xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Object/ModuleSymbolTable.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/IPO/LowerTypeTests.h"
29 #include "llvm/Transforms/Utils/Cloning.h"
30 #include "llvm/Transforms/Utils/ModuleUtils.h"
31 using namespace llvm;
32 
33 namespace {
34 
35 // Determine if a promotion alias should be created for a symbol name.
36 static bool allowPromotionAlias(const std::string &Name) {
37   // Promotion aliases are used only in inline assembly. It's safe to
38   // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
39   // and MCAsmInfoXCOFF::isAcceptableChar().
40   for (const char &C : Name) {
41     if (isAlnum(C) || C == '_' || C == '.')
42       continue;
43     return false;
44   }
45   return true;
46 }
47 
48 // Promote each local-linkage entity defined by ExportM and used by ImportM by
49 // changing visibility and appending the given ModuleId.
50 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
51                       SetVector<GlobalValue *> &PromoteExtra) {
52   DenseMap<const Comdat *, Comdat *> RenamedComdats;
53   for (auto &ExportGV : ExportM.global_values()) {
54     if (!ExportGV.hasLocalLinkage())
55       continue;
56 
57     auto Name = ExportGV.getName();
58     GlobalValue *ImportGV = nullptr;
59     if (!PromoteExtra.count(&ExportGV)) {
60       ImportGV = ImportM.getNamedValue(Name);
61       if (!ImportGV)
62         continue;
63       ImportGV->removeDeadConstantUsers();
64       if (ImportGV->use_empty()) {
65         ImportGV->eraseFromParent();
66         continue;
67       }
68     }
69 
70     std::string OldName = Name.str();
71     std::string NewName = (Name + ModuleId).str();
72 
73     if (const auto *C = ExportGV.getComdat())
74       if (C->getName() == Name)
75         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
76 
77     ExportGV.setName(NewName);
78     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
79     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
80 
81     if (ImportGV) {
82       ImportGV->setName(NewName);
83       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
84     }
85 
86     if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
87       // Create a local alias with the original name to avoid breaking
88       // references from inline assembly.
89       std::string Alias =
90           ".lto_set_conditional " + OldName + "," + NewName + "\n";
91       ExportM.appendModuleInlineAsm(Alias);
92     }
93   }
94 
95   if (!RenamedComdats.empty())
96     for (auto &GO : ExportM.global_objects())
97       if (auto *C = GO.getComdat()) {
98         auto Replacement = RenamedComdats.find(C);
99         if (Replacement != RenamedComdats.end())
100           GO.setComdat(Replacement->second);
101       }
102 }
103 
104 // Promote all internal (i.e. distinct) type ids used by the module by replacing
105 // them with external type ids formed using the module id.
106 //
107 // Note that this needs to be done before we clone the module because each clone
108 // will receive its own set of distinct metadata nodes.
109 void promoteTypeIds(Module &M, StringRef ModuleId) {
110   DenseMap<Metadata *, Metadata *> LocalToGlobal;
111   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
112     Metadata *MD =
113         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
114 
115     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
116       Metadata *&GlobalMD = LocalToGlobal[MD];
117       if (!GlobalMD) {
118         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
119         GlobalMD = MDString::get(M.getContext(), NewName);
120       }
121 
122       CI->setArgOperand(ArgNo,
123                         MetadataAsValue::get(M.getContext(), GlobalMD));
124     }
125   };
126 
127   if (Function *TypeTestFunc =
128           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
129     for (const Use &U : TypeTestFunc->uses()) {
130       auto CI = cast<CallInst>(U.getUser());
131       ExternalizeTypeId(CI, 1);
132     }
133   }
134 
135   if (Function *PublicTypeTestFunc =
136           M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) {
137     for (const Use &U : PublicTypeTestFunc->uses()) {
138       auto CI = cast<CallInst>(U.getUser());
139       ExternalizeTypeId(CI, 1);
140     }
141   }
142 
143   if (Function *TypeCheckedLoadFunc =
144           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
145     for (const Use &U : TypeCheckedLoadFunc->uses()) {
146       auto CI = cast<CallInst>(U.getUser());
147       ExternalizeTypeId(CI, 2);
148     }
149   }
150 
151   for (GlobalObject &GO : M.global_objects()) {
152     SmallVector<MDNode *, 1> MDs;
153     GO.getMetadata(LLVMContext::MD_type, MDs);
154 
155     GO.eraseMetadata(LLVMContext::MD_type);
156     for (auto MD : MDs) {
157       auto I = LocalToGlobal.find(MD->getOperand(1));
158       if (I == LocalToGlobal.end()) {
159         GO.addMetadata(LLVMContext::MD_type, *MD);
160         continue;
161       }
162       GO.addMetadata(
163           LLVMContext::MD_type,
164           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
165     }
166   }
167 }
168 
169 // Drop unused globals, and drop type information from function declarations.
