1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/IPO/FunctionImport.h" 28 #include "llvm/Transforms/IPO/LowerTypeTests.h" 29 #include "llvm/Transforms/Utils/Cloning.h" 30 #include "llvm/Transforms/Utils/ModuleUtils.h" 31 using namespace llvm; 32 33 namespace { 34 35 // Determine if a promotion alias should be created for a symbol name. 36 static bool allowPromotionAlias(const std::string &Name) { 37 // Promotion aliases are used only in inline assembly. It's safe to 38 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() 39 // and MCAsmInfoXCOFF::isAcceptableChar(). 40 for (const char &C : Name) { 41 if (isAlnum(C) || C == '_' || C == '.') 42 continue; 43 return false; 44 } 45 return true; 46 } 47 48 // Promote each local-linkage entity defined by ExportM and used by ImportM by 49 // changing visibility and appending the given ModuleId. 50 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 51 SetVector<GlobalValue *> &PromoteExtra) { 52 DenseMap<const Comdat *, Comdat *> RenamedComdats; 53 for (auto &ExportGV : ExportM.global_values()) { 54 if (!ExportGV.hasLocalLinkage()) 55 continue; 56 57 auto Name = ExportGV.getName(); 58 GlobalValue *ImportGV = nullptr; 59 if (!PromoteExtra.count(&ExportGV)) { 60 ImportGV = ImportM.getNamedValue(Name); 61 if (!ImportGV) 62 continue; 63 ImportGV->removeDeadConstantUsers(); 64 if (ImportGV->use_empty()) { 65 ImportGV->eraseFromParent(); 66 continue; 67 } 68 } 69 70 std::string OldName = Name.str(); 71 std::string NewName = (Name + ModuleId).str(); 72 73 if (const auto *C = ExportGV.getComdat()) 74 if (C->getName() == Name) 75 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 76 77 ExportGV.setName(NewName); 78 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 79 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 80 81 if (ImportGV) { 82 ImportGV->setName(NewName); 83 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 84 } 85 86 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { 87 // Create a local alias with the original name to avoid breaking 88 // references from inline assembly. 89 std::string Alias = 90 ".lto_set_conditional " + OldName + "," + NewName + "\n"; 91 ExportM.appendModuleInlineAsm(Alias); 92 } 93 } 94 95 if (!RenamedComdats.empty()) 96 for (auto &GO : ExportM.global_objects()) 97 if (auto *C = GO.getComdat()) { 98 auto Replacement = RenamedComdats.find(C); 99 if (Replacement != RenamedComdats.end()) 100 GO.setComdat(Replacement->second); 101 } 102 } 103 104 // Promote all internal (i.e. distinct) type ids used by the module by replacing 105 // them with external type ids formed using the module id. 106 // 107 // Note that this needs to be done before we clone the module because each clone 108 // will receive its own set of distinct metadata nodes. 109 void promoteTypeIds(Module &M, StringRef ModuleId) { 110 DenseMap<Metadata *, Metadata *> LocalToGlobal; 111 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 112 Metadata *MD = 113 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 114 115 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 116 Metadata *&GlobalMD = LocalToGlobal[MD]; 117 if (!GlobalMD) { 118 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 119 GlobalMD = MDString::get(M.getContext(), NewName); 120 } 121 122 CI->setArgOperand(ArgNo, 123 MetadataAsValue::get(M.getContext(), GlobalMD)); 124 } 125 }; 126 127 if (Function *TypeTestFunc = 128 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 129 for (const Use &U : TypeTestFunc->uses()) { 130 auto CI = cast<CallInst>(U.getUser()); 131 ExternalizeTypeId(CI, 1); 132 } 133 } 134 135 if (Function *PublicTypeTestFunc = 136 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) { 137 for (const Use &U : PublicTypeTestFunc->uses()) { 138 auto CI = cast<CallInst>(U.getUser()); 139 ExternalizeTypeId(CI, 1); 140 } 141 } 142 143 if (Function *TypeCheckedLoadFunc = 144 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 145 for (const Use &U : TypeCheckedLoadFunc->uses()) { 146 auto CI = cast<CallInst>(U.getUser()); 147 ExternalizeTypeId(CI, 2); 148 } 149 } 150 151 for (GlobalObject &GO : M.global_objects()) { 152 SmallVector<MDNode *, 1> MDs; 153 GO.getMetadata(LLVMContext::MD_type, MDs); 154 155 GO.eraseMetadata(LLVMContext::MD_type); 156 for (auto MD : MDs) { 157 auto I = LocalToGlobal.find(MD->getOperand(1)); 158 if (I == LocalToGlobal.end()) { 159 GO.addMetadata(LLVMContext::MD_type, *MD); 160 continue; 161 } 162 GO.addMetadata( 163 LLVMContext::MD_type, 164 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 165 } 166 } 167 } 168 169 // Drop unused globals, and drop type information from function declarations. 