xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/EHUtils.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DiagnosticInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/MDBuilder.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PseudoProbe.h"
28 #include "llvm/ProfileData/SampleProf.h"
29 #include "llvm/Support/CRC.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Transforms/Instrumentation.h"
33 #include "llvm/Transforms/Utils/ModuleUtils.h"
34 #include <unordered_set>
35 #include <vector>
36 
37 using namespace llvm;
38 #define DEBUG_TYPE "pseudo-probe"
39 
40 STATISTIC(ArtificialDbgLine,
41           "Number of probes that have an artificial debug line");
42 
43 static cl::opt<bool>
44     VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
45                       cl::desc("Do pseudo probe verification"));
46 
47 static cl::list<std::string> VerifyPseudoProbeFuncList(
48     "verify-pseudo-probe-funcs", cl::Hidden,
49     cl::desc("The option to specify the name of the functions to verify."));
50 
51 static cl::opt<bool>
52     UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
53                       cl::desc("Update pseudo probe distribution factor"));
54 
55 static uint64_t getCallStackHash(const DILocation *DIL) {
56   uint64_t Hash = 0;
57   const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
58   while (InlinedAt) {
59     Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
60     Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
61     auto Name = InlinedAt->getSubprogramLinkageName();
62     Hash ^= MD5Hash(Name);
63     InlinedAt = InlinedAt->getInlinedAt();
64   }
65   return Hash;
66 }
67 
68 static uint64_t computeCallStackHash(const Instruction &Inst) {
69   return getCallStackHash(Inst.getDebugLoc());
70 }
71 
72 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
73   // Skip function declaration.
74   if (F->isDeclaration())
75     return false;
76   // Skip function that will not be emitted into object file. The prevailing
77   // defintion will be verified instead.
78   if (F->hasAvailableExternallyLinkage())
79     return false;
80   // Do a name matching.
81   static std::unordered_set<std::string> VerifyFuncNames(
82       VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
83   return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
84 }
85 
86 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
87   if (VerifyPseudoProbe) {
88     PIC.registerAfterPassCallback(
89         [this](StringRef P, Any IR, const PreservedAnalyses &) {
90           this->runAfterPass(P, IR);
91         });
92   }
93 }
94 
95 // Callback to run after each transformation for the new pass manager.
96 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
97   std::string Banner =
98       "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
99   dbgs() << Banner;
100   if (const auto **M = llvm::any_cast<const Module *>(&IR))
101     runAfterPass(*M);
102   else if (const auto **F = llvm::any_cast<const Function *>(&IR))
103     runAfterPass(*F);
104   else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR))
105     runAfterPass(*C);
106   else if (const auto **L = llvm::any_cast<const Loop *>(&IR))
107     runAfterPass(*L);
108   else
109     llvm_unreachable("Unknown IR unit");
110 }
111 
112 void PseudoProbeVerifier::runAfterPass(const Module *M) {
113   for (const Function &F : *M)
114     runAfterPass(&F);
115 }
116 
117 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
118   for (const LazyCallGraph::Node &N : *C)
119     runAfterPass(&N.getFunction());
120 }
121 
122 void PseudoProbeVerifier::runAfterPass(const Function *F) {
123   if (!shouldVerifyFunction(F))
124     return;
125   ProbeFactorMap ProbeFactors;
126   for (const auto &BB : *F)
127     collectProbeFactors(&BB, ProbeFactors);
128   verifyProbeFactors(F, ProbeFactors);
129 }
130 
131 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
132   const Function *F = L->getHeader()->getParent();
133   runAfterPass(F);
134 }
135 
136 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
137                                               ProbeFactorMap &ProbeFactors) {
138   for (const auto &I : *Block) {
139     if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
140       uint64_t Hash = computeCallStackHash(I);
141       ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
142     }
143   }
144 }
145 
146 void PseudoProbeVerifier::verifyProbeFactors(
147     const Function *F, const ProbeFactorMap &ProbeFactors) {
148   bool BannerPrinted = false;
149   auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
150   for (const auto &I : ProbeFactors) {
151     float CurProbeFactor = I.second;
152     if (PrevProbeFactors.count(I.first)) {
153       float PrevProbeFactor = PrevProbeFactors[I.first];
154       if (std::abs(CurProbeFactor - PrevProbeFactor) >
155           DistributionFactorVariance) {
156         if (!BannerPrinted) {
157           dbgs() << "Function " << F->getName() << ":\n";
158           BannerPrinted = true;
159         }
160         dbgs() << "Probe " << I.first.first << "\tprevious factor "
161                << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
162                << format("%0.2f", CurProbeFactor) << "\n";
163       }
164     }
165 
166     // Update
167     PrevProbeFactors[I.first] = I.second;
168   }
169 }
170 
171 SampleProfileProber::SampleProfileProber(Function &Func,
172                                          const std::string &CurModuleUniqueId)
173     : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
174   BlockProbeIds.clear();
175   CallProbeIds.clear();
176   LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
177 
178   DenseSet<BasicBlock *> BlocksToIgnore;
179   DenseSet<BasicBlock *> BlocksAndCallsToIgnore;
180   computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore);
181 
182   computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore);
183   computeCFGHash(BlocksToIgnore);
184 }
185 
186 // Two purposes to compute the blocks to ignore:
187 // 1. Reduce the IR size.
