xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp (revision 725a9f47324d42037db93c27ceb40d4956872f3e)
1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/EHUtils.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DiagnosticInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/MDBuilder.h"
26 #include "llvm/IR/PseudoProbe.h"
27 #include "llvm/ProfileData/SampleProf.h"
28 #include "llvm/Support/CRC.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Transforms/Instrumentation.h"
32 #include "llvm/Transforms/Utils/ModuleUtils.h"
33 #include <unordered_set>
34 #include <vector>
35 
36 using namespace llvm;
37 #define DEBUG_TYPE "pseudo-probe"
38 
39 STATISTIC(ArtificialDbgLine,
40           "Number of probes that have an artificial debug line");
41 
42 static cl::opt<bool>
43     VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
44                       cl::desc("Do pseudo probe verification"));
45 
46 static cl::list<std::string> VerifyPseudoProbeFuncList(
47     "verify-pseudo-probe-funcs", cl::Hidden,
48     cl::desc("The option to specify the name of the functions to verify."));
49 
50 static cl::opt<bool>
51     UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
52                       cl::desc("Update pseudo probe distribution factor"));
53 
54 static uint64_t getCallStackHash(const DILocation *DIL) {
55   uint64_t Hash = 0;
56   const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
57   while (InlinedAt) {
58     Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
59     Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
60     auto Name = InlinedAt->getSubprogramLinkageName();
61     Hash ^= MD5Hash(Name);
62     InlinedAt = InlinedAt->getInlinedAt();
63   }
64   return Hash;
65 }
66 
67 static uint64_t computeCallStackHash(const Instruction &Inst) {
68   return getCallStackHash(Inst.getDebugLoc());
69 }
70 
71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
72   // Skip function declaration.
73   if (F->isDeclaration())
74     return false;
75   // Skip function that will not be emitted into object file. The prevailing
76   // defintion will be verified instead.
77   if (F->hasAvailableExternallyLinkage())
78     return false;
79   // Do a name matching.
80   static std::unordered_set<std::string> VerifyFuncNames(
81       VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
82   return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
83 }
84 
85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
86   if (VerifyPseudoProbe) {
87     PIC.registerAfterPassCallback(
88         [this](StringRef P, Any IR, const PreservedAnalyses &) {
89           this->runAfterPass(P, IR);
90         });
91   }
92 }
93 
94 // Callback to run after each transformation for the new pass manager.
95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
96   std::string Banner =
97       "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
98   dbgs() << Banner;
99   if (const auto **M = llvm::any_cast<const Module *>(&IR))
100     runAfterPass(*M);
101   else if (const auto **F = llvm::any_cast<const Function *>(&IR))
102     runAfterPass(*F);
103   else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR))
104     runAfterPass(*C);
105   else if (const auto **L = llvm::any_cast<const Loop *>(&IR))
106     runAfterPass(*L);
107   else
108     llvm_unreachable("Unknown IR unit");
109 }
110 
111 void PseudoProbeVerifier::runAfterPass(const Module *M) {
112   for (const Function &F : *M)
113     runAfterPass(&F);
114 }
115 
116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
117   for (const LazyCallGraph::Node &N : *C)
118     runAfterPass(&N.getFunction());
119 }
120 
121 void PseudoProbeVerifier::runAfterPass(const Function *F) {
122   if (!shouldVerifyFunction(F))
123     return;
124   ProbeFactorMap ProbeFactors;
125   for (const auto &BB : *F)
126     collectProbeFactors(&BB, ProbeFactors);
127   verifyProbeFactors(F, ProbeFactors);
128 }
129 
130 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
131   const Function *F = L->getHeader()->getParent();
132   runAfterPass(F);
133 }
134 
135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
136                                               ProbeFactorMap &ProbeFactors) {
137   for (const auto &I : *Block) {
138     if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
139       uint64_t Hash = computeCallStackHash(I);
140       ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
141     }
142   }
143 }
144 
145 void PseudoProbeVerifier::verifyProbeFactors(
146     const Function *F, const ProbeFactorMap &ProbeFactors) {
147   bool BannerPrinted = false;
148   auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
149   for (const auto &I : ProbeFactors) {
150     float CurProbeFactor = I.second;
151     if (PrevProbeFactors.count(I.first)) {
152       float PrevProbeFactor = PrevProbeFactors[I.first];
153       if (std::abs(CurProbeFactor - PrevProbeFactor) >
154           DistributionFactorVariance) {
155         if (!BannerPrinted) {
156           dbgs() << "Function " << F->getName() << ":\n";
157           BannerPrinted = true;
158         }
159         dbgs() << "Probe " << I.first.first << "\tprevious factor "
160                << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
161                << format("%0.2f", CurProbeFactor) << "\n";
162       }
163     }
164 
165     // Update
166     PrevProbeFactors[I.first] = I.second;
167   }
168 }
169 
170 SampleProfileProber::SampleProfileProber(Function &Func,
171                                          const std::string &CurModuleUniqueId)
172     : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
173   BlockProbeIds.clear();
174   CallProbeIds.clear();
175   LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
176   computeProbeIdForBlocks();
177   computeProbeIdForCallsites();
178   computeCFGHash();
179 }
180 
181 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
182 // value of each BB in the CFG. The higher 32 bits record the number of edges
183 // preceded by the number of indirect calls.