170 // FIXME: If we made functions typeless then there would be no need to do this.
171 void simplifyExternals(Module &M) {
172   FunctionType *EmptyFT =
173       FunctionType::get(Type::getVoidTy(M.getContext()), false);
174 
175   for (Function &F : llvm::make_early_inc_range(M)) {
176     if (F.isDeclaration() && F.use_empty()) {
177       F.eraseFromParent();
178       continue;
179     }
180 
181     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
182         // Changing the type of an intrinsic may invalidate the IR.
183         F.getName().startswith("llvm."))
184       continue;
185 
186     Function *NewF =
187         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
188                          F.getAddressSpace(), "", &M);
189     NewF->copyAttributesFrom(&F);
190     // Only copy function attribtues.
191     NewF->setAttributes(AttributeList::get(M.getContext(),
192                                            AttributeList::FunctionIndex,
193                                            F.getAttributes().getFnAttrs()));
194     NewF->takeName(&F);
195     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
196     F.eraseFromParent();
197   }
198 
199   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
200     if (GV.isDeclaration() && GV.use_empty()) {
201       GV.eraseFromParent();
202       continue;
203     }
204   }
205 }
206 
207 static void
208 filterModule(Module *M,
209              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
210   std::vector<GlobalValue *> V;
211   for (GlobalValue &GV : M->global_values())
212     if (!ShouldKeepDefinition(&GV))
213       V.push_back(&GV);
214 
215   for (GlobalValue *GV : V)
216     if (!convertToDeclaration(*GV))
217       GV->eraseFromParent();
218 }
219 
220 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
221   if (auto *F = dyn_cast<Function>(C))
222     return Fn(F);
223   if (isa<GlobalValue>(C))
224     return;
225   for (Value *Op : C->operands())
226     forEachVirtualFunction(cast<Constant>(Op), Fn);
227 }
228 
229 // Clone any @llvm[.compiler].used over to the new module and append
230 // values whose defs were cloned into that module.
231 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
232                                      bool CompilerUsed) {
233   SmallVector<GlobalValue *, 4> Used, NewUsed;
234   // First collect those in the llvm[.compiler].used set.
235   collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
236   // Next build a set of the equivalent values defined in DestM.
237   for (auto *V : Used) {
238     auto *GV = DestM.getNamedValue(V->getName());
239     if (GV && !GV->isDeclaration())
240       NewUsed.push_back(GV);
241   }
242   // Finally, add them to a llvm[.compiler].used variable in DestM.
243   if (CompilerUsed)
244     appendToCompilerUsed(DestM, NewUsed);
245   else
246     appendToUsed(DestM, NewUsed);
247 }
248 
249 // If it's possible to split M into regular and thin LTO parts, do so and write
250 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
251 // regular LTO bitcode file to OS.
252 void splitAndWriteThinLTOBitcode(
253     raw_ostream &OS, raw_ostream *ThinLinkOS,
254     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
255   std::string ModuleId = getUniqueModuleId(&M);
256   if (ModuleId.empty()) {
257     // We couldn't generate a module ID for this module, write it out as a
258     // regular LTO module with an index for summary-based dead stripping.
