1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/PassManager.h" 20 #include "llvm/Object/ModuleSymbolTable.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/IPO.h" 25 #include "llvm/Transforms/IPO/FunctionAttrs.h" 26 #include "llvm/Transforms/IPO/FunctionImport.h" 27 #include "llvm/Transforms/Utils/Cloning.h" 28 #include "llvm/Transforms/Utils/ModuleUtils.h" 29 using namespace llvm; 30 31 namespace { 32 33 // Promote each local-linkage entity defined by ExportM and used by ImportM by 34 // changing visibility and appending the given ModuleId. 35 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 36 SetVector<GlobalValue *> &PromoteExtra) { 37 DenseMap<const Comdat *, Comdat *> RenamedComdats; 38 for (auto &ExportGV : ExportM.global_values()) { 39 if (!ExportGV.hasLocalLinkage()) 40 continue; 41 42 auto Name = ExportGV.getName(); 43 GlobalValue *ImportGV = nullptr; 44 if (!PromoteExtra.count(&ExportGV)) { 45 ImportGV = ImportM.getNamedValue(Name); 46 if (!ImportGV) 47 continue; 48 ImportGV->removeDeadConstantUsers(); 49 if (ImportGV->use_empty()) { 50 ImportGV->eraseFromParent(); 51 continue; 52 } 53 } 54 55 std::string NewName = (Name + ModuleId).str(); 56 57 if (const auto *C = ExportGV.getComdat()) 58 if (C->getName() == Name) 59 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 60 61 ExportGV.setName(NewName); 62 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 63 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 64 65 if (ImportGV) { 66 ImportGV->setName(NewName); 67 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 68 } 69 } 70 71 if (!RenamedComdats.empty()) 72 for (auto &GO : ExportM.global_objects()) 73 if (auto *C = GO.getComdat()) { 74 auto Replacement = RenamedComdats.find(C); 75 if (Replacement != RenamedComdats.end()) 76 GO.setComdat(Replacement->second); 77 } 78 } 79 80 // Promote all internal (i.e. distinct) type ids used by the module by replacing 81 // them with external type ids formed using the module id. 82 // 83 // Note that this needs to be done before we clone the module because each clone 84 // will receive its own set of distinct metadata nodes. 85 void promoteTypeIds(Module &M, StringRef ModuleId) { 86 DenseMap<Metadata *, Metadata *> LocalToGlobal; 87 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 88 Metadata *MD = 89 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 90 91 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 92 Metadata *&GlobalMD = LocalToGlobal[MD]; 93 if (!GlobalMD) { 94 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 95 GlobalMD = MDString::get(M.getContext(), NewName); 96 } 97 98 CI->setArgOperand(ArgNo, 99 MetadataAsValue::get(M.getContext(), GlobalMD)); 100 } 101 }; 102 103 if (Function *TypeTestFunc = 104 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 105 for (const Use &U : TypeTestFunc->uses()) { 106 auto CI = cast<CallInst>(U.getUser()); 107 ExternalizeTypeId(CI, 1); 108 } 109 } 110 111 if (Function *TypeCheckedLoadFunc = 112 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 113 for (const Use &U : TypeCheckedLoadFunc->uses()) { 114 auto CI = cast<CallInst>(U.getUser()); 115 ExternalizeTypeId(CI, 2); 116 } 117 } 118 119 for (GlobalObject &GO : M.global_objects()) { 120 SmallVector<MDNode *, 1> MDs; 121 GO.getMetadata(LLVMContext::MD_type, MDs); 122 123 GO.eraseMetadata(LLVMContext::MD_type); 124 for (auto MD : MDs) { 125 auto I = LocalToGlobal.find(MD->getOperand(1)); 126 if (I == LocalToGlobal.end()) { 127 GO.addMetadata(LLVMContext::MD_type, *MD); 128 continue; 129 } 130 GO.addMetadata( 131 LLVMContext::MD_type, 132 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 133 } 134 } 135 } 136 137 // Drop unused globals, and drop type information from function declarations. 138 // FIXME: If we made functions typeless then there would be no need to do this. 139 void simplifyExternals(Module &M) { 140 FunctionType *EmptyFT = 141 FunctionType::get(Type::getVoidTy(M.getContext()), false); 142 143 for (auto I = M.begin(), E = M.end(); I != E;) { 144 Function &F = *I++; 145 if (F.isDeclaration() && F.use_empty()) { 146 F.eraseFromParent(); 147 continue; 148 } 149 150 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 151 // Changing the type of an intrinsic may invalidate the IR. 152 F.getName().startswith("llvm.")) 153 continue; 154 155 Function *NewF = 156 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 157 F.getAddressSpace(), "", &M); 158 NewF->setVisibility(F.getVisibility()); 159 NewF->takeName(&F); 160 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 161 F.eraseFromParent(); 162 } 