xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineAdvisor.h"
41 #include "llvm/Analysis/InlineCost.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/PostDominators.h"
45 #include "llvm/Analysis/ProfileSummaryInfo.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/CFG.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DiagnosticInfo.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/ValueSymbolTable.h"
65 #include "llvm/InitializePasses.h"
66 #include "llvm/Pass.h"
67 #include "llvm/ProfileData/InstrProf.h"
68 #include "llvm/ProfileData/SampleProf.h"
69 #include "llvm/ProfileData/SampleProfReader.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/ErrorOr.h"
75 #include "llvm/Support/GenericDomTree.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include "llvm/Transforms/Instrumentation.h"
79 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
80 #include "llvm/Transforms/Utils/Cloning.h"
81 #include "llvm/Transforms/Utils/MisExpect.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstdint>
85 #include <functional>
86 #include <limits>
87 #include <map>
88 #include <memory>
89 #include <queue>
90 #include <string>
91 #include <system_error>
92 #include <utility>
93 #include <vector>
94 
95 using namespace llvm;
96 using namespace sampleprof;
97 using ProfileCount = Function::ProfileCount;
98 #define DEBUG_TYPE "sample-profile"
99 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
100 
101 STATISTIC(NumCSInlined,
102           "Number of functions inlined with context sensitive profile");
103 STATISTIC(NumCSNotInlined,
104           "Number of functions not inlined with context sensitive profile");
105 
106 // Command line option to specify the file to read samples from. This is
107 // mainly used for debugging.
108 static cl::opt<std::string> SampleProfileFile(
109     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
110     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
111 
112 // The named file contains a set of transformations that may have been applied
113 // to the symbol names between the program from which the sample data was
114 // collected and the current program's symbols.
115 static cl::opt<std::string> SampleProfileRemappingFile(
116     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
117     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
118 
119 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
120     "sample-profile-max-propagate-iterations", cl::init(100),
121     cl::desc("Maximum number of iterations to go through when propagating "
122              "sample block/edge weights through the CFG."));
123 
124 static cl::opt<unsigned> SampleProfileRecordCoverage(
125     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
126     cl::desc("Emit a warning if less than N% of records in the input profile "
127              "are matched to the IR."));
128 
129 static cl::opt<unsigned> SampleProfileSampleCoverage(
130     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
131     cl::desc("Emit a warning if less than N% of samples in the input profile "
132              "are matched to the IR."));
133 
134 static cl::opt<bool> NoWarnSampleUnused(
135     "no-warn-sample-unused", cl::init(false), cl::Hidden,
136     cl::desc("Use this option to turn off/on warnings about function with "
137              "samples but without debug information to use those samples. "));
138 
139 static cl::opt<bool> ProfileSampleAccurate(
140     "profile-sample-accurate", cl::Hidden, cl::init(false),
141     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
142              "callsite and function as having 0 samples. Otherwise, treat "
143              "un-sampled callsites and functions conservatively as unknown. "));
144 
145 static cl::opt<bool> ProfileAccurateForSymsInList(
146     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
147     cl::init(true),
148     cl::desc("For symbols in profile symbol list, regard their profiles to "
149              "be accurate. It may be overriden by profile-sample-accurate. "));
150 
151 static cl::opt<bool> ProfileMergeInlinee(
152     "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
153     cl::desc("Merge past inlinee's profile to outline version if sample "
154              "profile loader decided not to inline a call site. It will "
155              "only be enabled when top-down order of profile loading is "
156              "enabled. "));
157 
158 static cl::opt<bool> ProfileTopDownLoad(
159     "sample-profile-top-down-load", cl::Hidden, cl::init(true),
160     cl::desc("Do profile annotation and inlining for functions in top-down "
161              "order of call graph during sample profile loading. It only "
162              "works for new pass manager. "));
163 
164 static cl::opt<bool> ProfileSizeInline(
165     "sample-profile-inline-size", cl::Hidden, cl::init(false),
166     cl::desc("Inline cold call sites in profile loader if it's beneficial "
167              "for code size."));
168 
169 static cl::opt<int> SampleColdCallSiteThreshold(
170     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
171     cl::desc("Threshold for inlining cold callsites"));
172 
173 namespace {
174 
175 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
176 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
177 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
178 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
179 using BlockEdgeMap =
180     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
181 
182 class SampleProfileLoader;
183 
184 class SampleCoverageTracker {
185 public:
186   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
187 
188   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
189                        uint32_t Discriminator, uint64_t Samples);
190   unsigned computeCoverage(unsigned Used, unsigned Total) const;
191   unsigned countUsedRecords(const FunctionSamples *FS,
192                             ProfileSummaryInfo *PSI) const;
193   unsigned countBodyRecords(const FunctionSamples *FS,
194                             ProfileSummaryInfo *PSI) const;
195   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
196   uint64_t countBodySamples(const FunctionSamples *FS,
197                             ProfileSummaryInfo *PSI) const;
198 
199   void clear() {
200     SampleCoverage.clear();
201     TotalUsedSamples = 0;
202   }
203 
204 private:
205   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
206   using FunctionSamplesCoverageMap =
207       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
208 
209   /// Coverage map for sampling records.
210   ///
211   /// This map keeps a record of sampling records that have been matched to
212   /// an IR instruction. This is used to detect some form of staleness in
213   /// profiles (see flag -sample-profile-check-coverage).
214   ///
215   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
216   /// another map that counts how many times the sample record at the
217   /// given location has been used.
218   FunctionSamplesCoverageMap SampleCoverage;
219 
220   /// Number of samples used from the profile.
221   ///
222   /// When a sampling record is used for the first time, the samples from
223   /// that record are added to this accumulator.  Coverage is later computed
224   /// based on the total number of samples available in this function and
225   /// its callsites.
226   ///
227   /// Note that this accumulator tracks samples used from a single function
228   /// and all the inlined callsites. Strictly, we should have a map of counters
229   /// keyed by FunctionSamples pointers, but these stats are cleared after
230   /// every function, so we just need to keep a single counter.
231   uint64_t TotalUsedSamples = 0;
232 
233   SampleProfileLoader &SPLoader;
234 };
235 
236 class GUIDToFuncNameMapper {
237 public:
238   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
239                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
240       : CurrentReader(Reader), CurrentModule(M),
241       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
242     if (!CurrentReader.useMD5())
243       return;
244 
245     for (const auto &F : CurrentModule) {
246       StringRef OrigName = F.getName();
247       CurrentGUIDToFuncNameMap.insert(
248           {Function::getGUID(OrigName), OrigName});
249 
250       // Local to global var promotion used by optimization like thinlto
251       // will rename the var and add suffix like ".llvm.xxx" to the
252       // original local name. In sample profile, the suffixes of function
253       // names are all stripped. Since it is possible that the mapper is
254       // built in post-thin-link phase and var promotion has been done,
255       // we need to add the substring of function name without the suffix
256       // into the GUIDToFuncNameMap.
257       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
258       if (CanonName != OrigName)
259         CurrentGUIDToFuncNameMap.insert(
260             {Function::getGUID(CanonName), CanonName});
261     }
262 
263     // Update GUIDToFuncNameMap for each function including inlinees.
264     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
265   }
266 
267   ~GUIDToFuncNameMapper() {
268     if (!CurrentReader.useMD5())
269       return;
270 
271     CurrentGUIDToFuncNameMap.clear();
272 
273     // Reset GUIDToFuncNameMap for of each function as they're no
274     // longer valid at this point.
275     SetGUIDToFuncNameMapForAll(nullptr);
276   }
277 
278 private:
279   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
280     std::queue<FunctionSamples *> FSToUpdate;
281     for (auto &IFS : CurrentReader.getProfiles()) {
282       FSToUpdate.push(&IFS.second);
283     }
284 
285     while (!FSToUpdate.empty()) {
286       FunctionSamples *FS = FSToUpdate.front();
287       FSToUpdate.pop();
288       FS->GUIDToFuncNameMap = Map;
289       for (const auto &ICS : FS->getCallsiteSamples()) {
290         const FunctionSamplesMap &FSMap = ICS.second;
291         for (auto &IFS : FSMap) {
292           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
293           FSToUpdate.push(&FS);
294         }
295       }
296     }
297   }
298 
299   SampleProfileReader &CurrentReader;
300   Module &CurrentModule;
301   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
302 };
303 
304 /// Sample profile pass.
