conditional " + OldName + "," + NewName + "\n";
89       ExportM.appendModuleInlineAsm(Alias);
90     }
91   }
92 
93   if (!RenamedComdats.empty())
94     for (auto &GO : ExportM.global_objects())
95       if (auto *C = GO.getComdat()) {
96         auto Replacement = RenamedComdats.find(C);
97         if (Replacement != RenamedComdats.end())
98           GO.setComdat(Replacement->second);
99       }
100 }
101 
102 // Promote all internal (i.e. distinct) type ids used by the module by replacing
103 // them with external type ids formed using the module id.
104 //
105 // Note that this needs to be done before we clone the module because each clone
106 // will receive its own set of distinct metadata nodes.
107 void promoteTypeIds(Module &M, StringRef ModuleId) {
108   DenseMap<Metadata *, Metadata *> LocalToGlobal;
109   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
110     Metadata *MD =
111         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
112 
113     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
114       Metadata *&GlobalMD = LocalToGlobal[MD];
115       if (!GlobalMD) {
116         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
117         GlobalMD = MDString::get(M.getContext(), NewName);
118       }
119 
120       CI->setArgOperand(ArgNo,
121                         MetadataAsValue::get(M.getContext(), GlobalMD));
122     }
123   };
124 
125   if (Function *TypeTestFunc =
126           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
127     for (const Use &U : TypeTestFunc->uses()) {
128       auto CI = cast<CallInst>(U.getUser());
129       ExternalizeTypeId(CI, 1);
130     }
131   }
132 
133   if (Function *PublicTypeTestFunc =
134           M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) {
135     for (const Use &U : PublicTypeTestFunc->uses()) {
136       auto CI = cast<CallInst>(U.getUser());
137       ExternalizeTypeId(CI, 1);
138     }
139   }
140 
141   if (Function *TypeCheckedLoadFunc =
142           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
143     for (const Use &U : TypeCheckedLoadFunc->uses()) {
144       auto CI = cast<CallInst>(U.getUser());
145       ExternalizeTypeId(CI, 2);
146     }
147   }
148 
149   if (Function *TypeCheckedLoadRelativeFunc = M.getFunction(
150           Intrinsic::getName(Intrinsic::type_checked_load_relative))) {
151     for (const Use &U : TypeCheckedLoadRelativeFunc->uses()) {
152       auto CI = cast<CallInst>(U.getUser());
153       ExternalizeTypeId(CI, 2);
154     }
155   }
156 
157   for (GlobalObject &GO : M.global_objects()) {
158     SmallVector<MDNode *, 1> MDs;
159     GO.getMetadata(LLVMContext::MD_type, MDs);
160 
161     GO.eraseMetadata(LLVMContext::MD_type);
162     for (auto *MD : MDs) {
163       auto I = LocalToGlobal.find(MD->getOperand(1));
164       if (I == LocalToGlobal.end()) {
165         GO.addMetadata(LLVMContext::MD_type, *MD);
166         continue;
167       }
168       GO.addMetadata(
169           LLVMContext::MD_type,
170           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
171     }
172   }
173 }
174 
175 // Drop unused globals, and drop type information from function declarations.
176 // FIXME: If we made functions typeless then there would be no need to do this.
177 void simplifyExternals(Module &M) {
178   FunctionType *EmptyFT =
179       FunctionType::get(Type::getVoidTy(M.getContext()), false);
180 
181   for (Function &F : llvm::make_early_inc_range(M)) {
182     if (F.isDeclaration() && F.use_empty()) {
183       F.eraseFromParent();
184       continue;
185     }
186 
187     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
188         // Changing the type of an intrinsic may invalidate the IR.
189         F.getName().starts_with("llvm."))
190       continue;
191 
192     Function *NewF =
193         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
194                          F.getAddressSpace(), "", &M);
195     NewF->copyAttributesFrom(&F);
196     // Only copy function attribtues.