259     ProfileSummaryInfo PSI(M);
260     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
261     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
262     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
263 
264     if (ThinLinkOS)
265       // We don't have a ThinLTO part, but still write the module to the
266       // ThinLinkOS if requested so that the expected output file is produced.
267       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
268                          &Index);
269 
270     return;
271   }
272 
273   promoteTypeIds(M, ModuleId);
274 
275   // Returns whether a global or its associated global has attached type
276   // metadata. The former may participate in CFI or whole-program
277   // devirtualization, so they need to appear in the merged module instead of
278   // the thin LTO module. Similarly, globals that are associated with globals
279   // with type metadata need to appear in the merged module because they will
280   // reference the global's section directly.
281   auto HasTypeMetadata = [](const GlobalObject *GO) {
282     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
283       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
284         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
285           if (AssocGO->hasMetadata(LLVMContext::MD_type))
286             return true;
287     return GO->hasMetadata(LLVMContext::MD_type);
288   };
289 
290   // Collect the set of virtual functions that are eligible for virtual constant
291   // propagation. Each eligible function must not access memory, must return
292   // an integer of width <=64 bits, must take at least one argument, must not
293   // use its first argument (assumed to be "this") and all arguments other than
294   // the first one must be of <=64 bit integer type.
295   //
296   // Note that we test whether this copy of the function is readnone, rather
297   // than testing function attributes, which must hold for any copy of the
298   // function, even a less optimized version substituted at link time. This is
299   // sound because the virtual constant propagation optimizations effectively
300   // inline all implementations of the virtual function into each call site,
301   // rather than using function attributes to perform local optimization.
302   DenseSet<const Function *> EligibleVirtualFns;
303   // If any member of a comdat lives in MergedM, put all members of that
304   // comdat in MergedM to keep the comdat together.
305   DenseSet<const Comdat *> MergedMComdats;
306   for (GlobalVariable &GV : M.globals())
307     if (HasTypeMetadata(&GV)) {
308       if (const auto *C = GV.getComdat())
309         MergedMComdats.insert(C);
310       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
311         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
312         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
313             !F->arg_begin()->use_empty())
314           return;
315         for (auto &Arg : drop_begin(F->args())) {
316           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
317           if (!ArgT || ArgT->getBitWidth() > 64)
318             return;
319         }
320         if (!F->isDeclaration() &&
321             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) ==
322                 FMRB_DoesNotAccessMemory)
323           EligibleVirtualFns.insert(F);
324       });
325     }
326 
327   ValueToValueMapTy VMap;
328   std::unique_ptr<Module> MergedM(
329       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
330         if (const auto *C = GV->getComdat())
331           if (MergedMComdats.count(C))
332             return true;
333         if (auto *F = dyn_cast<Function>(GV))
334           return EligibleVirtualFns.count(F);
335         if (auto *GVar =
336                 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
337           return HasTypeMetadata(GVar);
338         return false;
339       }));
340   StripDebugInfo(*MergedM);
341   MergedM->setModuleInlineAsm("");
342 
343   // Clone any llvm.*used globals to ensure the included values are
344   // not deleted.
345   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
346   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
347 
348   for (Function &F : *MergedM)
349     if (!F.isDeclaration()) {
350       // Reset the linkage of all functions eligible for virtual constant
351       // propagation. The canonical definitions live in the thin LTO module so
352       // that they can be imported.
353       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
354       F.setComdat(nullptr);
355     }
356 
357   SetVector<GlobalValue *> CfiFunctions;
358   for (auto &F : M)
359     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
360       CfiFunctions.insert(&F);
361 
362   // Remove all globals with type metadata, globals with comdats that live in
363   // MergedM, and aliases pointing to such globals from the thin LTO module.