305 ///
306 /// This pass reads profile data from the file specified by
307 /// -sample-profile-file and annotates every affected function with the
308 /// profile information found in that file.
309 class SampleProfileLoader {
310 public:
311   SampleProfileLoader(
312       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
313       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
314       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
315       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
316       : GetAC(std::move(GetAssumptionCache)),
317         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
318         CoverageTracker(*this), Filename(std::string(Name)),
319         RemappingFilename(std::string(RemapName)),
320         IsThinLTOPreLink(IsThinLTOPreLink) {}
321 
322   bool doInitialization(Module &M);
323   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
324                    ProfileSummaryInfo *_PSI, CallGraph *CG);
325 
326   void dump() { Reader->dump(); }
327 
328 protected:
329   friend class SampleCoverageTracker;
330 
331   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
332   unsigned getFunctionLoc(Function &F);
333   bool emitAnnotations(Function &F);
334   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
335   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
336   const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
337   std::vector<const FunctionSamples *>
338   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
339   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
340   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
341   bool inlineCallInstruction(CallBase &CB);
342   bool inlineHotFunctions(Function &F,
343                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
344   // Inline cold/small functions in addition to hot ones
345   bool shouldInlineColdCallee(CallBase &CallInst);
346   void emitOptimizationRemarksForInlineCandidates(
347       const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
348       bool Hot);
349   void printEdgeWeight(raw_ostream &OS, Edge E);
350   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
351   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
352   bool computeBlockWeights(Function &F);
353   void findEquivalenceClasses(Function &F);
354   template <bool IsPostDom>
355   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
356                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
357 
358   void propagateWeights(Function &F);
359   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
360   void buildEdges(Function &F);
361   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
362   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
363   void computeDominanceAndLoopInfo(Function &F);
364   void clearFunctionData();
365   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
366                      ProfileSummaryInfo *PSI);
367 
368   /// Map basic blocks to their computed weights.
369   ///
370   /// The weight of a basic block is defined to be the maximum
371   /// of all the instruction weights in that block.
372   BlockWeightMap BlockWeights;
373 
374   /// Map edges to their computed weights.
375   ///
376   /// Edge weights are computed by propagating basic block weights in
377   /// SampleProfile::propagateWeights.
378   EdgeWeightMap EdgeWeights;
379 
380   /// Set of visited blocks during propagation.
381   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
382 
383   /// Set of visited edges during propagation.
384   SmallSet<Edge, 32> VisitedEdges;
385 
386   /// Equivalence classes for block weights.
387   ///
388   /// Two blocks BB1 and BB2 are in the same equivalence class if they
389   /// dominate and post-dominate each other, and they are in the same loop
390   /// nest. When this happens, the two blocks are guaranteed to execute
391   /// the same number of times.
392   EquivalenceClassMap EquivalenceClass;
393 
394   /// Map from function name to Function *. Used to find the function from
395   /// the function name. If the function name contains suffix, additional
396   /// entry is added to map from the stripped name to the function if there
397   /// is one-to-one mapping.
398   StringMap<Function *> SymbolMap;
399 
400   /// Dominance, post-dominance and loop information.
401   std::unique_ptr<DominatorTree> DT;
402   std::unique_ptr<PostDominatorTree> PDT;
403   std::unique_ptr<LoopInfo> LI;
404 
405   std::function<AssumptionCache &(Function &)> GetAC;
406   std::function<TargetTransformInfo &(Function &)> GetTTI;
407   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
408 
409   /// Predecessors for each basic block in the CFG.
410   BlockEdgeMap Predecessors;
411 
412   /// Successors for each basic block in the CFG.
413   BlockEdgeMap Successors;
414 
415   SampleCoverageTracker CoverageTracker;
416 
417   /// Profile reader object.
418   std::unique_ptr<SampleProfileReader> Reader;
419 
420   /// Samples collected for the body of this function.
421   FunctionSamples *Samples = nullptr;
422 
423   /// Name of the profile file to load.
424   std::string Filename;
425 
426   /// Name of the profile remapping file to load.
427   std::string RemappingFilename;
428 
429   /// Flag indicating whether the profile input loaded successfully.
430   bool ProfileIsValid = false;
431 
432   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
433   ///
434   /// In this phase, in annotation, we should not promote indirect calls.
435   /// Instead, we will mark GUIDs that needs to be annotated to the function.
436   bool IsThinLTOPreLink;
437 
438   /// Profile Summary Info computed from sample profile.
439   ProfileSummaryInfo *PSI = nullptr;
440 
441   /// Profle Symbol list tells whether a function name appears in the binary
442   /// used to generate the current profile.
443   std::unique_ptr<ProfileSymbolList> PSL;
444 
445   /// Total number of samples collected in this profile.
446   ///
447   /// This is the sum of all the samples collected in all the functions executed
448   /// at runtime.
449   uint64_t TotalCollectedSamples = 0;
450 
451   /// Optimization Remark Emitter used to emit diagnostic remarks.
452   OptimizationRemarkEmitter *ORE = nullptr;
453 
454   // Information recorded when we declined to inline a call site
455   // because we have determined it is too cold is accumulated for
456   // each callee function. Initially this is just the entry count.
457   struct NotInlinedProfileInfo {
458     uint64_t entryCount;
459   };
460   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
461 
462   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
463   // all the function symbols defined or declared in current module.
464   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
465 
466   // All the Names used in FunctionSamples including outline function
467   // names, inline instance names and call target names.
468   StringSet<> NamesInProfile;
469 
470   // For symbol in profile symbol list, whether to regard their profiles
471   // to be accurate. It is mainly decided by existance of profile symbol
472   // list and -profile-accurate-for-symsinlist flag, but it can be
473   // overriden by -profile-sample-accurate or profile-sample-accurate
474   // attribute.
475   bool ProfAccForSymsInList;
476 };
477 
478 class SampleProfileLoaderLegacyPass : public ModulePass {
479 public:
480   // Class identification, replacement for typeinfo
481   static char ID;
482 
483   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
484                                 bool IsThinLTOPreLink = false)
485       : ModulePass(ID), SampleLoader(
486                             Name, SampleProfileRemappingFile, IsThinLTOPreLink,
487                             [&](Function &F) -> AssumptionCache & {
488                               return ACT->getAssumptionCache(F);
489                             },
490                             [&](Function &F) -> TargetTransformInfo & {
491                               return TTIWP->getTTI(F);
492                             },
493                             [&](Function &F) -> TargetLibraryInfo & {
494                               return TLIWP->getTLI(F);
495                             }) {
496     initializeSampleProfileLoaderLegacyPassPass(
497         *PassRegistry::getPassRegistry());
498   }
499 
500   void dump() { SampleLoader.dump(); }
501 
502   bool doInitialization(Module &M) override {
503     return SampleLoader.doInitialization(M);
504   }
505 
506   StringRef getPassName() const override { return "Sample profile pass"; }
507   bool runOnModule(Module &M) override;
508 
509   void getAnalysisUsage(AnalysisUsage &AU) const override {
510     AU.addRequired<AssumptionCacheTracker>();
511     AU.addRequired<TargetTransformInfoWrapperPass>();
512     AU.addRequired<TargetLibraryInfoWrapperPass>();
513     AU.addRequired<ProfileSummaryInfoWrapperPass>();
514   }
515 
516 private:
517   SampleProfileLoader SampleLoader;
518   AssumptionCacheTracker *ACT = nullptr;
519   TargetTransformInfoWrapperPass *TTIWP = nullptr;
520   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
521 };
522 
523 } // end anonymous namespace
524 
525 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
526 ///
527 /// Functions that were inlined in the original binary will be represented
528 /// in the inline stack in the sample profile. If the profile shows that
529 /// the original inline decision was "good" (i.e., the callsite is executed
530 /// frequently), then we will recreate the inline decision and apply the
531 /// profile from the inlined callsite.
532 ///
533 /// To decide whether an inlined callsite is hot, we compare the callsite
534 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
535 /// regarded as hot if the count is above the cutoff value.
536 ///
537 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
538 /// is present, functions in the profile symbol list but without profile will
539 /// be regarded as cold and much less inlining will happen in CGSCC inlining
540 /// pass, so we tend to lower the hot criteria here to allow more early
541 /// inlining to happen for warm callsites and it is helpful for performance.