197     NewF->setAttributes(AttributeList::get(M.getContext(),
198                                            AttributeList::FunctionIndex,
199                                            F.getAttributes().getFnAttrs()));
200     NewF->takeName(&F);
201     F.replaceAllUsesWith(NewF);
202     F.eraseFromParent();
203   }
204 
205   for (GlobalIFunc &I : llvm::make_early_inc_range(M.ifuncs())) {
206     if (I.use_empty())
207       I.eraseFromParent();
208     else
209       assert(I.getResolverFunction() && "ifunc misses its resolver function");
210   }
211 
212   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
213     if (GV.isDeclaration() && GV.use_empty()) {
214       GV.eraseFromParent();
215       continue;
216     }
217   }
218 }
219 
220 static void
221 filterModule(Module *M,
222              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
223   std::vector<GlobalValue *> V;
224   for (GlobalValue &GV : M->global_values())
225     if (!ShouldKeepDefinition(&GV))
226       V.push_back(&GV);
227 
228   for (GlobalValue *GV : V)
229     if (!convertToDeclaration(*GV))
230       GV->eraseFromParent();
231 }
232 
233 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
234   if (auto *F = dyn_cast<Function>(C))
235     return Fn(F);
236   if (isa<GlobalValue>(C))
237     return;
238   for (Value *Op : C->operands())
239     forEachVirtualFunction(cast<Constant>(Op), Fn);
240 }
241 
242 // Clone any @llvm[.compiler].used over to the new module and append
243 // values whose defs were cloned into that module.
244 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
245                                      bool CompilerUsed) {
246   SmallVector<GlobalValue *, 4> Used, NewUsed;
247   // First collect those in the llvm[.compiler].used set.
248   collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
249   // Next build a set of the equivalent values defined in DestM.
250   for (auto *V : Used) {
251     auto *GV = DestM.getNamedValue(V->getName());
252     if (GV && !GV->isDeclaration())
253       NewUsed.push_back(GV);
254   }
255   // Finally, add them to a llvm[.compiler].used variable in DestM.
256   if (CompilerUsed)
257     appendToCompilerUsed(DestM, NewUsed);
258   else
259     appendToUsed(DestM, NewUsed);
260 }
261 
262 #ifndef NDEBUG
263 static bool enableUnifiedLTO(Module &M) {
264   bool UnifiedLTO = false;
265   if (auto *MD =
266           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
267     UnifiedLTO = MD->getZExtValue();
268   return UnifiedLTO;
269 }
270 #endif
271 
272 // If it's possible to split M into regular and thin LTO parts, do so and write
273 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
274 // regular LTO bitcode file to OS.
275 void splitAndWriteThinLTOBitcode(
276     raw_ostream &OS, raw_ostream *ThinLinkOS,
277     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
278   std::string ModuleId = getUniqueModuleId(&M);
279   if (ModuleId.empty()) {
280     assert(!enableUnifiedLTO(M));
281     // We couldn't generate a module ID for this module, write it out as a
282     // regular LTO module with an index for summary-based dead stripping.
283     ProfileSummaryInfo PSI(M);
284     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
285     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
286     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index,
287                        /*UnifiedLTO=*/false);
288 
289     if (ThinLinkOS)
290       // We don't have a ThinLTO part, but still write the module to the
291       // ThinLinkOS if requested so that the expected output file is produced.
292       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
293                          &Index, /*UnifiedLTO=*/false);
294 
295     return;
296   }
297 
298   promoteTypeIds(M, ModuleId);
299 
300   // Returns whether a global or its associated global has attached type
301   // metadata. The former may participate in CFI or whole-program
302   // devirtualization, so they need to appear in the merged module instead of
303   // the thin LTO module. Similarly, globals that are associated with globals
304   // with type metadata need to appear in the merged module because they will
305   // reference the global's section directly.
306   auto HasTypeMetadata = [](const GlobalObject *GO) {
307     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
308       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
309         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
310           if (AssocGO->hasMetadata(LLVMContext::MD_type))
311             return true;
312     return GO->hasMetadata(LLVMContext::MD_type);
313   };
314 
315   // Collect the set of virtual functions that are eligible for virtual constant
316   // propagation. Each eligible function must not access memory, must return
317   // an integer of width <=64 bits, must take at least one argument, must not
318   // use its first argument (assumed to be "this") and all arguments other than
319   // the first one must be of <=64 bit integer type.
320   //
321   // Note that we test whether this copy of the function is readnone, rather
322   // than testing function attributes, which must hold for any copy of the
323   // function, even a less optimized version substituted at link time. This is
324   // sound because the virtual constant propagation optimizations effectively
325   // inline all implementations of the virtual function into each call site,
326   // rather than using function attributes to perform local optimization.
327   DenseSet<const Function *> EligibleVirtualFns;
328   // If any member of a comdat lives in MergedM, put all members of that
329   // comdat in MergedM to keep the comdat together.