170 // FIXME: If we made functions typeless then there would be no need to do this. 171 void simplifyExternals(Module &M) { 172 FunctionType *EmptyFT = 173 FunctionType::get(Type::getVoidTy(M.getContext()), false); 174 175 for (Function &F : llvm::make_early_inc_range(M)) { 176 if (F.isDeclaration() && F.use_empty()) { 177 F.eraseFromParent(); 178 continue; 179 } 180 181 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 182 // Changing the type of an intrinsic may invalidate the IR. 183 F.getName().startswith("llvm.")) 184 continue; 185 186 Function *NewF = 187 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 188 F.getAddressSpace(), "", &M); 189 NewF->copyAttributesFrom(&F); 190 // Only copy function attribtues. 191 NewF->setAttributes(AttributeList::get(M.getContext(), 192 AttributeList::FunctionIndex, 193 F.getAttributes().getFnAttrs())); 194 NewF->takeName(&F); 195 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 196 F.eraseFromParent(); 197 } 198 199 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 200 if (GV.isDeclaration() && GV.use_empty()) { 201 GV.eraseFromParent(); 202 continue; 203 } 204 } 205 } 206 207 static void 208 filterModule(Module *M, 209 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 210 std::vector<GlobalValue *> V; 211 for (GlobalValue &GV : M->global_values()) 212 if (!ShouldKeepDefinition(&GV)) 213 V.push_back(&GV); 214 215 for (GlobalValue *GV : V) 216 if (!convertToDeclaration(*GV)) 217 GV->eraseFromParent(); 218 } 219 220 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 221 if (auto *F = dyn_cast<Function>(C)) 222 return Fn(F); 223 if (isa<GlobalValue>(C)) 224 return; 225 for (Value *Op : C->operands()) 226 forEachVirtualFunction(cast<Constant>(Op), Fn); 227 } 228 229 // Clone any @llvm[.compiler].used over to the new module and append 230 // values whose defs were cloned into that module. 231 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 232 bool CompilerUsed) { 233 SmallVector<GlobalValue *, 4> Used, NewUsed; 234 // First collect those in the llvm[.compiler].used set. 235 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 236 // Next build a set of the equivalent values defined in DestM. 237 for (auto *V : Used) { 238 auto *GV = DestM.getNamedValue(V->getName()); 239 if (GV && !GV->isDeclaration()) 240 NewUsed.push_back(GV); 241 } 242 // Finally, add them to a llvm[.compiler].used variable in DestM. 243 if (CompilerUsed) 244 appendToCompilerUsed(DestM, NewUsed); 245 else 246 appendToUsed(DestM, NewUsed); 247 } 248 249 // If it's possible to split M into regular and thin LTO parts, do so and write 250 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 251 // regular LTO bitcode file to OS. 252 void splitAndWriteThinLTOBitcode( 253 raw_ostream &OS, raw_ostream *ThinLinkOS, 254 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 255 std::string ModuleId = getUniqueModuleId(&M); 256 if (ModuleId.empty()) { 257 // We couldn't generate a module ID for this module, write it out as a 258 // regular LTO module with an index for summary-based dead stripping. 259 ProfileSummaryInfo PSI(M); 260 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 261 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 262 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 263 264 if (ThinLinkOS) 265 // We don't have a ThinLTO part, but still write the module to the 266 // ThinLinkOS if requested so that the expected output file is produced. 