542 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
543                                         ProfileSummaryInfo *PSI) {
544   if (!CallsiteFS)
545     return false; // The callsite was not inlined in the original binary.
546 
547   assert(PSI && "PSI is expected to be non null");
548   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
549   if (ProfAccForSymsInList)
550     return !PSI->isColdCount(CallsiteTotalSamples);
551   else
552     return PSI->isHotCount(CallsiteTotalSamples);
553 }
554 
555 /// Mark as used the sample record for the given function samples at
556 /// (LineOffset, Discriminator).
557 ///
558 /// \returns true if this is the first time we mark the given record.
559 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
560                                             uint32_t LineOffset,
561                                             uint32_t Discriminator,
562                                             uint64_t Samples) {
563   LineLocation Loc(LineOffset, Discriminator);
564   unsigned &Count = SampleCoverage[FS][Loc];
565   bool FirstTime = (++Count == 1);
566   if (FirstTime)
567     TotalUsedSamples += Samples;
568   return FirstTime;
569 }
570 
571 /// Return the number of sample records that were applied from this profile.
572 ///
573 /// This count does not include records from cold inlined callsites.
574 unsigned
575 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
576                                         ProfileSummaryInfo *PSI) const {
577   auto I = SampleCoverage.find(FS);
578 
579   // The size of the coverage map for FS represents the number of records
580   // that were marked used at least once.
581   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
582 
583   // If there are inlined callsites in this function, count the samples found
584   // in the respective bodies. However, do not bother counting callees with 0
585   // total samples, these are callees that were never invoked at runtime.
586   for (const auto &I : FS->getCallsiteSamples())
587     for (const auto &J : I.second) {
588       const FunctionSamples *CalleeSamples = &J.second;
589       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
590         Count += countUsedRecords(CalleeSamples, PSI);
591     }
592 
593   return Count;
594 }
595 
596 /// Return the number of sample records in the body of this profile.
597 ///
598 /// This count does not include records from cold inlined callsites.
599 unsigned
600 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
601                                         ProfileSummaryInfo *PSI) const {
602   unsigned Count = FS->getBodySamples().size();
603 
604   // Only count records in hot callsites.
605   for (const auto &I : FS->getCallsiteSamples())
606     for (const auto &J : I.second) {
607       const FunctionSamples *CalleeSamples = &J.second;
608       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
609         Count += countBodyRecords(CalleeSamples, PSI);
610     }
611 
612   return Count;
613 }
614 
615 /// Return the number of samples collected in the body of this profile.
616 ///
617 /// This count does not include samples from cold inlined callsites.
618 uint64_t
619 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
620                                         ProfileSummaryInfo *PSI) const {
621   uint64_t Total = 0;
622   for (const auto &I : FS->getBodySamples())
623     Total += I.second.getSamples();
624 
625   // Only count samples in hot callsites.
626   for (const auto &I : FS->getCallsiteSamples())
627     for (const auto &J : I.second) {
628       const FunctionSamples *CalleeSamples = &J.second;
629       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
630         Total += countBodySamples(CalleeSamples, PSI);
631     }
632 
633   return Total;
634 }
635 
636 /// Return the fraction of sample records used in this profile.
637 ///
638 /// The returned value is an unsigned integer in the range 0-100 indicating
639 /// the percentage of sample records that were used while applying this
640 /// profile to the associated function.
641 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
642                                                 unsigned Total) const {
643   assert(Used <= Total &&
644          "number of used records cannot exceed the total number of records");
645   return Total > 0 ? Used * 100 / Total : 100;
646 }
647 
648 /// Clear all the per-function data used to load samples and propagate weights.
649 void SampleProfileLoader::clearFunctionData() {
650   BlockWeights.clear();
651   EdgeWeights.clear();
652   VisitedBlocks.clear();
653   VisitedEdges.clear();
654   EquivalenceClass.clear();
655   DT = nullptr;
656   PDT = nullptr;
657   LI = nullptr;
658   Predecessors.clear();
659   Successors.clear();
660   CoverageTracker.clear();
661 }
662 
663 #ifndef NDEBUG
664 /// Print the weight of edge \p E on stream \p OS.
665 ///
666 /// \param OS  Stream to emit the output to.
667 /// \param E  Edge to print.
668 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
669   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
670      << "]: " << EdgeWeights[E] << "\n";
671 }
672 
673 /// Print the equivalence class of block \p BB on stream \p OS.
674 ///
675 /// \param OS  Stream to emit the output to.
676 /// \param BB  Block to print.
677 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
678                                                 const BasicBlock *BB) {
679   const BasicBlock *Equiv = EquivalenceClass[BB];
680   OS << "equivalence[" << BB->getName()
681      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
682 }
683 
684 /// Print the weight of block \p BB on stream \p OS.
685 ///
686 /// \param OS  Stream to emit the output to.
687 /// \param BB  Block to print.
688 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
689                                            const BasicBlock *BB) const {
690   const auto &I = BlockWeights.find(BB);
691   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
692   OS << "weight[" << BB->getName() << "]: " << W << "\n";
693 }
694 #endif
695 
696 /// Get the weight for an instruction.
697 ///
698 /// The "weight" of an instruction \p Inst is the number of samples
699 /// collected on that instruction at runtime. To retrieve it, we
700 /// need to compute the line number of \p Inst relative to the start of its
701 /// function. We use HeaderLineno to compute the offset. We then
702 /// look up the samples collected for \p Inst using BodySamples.
703 ///
704 /// \param Inst Instruction to query.
705 ///
706 /// \returns the weight of \p Inst.
707 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
708   const DebugLoc &DLoc = Inst.getDebugLoc();
709   if (!DLoc)
710     return std::error_code();
711 
712   const FunctionSamples *FS = findFunctionSamples(Inst);
713   if (!FS)
714     return std::error_code();
715 
716   // Ignore all intrinsics, phinodes and branch instructions.
717   // Branch and phinodes instruction usually contains debug info from sources outside of
718   // the residing basic block, thus we ignore them during annotation.
719   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
720     return std::error_code();
721 
722   // If a direct call/invoke instruction is inlined in profile
723   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
724   // it means that the inlined callsite has no sample, thus the call
725   // instruction should have 0 count.
726   if (auto *CB = dyn_cast<CallBase>(&Inst))
727     if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
728       return 0;
729 
730   const DILocation *DIL = DLoc;
731   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
732   uint32_t Discriminator = DIL->getBaseDiscriminator();
733   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
734   if (R) {
735     bool FirstMark =
736         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
737     if (FirstMark) {
738       ORE->emit([&]() {
739         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
740         Remark << "Applied " << ore::NV("NumSamples", *R);
741         Remark << " samples from profile (offset: ";
742         Remark << ore::NV("LineOffset", LineOffset);
743         if (Discriminator) {
744           Remark << ".";
745           Remark << ore::NV("Discriminator", Discriminator);
746         }
747         Remark << ")";
748         return Remark;
749       });
750     }
751     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
752                       << DIL->getBaseDiscriminator() << ":" << Inst
753                       << " (line offset: " << LineOffset << "."
754                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
755                       << ")\n");
756   }
757   return R;
758 }
759 
760 /// Compute the weight of a basic block.
761 ///
762 /// The weight of basic block \p BB is the maximum weight of all the
763 /// instructions in BB.
764 ///
765 /// \param BB The basic block to query.
766 ///
767 /// \returns the weight for \p BB.
768 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
769   uint64_t Max = 0;
770   bool HasWeight = false;
771   for (auto &I : BB->getInstList()) {
772     const ErrorOr<uint64_t> &R = getInstWeight(I);
773     if (R) {
774       Max = std::max(Max, R.get());
775       HasWeight = true;
776     }
777   }
778   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
779 }
780 
781 /// Compute and store the weights of every basic block.
782 ///
783 /// This populates the BlockWeights map by computing
784 /// the weights of every basic block in the CFG.
785 ///
786 /// \param F The function to query.
787 bool SampleProfileLoader::computeBlockWeights(Function &F) {
788   bool Changed = false;
789   LLVM_DEBUG(dbgs() << "Block weights\n");
790   for (const auto &BB : F) {
791     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
792     if (Weight) {
793       BlockWeights[&BB] = Weight.get();
794       VisitedBlocks.insert(&BB);
795       Changed = true;
796     }
797     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
798   }
799 
800   return Changed;
801 }
802 
803 /// Get the FunctionSamples for a call instruction.