330   DenseSet<const Comdat *> MergedMComdats;
331   for (GlobalVariable &GV : M.globals())
332     if (!GV.isDeclaration() && HasTypeMetadata(&GV)) {
333       if (const auto *C = GV.getComdat())
334         MergedMComdats.insert(C);
335       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
336         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
337         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
338             !F->arg_begin()->use_empty())
339           return;
340         for (auto &Arg : drop_begin(F->args())) {
341           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
342           if (!ArgT || ArgT->getBitWidth() > 64)
343             return;
344         }
345         if (!F->isDeclaration() &&
346             computeFunctionBodyMemoryAccess(*F, AARGetter(*F))
347                 .doesNotAccessMemory())
348           EligibleVirtualFns.insert(F);
349       });
350     }
351 
352   ValueToValueMapTy VMap;
353   std::unique_ptr<Module> MergedM(
354       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
355         if (const auto *C = GV->getComdat())
356           if (MergedMComdats.count(C))
357             return true;
358         if (auto *F = dyn_cast<Function>(GV))
359           return EligibleVirtualFns.count(F);
360         if (auto *GVar =
361                 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
362           return HasTypeMetadata(GVar);
363         return false;
364       }));
365   StripDebugInfo(*MergedM);
366   MergedM->setModuleInlineAsm("");
367 
368   // Clone any llvm.*used globals to ensure the included values are
369   // not deleted.
370   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
371   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
372 
373   for (Function &F : *MergedM)
374     if (!F.isDeclaration()) {
375       // Reset the linkage of all functions eligible for virtual constant
376       // propagation. The canonical definitions live in the thin LTO module so
377       // that they can be imported.
378       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
379       F.setComdat(nullptr);
380     }
381 
382   SetVector<GlobalValue *> CfiFunctions;
383   for (auto &F : M)
384     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
385       CfiFunctions.insert(&F);
386 
387   // Remove all globals with type metadata, globals with comdats that live in
388   // MergedM, and aliases pointing to such globals from the thin LTO module.
389   filterModule(&M, [&](const GlobalValue *GV) {
390     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
391       if (HasTypeMetadata(GVar))
392         return false;
393     if (const auto *C = GV->getComdat())
394       if (MergedMComdats.count(C))
395         return false;
396     return true;
397   });
398 
399   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
400   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
401 
402   auto &Ctx = MergedM->getContext();
403   SmallVector<MDNode *, 8> CfiFunctionMDs;
404   for (auto *V : CfiFunctions) {
405     Function &F = *cast<Function>(V);
406     SmallVector<MDNode *, 2> Types;
407     F.getMetadata(LLVMContext::MD_type, Types);
408 
409     SmallVector<Metadata *, 4> Elts;
410     Elts.push_back(MDString::get(Ctx, F.getName()));
411     CfiFunctionLinkage Linkage;
412     if (lowertypetests::isJumpTableCanonical(&F))
413       Linkage = CFL_Definition;
414     else if (F.hasExternalWeakLinkage())
415       Linkage = CFL_WeakDeclaration;
416     else
417       Linkage = CFL_Declaration;
418     Elts.push_back(ConstantAsMetadata::get(
419         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
420     append_range(Elts, Types);
421     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
422   }
423 
424   if(!CfiFunctionMDs.empty()) {
425     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
426     for (auto *MD : CfiFunctionMDs)
427       NMD->addOperand(MD);
428   }
429 
430   SmallVector<MDNode *, 8> FunctionAliases;
431   for (auto &A : M.aliases()) {
432     if (!isa<Function>(A.getAliasee()))
433       continue;
434 
435     auto *F = cast<Function>(A.getAliasee());
436 
437     Metadata *Elts[] = {
438         MDString::get(Ctx, A.getName()),
439         MDString::get(Ctx, F->getName()),
440         ConstantAsMetadata::get(
441             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
442         ConstantAsMetadata::get(
443             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
444     };
445 
446     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
447   }
448 
449   if (!FunctionAliases.empty()) {
450     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
451     for (auto *MD : FunctionAliases)
452       NMD->addOperand(MD);
453   }
454 
455   SmallVector<MDNode *, 8> Symvers;
456   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
457     Function *F = M.getFunction(Name);
458     if (!F || F->use_empty())
459       return;
460 
461     Symvers.push_back(MDTuple::get(
462         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
463   });
464 
465   if (!Symvers.empty()) {
466     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
467     for (auto *MD : Symvers)
468       NMD->addOperand(MD);
469   }
470 
471   simplifyExternals(*MergedM);
472 
473   // FIXME: Try to re-use BSI and PFI from the original module here.