267 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 268 &Index); 269 270 return; 271 } 272 273 promoteTypeIds(M, ModuleId); 274 275 // Returns whether a global or its associated global has attached type 276 // metadata. The former may participate in CFI or whole-program 277 // devirtualization, so they need to appear in the merged module instead of 278 // the thin LTO module. Similarly, globals that are associated with globals 279 // with type metadata need to appear in the merged module because they will 280 // reference the global's section directly. 281 auto HasTypeMetadata = [](const GlobalObject *GO) { 282 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 283 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 284 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 285 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 286 return true; 287 return GO->hasMetadata(LLVMContext::MD_type); 288 }; 289 290 // Collect the set of virtual functions that are eligible for virtual constant 291 // propagation. Each eligible function must not access memory, must return 292 // an integer of width <=64 bits, must take at least one argument, must not 293 // use its first argument (assumed to be "this") and all arguments other than 294 // the first one must be of <=64 bit integer type. 295 // 296 // Note that we test whether this copy of the function is readnone, rather 297 // than testing function attributes, which must hold for any copy of the 298 // function, even a less optimized version substituted at link time. This is 299 // sound because the virtual constant propagation optimizations effectively 300 // inline all implementations of the virtual function into each call site, 301 // rather than using function attributes to perform local optimization. 302 DenseSet<const Function *> EligibleVirtualFns; 303 // If any member of a comdat lives in MergedM, put all members of that 304 // comdat in MergedM to keep the comdat together. 305 DenseSet<const Comdat *> MergedMComdats; 306 for (GlobalVariable &GV : M.globals()) 307 if (HasTypeMetadata(&GV)) { 308 if (const auto *C = GV.getComdat()) 309 MergedMComdats.insert(C); 310 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 311 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 312 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 313 !F->arg_begin()->use_empty()) 314 return; 315 for (auto &Arg : drop_begin(F->args())) { 316 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 317 if (!ArgT || ArgT->getBitWidth() > 64) 318 return; 319 } 320 if (!F->isDeclaration() && 321 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == 322 FMRB_DoesNotAccessMemory) 323 EligibleVirtualFns.insert(F); 324 }); 325 } 326 327 ValueToValueMapTy VMap; 328 std::unique_ptr<Module> MergedM( 329 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 330 if (const auto *C = GV->getComdat()) 331 if (MergedMComdats.count(C)) 332 return true; 333 if (auto *F = dyn_cast<Function>(GV)) 334 return EligibleVirtualFns.count(F); 335 if (auto *GVar = 336 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 337 return HasTypeMetadata(GVar); 338 return false; 339 })); 340 StripDebugInfo(*MergedM); 341 MergedM->setModuleInlineAsm(""); 342 343 // Clone any llvm.*used globals to ensure the included values are 344 // not deleted. 345 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 346 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 347 348 for (Function &F : *MergedM) 349 if (!F.isDeclaration()) { 350 // Reset the linkage of all functions eligible for virtual constant 351 // propagation. The canonical definitions live in the thin LTO module so 352 // that they can be imported. 353 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 354 F.setComdat(nullptr); 355 } 356 357 SetVector<GlobalValue *> CfiFunctions; 358 for (auto &F : M) 359 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 360 CfiFunctions.insert(&F); 361 362 // Remove all globals with type metadata, globals with comdats that live in 363 // MergedM, and aliases pointing to such globals from the thin LTO module. 