804 ///
805 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
806 /// instance in which that call instruction is calling to. It contains
807 /// all samples that resides in the inlined instance. We first find the
808 /// inlined instance in which the call instruction is from, then we
809 /// traverse its children to find the callsite with the matching
810 /// location.
811 ///
812 /// \param Inst Call/Invoke instruction to query.
813 ///
814 /// \returns The FunctionSamples pointer to the inlined instance.
815 const FunctionSamples *
816 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
817   const DILocation *DIL = Inst.getDebugLoc();
818   if (!DIL) {
819     return nullptr;
820   }
821 
822   StringRef CalleeName;
823   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
824     if (Function *Callee = CI->getCalledFunction())
825       CalleeName = Callee->getName();
826 
827   const FunctionSamples *FS = findFunctionSamples(Inst);
828   if (FS == nullptr)
829     return nullptr;
830 
831   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
832                                                 DIL->getBaseDiscriminator()),
833                                    CalleeName);
834 }
835 
836 /// Returns a vector of FunctionSamples that are the indirect call targets
837 /// of \p Inst. The vector is sorted by the total number of samples. Stores
838 /// the total call count of the indirect call in \p Sum.
839 std::vector<const FunctionSamples *>
840 SampleProfileLoader::findIndirectCallFunctionSamples(
841     const Instruction &Inst, uint64_t &Sum) const {
842   const DILocation *DIL = Inst.getDebugLoc();
843   std::vector<const FunctionSamples *> R;
844 
845   if (!DIL) {
846     return R;
847   }
848 
849   const FunctionSamples *FS = findFunctionSamples(Inst);
850   if (FS == nullptr)
851     return R;
852 
853   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
854   uint32_t Discriminator = DIL->getBaseDiscriminator();
855 
856   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
857   Sum = 0;
858   if (T)
859     for (const auto &T_C : T.get())
860       Sum += T_C.second;
861   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
862           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
863     if (M->empty())
864       return R;
865     for (const auto &NameFS : *M) {
866       Sum += NameFS.second.getEntrySamples();
867       R.push_back(&NameFS.second);
868     }
869     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
870       if (L->getEntrySamples() != R->getEntrySamples())
871         return L->getEntrySamples() > R->getEntrySamples();
872       return FunctionSamples::getGUID(L->getName()) <
873              FunctionSamples::getGUID(R->getName());
874     });
875   }
876   return R;
877 }
878 
879 /// Get the FunctionSamples for an instruction.
880 ///
881 /// The FunctionSamples of an instruction \p Inst is the inlined instance
882 /// in which that instruction is coming from. We traverse the inline stack
883 /// of that instruction, and match it with the tree nodes in the profile.
884 ///
885 /// \param Inst Instruction to query.
886 ///
887 /// \returns the FunctionSamples pointer to the inlined instance.
888 const FunctionSamples *
889 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
890   const DILocation *DIL = Inst.getDebugLoc();
891   if (!DIL)
892     return Samples;
893 
894   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
895   if (it.second)
896     it.first->second = Samples->findFunctionSamples(DIL);
897   return it.first->second;
898 }
899 
900 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) {
901   Function *CalledFunction = CB.getCalledFunction();
902   assert(CalledFunction);
903   DebugLoc DLoc = CB.getDebugLoc();
904   BasicBlock *BB = CB.getParent();
905   InlineParams Params = getInlineParams();
906   Params.ComputeFullInlineCost = true;
907   // Checks if there is anything in the reachable portion of the callee at
908   // this callsite that makes this inlining potentially illegal. Need to
909   // set ComputeFullInlineCost, otherwise getInlineCost may return early
910   // when cost exceeds threshold without checking all IRs in the callee.
911   // The acutal cost does not matter because we only checks isNever() to
912   // see if it is legal to inline the callsite.
913   InlineCost Cost =
914       getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI);
915   if (Cost.isNever()) {
916     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
917               << "incompatible inlining");
918     return false;
919   }
920   InlineFunctionInfo IFI(nullptr, GetAC);
921   if (InlineFunction(CB, IFI).isSuccess()) {
922     // The call to InlineFunction erases I, so we can't pass it here.
923     emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
924                     true, CSINLINE_DEBUG);
925     return true;
926   }
927   return false;
928 }
929 
930 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
931   if (!ProfileSizeInline)
932     return false;
933 
934   Function *Callee = CallInst.getCalledFunction();
935   if (Callee == nullptr)
936     return false;
937 
938   InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
939                                   GetAC, GetTLI);
940 
941   return Cost.getCost() <= SampleColdCallSiteThreshold;
942 }
943 
944 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
945     const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
946     bool Hot) {
947   for (auto I : Candidates) {
948     Function *CalledFunction = I->getCalledFunction();
949     if (CalledFunction) {
950       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
951                                            I->getDebugLoc(), I->getParent())
952                 << "previous inlining reattempted for "
953                 << (Hot ? "hotness: '" : "size: '")
954                 << ore::NV("Callee", CalledFunction) << "' into '"
955                 << ore::NV("Caller", &F) << "'");
956     }
957   }
958 }
959 
960 /// Iteratively inline hot callsites of a function.
961 ///
962 /// Iteratively traverse all callsites of the function \p F, and find if
963 /// the corresponding inlined instance exists and is hot in profile. If
964 /// it is hot enough, inline the callsites and adds new callsites of the
965 /// callee into the caller. If the call is an indirect call, first promote
966 /// it to direct call. Each indirect call is limited with a single target.
967 ///
968 /// \param F function to perform iterative inlining.
969 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
970 ///     inlined in the profiled binary.
971 ///
972 /// \returns True if there is any inline happened.
973 bool SampleProfileLoader::inlineHotFunctions(
974     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
975   DenseSet<Instruction *> PromotedInsns;
976 
977   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
978   // Profile symbol list is ignored when profile-sample-accurate is on.
979   assert((!ProfAccForSymsInList ||
980           (!ProfileSampleAccurate &&
981            !F.hasFnAttribute("profile-sample-accurate"))) &&
982          "ProfAccForSymsInList should be false when profile-sample-accurate "
983          "is enabled");
984 
985   DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites;
986   bool Changed = false;
987   while (true) {
988     bool LocalChanged = false;
989     SmallVector<CallBase *, 10> CIS;
990     for (auto &BB : F) {
991       bool Hot = false;
992       SmallVector<CallBase *, 10> AllCandidates;
993       SmallVector<CallBase *, 10> ColdCandidates;
994       for (auto &I : BB.getInstList()) {
995         const FunctionSamples *FS = nullptr;
996         if (auto *CB = dyn_cast<CallBase>(&I)) {
997           if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
998             AllCandidates.push_back(CB);
999             if (FS->getEntrySamples() > 0)
1000               localNotInlinedCallSites.try_emplace(CB, FS);
1001             if (callsiteIsHot(FS, PSI))
1002               Hot = true;
1003             else if (shouldInlineColdCallee(*CB))
1004               ColdCandidates.push_back(CB);
1005           }
1006         }
1007       }
1008       if (Hot) {
1009         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1010         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1011       } else {
1012         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1013         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1014       }
1015     }
1016     for (CallBase *I : CIS) {
1017       Function *CalledFunction = I->getCalledFunction();
1018       // Do not inline recursive calls.
1019       if (CalledFunction == &F)
1020         continue;
1021       if (I->isIndirectCall()) {
1022         if (PromotedInsns.count(I))
1023           continue;
1024         uint64_t Sum;
1025         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1026           if (IsThinLTOPreLink) {
1027             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1028                                      PSI->getOrCompHotCountThreshold());
1029             continue;
1030           }
1031           auto CalleeFunctionName = FS->getFuncName();
1032           // If it is a recursive call, we do not inline it as it could bloat
1033           // the code exponentially. There is way to better handle this, e.g.
1034           // clone the caller first, and inline the cloned caller if it is
1035           // recursive. As llvm does not inline recursive calls, we will
1036           // simply ignore it instead of handling it explicitly.