163 164 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 165 GlobalVariable &GV = *I++; 166 if (GV.isDeclaration() && GV.use_empty()) { 167 GV.eraseFromParent(); 168 continue; 169 } 170 } 171 } 172 173 static void 174 filterModule(Module *M, 175 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 176 std::vector<GlobalValue *> V; 177 for (GlobalValue &GV : M->global_values()) 178 if (!ShouldKeepDefinition(&GV)) 179 V.push_back(&GV); 180 181 for (GlobalValue *GV : V) 182 if (!convertToDeclaration(*GV)) 183 GV->eraseFromParent(); 184 } 185 186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 187 if (auto *F = dyn_cast<Function>(C)) 188 return Fn(F); 189 if (isa<GlobalValue>(C)) 190 return; 191 for (Value *Op : C->operands()) 192 forEachVirtualFunction(cast<Constant>(Op), Fn); 193 } 194 195 // If it's possible to split M into regular and thin LTO parts, do so and write 196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 197 // regular LTO bitcode file to OS. 198 void splitAndWriteThinLTOBitcode( 199 raw_ostream &OS, raw_ostream *ThinLinkOS, 200 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 201 std::string ModuleId = getUniqueModuleId(&M); 202 if (ModuleId.empty()) { 203 // We couldn't generate a module ID for this module, write it out as a 204 // regular LTO module with an index for summary-based dead stripping. 205 ProfileSummaryInfo PSI(M); 206 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 207 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 208 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 209 210 if (ThinLinkOS) 211 // We don't have a ThinLTO part, but still write the module to the 212 // ThinLinkOS if requested so that the expected output file is produced. 213 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 214 &Index); 215 216 return; 217 } 218 219 promoteTypeIds(M, ModuleId); 220 221 // Returns whether a global has attached type metadata. Such globals may 222 // participate in CFI or whole-program devirtualization, so they need to 223 // appear in the merged module instead of the thin LTO module. 224 auto HasTypeMetadata = [](const GlobalObject *GO) { 225 return GO->hasMetadata(LLVMContext::MD_type); 226 }; 227 228 // Collect the set of virtual functions that are eligible for virtual constant 229 // propagation. Each eligible function must not access memory, must return 230 // an integer of width <=64 bits, must take at least one argument, must not 231 // use its first argument (assumed to be "this") and all arguments other than 232 // the first one must be of <=64 bit integer type. 233 // 234 // Note that we test whether this copy of the function is readnone, rather 235 // than testing function attributes, which must hold for any copy of the 236 // function, even a less optimized version substituted at link time. This is 237 // sound because the virtual constant propagation optimizations effectively 238 // inline all implementations of the virtual function into each call site, 239 // rather than using function attributes to perform local optimization. 240 DenseSet<const Function *> EligibleVirtualFns; 241 // If any member of a comdat lives in MergedM, put all members of that 242 // comdat in MergedM to keep the comdat together. 243 DenseSet<const Comdat *> MergedMComdats; 244 for (GlobalVariable &GV : M.globals()) 245 if (HasTypeMetadata(&GV)) { 246 if (const auto *C = GV.getComdat()) 247 MergedMComdats.insert(C); 248 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 249 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 250 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 251 !F->arg_begin()->use_empty()) 252 return; 253 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 254 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 255 if (!ArgT || ArgT->getBitWidth() > 64) 256 return; 257 } 258 if (!F->isDeclaration() && 259 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 260 EligibleVirtualFns.insert(F); 261 }); 262 } 263 264 ValueToValueMapTy VMap; 265 std::unique_ptr<Module> MergedM( 266 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 267 if (const auto *C = GV->getComdat()) 268 if (MergedMComdats.count(C)) 269 return true; 270 if (auto *F = dyn_cast<Function>(GV)) 271 return EligibleVirtualFns.count(F); 272 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 273 return HasTypeMetadata(GVar); 274 return false; 275 })); 276 StripDebugInfo(*MergedM); 277 MergedM->setModuleInlineAsm(""); 278 279 for (Function &F : *MergedM) 280 if (!F.isDeclaration()) { 281 // Reset the linkage of all functions eligible for virtual constant 282 // propagation. The canonical definitions live in the thin LTO module so 283 // that they can be imported. 