364 filterModule(&M, [&](const GlobalValue *GV) { 365 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 366 if (HasTypeMetadata(GVar)) 367 return false; 368 if (const auto *C = GV->getComdat()) 369 if (MergedMComdats.count(C)) 370 return false; 371 return true; 372 }); 373 374 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 375 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 376 377 auto &Ctx = MergedM->getContext(); 378 SmallVector<MDNode *, 8> CfiFunctionMDs; 379 for (auto V : CfiFunctions) { 380 Function &F = *cast<Function>(V); 381 SmallVector<MDNode *, 2> Types; 382 F.getMetadata(LLVMContext::MD_type, Types); 383 384 SmallVector<Metadata *, 4> Elts; 385 Elts.push_back(MDString::get(Ctx, F.getName())); 386 CfiFunctionLinkage Linkage; 387 if (lowertypetests::isJumpTableCanonical(&F)) 388 Linkage = CFL_Definition; 389 else if (F.hasExternalWeakLinkage()) 390 Linkage = CFL_WeakDeclaration; 391 else 392 Linkage = CFL_Declaration; 393 Elts.push_back(ConstantAsMetadata::get( 394 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 395 append_range(Elts, Types); 396 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 397 } 398 399 if(!CfiFunctionMDs.empty()) { 400 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 401 for (auto MD : CfiFunctionMDs) 402 NMD->addOperand(MD); 403 } 404 405 SmallVector<MDNode *, 8> FunctionAliases; 406 for (auto &A : M.aliases()) { 407 if (!isa<Function>(A.getAliasee())) 408 continue; 409 410 auto *F = cast<Function>(A.getAliasee()); 411 412 Metadata *Elts[] = { 413 MDString::get(Ctx, A.getName()), 414 MDString::get(Ctx, F->getName()), 415 ConstantAsMetadata::get( 416 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 417 ConstantAsMetadata::get( 418 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 419 }; 420 421 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 422 } 423 424 if (!FunctionAliases.empty()) { 425 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 426 for (auto MD : FunctionAliases) 427 NMD->addOperand(MD); 428 } 429 430 SmallVector<MDNode *, 8> Symvers; 431 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 432 Function *F = M.getFunction(Name); 433 if (!F || F->use_empty()) 434 return; 435 436 Symvers.push_back(MDTuple::get( 437 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 438 }); 439 440 if (!Symvers.empty()) { 441 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 442 for (auto MD : Symvers) 443 NMD->addOperand(MD); 444 } 445 446 simplifyExternals(*MergedM); 447 448 // FIXME: Try to re-use BSI and PFI from the original module here. 449 ProfileSummaryInfo PSI(M); 450 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 451 452 // Mark the merged module as requiring full LTO. We still want an index for 453 // it though, so that it can participate in summary-based dead stripping. 454 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 455 ModuleSummaryIndex MergedMIndex = 456 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 457 458 SmallVector<char, 0> Buffer; 459 460 BitcodeWriter W(Buffer); 461 // Save the module hash produced for the full bitcode, which will 462 // be used in the backends, and use that in the minimized bitcode 463 // produced for the full link. 464 ModuleHash ModHash = {{0}}; 465 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 466 /*GenerateHash=*/true, &ModHash); 467 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 468 W.writeSymtab(); 469 W.writeStrtab(); 470 OS << Buffer; 471 472 // If a minimized bitcode module was requested for the thin link, only 473 // the information that is needed by thin link will be written in the 474 // given OS (the merged module will be written as usual). 475 if (ThinLinkOS) { 476 Buffer.clear(); 477 BitcodeWriter W2(Buffer); 478 StripDebugInfo(M); 479 W2.writeThinLinkBitcode(M, Index, ModHash); 480 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 481 &MergedMIndex); 482 W2.writeSymtab(); 483 W2.writeStrtab(); 484 *ThinLinkOS << Buffer; 485 } 486 } 487 488 // Check if the LTO Unit splitting has been enabled. 489 bool enableSplitLTOUnit(Module &M) { 490 bool EnableSplitLTOUnit = false; 491 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 492 M.getModuleFlag("EnableSplitLTOUnit"))) 493 EnableSplitLTOUnit = MD->getZExtValue(); 494 return EnableSplitLTOUnit; 495 } 496 497 // Returns whether this module needs to be split because it uses type metadata. 