1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileProber transformation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/BlockFrequencyInfo.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/CFG.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/GlobalValue.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/ProfileData/SampleProf.h" 28 #include "llvm/Support/CRC.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Instrumentation.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 #include <unordered_set> 33 #include <vector> 34 35 using namespace llvm; 36 #define DEBUG_TYPE "sample-profile-probe" 37 38 STATISTIC(ArtificialDbgLine, 39 "Number of probes that have an artificial debug line"); 40 41 static cl::opt<bool> 42 VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, 43 cl::desc("Do pseudo probe verification")); 44 45 static cl::list<std::string> VerifyPseudoProbeFuncList( 46 "verify-pseudo-probe-funcs", cl::Hidden, 47 cl::desc("The option to specify the name of the functions to verify.")); 48 49 static cl::opt<bool> 50 UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, 51 cl::desc("Update pseudo probe distribution factor")); 52 53 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { 54 // Skip function declaration. 55 if (F->isDeclaration()) 56 return false; 57 // Skip function that will not be emitted into object file. The prevailing 58 // defintion will be verified instead. 59 if (F->hasAvailableExternallyLinkage()) 60 return false; 61 // Do a name matching. 62 static std::unordered_set<std::string> VerifyFuncNames( 63 VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); 64 return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); 65 } 66 67 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { 68 if (VerifyPseudoProbe) { 69 PIC.registerAfterPassCallback( 70 [this](StringRef P, Any IR, const PreservedAnalyses &) { 71 this->runAfterPass(P, IR); 72 }); 73 } 74 } 75 76 // Callback to run after each transformation for the new pass manager. 77 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { 78 std::string Banner = 79 "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; 80 dbgs() << Banner; 81 if (any_isa<const Module *>(IR)) 82 runAfterPass(any_cast<const Module *>(IR)); 83 else if (any_isa<const Function *>(IR)) 84 runAfterPass(any_cast<const Function *>(IR)); 85 else if (any_isa<const LazyCallGraph::SCC *>(IR)) 86 runAfterPass(any_cast<const LazyCallGraph::SCC *>(IR)); 87 else if (any_isa<const Loop *>(IR)) 88 runAfterPass(any_cast<const Loop *>(IR)); 89 else 90 llvm_unreachable("Unknown IR unit"); 91 } 92 93 void PseudoProbeVerifier::runAfterPass(const Module *M) { 94 for (const Function &F : *M) 95 runAfterPass(&F); 96 } 97 98 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { 99 for (const LazyCallGraph::Node &N : *C) 100 runAfterPass(&N.getFunction()); 101 } 102 103 void PseudoProbeVerifier::runAfterPass(const Function *F) { 104 if (!shouldVerifyFunction(F)) 105 return; 106 ProbeFactorMap ProbeFactors; 107 for (const auto &BB : *F) 108 collectProbeFactors(&BB, ProbeFactors); 109 verifyProbeFactors(F, ProbeFactors); 110 } 111 112 void PseudoProbeVerifier::runAfterPass(const Loop *L) { 113 const Function *F = L->getHeader()->getParent(); 114 runAfterPass(F); 115 } 116 117 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, 118 ProbeFactorMap &ProbeFactors) { 119 for (const auto &I : *Block) { 120 if (Optional<PseudoProbe> Probe = extractProbe(I)) 121 ProbeFactors[Probe->Id] += Probe->Factor; 122 } 123 } 124 125 void PseudoProbeVerifier::verifyProbeFactors( 126 const Function *F, const ProbeFactorMap &ProbeFactors) { 127 bool BannerPrinted = false; 128 auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; 129 for (const auto &I : ProbeFactors) { 130 float CurProbeFactor = I.second; 131 if (PrevProbeFactors.count(I.first)) { 132 float PrevProbeFactor = PrevProbeFactors[I.first]; 133 if (std::abs(CurProbeFactor - PrevProbeFactor) > 134 DistributionFactorVariance) { 135 if (!BannerPrinted) { 136 dbgs() << "Function " << F->getName() << ":\n"; 137 BannerPrinted = true; 138 } 139 dbgs() << "Probe " << I.first << "\tprevious factor " 140 << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " 141 << format("%0.2f", CurProbeFactor) << "\n"; 142 } 143 } 144 145 // Update 146 PrevProbeFactors[I.first] = I.second; 147 } 148 } 149 150 PseudoProbeManager::PseudoProbeManager(const Module &M) { 151 if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) { 152 for (const auto *Operand : FuncInfo->operands()) { 153 const auto *MD = cast<MDNode>(Operand); 154 auto GUID = 155 mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))->getZExtValue(); 156 auto Hash = 157 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 158 GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash)); 159 } 160 } 161 } 162 163 const PseudoProbeDescriptor * 164 PseudoProbeManager::getDesc(const Function &F) const { 165 auto I = GUIDToProbeDescMap.find( 166 Function::getGUID(FunctionSamples::getCanonicalFnName(F))); 167 return I == GUIDToProbeDescMap.end() ? nullptr : &I->second; 168 } 169 170 bool PseudoProbeManager::moduleIsProbed(const Module &M) const { 171 return M.getNamedMetadata(PseudoProbeDescMetadataName); 172 } 173 174 bool PseudoProbeManager::profileIsValid(const Function &F, 175 const FunctionSamples &Samples) const { 176 const auto *Desc = getDesc(F); 177 if (!Desc) { 178 LLVM_DEBUG(dbgs() << "Probe descriptor missing for Function " << F.getName() 179 << "\n"); 180 return false; 181 } else { 182 if (Desc->getFunctionHash() != Samples.getFunctionHash()) { 183 LLVM_DEBUG(dbgs() << "Hash mismatch for Function " << F.getName() 184 << "\n"); 185 return false; 186 } 187 } 188 return true; 189 } 190 191 SampleProfileProber::SampleProfileProber(Function &Func, 192 const std::string &CurModuleUniqueId) 193 : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { 194 BlockProbeIds.clear(); 195 CallProbeIds.clear(); 196 LastProbeId = (uint32_t)PseudoProbeReservedId::Last; 197 computeProbeIdForBlocks(); 198 computeProbeIdForCallsites(); 199 computeCFGHash(); 200 } 201 202 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 203 // value of each BB in the CFG. The higher 32 bits record the number of edges 204 // preceded by the number of indirect calls. 205 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). 206 void SampleProfileProber::computeCFGHash() { 207 std::vector<uint8_t> Indexes; 208 JamCRC JC; 209 for (auto &BB : *F) { 210 auto *TI = BB.getTerminator(); 211 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 212 auto *Succ = TI->getSuccessor(I); 213 auto Index = getBlockId(Succ); 214 for (int J = 0; J < 4; J++) 215 Indexes.push_back((uint8_t)(Index >> (J * 8))); 216 } 217 } 218 219 JC.update(Indexes); 220 221 FunctionHash = (uint64_t)CallProbeIds.size() << 48 | 222 (uint64_t)Indexes.size() << 32 | JC.getCRC(); 223 // Reserve bit 60-63 for other information purpose. 224 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 225 assert(FunctionHash && "Function checksum should not be zero"); 226 LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() 227 << ":\n" 228 << " CRC = " << JC.getCRC() << ", Edges = " 229 << Indexes.size() << ", ICSites = " << CallProbeIds.size() 230 << ", Hash = " << FunctionHash << "\n"); 231 } 232 233 void SampleProfileProber::computeProbeIdForBlocks() { 234 for (auto &BB : *F) { 235 BlockProbeIds[&BB] = ++LastProbeId; 236 } 237 } 238 239 void SampleProfileProber::computeProbeIdForCallsites() { 240 for (auto &BB : *F) { 241 for (auto &I : BB) { 242 if (!isa<CallBase>(I)) 243 continue; 244 if (isa<IntrinsicInst>(&I)) 245 continue; 246 CallProbeIds[&I] = ++LastProbeId; 247 } 248 } 249 } 250 251 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { 252 auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB)); 253 return I == BlockProbeIds.end() ? 0 : I->second; 254 } 255 256 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { 257 auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call)); 258 return Iter == CallProbeIds.end() ? 0 : Iter->second; 259 } 260 261 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { 262 Module *M = F.getParent(); 263 MDBuilder MDB(F.getContext()); 264 // Compute a GUID without considering the function's linkage type. This is 265 // fine since function name is the only key in the profile database. 266 uint64_t Guid = Function::getGUID(F.getName()); 267 268 // Assign an artificial debug line to a probe that doesn't come with a real 269 // line. A probe not having a debug line will get an incomplete inline 270 // context. This will cause samples collected on the probe to be counted 271 // into the base profile instead of a context profile. The line number 272 // itself is not important though. 273 auto AssignDebugLoc = [&](Instruction *I) { 274 assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && 275 "Expecting pseudo probe or call instructions"); 276 if (!I->getDebugLoc()) { 277 if (auto *SP = F.getSubprogram()) { 278 auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); 279 I->setDebugLoc(DIL); 280 ArtificialDbgLine++; 281 LLVM_DEBUG({ 282 dbgs() << "\nIn Function " << F.getName() 283 << " Probe gets an artificial debug line\n"; 284 I->dump(); 285 }); 286 } 287 } 288 }; 289 290 // Probe basic blocks. 291 for (auto &I : BlockProbeIds) { 292 BasicBlock *BB = I.first; 293 uint32_t Index = I.second; 294 // Insert a probe before an instruction with a valid debug line number which 295 // will be assigned to the probe. The line number will be used later to 296 // model the inline context when the probe is inlined into other functions. 297 // Debug instructions, phi nodes and lifetime markers do not have an valid 298 // line number. Real instructions generated by optimizations may not come 299 // with a line number either. 