364   filterModule(&M, [&](const GlobalValue *GV) {
365     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
366       if (HasTypeMetadata(GVar))
367         return false;
368     if (const auto *C = GV->getComdat())
369       if (MergedMComdats.count(C))
370         return false;
371     return true;
372   });
373 
374   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
375   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
376 
377   auto &Ctx = MergedM->getContext();
378   SmallVector<MDNode *, 8> CfiFunctionMDs;
379   for (auto V : CfiFunctions) {
380     Function &F = *cast<Function>(V);
381     SmallVector<MDNode *, 2> Types;
382     F.getMetadata(LLVMContext::MD_type, Types);
383 
384     SmallVector<Metadata *, 4> Elts;
385     Elts.push_back(MDString::get(Ctx, F.getName()));
386     CfiFunctionLinkage Linkage;
387     if (lowertypetests::isJumpTableCanonical(&F))
388       Linkage = CFL_Definition;
389     else if (F.hasExternalWeakLinkage())
390       Linkage = CFL_WeakDeclaration;
391     else
392       Linkage = CFL_Declaration;
393     Elts.push_back(ConstantAsMetadata::get(
394         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
395     append_range(Elts, Types);
396     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
397   }
398 
399   if(!CfiFunctionMDs.empty()) {
400     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
401     for (auto MD : CfiFunctionMDs)
402       NMD->addOperand(MD);
403   }
404 
405   SmallVector<MDNode *, 8> FunctionAliases;
406   for (auto &A : M.aliases()) {
407     if (!isa<Function>(A.getAliasee()))
408       continue;
409 
410     auto *F = cast<Function>(A.getAliasee());
411 
412     Metadata *Elts[] = {
413         MDString::get(Ctx, A.getName()),
414         MDString::get(Ctx, F->getName()),
415         ConstantAsMetadata::get(
416             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
417         ConstantAsMetadata::get(
418             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
419     };
420 
421     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
422   }
423 
424   if (!FunctionAliases.empty()) {
425     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
426     for (auto MD : FunctionAliases)
427       NMD->addOperand(MD);
428   }
429 
430   SmallVector<MDNode *, 8> Symvers;
431   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
432     Function *F = M.getFunction(Name);
433     if (!F || F->use_empty())
434       return;
435 
436     Symvers.push_back(MDTuple::get(
437         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
438   });
439 
440   if (!Symvers.empty()) {
441     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
442     for (auto MD : Symvers)
443       NMD->addOperand(MD);
444   }
445 
446   simplifyExternals(*MergedM);
447 
448   // FIXME: Try to re-use BSI and PFI from the original module here.
449   ProfileSummaryInfo PSI(M);
450   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
451 
452   // Mark the merged module as requiring full LTO. We still want an index for
453   // it though, so that it can participate in summary-based dead stripping.
454   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
455   ModuleSummaryIndex MergedMIndex =
456       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
457 
458   SmallVector<char, 0> Buffer;
459 
460   BitcodeWriter W(Buffer);
461   // Save the module hash produced for the full bitcode, which will
462   // be used in the backends, and use that in the minimized bitcode
463   // produced for the full link.
464   ModuleHash ModHash = {{0}};
465   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
466                 /*GenerateHash=*/true, &ModHash);
467   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
468   W.writeSymtab();
469   W.writeStrtab();
470   OS << Buffer;
471 
472   // If a minimized bitcode module was requested for the thin link, only
473   // the information that is needed by thin link will be written in the
474   // given OS (the merged module will be written as usual).
475   if (ThinLinkOS) {
476     Buffer.clear();
477     BitcodeWriter W2(Buffer);
478     StripDebugInfo(M);
479     W2.writeThinLinkBitcode(M, Index, ModHash);
480     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
481                    &MergedMIndex);
482     W2.writeSymtab();
483     W2.writeStrtab();
484     *ThinLinkOS << Buffer;
485   }
486 }
487 
488 // Check if the LTO Unit splitting has been enabled.