1037           if (CalleeFunctionName == F.getName())
1038             continue;
1039 
1040           if (!callsiteIsHot(FS, PSI))
1041             continue;
1042 
1043           const char *Reason = "Callee function not available";
1044           auto R = SymbolMap.find(CalleeFunctionName);
1045           if (R != SymbolMap.end() && R->getValue() &&
1046               !R->getValue()->isDeclaration() &&
1047               R->getValue()->getSubprogram() &&
1048               R->getValue()->hasFnAttribute("use-sample-profile") &&
1049               isLegalToPromote(*I, R->getValue(), &Reason)) {
1050             uint64_t C = FS->getEntrySamples();
1051             auto &DI =
1052                 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE);
1053             Sum -= C;
1054             PromotedInsns.insert(I);
1055             // If profile mismatches, we should not attempt to inline DI.
1056             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1057                 inlineCallInstruction(cast<CallBase>(DI))) {
1058               localNotInlinedCallSites.erase(I);
1059               LocalChanged = true;
1060               ++NumCSInlined;
1061             }
1062           } else {
1063             LLVM_DEBUG(dbgs()
1064                        << "\nFailed to promote indirect call to "
1065                        << CalleeFunctionName << " because " << Reason << "\n");
1066           }
1067         }
1068       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1069                  !CalledFunction->isDeclaration()) {
1070         if (inlineCallInstruction(*I)) {
1071           localNotInlinedCallSites.erase(I);
1072           LocalChanged = true;
1073           ++NumCSInlined;
1074         }
1075       } else if (IsThinLTOPreLink) {
1076         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1077             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1078       }
1079     }
1080     if (LocalChanged) {
1081       Changed = true;
1082     } else {
1083       break;
1084     }
1085   }
1086 
1087   // Accumulate not inlined callsite information into notInlinedSamples
1088   for (const auto &Pair : localNotInlinedCallSites) {
1089     CallBase *I = Pair.getFirst();
1090     Function *Callee = I->getCalledFunction();
1091     if (!Callee || Callee->isDeclaration())
1092       continue;
1093 
1094     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1095                                          I->getDebugLoc(), I->getParent())
1096               << "previous inlining not repeated: '"
1097               << ore::NV("Callee", Callee) << "' into '"
1098               << ore::NV("Caller", &F) << "'");
1099 
1100     ++NumCSNotInlined;
1101     const FunctionSamples *FS = Pair.getSecond();
1102     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1103       continue;
1104     }
1105 
1106     if (ProfileMergeInlinee) {
1107       // Use entry samples as head samples during the merge, as inlinees
1108       // don't have head samples.
1109       assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1110       const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1111 
1112       // Note that we have to do the merge right after processing function.
1113       // This allows OutlineFS's profile to be used for annotation during
1114       // top-down processing of functions' annotation.
1115       FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1116       OutlineFS->merge(*FS);
1117     } else {
1118       auto pair =
1119           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1120       pair.first->second.entryCount += FS->getEntrySamples();
1121     }
1122   }
1123   return Changed;
1124 }
1125 
1126 /// Find equivalence classes for the given block.
1127 ///
1128 /// This finds all the blocks that are guaranteed to execute the same
1129 /// number of times as \p BB1. To do this, it traverses all the
1130 /// descendants of \p BB1 in the dominator or post-dominator tree.
1131 ///
1132 /// A block BB2 will be in the same equivalence class as \p BB1 if
1133 /// the following holds:
1134 ///
1135 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1136 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1137 ///    dominate BB1 in the post-dominator tree.
1138 ///
1139 /// 2- Both BB2 and \p BB1 must be in the same loop.
1140 ///
1141 /// For every block BB2 that meets those two requirements, we set BB2's
1142 /// equivalence class to \p BB1.
1143 ///
1144 /// \param BB1  Block to check.
1145 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1146 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1147 ///                 with blocks from \p BB1's dominator tree, then
1148 ///                 this is the post-dominator tree, and vice versa.
1149 template <bool IsPostDom>
1150 void SampleProfileLoader::findEquivalencesFor(
1151     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1152     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1153   const BasicBlock *EC = EquivalenceClass[BB1];
1154   uint64_t Weight = BlockWeights[EC];
1155   for (const auto *BB2 : Descendants) {
1156     bool IsDomParent = DomTree->dominates(BB2, BB1);
1157     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1158     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1159       EquivalenceClass[BB2] = EC;
1160       // If BB2 is visited, then the entire EC should be marked as visited.
1161       if (VisitedBlocks.count(BB2)) {
1162         VisitedBlocks.insert(EC);
1163       }
1164 
1165       // If BB2 is heavier than BB1, make BB2 have the same weight
1166       // as BB1.
1167       //
1168       // Note that we don't worry about the opposite situation here
1169       // (when BB2 is lighter than BB1). We will deal with this
1170       // during the propagation phase. Right now, we just want to
1171       // make sure that BB1 has the largest weight of all the
1172       // members of its equivalence set.
1173       Weight = std::max(Weight, BlockWeights[BB2]);
1174     }
1175   }
1176   if (EC == &EC->getParent()->getEntryBlock()) {
1177     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1178   } else {
1179     BlockWeights[EC] = Weight;
1180   }
1181 }
1182 
1183 /// Find equivalence classes.
1184 ///
1185 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1186 /// the weights of all the blocks in the same equivalence class to the same
1187 /// weight. To compute the concept of equivalence, we use dominance and loop
1188 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1189 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1190 ///
1191 /// \param F The function to query.
1192 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1193   SmallVector<BasicBlock *, 8> DominatedBBs;
1194   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1195   // Find equivalence sets based on dominance and post-dominance information.
1196   for (auto &BB : F) {
1197     BasicBlock *BB1 = &BB;
1198 
1199     // Compute BB1's equivalence class once.
1200     if (EquivalenceClass.count(BB1)) {
1201       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1202       continue;
1203     }
1204 
1205     // By default, blocks are in their own equivalence class.
1206     EquivalenceClass[BB1] = BB1;
1207 
1208     // Traverse all the blocks dominated by BB1. We are looking for
1209     // every basic block BB2 such that:
1210     //
1211     // 1- BB1 dominates BB2.
1212     // 2- BB2 post-dominates BB1.
1213     // 3- BB1 and BB2 are in the same loop nest.
1214     //
1215     // If all those conditions hold, it means that BB2 is executed
1216     // as many times as BB1, so they are placed in the same equivalence
1217     // class by making BB2's equivalence class be BB1.
1218     DominatedBBs.clear();
1219     DT->getDescendants(BB1, DominatedBBs);
1220     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1221 
1222     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1223   }
1224 
1225   // Assign weights to equivalence classes.
1226   //
1227   // All the basic blocks in the same equivalence class will execute
1228   // the same number of times. Since we know that the head block in
1229   // each equivalence class has the largest weight, assign that weight
1230   // to all the blocks in that equivalence class.
1231   LLVM_DEBUG(
1232       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1233   for (auto &BI : F) {
1234     const BasicBlock *BB = &BI;
1235     const BasicBlock *EquivBB = EquivalenceClass[BB];
1236     if (BB != EquivBB)
1237       BlockWeights[BB] = BlockWeights[EquivBB];
1238     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1239   }
1240 }
1241 
1242 /// Visit the given edge to decide if it has a valid weight.
1243 ///
1244 /// If \p E has not been visited before, we copy to \p UnknownEdge
1245 /// and increment the count of unknown edges.
1246 ///
1247 /// \param E  Edge to visit.
1248 /// \param NumUnknownEdges  Current number of unknown edges.
1249 /// \param UnknownEdge  Set if E has not been visited before.
1250 ///
1251 /// \returns E's weight, if known. Otherwise, return 0.
1252 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1253                                         Edge *UnknownEdge) {
1254   if (!VisitedEdges.count(E)) {
1255     (*NumUnknownEdges)++;
1256     *UnknownEdge = E;
1257     return 0;
1258   }
1259 
1260   return EdgeWeights[E];
1261 }
1262 
1263 /// Propagate weights through incoming/outgoing edges.
1264 ///
1265 /// If the weight of a basic block is known, and there is only one edge
1266 /// with an unknown weight, we can calculate the weight of that edge.
1267 ///
1268 /// Similarly, if all the edges have a known count, we can calculate the
1269 /// count of the basic block, if needed.
1270 ///
1271 /// \param F  Function to process.
1272 /// \param UpdateBlockCount  Whether we should update basic block counts that
1273 ///                          has already been annotated.
1274 ///
1275 /// \returns  True if new weights were assigned to edges or blocks.