300 auto HasValidDbgLine = [](Instruction *J) { 301 return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) && 302 !J->isLifetimeStartOrEnd() && J->getDebugLoc(); 303 }; 304 305 Instruction *J = &*BB->getFirstInsertionPt(); 306 while (J != BB->getTerminator() && !HasValidDbgLine(J)) { 307 J = J->getNextNode(); 308 } 309 310 IRBuilder<> Builder(J); 311 assert(Builder.GetInsertPoint() != BB->end() && 312 "Cannot get the probing point"); 313 Function *ProbeFn = 314 llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe); 315 Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), 316 Builder.getInt32(0), 317 Builder.getInt64(PseudoProbeFullDistributionFactor)}; 318 auto *Probe = Builder.CreateCall(ProbeFn, Args); 319 AssignDebugLoc(Probe); 320 } 321 322 // Probe both direct calls and indirect calls. Direct calls are probed so that 323 // their probe ID can be used as an call site identifier to represent a 324 // calling context. 325 for (auto &I : CallProbeIds) { 326 auto *Call = I.first; 327 uint32_t Index = I.second; 328 uint32_t Type = cast<CallBase>(Call)->getCalledFunction() 329 ? (uint32_t)PseudoProbeType::DirectCall 330 : (uint32_t)PseudoProbeType::IndirectCall; 331 AssignDebugLoc(Call); 332 // Levarge the 32-bit discriminator field of debug data to store the ID and 333 // type of a callsite probe. This gets rid of the dependency on plumbing a 334 // customized metadata through the codegen pipeline. 335 uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( 336 Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor); 337 if (auto DIL = Call->getDebugLoc()) { 338 DIL = DIL->cloneWithDiscriminator(V); 339 Call->setDebugLoc(DIL); 340 } 341 } 342 343 // Create module-level metadata that contains function info necessary to 344 // synthesize probe-based sample counts, which are 345 // - FunctionGUID 346 // - FunctionHash. 347 // - FunctionName 348 auto Hash = getFunctionHash(); 349 auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, &F); 350 auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); 351 assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); 352 NMD->addOperand(MD); 353 354 // Preserve a comdat group to hold all probes materialized later. This 355 // allows that when the function is considered dead and removed, the 356 // materialized probes are disposed too. 357 // Imported functions are defined in another module. They do not need 358 // the following handling since same care will be taken for them in their 359 // original module. The pseudo probes inserted into an imported functions 360 // above will naturally not be emitted since the imported function is free 361 // from object emission. However they will be emitted together with the 362 // inliner functions that the imported function is inlined into. We are not 363 // creating a comdat group for an import function since it's useless anyway. 364 if (!F.isDeclarationForLinker()) { 365 if (TM) { 366 auto Triple = TM->getTargetTriple(); 367 if (Triple.supportsCOMDAT() && TM->getFunctionSections()) { 368 GetOrCreateFunctionComdat(F, Triple, CurModuleUniqueId); 369 } 370 } 371 } 372 } 373 374 PreservedAnalyses SampleProfileProbePass::run(Module &M, 375 ModuleAnalysisManager &AM) { 376 auto ModuleId = getUniqueModuleId(&M); 377 // Create the pseudo probe desc metadata beforehand. 378 // Note that modules with only data but no functions will require this to 379 // be set up so that they will be known as probed later. 380 M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); 381 382 for (auto &F : M) { 383 if (F.isDeclaration()) 384 continue; 385 SampleProfileProber ProbeManager(F, ModuleId); 386 ProbeManager.instrumentOneFunc(F, TM); 387 } 388 389 return PreservedAnalyses::none(); 390 } 391 392 void PseudoProbeUpdatePass::runOnFunction(Function &F, 393 FunctionAnalysisManager &FAM) { 394 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 395 auto BBProfileCount = [&BFI](BasicBlock *BB) { 396 return BFI.getBlockProfileCount(BB) 397 ? BFI.getBlockProfileCount(BB).getValue() 398 : 0; 399 }; 400 401 // Collect the sum of execution weight for each probe. 402 ProbeFactorMap ProbeFactors; 403 for (auto &Block : F) { 404 for (auto &I : Block) { 405 if (Optional<PseudoProbe> Probe = extractProbe(I)) 406 ProbeFactors[Probe->Id] += BBProfileCount(&Block); 407 } 408 } 409 410 // Fix up over-counted probes. 411 for (auto &Block : F) { 412 for (auto &I : Block) { 413 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 414 float Sum = ProbeFactors[Probe->Id]; 415 if (Sum != 0) 416 setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); 417 } 418 } 419 } 420 } 421 422 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, 423 ModuleAnalysisManager &AM) { 424 if (UpdatePseudoProbe) { 425 for (auto &F : M) { 426 if (F.isDeclaration()) 427 continue; 428 FunctionAnalysisManager &FAM = 429 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 430 runOnFunction(F, FAM); 431 } 432 } 433 return PreservedAnalyses::none(); 434 } 435