474   ProfileSummaryInfo PSI(M);
475   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
476 
477   // Mark the merged module as requiring full LTO. We still want an index for
478   // it though, so that it can participate in summary-based dead stripping.
479   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
480   ModuleSummaryIndex MergedMIndex =
481       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
482 
483   SmallVector<char, 0> Buffer;
484 
485   BitcodeWriter W(Buffer);
486   // Save the module hash produced for the full bitcode, which will
487   // be used in the backends, and use that in the minimized bitcode
488   // produced for the full link.
489   ModuleHash ModHash = {{0}};
490   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
491                 /*GenerateHash=*/true, &ModHash);
492   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
493   W.writeSymtab();
494   W.writeStrtab();
495   OS << Buffer;
496 
497   // If a minimized bitcode module was requested for the thin link, only
498   // the information that is needed by thin link will be written in the
499   // given OS (the merged module will be written as usual).
500   if (ThinLinkOS) {
501     Buffer.clear();
502     BitcodeWriter W2(Buffer);
503     StripDebugInfo(M);
504     W2.writeThinLinkBitcode(M, Index, ModHash);
505     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
506                    &MergedMIndex);
507     W2.writeSymtab();
508     W2.writeStrtab();
509     *ThinLinkOS << Buffer;
510   }
511 }
512 
513 // Check if the LTO Unit splitting has been enabled.
514 bool enableSplitLTOUnit(Module &M) {
515   bool EnableSplitLTOUnit = false;
516   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
517           M.getModuleFlag("EnableSplitLTOUnit")))
518     EnableSplitLTOUnit = MD->getZExtValue();
519   return EnableSplitLTOUnit;
520 }
521 
522 // Returns whether this module needs to be split because it uses type metadata.
523 bool hasTypeMetadata(Module &M) {
524   for (auto &GO : M.global_objects()) {
525     if (GO.hasMetadata(LLVMContext::MD_type))
526       return true;
527   }
528   return false;
529 }
530 
531 bool writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
532                          function_ref<AAResults &(Function &)> AARGetter,
533                          Module &M, const ModuleSummaryIndex *Index) {
534   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
535   // See if this module has any type metadata. If so, we try to split it
536   // or at least promote type ids to enable WPD.
537   if (hasTypeMetadata(M)) {
538     if (enableSplitLTOUnit(M)) {
539       splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
540       return true;
541     }
542     // Promote type ids as needed for index-based WPD.
543     std::string ModuleId = getUniqueModuleId(&M);
544     if (!ModuleId.empty()) {
545       promoteTypeIds(M, ModuleId);
546       // Need to rebuild the index so that it contains type metadata
547       // for the newly promoted type ids.
548       // FIXME: Probably should not bother building the index at all
549       // in the caller of writeThinLTOBitcode (which does so via the
550       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
551       // anyway whenever there is type metadata (here or in
552       // splitAndWriteThinLTOBitcode). Just always build it once via the
553       // buildModuleSummaryIndex when Module(s) are ready.
554       ProfileSummaryInfo PSI(M);
555       NewIndex = std::make_unique<ModuleSummaryIndex>(
556           buildModuleSummaryIndex(M, nullptr, &PSI));
557       Index = NewIndex.get();
558     }
559   }
560 
561   // Write it out as an unsplit ThinLTO module.
562 
563   // Save the module hash produced for the full bitcode, which will
564   // be used in the backends, and use that in the minimized bitcode
565   // produced for the full link.
566   ModuleHash ModHash = {{0}};
567   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
568                      /*GenerateHash=*/true, &ModHash);
569   // If a minimized bitcode module was requested for the thin link, only
570   // the information that is needed by thin link will be written in the
571   // given OS.
572   if (ThinLinkOS && Index)
573     writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
574   return false;
575 }
576 
577 } // anonymous namespace
578 extern bool WriteNewDbgInfoFormatToBitcode;
579 PreservedAnalyses
580 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
581   FunctionAnalysisManager &FAM =
582       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
583 
584   ScopedDbgInfoFormatSetter FormatSetter(M, M.IsNewDbgInfoFormat &&
585                                                 WriteNewDbgInfoFormatToBitcode);
586   if (M.IsNewDbgInfoFormat)
587     M.removeDebugIntrinsicDeclarations();
588 
589   bool Changed = writeThinLTOBitcode(
590       OS, ThinLinkOS,
591       [&FAM](Function &F) -> AAResults & {
592         return FAM.getResult<AAManager>(F);
593       },
594       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
595 
596   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
597 }
598