1276 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1277                                                 bool UpdateBlockCount) {
1278   bool Changed = false;
1279   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1280   for (const auto &BI : F) {
1281     const BasicBlock *BB = &BI;
1282     const BasicBlock *EC = EquivalenceClass[BB];
1283 
1284     // Visit all the predecessor and successor edges to determine
1285     // which ones have a weight assigned already. Note that it doesn't
1286     // matter that we only keep track of a single unknown edge. The
1287     // only case we are interested in handling is when only a single
1288     // edge is unknown (see setEdgeOrBlockWeight).
1289     for (unsigned i = 0; i < 2; i++) {
1290       uint64_t TotalWeight = 0;
1291       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1292       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1293 
1294       if (i == 0) {
1295         // First, visit all predecessor edges.
1296         NumTotalEdges = Predecessors[BB].size();
1297         for (auto *Pred : Predecessors[BB]) {
1298           Edge E = std::make_pair(Pred, BB);
1299           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1300           if (E.first == E.second)
1301             SelfReferentialEdge = E;
1302         }
1303         if (NumTotalEdges == 1) {
1304           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1305         }
1306       } else {
1307         // On the second round, visit all successor edges.
1308         NumTotalEdges = Successors[BB].size();
1309         for (auto *Succ : Successors[BB]) {
1310           Edge E = std::make_pair(BB, Succ);
1311           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1312         }
1313         if (NumTotalEdges == 1) {
1314           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1315         }
1316       }
1317 
1318       // After visiting all the edges, there are three cases that we
1319       // can handle immediately:
1320       //
1321       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1322       //   In this case, we simply check that the sum of all the edges
1323       //   is the same as BB's weight. If not, we change BB's weight
1324       //   to match. Additionally, if BB had not been visited before,
1325       //   we mark it visited.
1326       //
1327       // - Only one edge is unknown and BB has already been visited.
1328       //   In this case, we can compute the weight of the edge by
1329       //   subtracting the total block weight from all the known
1330       //   edge weights. If the edges weight more than BB, then the
1331       //   edge of the last remaining edge is set to zero.
1332       //
1333       // - There exists a self-referential edge and the weight of BB is
1334       //   known. In this case, this edge can be based on BB's weight.
1335       //   We add up all the other known edges and set the weight on
1336       //   the self-referential edge as we did in the previous case.
1337       //
1338       // In any other case, we must continue iterating. Eventually,
1339       // all edges will get a weight, or iteration will stop when
1340       // it reaches SampleProfileMaxPropagateIterations.
1341       if (NumUnknownEdges <= 1) {
1342         uint64_t &BBWeight = BlockWeights[EC];
1343         if (NumUnknownEdges == 0) {
1344           if (!VisitedBlocks.count(EC)) {
1345             // If we already know the weight of all edges, the weight of the
1346             // basic block can be computed. It should be no larger than the sum
1347             // of all edge weights.
1348             if (TotalWeight > BBWeight) {
1349               BBWeight = TotalWeight;
1350               Changed = true;
1351               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1352                                 << " known. Set weight for block: ";
1353                          printBlockWeight(dbgs(), BB););
1354             }
1355           } else if (NumTotalEdges == 1 &&
1356                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1357             // If there is only one edge for the visited basic block, use the
1358             // block weight to adjust edge weight if edge weight is smaller.
1359             EdgeWeights[SingleEdge] = BlockWeights[EC];
1360             Changed = true;
1361           }
1362         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1363           // If there is a single unknown edge and the block has been
1364           // visited, then we can compute E's weight.
1365           if (BBWeight >= TotalWeight)
1366             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1367           else
1368             EdgeWeights[UnknownEdge] = 0;
1369           const BasicBlock *OtherEC;
1370           if (i == 0)
1371             OtherEC = EquivalenceClass[UnknownEdge.first];
1372           else
1373             OtherEC = EquivalenceClass[UnknownEdge.second];
1374           // Edge weights should never exceed the BB weights it connects.
1375           if (VisitedBlocks.count(OtherEC) &&
1376               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1377             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1378           VisitedEdges.insert(UnknownEdge);
1379           Changed = true;
1380           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1381                      printEdgeWeight(dbgs(), UnknownEdge));
1382         }
1383       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1384         // If a block Weights 0, all its in/out edges should weight 0.
1385         if (i == 0) {
1386           for (auto *Pred : Predecessors[BB]) {
1387             Edge E = std::make_pair(Pred, BB);
1388             EdgeWeights[E] = 0;
1389             VisitedEdges.insert(E);
1390           }
1391         } else {
1392           for (auto *Succ : Successors[BB]) {
1393             Edge E = std::make_pair(BB, Succ);
1394             EdgeWeights[E] = 0;
1395             VisitedEdges.insert(E);
1396           }
1397         }
1398       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1399         uint64_t &BBWeight = BlockWeights[BB];
1400         // We have a self-referential edge and the weight of BB is known.
1401         if (BBWeight >= TotalWeight)
1402           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1403         else
1404           EdgeWeights[SelfReferentialEdge] = 0;
1405         VisitedEdges.insert(SelfReferentialEdge);
1406         Changed = true;
1407         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1408                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1409       }
1410       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1411         BlockWeights[EC] = TotalWeight;
1412         VisitedBlocks.insert(EC);
1413         Changed = true;
1414       }
1415     }
1416   }
1417 
1418   return Changed;
1419 }
1420 
1421 /// Build in/out edge lists for each basic block in the CFG.
1422 ///
1423 /// We are interested in unique edges. If a block B1 has multiple
1424 /// edges to another block B2, we only add a single B1->B2 edge.
1425 void SampleProfileLoader::buildEdges(Function &F) {
1426   for (auto &BI : F) {
1427     BasicBlock *B1 = &BI;
1428 
1429     // Add predecessors for B1.
1430     SmallPtrSet<BasicBlock *, 16> Visited;
1431     if (!Predecessors[B1].empty())
1432       llvm_unreachable("Found a stale predecessors list in a basic block.");
1433     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1434       BasicBlock *B2 = *PI;
1435       if (Visited.insert(B2).second)
1436         Predecessors[B1].push_back(B2);
1437     }
1438 
1439     // Add successors for B1.
1440     Visited.clear();
1441     if (!Successors[B1].empty())
1442       llvm_unreachable("Found a stale successors list in a basic block.");
1443     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1444       BasicBlock *B2 = *SI;
1445       if (Visited.insert(B2).second)
1446         Successors[B1].push_back(B2);
1447     }
1448   }
1449 }
1450 
1451 /// Returns the sorted CallTargetMap \p M by count in descending order.
1452 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1453     const SampleRecord::CallTargetMap & M) {
1454   SmallVector<InstrProfValueData, 2> R;
1455   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1456     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1457   }
1458   return R;
1459 }
1460 
1461 /// Propagate weights into edges
1462 ///
1463 /// The following rules are applied to every block BB in the CFG:
1464 ///
1465 /// - If BB has a single predecessor/successor, then the weight
1466 ///   of that edge is the weight of the block.
1467 ///
1468 /// - If all incoming or outgoing edges are known except one, and the
1469 ///   weight of the block is already known, the weight of the unknown
1470 ///   edge will be the weight of the block minus the sum of all the known
1471 ///   edges. If the sum of all the known edges is larger than BB's weight,
1472 ///   we set the unknown edge weight to zero.
1473 ///
1474 /// - If there is a self-referential edge, and the weight of the block is
1475 ///   known, the weight for that edge is set to the weight of the block
1476 ///   minus the weight of the other incoming edges to that block (if
1477 ///   known).
1478 void SampleProfileLoader::propagateWeights(Function &F) {
1479   bool Changed = true;
1480   unsigned I = 0;
1481 
1482   // If BB weight is larger than its corresponding loop's header BB weight,
1483   // use the BB weight to replace the loop header BB weight.
1484   for (auto &BI : F) {
1485     BasicBlock *BB = &BI;
1486     Loop *L = LI->getLoopFor(BB);
1487     if (!L) {
1488       continue;
1489     }
1490     BasicBlock *Header = L->getHeader();
1491     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1492       BlockWeights[Header] = BlockWeights[BB];
1493     }
1494   }
1495 
1496   // Before propagation starts, build, for each block, a list of
1497   // unique predecessors and successors. This is necessary to handle
1498   // identical edges in multiway branches. Since we visit all blocks and all
1499   // edges of the CFG, it is cleaner to build these lists once at the start
1500   // of the pass.