284 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 285 F.setComdat(nullptr); 286 } 287 288 SetVector<GlobalValue *> CfiFunctions; 289 for (auto &F : M) 290 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 291 CfiFunctions.insert(&F); 292 293 // Remove all globals with type metadata, globals with comdats that live in 294 // MergedM, and aliases pointing to such globals from the thin LTO module. 295 filterModule(&M, [&](const GlobalValue *GV) { 296 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 297 if (HasTypeMetadata(GVar)) 298 return false; 299 if (const auto *C = GV->getComdat()) 300 if (MergedMComdats.count(C)) 301 return false; 302 return true; 303 }); 304 305 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 306 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 307 308 auto &Ctx = MergedM->getContext(); 309 SmallVector<MDNode *, 8> CfiFunctionMDs; 310 for (auto V : CfiFunctions) { 311 Function &F = *cast<Function>(V); 312 SmallVector<MDNode *, 2> Types; 313 F.getMetadata(LLVMContext::MD_type, Types); 314 315 SmallVector<Metadata *, 4> Elts; 316 Elts.push_back(MDString::get(Ctx, F.getName())); 317 CfiFunctionLinkage Linkage; 318 if (!F.isDeclarationForLinker()) 319 Linkage = CFL_Definition; 320 else if (F.isWeakForLinker()) 321 Linkage = CFL_WeakDeclaration; 322 else 323 Linkage = CFL_Declaration; 324 Elts.push_back(ConstantAsMetadata::get( 325 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 326 for (auto Type : Types) 327 Elts.push_back(Type); 328 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 329 } 330 331 if(!CfiFunctionMDs.empty()) { 332 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 333 for (auto MD : CfiFunctionMDs) 334 NMD->addOperand(MD); 335 } 336 337 SmallVector<MDNode *, 8> FunctionAliases; 338 for (auto &A : M.aliases()) { 339 if (!isa<Function>(A.getAliasee())) 340 continue; 341 342 auto *F = cast<Function>(A.getAliasee()); 343 344 Metadata *Elts[] = { 345 MDString::get(Ctx, A.getName()), 346 MDString::get(Ctx, F->getName()), 347 ConstantAsMetadata::get( 348 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 349 ConstantAsMetadata::get( 350 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 351 }; 352 353 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 354 } 355 356 if (!FunctionAliases.empty()) { 357 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 358 for (auto MD : FunctionAliases) 359 NMD->addOperand(MD); 360 } 361 362 SmallVector<MDNode *, 8> Symvers; 363 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 364 Function *F = M.getFunction(Name); 365 if (!F || F->use_empty()) 366 return; 367 368 Symvers.push_back(MDTuple::get( 369 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 370 }); 371 372 if (!Symvers.empty()) { 373 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 374 for (auto MD : Symvers) 375 NMD->addOperand(MD); 376 } 377 378 simplifyExternals(*MergedM); 379 380 // FIXME: Try to re-use BSI and PFI from the original module here. 381 ProfileSummaryInfo PSI(M); 382 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 383 384 // Mark the merged module as requiring full LTO. We still want an index for 385 // it though, so that it can participate in summary-based dead stripping. 386 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 387 ModuleSummaryIndex MergedMIndex = 388 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 389 390 SmallVector<char, 0> Buffer; 391 392 BitcodeWriter W(Buffer); 393 // Save the module hash produced for the full bitcode, which will 394 // be used in the backends, and use that in the minimized bitcode 395 // produced for the full link. 396 ModuleHash ModHash = {{0}}; 397 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 398 /*GenerateHash=*/true, &ModHash); 399 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 400 W.writeSymtab(); 401 W.writeStrtab(); 402 OS << Buffer; 403 404 // If a minimized bitcode module was requested for the thin link, only 405 // the information that is needed by thin link will be written in the 406 // given OS (the merged module will be written as usual). 407 if (ThinLinkOS) { 408 Buffer.clear(); 409 BitcodeWriter W2(Buffer); 410 StripDebugInfo(M); 411 W2.writeThinLinkBitcode(M, Index, ModHash); 412 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 413 &MergedMIndex); 414 W2.writeSymtab(); 415 W2.writeStrtab(); 416 *ThinLinkOS << Buffer; 417 } 418 } 419 420 // Check if the LTO Unit splitting has been enabled. 