188 // 2. Make the instrumentation(checksum) stable. e.g. the frondend may
189 // generate unstable IR while optimizing nounwind attribute, some versions are
190 // optimized with the call-to-invoke conversion, while other versions do not.
191 // This discrepancy in probe ID could cause profile mismatching issues.
192 // Note that those ignored blocks are either cold blocks or new split blocks
193 // whose original blocks are instrumented, so it shouldn't degrade the profile
194 // quality.
195 void SampleProfileProber::computeBlocksToIgnore(
196     DenseSet<BasicBlock *> &BlocksToIgnore,
197     DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
198   // Ignore the cold EH and unreachable blocks and calls.
199   computeEHOnlyBlocks(*F, BlocksAndCallsToIgnore);
200   findUnreachableBlocks(BlocksAndCallsToIgnore);
201 
202   BlocksToIgnore.insert(BlocksAndCallsToIgnore.begin(),
203                         BlocksAndCallsToIgnore.end());
204 
205   // Handle the call-to-invoke conversion case: make sure that the probe id and
206   // callsite id are consistent before and after the block split. For block
207   // probe, we only keep the head block probe id and ignore the block ids of the
208   // normal dests. For callsite probe, it's different to block probe, there is
209   // no additional callsite in the normal dests, so we don't ignore the
210   // callsites.
211   findInvokeNormalDests(BlocksToIgnore);
212 }
213 
214 // Unreachable blocks and calls are always cold, ignore them.
215 void SampleProfileProber::findUnreachableBlocks(
216     DenseSet<BasicBlock *> &BlocksToIgnore) {
217   for (auto &BB : *F) {
218     if (&BB != &F->getEntryBlock() && pred_size(&BB) == 0)
219       BlocksToIgnore.insert(&BB);
220   }
221 }
222 
223 // In call-to-invoke conversion, basic block can be split into multiple blocks,
224 // only instrument probe in the head block, ignore the normal dests.
225 void SampleProfileProber::findInvokeNormalDests(
226     DenseSet<BasicBlock *> &InvokeNormalDests) {
227   for (auto &BB : *F) {
228     auto *TI = BB.getTerminator();
229     if (auto *II = dyn_cast<InvokeInst>(TI)) {
230       auto *ND = II->getNormalDest();
231       InvokeNormalDests.insert(ND);
232 
233       // The normal dest and the try/catch block are connected by an
234       // unconditional branch.
235       while (pred_size(ND) == 1) {
236         auto *Pred = *pred_begin(ND);
237         if (succ_size(Pred) == 1) {
238           InvokeNormalDests.insert(Pred);
239           ND = Pred;
240         } else
241           break;
242       }
243     }
244   }
245 }
246 
247 // The call-to-invoke conversion splits the original block into a list of block,
248 // we need to compute the hash using the original block's successors to keep the
249 // CFG Hash consistent. For a given head block, we keep searching the
250 // succesor(normal dest or unconditional branch dest) to find the tail block,
251 // the tail block's successors are the original block's successors.
252 const Instruction *SampleProfileProber::getOriginalTerminator(
253     const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) {
254   auto *TI = Head->getTerminator();
255   if (auto *II = dyn_cast<InvokeInst>(TI)) {
256     return getOriginalTerminator(II->getNormalDest(), BlocksToIgnore);
257   } else if (succ_size(Head) == 1 &&
258              BlocksToIgnore.contains(*succ_begin(Head))) {
259     // Go to the unconditional branch dest.