498 bool hasTypeMetadata(Module &M) { 499 for (auto &GO : M.global_objects()) { 500 if (GO.hasMetadata(LLVMContext::MD_type)) 501 return true; 502 } 503 return false; 504 } 505 506 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 507 function_ref<AAResults &(Function &)> AARGetter, 508 Module &M, const ModuleSummaryIndex *Index) { 509 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 510 // See if this module has any type metadata. If so, we try to split it 511 // or at least promote type ids to enable WPD. 512 if (hasTypeMetadata(M)) { 513 if (enableSplitLTOUnit(M)) 514 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 515 // Promote type ids as needed for index-based WPD. 516 std::string ModuleId = getUniqueModuleId(&M); 517 if (!ModuleId.empty()) { 518 promoteTypeIds(M, ModuleId); 519 // Need to rebuild the index so that it contains type metadata 520 // for the newly promoted type ids. 521 // FIXME: Probably should not bother building the index at all 522 // in the caller of writeThinLTOBitcode (which does so via the 523 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 524 // anyway whenever there is type metadata (here or in 525 // splitAndWriteThinLTOBitcode). Just always build it once via the 526 // buildModuleSummaryIndex when Module(s) are ready. 527 ProfileSummaryInfo PSI(M); 528 NewIndex = std::make_unique<ModuleSummaryIndex>( 529 buildModuleSummaryIndex(M, nullptr, &PSI)); 530 Index = NewIndex.get(); 531 } 532 } 533 534 // Write it out as an unsplit ThinLTO module. 535 536 // Save the module hash produced for the full bitcode, which will 537 // be used in the backends, and use that in the minimized bitcode 538 // produced for the full link. 539 ModuleHash ModHash = {{0}}; 540 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 541 /*GenerateHash=*/true, &ModHash); 542 // If a minimized bitcode module was requested for the thin link, only 543 // the information that is needed by thin link will be written in the 544 // given OS. 545 if (ThinLinkOS && Index) 546 writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 547 } 548 549 class WriteThinLTOBitcode : public ModulePass { 550 raw_ostream &OS; // raw_ostream to print on 551 // The output stream on which to emit a minimized module for use 552 // just in the thin link, if requested. 553 raw_ostream *ThinLinkOS = nullptr; 554 555 public: 556 static char ID; // Pass identification, replacement for typeid 557 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()) { 558 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 559 } 560 561 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 562 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 563 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 564 } 565 566 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 567 568 bool runOnModule(Module &M) override { 569 const ModuleSummaryIndex *Index = 570 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 571 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 572 return true; 573 } 574 void getAnalysisUsage(AnalysisUsage &AU) const override { 575 AU.setPreservesAll(); 576 AU.addRequired<AssumptionCacheTracker>(); 577 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 578 AU.addRequired<TargetLibraryInfoWrapperPass>(); 579 } 580 }; 581 } // anonymous namespace 582 583 char WriteThinLTOBitcode::ID = 0; 584 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 585 "Write ThinLTO Bitcode", false, true) 586 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 587 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 588 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 589 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 590 "Write ThinLTO Bitcode", false, true) 591 592 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 593 raw_ostream *ThinLinkOS) { 594 return new WriteThinLTOBitcode(Str, ThinLinkOS); 595 } 596 597 PreservedAnalyses 598 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 599 FunctionAnalysisManager &FAM = 600 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 601 writeThinLTOBitcode(OS, ThinLinkOS, 602 [&FAM](Function &F) -> AAResults & { 603 return FAM.getResult<AAManager>(F); 604 }, 605 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 606 return PreservedAnalyses::all(); 607 } 608