1501   buildEdges(F);
1502 
1503   // Propagate until we converge or we go past the iteration limit.
1504   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1505     Changed = propagateThroughEdges(F, false);
1506   }
1507 
1508   // The first propagation propagates BB counts from annotated BBs to unknown
1509   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1510   // to propagate edge weights.
1511   VisitedEdges.clear();
1512   Changed = true;
1513   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1514     Changed = propagateThroughEdges(F, false);
1515   }
1516 
1517   // The 3rd propagation pass allows adjust annotated BB weights that are
1518   // obviously wrong.
1519   Changed = true;
1520   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1521     Changed = propagateThroughEdges(F, true);
1522   }
1523 
1524   // Generate MD_prof metadata for every branch instruction using the
1525   // edge weights computed during propagation.
1526   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1527   LLVMContext &Ctx = F.getContext();
1528   MDBuilder MDB(Ctx);
1529   for (auto &BI : F) {
1530     BasicBlock *BB = &BI;
1531 
1532     if (BlockWeights[BB]) {
1533       for (auto &I : BB->getInstList()) {
1534         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1535           continue;
1536         if (!cast<CallBase>(I).getCalledFunction()) {
1537           const DebugLoc &DLoc = I.getDebugLoc();
1538           if (!DLoc)
1539             continue;
1540           const DILocation *DIL = DLoc;
1541           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1542           uint32_t Discriminator = DIL->getBaseDiscriminator();
1543 
1544           const FunctionSamples *FS = findFunctionSamples(I);
1545           if (!FS)
1546             continue;
1547           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1548           if (!T || T.get().empty())
1549             continue;
1550           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1551               GetSortedValueDataFromCallTargets(T.get());
1552           uint64_t Sum;
1553           findIndirectCallFunctionSamples(I, Sum);
1554           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1555                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1556                             SortedCallTargets.size());
1557         } else if (!isa<IntrinsicInst>(&I)) {
1558           I.setMetadata(LLVMContext::MD_prof,
1559                         MDB.createBranchWeights(
1560                             {static_cast<uint32_t>(BlockWeights[BB])}));
1561         }
1562       }
1563     }
1564     Instruction *TI = BB->getTerminator();
1565     if (TI->getNumSuccessors() == 1)
1566       continue;
1567     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1568       continue;
1569 
1570     DebugLoc BranchLoc = TI->getDebugLoc();
1571     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1572                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1573                                       : Twine("<UNKNOWN LOCATION>"))
1574                       << ".\n");
1575     SmallVector<uint32_t, 4> Weights;
1576     uint32_t MaxWeight = 0;
1577     Instruction *MaxDestInst;
1578     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1579       BasicBlock *Succ = TI->getSuccessor(I);
1580       Edge E = std::make_pair(BB, Succ);
1581       uint64_t Weight = EdgeWeights[E];
1582       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1583       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1584       // if needed. Sample counts in profiles are 64-bit unsigned values,
1585       // but internally branch weights are expressed as 32-bit values.
1586       if (Weight > std::numeric_limits<uint32_t>::max()) {
1587         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1588         Weight = std::numeric_limits<uint32_t>::max();
1589       }
1590       // Weight is added by one to avoid propagation errors introduced by
1591       // 0 weights.
1592       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1593       if (Weight != 0) {
1594         if (Weight > MaxWeight) {
1595           MaxWeight = Weight;
1596           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1597         }
1598       }
1599     }
1600 
1601     misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1602 
1603     uint64_t TempWeight;
1604     // Only set weights if there is at least one non-zero weight.
1605     // In any other case, let the analyzer set weights.
1606     // Do not set weights if the weights are present. In ThinLTO, the profile
1607     // annotation is done twice. If the first annotation already set the
1608     // weights, the second pass does not need to set it.
1609     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1610       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1611       TI->setMetadata(LLVMContext::MD_prof,
1612                       MDB.createBranchWeights(Weights));
1613       ORE->emit([&]() {
1614         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1615                << "most popular destination for conditional branches at "
1616                << ore::NV("CondBranchesLoc", BranchLoc);
1617       });
1618     } else {
1619       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1620     }
1621   }
1622 }
1623 
1624 /// Get the line number for the function header.
1625 ///
1626 /// This looks up function \p F in the current compilation unit and
1627 /// retrieves the line number where the function is defined. This is
1628 /// line 0 for all the samples read from the profile file. Every line
1629 /// number is relative to this line.
1630 ///
1631 /// \param F  Function object to query.
1632 ///
1633 /// \returns the line number where \p F is defined. If it returns 0,
1634 ///          it means that there is no debug information available for \p F.
1635 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1636   if (DISubprogram *S = F.getSubprogram())
1637     return S->getLine();
1638 
1639   if (NoWarnSampleUnused)
1640     return 0;
1641 
1642   // If the start of \p F is missing, emit a diagnostic to inform the user
1643   // about the missed opportunity.
1644   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1645       "No debug information found in function " + F.getName() +
1646           ": Function profile not used",
1647       DS_Warning));
1648   return 0;
1649 }
1650 
1651 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1652   DT.reset(new DominatorTree);
1653   DT->recalculate(F);
1654 
1655   PDT.reset(new PostDominatorTree(F));
1656 
1657   LI.reset(new LoopInfo);
1658   LI->analyze(*DT);
1659 }
1660 
1661 /// Generate branch weight metadata for all branches in \p F.
1662 ///
1663 /// Branch weights are computed out of instruction samples using a
1664 /// propagation heuristic. Propagation proceeds in 3 phases:
1665 ///
1666 /// 1- Assignment of block weights. All the basic blocks in the function
1667 ///    are initial assigned the same weight as their most frequently
1668 ///    executed instruction.
1669 ///
1670 /// 2- Creation of equivalence classes. Since samples may be missing from
1671 ///    blocks, we can fill in the gaps by setting the weights of all the
1672 ///    blocks in the same equivalence class to the same weight. To compute
1673 ///    the concept of equivalence, we use dominance and loop information.
1674 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1675 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1676 ///
1677 /// 3- Propagation of block weights into edges. This uses a simple
1678 ///    propagation heuristic. The following rules are applied to every
1679 ///    block BB in the CFG:
1680 ///
1681 ///    - If BB has a single predecessor/successor, then the weight
1682 ///      of that edge is the weight of the block.
1683 ///
1684 ///    - If all the edges are known except one, and the weight of the
1685 ///      block is already known, the weight of the unknown edge will
1686 ///      be the weight of the block minus the sum of all the known
1687 ///      edges. If the sum of all the known edges is larger than BB's weight,
1688 ///      we set the unknown edge weight to zero.
1689 ///
1690 ///    - If there is a self-referential edge, and the weight of the block is
1691 ///      known, the weight for that edge is set to the weight of the block
1692 ///      minus the weight of the other incoming edges to that block (if
1693 ///      known).
1694 ///
1695 /// Since this propagation is not guaranteed to finalize for every CFG, we
1696 /// only allow it to proceed for a limited number of iterations (controlled
1697 /// by -sample-profile-max-propagate-iterations).
1698 ///
1699 /// FIXME: Try to replace this propagation heuristic with a scheme
1700 /// that is guaranteed to finalize. A work-list approach similar to
1701 /// the standard value propagation algorithm used by SSA-CCP might
1702 /// work here.
1703 ///
1704 /// Once all the branch weights are computed, we emit the MD_prof
1705 /// metadata on BB using the computed values for each of its branches.
1706 ///
1707 /// \param F The function to query.
1708 ///
1709 /// \returns true if \p F was modified. Returns false, otherwise.
1710 bool SampleProfileLoader::emitAnnotations(Function &F) {
1711   bool Changed = false;
1712 
1713   if (getFunctionLoc(F) == 0)
1714     return false;
1715 
1716   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1717                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1718 
1719   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1720   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1721 
1722   // Compute basic block weights.
1723   Changed |= computeBlockWeights(F);
1724 
1725   if (Changed) {
1726     // Add an entry count to the function using the samples gathered at the
1727     // function entry.
1728     // Sets the GUIDs that are inlined in the profiled binary. This is used
1729     // for ThinLink to make correct liveness analysis, and also make the IR
1730     // match the profiled binary before annotation.