489 bool enableSplitLTOUnit(Module &M) {
490   bool EnableSplitLTOUnit = false;
491   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
492           M.getModuleFlag("EnableSplitLTOUnit")))
493     EnableSplitLTOUnit = MD->getZExtValue();
494   return EnableSplitLTOUnit;
495 }
496 
497 // Returns whether this module needs to be split because it uses type metadata.
498 bool hasTypeMetadata(Module &M) {
499   for (auto &GO : M.global_objects()) {
500     if (GO.hasMetadata(LLVMContext::MD_type))
501       return true;
502   }
503   return false;
504 }
505 
506 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
507                          function_ref<AAResults &(Function &)> AARGetter,
508                          Module &M, const ModuleSummaryIndex *Index) {
509   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
510   // See if this module has any type metadata. If so, we try to split it
511   // or at least promote type ids to enable WPD.
512   if (hasTypeMetadata(M)) {
513     if (enableSplitLTOUnit(M))
514       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
515     // Promote type ids as needed for index-based WPD.
516     std::string ModuleId = getUniqueModuleId(&M);
517     if (!ModuleId.empty()) {
518       promoteTypeIds(M, ModuleId);
519       // Need to rebuild the index so that it contains type metadata
520       // for the newly promoted type ids.
521       // FIXME: Probably should not bother building the index at all
522       // in the caller of writeThinLTOBitcode (which does so via the
523       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
524       // anyway whenever there is type metadata (here or in
525       // splitAndWriteThinLTOBitcode). Just always build it once via the
526       // buildModuleSummaryIndex when Module(s) are ready.
527       ProfileSummaryInfo PSI(M);
528       NewIndex = std::make_unique<ModuleSummaryIndex>(
529           buildModuleSummaryIndex(M, nullptr, &PSI));
530       Index = NewIndex.get();
531     }
532   }
533 
534   // Write it out as an unsplit ThinLTO module.
535 
536   // Save the module hash produced for the full bitcode, which will
537   // be used in the backends, and use that in the minimized bitcode
538   // produced for the full link.
539   ModuleHash ModHash = {{0}};
540   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
541                      /*GenerateHash=*/true, &ModHash);
542   // If a minimized bitcode module was requested for the thin link, only
543   // the information that is needed by thin link will be written in the
544   // given OS.
545   if (ThinLinkOS && Index)
546     writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
547 }
548 
549 class WriteThinLTOBitcode : public ModulePass {
550   raw_ostream &OS; // raw_ostream to print on
551   // The output stream on which to emit a minimized module for use
552   // just in the thin link, if requested.
553   raw_ostream *ThinLinkOS = nullptr;
554 
555 public:
556   static char ID; // Pass identification, replacement for typeid
557   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()) {
558     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
559   }
560 
561   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
562       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
563     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
564   }
565 
566   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
567 
568   bool runOnModule(Module &M) override {
569     const ModuleSummaryIndex *Index =
570         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
571     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
572     return true;
573   }
574   void getAnalysisUsage(AnalysisUsage &AU) const override {
575     AU.setPreservesAll();
576     AU.addRequired<AssumptionCacheTracker>();
577     AU.addRequired<ModuleSummaryIndexWrapperPass>();
578     AU.addRequired<TargetLibraryInfoWrapperPass>();
579   }
580 };
581 } // anonymous namespace
582 
583 char WriteThinLTOBitcode::ID = 0;
584 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
585                       "Write ThinLTO Bitcode", false, true)
586 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
587 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
588 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
589 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
590                     "Write ThinLTO Bitcode", false, true)
591 
592 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
593                                                 raw_ostream *ThinLinkOS) {
594   return new WriteThinLTOBitcode(Str, ThinLinkOS);
595 }
596 
597 PreservedAnalyses
598 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
599   FunctionAnalysisManager &FAM =
600       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
601   writeThinLTOBitcode(OS, ThinLinkOS,
602                       [&FAM](Function &F) -> AAResults & {
603                         return FAM.getResult<AAManager>(F);
604                       },
605                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
606   return PreservedAnalyses::all();
607 }
608