260     return getOriginalTerminator(*succ_begin(Head), BlocksToIgnore);
261   }
262   return TI;
263 }
264 
265 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
266 // value of each BB in the CFG. The higher 32 bits record the number of edges
267 // preceded by the number of indirect calls.
268 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
269 void SampleProfileProber::computeCFGHash(
270     const DenseSet<BasicBlock *> &BlocksToIgnore) {
271   std::vector<uint8_t> Indexes;
272   JamCRC JC;
273   for (auto &BB : *F) {
274     if (BlocksToIgnore.contains(&BB))
275       continue;
276 
277     auto *TI = getOriginalTerminator(&BB, BlocksToIgnore);
278     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
279       auto *Succ = TI->getSuccessor(I);
280       auto Index = getBlockId(Succ);
281       // Ingore ignored-block(zero ID) to avoid unstable checksum.
282       if (Index == 0)
283         continue;
284       for (int J = 0; J < 4; J++)
285         Indexes.push_back((uint8_t)(Index >> (J * 8)));
286     }
287   }
288 
289   JC.update(Indexes);
290 
291   FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
292                  (uint64_t)Indexes.size() << 32 | JC.getCRC();
293   // Reserve bit 60-63 for other information purpose.
294   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
295   assert(FunctionHash && "Function checksum should not be zero");
296   LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
297                     << ":\n"
298                     << " CRC = " << JC.getCRC() << ", Edges = "
299                     << Indexes.size() << ", ICSites = " << CallProbeIds.size()
300                     << ", Hash = " << FunctionHash << "\n");
301 }
302 
303 void SampleProfileProber::computeProbeId(
304     const DenseSet<BasicBlock *> &BlocksToIgnore,
305     const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
306   LLVMContext &Ctx = F->getContext();
307   Module *M = F->getParent();
308 
309   for (auto &BB : *F) {
310     if (!BlocksToIgnore.contains(&BB))
311       BlockProbeIds[&BB] = ++LastProbeId;
312 
313     if (BlocksAndCallsToIgnore.contains(&BB))
314       continue;
315     for (auto &I : BB) {
316       if (!isa<CallBase>(I) || isa<IntrinsicInst>(&I))
317         continue;
318 
319       // The current implementation uses the lower 16 bits of the discriminator
320       // so anything larger than 0xFFFF will be ignored.
321       if (LastProbeId >= 0xFFFF) {
322         std::string Msg = "Pseudo instrumentation incomplete for " +
323                           std::string(F->getName()) + " because it's too large";
324         Ctx.diagnose(
325             DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning));
326         return;
327       }
328 
329       CallProbeIds[&I] = ++LastProbeId;
330     }
331   }
332 }
333 
334 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
335   auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
336   return I == BlockProbeIds.end() ? 0 : I->second;
337 }
338 
339 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
340   auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
341   return Iter == CallProbeIds.end() ? 0 : Iter->second;
342 }
343 
344 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
345   Module *M = F.getParent();
346   MDBuilder MDB(F.getContext());
347   // Since the GUID from probe desc and inline stack are computed separately, we
348   // need to make sure their names are consistent, so here also use the name
349   // from debug info.
350   StringRef FName = F.getName();
351   if (auto *SP = F.getSubprogram()) {
352     FName = SP->getLinkageName();
353     if (FName.empty())
354       FName = SP->getName();
355   }
356   uint64_t Guid = Function::getGUID(FName);
357 
358   // Assign an artificial debug line to a probe that doesn't come with a real
359   // line. A probe not having a debug line will get an incomplete inline
360   // context. This will cause samples collected on the probe to be counted
361   // into the base profile instead of a context profile. The line number
362   // itself is not important though.
363   auto AssignDebugLoc = [&](Instruction *I) {
364     assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
365            "Expecting pseudo probe or call instructions");
366     if (!I->getDebugLoc()) {
367       if (auto *SP = F.getSubprogram()) {
368         auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
369         I->setDebugLoc(DIL);
370         ArtificialDbgLine++;
371         LLVM_DEBUG({
372           dbgs() << "\nIn Function " << F.getName()
373                  << " Probe gets an artificial debug line\n";
374           I->dump();
375         });
376       }
377     }
378   };
379 
380   // Probe basic blocks.
381   for (auto &I : BlockProbeIds) {
382     BasicBlock *BB = I.first;
383     uint32_t Index = I.second;
384     // Insert a probe before an instruction with a valid debug line number which
385     // will be assigned to the probe. The line number will be used later to
386     // model the inline context when the probe is inlined into other functions.