421 bool enableSplitLTOUnit(Module &M) { 422 bool EnableSplitLTOUnit = false; 423 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 424 M.getModuleFlag("EnableSplitLTOUnit"))) 425 EnableSplitLTOUnit = MD->getZExtValue(); 426 return EnableSplitLTOUnit; 427 } 428 429 // Returns whether this module needs to be split because it uses type metadata. 430 bool hasTypeMetadata(Module &M) { 431 for (auto &GO : M.global_objects()) { 432 if (GO.hasMetadata(LLVMContext::MD_type)) 433 return true; 434 } 435 return false; 436 } 437 438 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 439 function_ref<AAResults &(Function &)> AARGetter, 440 Module &M, const ModuleSummaryIndex *Index) { 441 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 442 // See if this module has any type metadata. If so, we try to split it 443 // or at least promote type ids to enable WPD. 444 if (hasTypeMetadata(M)) { 445 if (enableSplitLTOUnit(M)) 446 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 447 // Promote type ids as needed for index-based WPD. 448 std::string ModuleId = getUniqueModuleId(&M); 449 if (!ModuleId.empty()) { 450 promoteTypeIds(M, ModuleId); 451 // Need to rebuild the index so that it contains type metadata 452 // for the newly promoted type ids. 453 // FIXME: Probably should not bother building the index at all 454 // in the caller of writeThinLTOBitcode (which does so via the 455 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 456 // anyway whenever there is type metadata (here or in 457 // splitAndWriteThinLTOBitcode). Just always build it once via the 458 // buildModuleSummaryIndex when Module(s) are ready. 459 ProfileSummaryInfo PSI(M); 460 NewIndex = llvm::make_unique<ModuleSummaryIndex>( 461 buildModuleSummaryIndex(M, nullptr, &PSI)); 462 Index = NewIndex.get(); 463 } 464 } 465 466 // Write it out as an unsplit ThinLTO module. 467 468 // Save the module hash produced for the full bitcode, which will 469 // be used in the backends, and use that in the minimized bitcode 470 // produced for the full link. 471 ModuleHash ModHash = {{0}}; 472 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 473 /*GenerateHash=*/true, &ModHash); 474 // If a minimized bitcode module was requested for the thin link, only 475 // the information that is needed by thin link will be written in the 476 // given OS. 477 if (ThinLinkOS && Index) 478 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 479 } 480 481 class WriteThinLTOBitcode : public ModulePass { 482 raw_ostream &OS; // raw_ostream to print on 483 // The output stream on which to emit a minimized module for use 484 // just in the thin link, if requested. 485 raw_ostream *ThinLinkOS; 486 487 public: 488 static char ID; // Pass identification, replacement for typeid 489 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 490 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 491 } 492 493 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 494 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 495 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 496 } 497 498 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 499 500 bool runOnModule(Module &M) override { 501 const ModuleSummaryIndex *Index = 502 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 503 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 504 return true; 505 } 506 void getAnalysisUsage(AnalysisUsage &AU) const override { 507 AU.setPreservesAll(); 508 AU.addRequired<AssumptionCacheTracker>(); 509 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 510 AU.addRequired<TargetLibraryInfoWrapperPass>(); 511 } 512 }; 513 } // anonymous namespace 514 515 char WriteThinLTOBitcode::ID = 0; 516 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 517 "Write ThinLTO Bitcode", false, true) 518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 519 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 520 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 521 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 522 "Write ThinLTO Bitcode", false, true) 523 524 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 525 raw_ostream *ThinLinkOS) { 526 return new WriteThinLTOBitcode(Str, ThinLinkOS); 527 } 528 529 PreservedAnalyses 530 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 531 FunctionAnalysisManager &FAM = 532 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 533 writeThinLTOBitcode(OS, ThinLinkOS, 534 [&FAM](Function &F) -> AAResults & { 535 return FAM.getResult<AAManager>(F); 536 }, 537 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 538 return PreservedAnalyses::all(); 539 } 540