184 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
185 void SampleProfileProber::computeCFGHash() {
186   std::vector<uint8_t> Indexes;
187   JamCRC JC;
188   for (auto &BB : *F) {
189     for (BasicBlock *Succ : successors(&BB)) {
190       auto Index = getBlockId(Succ);
191       for (int J = 0; J < 4; J++)
192         Indexes.push_back((uint8_t)(Index >> (J * 8)));
193     }
194   }
195 
196   JC.update(Indexes);
197 
198   FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
199                  (uint64_t)Indexes.size() << 32 | JC.getCRC();
200   // Reserve bit 60-63 for other information purpose.
201   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
202   assert(FunctionHash && "Function checksum should not be zero");
203   LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
204                     << ":\n"
205                     << " CRC = " << JC.getCRC() << ", Edges = "
206                     << Indexes.size() << ", ICSites = " << CallProbeIds.size()
207                     << ", Hash = " << FunctionHash << "\n");
208 }
209 
210 void SampleProfileProber::computeProbeIdForBlocks() {
211   DenseSet<BasicBlock *> KnownColdBlocks;
212   computeEHOnlyBlocks(*F, KnownColdBlocks);
213   // Insert pseudo probe to non-cold blocks only. This will reduce IR size as
214   // well as the binary size while retaining the profile quality.
215   for (auto &BB : *F) {
216     ++LastProbeId;
217     if (!KnownColdBlocks.contains(&BB))
218       BlockProbeIds[&BB] = LastProbeId;
219   }
220 }
221 
222 void SampleProfileProber::computeProbeIdForCallsites() {
223   LLVMContext &Ctx = F->getContext();
224   Module *M = F->getParent();
225 
226   for (auto &BB : *F) {
227     for (auto &I : BB) {
228       if (!isa<CallBase>(I))
229         continue;
230       if (isa<IntrinsicInst>(&I))
231         continue;
232 
233       // The current implementation uses the lower 16 bits of the discriminator
234       // so anything larger than 0xFFFF will be ignored.
235       if (LastProbeId >= 0xFFFF) {
236         std::string Msg = "Pseudo instrumentation incomplete for " +
237                           std::string(F->getName()) + " because it's too large";
238         Ctx.diagnose(
239             DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning));
240         return;
241       }
242 
243       CallProbeIds[&I] = ++LastProbeId;
244     }
245   }
246 }
247 
248 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
249   auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
250   return I == BlockProbeIds.end() ? 0 : I->second;
251 }
252 
253 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
254   auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
255   return Iter == CallProbeIds.end() ? 0 : Iter->second;
256 }
257 
258 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
259   Module *M = F.getParent();
260   MDBuilder MDB(F.getContext());
261   // Since the GUID from probe desc and inline stack are computed seperately, we
262   // need to make sure their names are consistent, so here also use the name
263   // from debug info.
264   StringRef FName = F.getName();
265   if (auto *SP = F.getSubprogram()) {
266     FName = SP->getLinkageName();
267     if (FName.empty())
268       FName = SP->getName();
269   }
270   uint64_t Guid = Function::getGUID(FName);
271 
272   // Assign an artificial debug line to a probe that doesn't come with a real
273   // line. A probe not having a debug line will get an incomplete inline
274   // context. This will cause samples collected on the probe to be counted
275   // into the base profile instead of a context profile. The line number
276   // itself is not important though.
277   auto AssignDebugLoc = [&](Instruction *I) {
278     assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
279            "Expecting pseudo probe or call instructions");
280     if (!I->getDebugLoc()) {
281       if (auto *SP = F.getSubprogram()) {
282         auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
283         I->setDebugLoc(DIL);
284         ArtificialDbgLine++;
285         LLVM_DEBUG({
286           dbgs() << "\nIn Function " << F.getName()
287                  << " Probe gets an artificial debug line\n";
288           I->dump();
289         });
290       }
291     }
292   };
293 
294   // Probe basic blocks.