387     // Debug instructions, phi nodes and lifetime markers do not have an valid
388     // line number. Real instructions generated by optimizations may not come
389     // with a line number either.
390     auto HasValidDbgLine = [](Instruction *J) {
391       return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
392              !J->isLifetimeStartOrEnd() && J->getDebugLoc();
393     };
394 
395     Instruction *J = &*BB->getFirstInsertionPt();
396     while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
397       J = J->getNextNode();
398     }
399 
400     IRBuilder<> Builder(J);
401     assert(Builder.GetInsertPoint() != BB->end() &&
402            "Cannot get the probing point");
403     Function *ProbeFn =
404         llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
405     Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
406                      Builder.getInt32(0),
407                      Builder.getInt64(PseudoProbeFullDistributionFactor)};
408     auto *Probe = Builder.CreateCall(ProbeFn, Args);
409     AssignDebugLoc(Probe);
410     // Reset the dwarf discriminator if the debug location comes with any. The
411     // discriminator field may be used by FS-AFDO later in the pipeline.
412     if (auto DIL = Probe->getDebugLoc()) {
413       if (DIL->getDiscriminator()) {
414         DIL = DIL->cloneWithDiscriminator(0);
415         Probe->setDebugLoc(DIL);
416       }
417     }
418   }
419 
420   // Probe both direct calls and indirect calls. Direct calls are probed so that
421   // their probe ID can be used as an call site identifier to represent a
422   // calling context.
423   for (auto &I : CallProbeIds) {
424     auto *Call = I.first;
425     uint32_t Index = I.second;
426     uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
427                         ? (uint32_t)PseudoProbeType::DirectCall
428                         : (uint32_t)PseudoProbeType::IndirectCall;
429     AssignDebugLoc(Call);
430     if (auto DIL = Call->getDebugLoc()) {
431       // Levarge the 32-bit discriminator field of debug data to store the ID
432       // and type of a callsite probe. This gets rid of the dependency on
433       // plumbing a customized metadata through the codegen pipeline.
434       uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
435           Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor,
436           DIL->getBaseDiscriminator());
437       DIL = DIL->cloneWithDiscriminator(V);
438       Call->setDebugLoc(DIL);
439     }
440   }
441 
442   // Create module-level metadata that contains function info necessary to
443   // synthesize probe-based sample counts,  which are
444   // - FunctionGUID
445   // - FunctionHash.
446   // - FunctionName
447   auto Hash = getFunctionHash();
448   auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
449   auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
450   assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
451   NMD->addOperand(MD);
452 }
453 
454 PreservedAnalyses SampleProfileProbePass::run(Module &M,
455                                               ModuleAnalysisManager &AM) {
456   auto ModuleId = getUniqueModuleId(&M);
457   // Create the pseudo probe desc metadata beforehand.
458   // Note that modules with only data but no functions will require this to
459   // be set up so that they will be known as probed later.
460   M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
461 
462   for (auto &F : M) {
463     if (F.isDeclaration())
464       continue;
465     SampleProfileProber ProbeManager(F, ModuleId);
466     ProbeManager.instrumentOneFunc(F, TM);
467   }
468 
469   return PreservedAnalyses::none();
470 }
471 
472 void PseudoProbeUpdatePass::runOnFunction(Function &F,
473                                           FunctionAnalysisManager &FAM) {
474   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
475   auto BBProfileCount = [&BFI](BasicBlock *BB) {
476     return BFI.getBlockProfileCount(BB).value_or(0);
477   };
478 
479   // Collect the sum of execution weight for each probe.
480   ProbeFactorMap ProbeFactors;
481   for (auto &Block : F) {
482     for (auto &I : Block) {
483       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
484         uint64_t Hash = computeCallStackHash(I);
485         ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
486       }
487     }
488   }
489 
490   // Fix up over-counted probes.
491   for (auto &Block : F) {
492     for (auto &I : Block) {
493       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
494         uint64_t Hash = computeCallStackHash(I);
495         float Sum = ProbeFactors[{Probe->Id, Hash}];
496         if (Sum != 0)
497           setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
498       }
499     }
500   }
501 }
502 
503 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
504                                              ModuleAnalysisManager &AM) {
505   if (UpdatePseudoProbe) {
506     for (auto &F : M) {
507       if (F.isDeclaration())
508         continue;
509       FunctionAnalysisManager &FAM =
510           AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
511       runOnFunction(F, FAM);
512     }
513   }
514   return PreservedAnalyses::none();
515 }
516