1731     F.setEntryCount(
1732         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1733         &InlinedGUIDs);
1734 
1735     // Compute dominance and loop info needed for propagation.
1736     computeDominanceAndLoopInfo(F);
1737 
1738     // Find equivalence classes.
1739     findEquivalenceClasses(F);
1740 
1741     // Propagate weights to all edges.
1742     propagateWeights(F);
1743   }
1744 
1745   // If coverage checking was requested, compute it now.
1746   if (SampleProfileRecordCoverage) {
1747     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1748     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1749     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1750     if (Coverage < SampleProfileRecordCoverage) {
1751       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1752           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1753           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1754               Twine(Coverage) + "%) were applied",
1755           DS_Warning));
1756     }
1757   }
1758 
1759   if (SampleProfileSampleCoverage) {
1760     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1761     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1762     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1763     if (Coverage < SampleProfileSampleCoverage) {
1764       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1765           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1766           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1767               Twine(Coverage) + "%) were applied",
1768           DS_Warning));
1769     }
1770   }
1771   return Changed;
1772 }
1773 
1774 char SampleProfileLoaderLegacyPass::ID = 0;
1775 
1776 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1777                       "Sample Profile loader", false, false)
1778 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1779 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1780 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1781 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1782 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1783                     "Sample Profile loader", false, false)
1784 
1785 std::vector<Function *>
1786 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1787   std::vector<Function *> FunctionOrderList;
1788   FunctionOrderList.reserve(M.size());
1789 
1790   if (!ProfileTopDownLoad || CG == nullptr) {
1791     if (ProfileMergeInlinee) {
1792       // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1793       // because the profile for a function may be used for the profile
1794       // annotation of its outline copy before the profile merging of its
1795       // non-inlined inline instances, and that is not the way how
1796       // ProfileMergeInlinee is supposed to work.
1797       ProfileMergeInlinee = false;
1798     }
1799 
1800     for (Function &F : M)
1801       if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1802         FunctionOrderList.push_back(&F);
1803     return FunctionOrderList;
1804   }
1805 
1806   assert(&CG->getModule() == &M);
1807   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1808   while (!CGI.isAtEnd()) {
1809     for (CallGraphNode *node : *CGI) {
1810       auto F = node->getFunction();
1811       if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1812         FunctionOrderList.push_back(F);
1813     }
1814     ++CGI;
1815   }
1816 
1817   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1818   return FunctionOrderList;
1819 }
1820 
1821 bool SampleProfileLoader::doInitialization(Module &M) {
1822   auto &Ctx = M.getContext();
1823 
1824   std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1825   auto ReaderOrErr =
1826       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1827   if (std::error_code EC = ReaderOrErr.getError()) {
1828     std::string Msg = "Could not open profile: " + EC.message();
1829     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1830     return false;
1831   }
1832   Reader = std::move(ReaderOrErr.get());
1833   Reader->collectFuncsFrom(M);
1834   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1835   PSL = Reader->getProfileSymbolList();
1836 
1837   // While profile-sample-accurate is on, ignore symbol list.
1838   ProfAccForSymsInList =
1839       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1840   if (ProfAccForSymsInList) {
1841     NamesInProfile.clear();
1842     if (auto NameTable = Reader->getNameTable())
1843       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1844   }
1845 
1846   return true;
1847 }
1848 
1849 ModulePass *llvm::createSampleProfileLoaderPass() {
1850   return new SampleProfileLoaderLegacyPass();
1851 }
1852 
1853 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1854   return new SampleProfileLoaderLegacyPass(Name);
1855 }
1856 
1857 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1858                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1859   if (!ProfileIsValid)
1860     return false;
1861   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1862 
1863   PSI = _PSI;
1864   if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1865     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1866                         ProfileSummary::PSK_Sample);
1867     PSI->refresh();
1868   }
1869   // Compute the total number of samples collected in this profile.
1870   for (const auto &I : Reader->getProfiles())
1871     TotalCollectedSamples += I.second.getTotalSamples();
1872 
1873   // Populate the symbol map.
1874   for (const auto &N_F : M.getValueSymbolTable()) {
1875     StringRef OrigName = N_F.getKey();
1876     Function *F = dyn_cast<Function>(N_F.getValue());
1877     if (F == nullptr)
1878       continue;
1879     SymbolMap[OrigName] = F;
1880     auto pos = OrigName.find('.');
1881     if (pos != StringRef::npos) {
1882       StringRef NewName = OrigName.substr(0, pos);
1883       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1884       // Failiing to insert means there is already an entry in SymbolMap,
1885       // thus there are multiple functions that are mapped to the same
1886       // stripped name. In this case of name conflicting, set the value
1887       // to nullptr to avoid confusion.
1888       if (!r.second)
1889         r.first->second = nullptr;
1890     }
1891   }
1892 
1893   bool retval = false;
1894   for (auto F : buildFunctionOrder(M, CG)) {
1895     assert(!F->isDeclaration());
1896     clearFunctionData();
1897     retval |= runOnFunction(*F, AM);
1898   }
1899 
1900   // Account for cold calls not inlined....
1901   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1902        notInlinedCallInfo)
1903     updateProfileCallee(pair.first, pair.second.entryCount);
1904 
1905   return retval;
1906 }
1907 
1908 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1909   ACT = &getAnalysis<AssumptionCacheTracker>();
1910   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1911   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1912   ProfileSummaryInfo *PSI =
1913       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1914   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1915 }
1916 
1917 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1918 
1919   DILocation2SampleMap.clear();
1920   // By default the entry count is initialized to -1, which will be treated
1921   // conservatively by getEntryCount as the same as unknown (None). This is
1922   // to avoid newly added code to be treated as cold. If we have samples
1923   // this will be overwritten in emitAnnotations.
1924   uint64_t initialEntryCount = -1;
1925 
1926   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1927   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1928     // initialize all the function entry counts to 0. It means all the
1929     // functions without profile will be regarded as cold.
1930     initialEntryCount = 0;
1931     // profile-sample-accurate is a user assertion which has a higher precedence
1932     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1933     ProfAccForSymsInList = false;
1934   }
1935 
1936   // PSL -- profile symbol list include all the symbols in sampled binary.
1937   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1938   // old functions without samples being cold, without having to worry
1939   // about new and hot functions being mistakenly treated as cold.
1940   if (ProfAccForSymsInList) {
1941     // Initialize the entry count to 0 for functions in the list.
1942     if (PSL->contains(F.getName()))
1943       initialEntryCount = 0;
1944 
1945     // Function in the symbol list but without sample will be regarded as
1946     // cold. To minimize the potential negative performance impact it could
1947     // have, we want to be a little conservative here saying if a function
1948     // shows up in the profile, no matter as outline function, inline instance
1949     // or call targets, treat the function as not being cold. This will handle
1950     // the cases such as most callsites of a function are inlined in sampled
1951     // binary but not inlined in current build (because of source code drift,
1952     // imprecise debug information, or the callsites are all cold individually
1953     // but not cold accumulatively...), so the outline function showing up as
1954     // cold in sampled binary will actually not be cold after current build.
1955     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1956     if (NamesInProfile.count(CanonName))
1957       initialEntryCount = -1;
1958   }
1959 
1960   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1961   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1962   if (AM) {
1963     auto &FAM =
1964         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1965             .getManager();
1966     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1967   } else {
1968     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1969     ORE = OwnedORE.get();
1970   }
1971   Samples = Reader->getSamplesFor(F);
1972   if (Samples && !Samples->empty())
1973     return emitAnnotations(F);
1974   return false;
1975 }
1976 
1977 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1978                                                ModuleAnalysisManager &AM) {
1979   FunctionAnalysisManager &FAM =
1980       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1981 
1982   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1983     return FAM.getResult<AssumptionAnalysis>(F);
1984   };
1985   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1986     return FAM.getResult<TargetIRAnalysis>(F);
1987   };
1988   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1989     return FAM.getResult<TargetLibraryAnalysis>(F);
1990   };
1991 
1992   SampleProfileLoader SampleLoader(
1993       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1994       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1995                                        : ProfileRemappingFileName,
1996       IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
1997 
1998   if (!SampleLoader.doInitialization(M))
1999     return PreservedAnalyses::all();
2000 
2001   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2002   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2003   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2004     return PreservedAnalyses::all();
2005 
2006   return PreservedAnalyses::none();
2007 }
2008