295   for (auto &I : BlockProbeIds) {
296     BasicBlock *BB = I.first;
297     uint32_t Index = I.second;
298     // Insert a probe before an instruction with a valid debug line number which
299     // will be assigned to the probe. The line number will be used later to
300     // model the inline context when the probe is inlined into other functions.
301     // Debug instructions, phi nodes and lifetime markers do not have an valid
302     // line number. Real instructions generated by optimizations may not come
303     // with a line number either.
304     auto HasValidDbgLine = [](Instruction *J) {
305       return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
306              !J->isLifetimeStartOrEnd() && J->getDebugLoc();
307     };
308 
309     Instruction *J = &*BB->getFirstInsertionPt();
310     while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
311       J = J->getNextNode();
312     }
313 
314     IRBuilder<> Builder(J);
315     assert(Builder.GetInsertPoint() != BB->end() &&
316            "Cannot get the probing point");
317     Function *ProbeFn =
318         llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
319     Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
320                      Builder.getInt32(0),
321                      Builder.getInt64(PseudoProbeFullDistributionFactor)};
322     auto *Probe = Builder.CreateCall(ProbeFn, Args);
323     AssignDebugLoc(Probe);
324     // Reset the dwarf discriminator if the debug location comes with any. The
325     // discriminator field may be used by FS-AFDO later in the pipeline.
326     if (auto DIL = Probe->getDebugLoc()) {
327       if (DIL->getDiscriminator()) {
328         DIL = DIL->cloneWithDiscriminator(0);
329         Probe->setDebugLoc(DIL);
330       }
331     }
332   }
333 
334   // Probe both direct calls and indirect calls. Direct calls are probed so that
335   // their probe ID can be used as an call site identifier to represent a
336   // calling context.
337   for (auto &I : CallProbeIds) {
338     auto *Call = I.first;
339     uint32_t Index = I.second;
340     uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
341                         ? (uint32_t)PseudoProbeType::DirectCall
342                         : (uint32_t)PseudoProbeType::IndirectCall;
343     AssignDebugLoc(Call);
344     if (auto DIL = Call->getDebugLoc()) {
345       // Levarge the 32-bit discriminator field of debug data to store the ID
346       // and type of a callsite probe. This gets rid of the dependency on
347       // plumbing a customized metadata through the codegen pipeline.
348       uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
349           Index, Type, 0,
350           PseudoProbeDwarfDiscriminator::FullDistributionFactor);
351       DIL = DIL->cloneWithDiscriminator(V);
352       Call->setDebugLoc(DIL);
353     }
354   }
355 
356   // Create module-level metadata that contains function info necessary to
357   // synthesize probe-based sample counts,  which are
358   // - FunctionGUID
359   // - FunctionHash.
360   // - FunctionName
361   auto Hash = getFunctionHash();
362   auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
363   auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
364   assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
365   NMD->addOperand(MD);
366 }
367 
368 PreservedAnalyses SampleProfileProbePass::run(Module &M,
369                                               ModuleAnalysisManager &AM) {
370   auto ModuleId = getUniqueModuleId(&M);
371   // Create the pseudo probe desc metadata beforehand.
372   // Note that modules with only data but no functions will require this to
373   // be set up so that they will be known as probed later.
374   M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
375 
376   for (auto &F : M) {
377     if (F.isDeclaration())
378       continue;
379     SampleProfileProber ProbeManager(F, ModuleId);
380     ProbeManager.instrumentOneFunc(F, TM);
381   }
382 
383   return PreservedAnalyses::none();
384 }
385 
386 void PseudoProbeUpdatePass::runOnFunction(Function &F,
387                                           FunctionAnalysisManager &FAM) {
388   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
389   auto BBProfileCount = [&BFI](BasicBlock *BB) {
390     return BFI.getBlockProfileCount(BB).value_or(0);
391   };
392 
393   // Collect the sum of execution weight for each probe.
394   ProbeFactorMap ProbeFactors;
395   for (auto &Block : F) {
396     for (auto &I : Block) {
397       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
398         uint64_t Hash = computeCallStackHash(I);
399         ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
400       }
401     }
402   }
403 
404   // Fix up over-counted probes.
405   for (auto &Block : F) {
406     for (auto &I : Block) {
407       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
408         uint64_t Hash = computeCallStackHash(I);
409         float Sum = ProbeFactors[{Probe->Id, Hash}];
410         if (Sum != 0)
411           setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
412       }
413     }
414   }
415 }
416 
417 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
418                                              ModuleAnalysisManager &AM) {
419   if (UpdatePseudoProbe) {
420     for (auto &F : M) {
421       if (F.isDeclaration())
422         continue;
423       FunctionAnalysisManager &FAM =
424           AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
425       runOnFunction(F, FAM);
426     }
427   }
428   return PreservedAnalyses::none();
429 }
430