xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineCost.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/PostDominators.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CFG.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DiagnosticInfo.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/ProfileData/InstrProf.h"
67 #include "llvm/ProfileData/SampleProf.h"
68 #include "llvm/ProfileData/SampleProfReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/ErrorOr.h"
74 #include "llvm/Support/GenericDomTree.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/IPO.h"
77 #include "llvm/Transforms/Instrumentation.h"
78 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
79 #include "llvm/Transforms/Utils/Cloning.h"
80 #include "llvm/Transforms/Utils/MisExpect.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <functional>
85 #include <limits>
86 #include <map>
87 #include <memory>
88 #include <queue>
89 #include <string>
90 #include <system_error>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 using namespace sampleprof;
96 using ProfileCount = Function::ProfileCount;
97 #define DEBUG_TYPE "sample-profile"
98 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
99 
100 STATISTIC(NumCSInlined,
101           "Number of functions inlined with context sensitive profile");
102 STATISTIC(NumCSNotInlined,
103           "Number of functions not inlined with context sensitive profile");
104 
105 // Command line option to specify the file to read samples from. This is
106 // mainly used for debugging.
107 static cl::opt<std::string> SampleProfileFile(
108     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
109     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
110 
111 // The named file contains a set of transformations that may have been applied
112 // to the symbol names between the program from which the sample data was
113 // collected and the current program's symbols.
114 static cl::opt<std::string> SampleProfileRemappingFile(
115     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
116     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
117 
118 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
119     "sample-profile-max-propagate-iterations", cl::init(100),
120     cl::desc("Maximum number of iterations to go through when propagating "
121              "sample block/edge weights through the CFG."));
122 
123 static cl::opt<unsigned> SampleProfileRecordCoverage(
124     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
125     cl::desc("Emit a warning if less than N% of records in the input profile "
126              "are matched to the IR."));
127 
128 static cl::opt<unsigned> SampleProfileSampleCoverage(
129     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
130     cl::desc("Emit a warning if less than N% of samples in the input profile "
131              "are matched to the IR."));
132 
133 static cl::opt<bool> NoWarnSampleUnused(
134     "no-warn-sample-unused", cl::init(false), cl::Hidden,
135     cl::desc("Use this option to turn off/on warnings about function with "
136              "samples but without debug information to use those samples. "));
137 
138 static cl::opt<bool> ProfileSampleAccurate(
139     "profile-sample-accurate", cl::Hidden, cl::init(false),
140     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
141              "callsite and function as having 0 samples. Otherwise, treat "
142              "un-sampled callsites and functions conservatively as unknown. "));
143 
144 static cl::opt<bool> ProfileAccurateForSymsInList(
145     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
146     cl::init(true),
147     cl::desc("For symbols in profile symbol list, regard their profiles to "
148              "be accurate. It may be overriden by profile-sample-accurate. "));
149 
150 static cl::opt<bool> ProfileMergeInlinee(
151     "sample-profile-merge-inlinee", cl::Hidden, cl::init(false),
152     cl::desc("Merge past inlinee's profile to outline version if sample "
153              "profile loader decided not to inline a call site."));
154 
155 static cl::opt<bool> ProfileTopDownLoad(
156     "sample-profile-top-down-load", cl::Hidden, cl::init(false),
157     cl::desc("Do profile annotation and inlining for functions in top-down "
158              "order of call graph during sample profile loading."));
159 
160 static cl::opt<bool> ProfileSizeInline(
161     "sample-profile-inline-size", cl::Hidden, cl::init(false),
162     cl::desc("Inline cold call sites in profile loader if it's beneficial "
163              "for code size."));
164 
165 static cl::opt<int> SampleColdCallSiteThreshold(
166     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
167     cl::desc("Threshold for inlining cold callsites"));
168 
169 namespace {
170 
171 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
172 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
173 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
174 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
175 using BlockEdgeMap =
176     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
177 
178 class SampleProfileLoader;
179 
180 class SampleCoverageTracker {
181 public:
182   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
183 
184   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
185                        uint32_t Discriminator, uint64_t Samples);
186   unsigned computeCoverage(unsigned Used, unsigned Total) const;
187   unsigned countUsedRecords(const FunctionSamples *FS,
188                             ProfileSummaryInfo *PSI) const;
189   unsigned countBodyRecords(const FunctionSamples *FS,
190                             ProfileSummaryInfo *PSI) const;
191   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
192   uint64_t countBodySamples(const FunctionSamples *FS,
193                             ProfileSummaryInfo *PSI) const;
194 
195   void clear() {
196     SampleCoverage.clear();
197     TotalUsedSamples = 0;
198   }
199 
200 private:
201   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
202   using FunctionSamplesCoverageMap =
203       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
204 
205   /// Coverage map for sampling records.
206   ///
207   /// This map keeps a record of sampling records that have been matched to
208   /// an IR instruction. This is used to detect some form of staleness in
209   /// profiles (see flag -sample-profile-check-coverage).
210   ///
211   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
212   /// another map that counts how many times the sample record at the
213   /// given location has been used.
214   FunctionSamplesCoverageMap SampleCoverage;
215 
216   /// Number of samples used from the profile.
217   ///
218   /// When a sampling record is used for the first time, the samples from
219   /// that record are added to this accumulator.  Coverage is later computed
220   /// based on the total number of samples available in this function and
221   /// its callsites.
222   ///
223   /// Note that this accumulator tracks samples used from a single function
224   /// and all the inlined callsites. Strictly, we should have a map of counters
225   /// keyed by FunctionSamples pointers, but these stats are cleared after
226   /// every function, so we just need to keep a single counter.
227   uint64_t TotalUsedSamples = 0;
228 
229   SampleProfileLoader &SPLoader;
230 };
231 
232 class GUIDToFuncNameMapper {
233 public:
234   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
235                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
236       : CurrentReader(Reader), CurrentModule(M),
237       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
238     if (CurrentReader.getFormat() != SPF_Compact_Binary)
239       return;
240 
241     for (const auto &F : CurrentModule) {
242       StringRef OrigName = F.getName();
243       CurrentGUIDToFuncNameMap.insert(
244           {Function::getGUID(OrigName), OrigName});
245 
246       // Local to global var promotion used by optimization like thinlto
247       // will rename the var and add suffix like ".llvm.xxx" to the
248       // original local name. In sample profile, the suffixes of function
249       // names are all stripped. Since it is possible that the mapper is
250       // built in post-thin-link phase and var promotion has been done,
251       // we need to add the substring of function name without the suffix
252       // into the GUIDToFuncNameMap.
253       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
254       if (CanonName != OrigName)
255         CurrentGUIDToFuncNameMap.insert(
256             {Function::getGUID(CanonName), CanonName});
257     }
258 
259     // Update GUIDToFuncNameMap for each function including inlinees.
260     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
261   }
262 
263   ~GUIDToFuncNameMapper() {
264     if (CurrentReader.getFormat() != SPF_Compact_Binary)
265       return;
266 
267     CurrentGUIDToFuncNameMap.clear();
268 
269     // Reset GUIDToFuncNameMap for of each function as they're no
270     // longer valid at this point.
271     SetGUIDToFuncNameMapForAll(nullptr);
272   }
273 
274 private:
275   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
276     std::queue<FunctionSamples *> FSToUpdate;
277     for (auto &IFS : CurrentReader.getProfiles()) {
278       FSToUpdate.push(&IFS.second);
279     }
280 
281     while (!FSToUpdate.empty()) {
282       FunctionSamples *FS = FSToUpdate.front();
283       FSToUpdate.pop();
284       FS->GUIDToFuncNameMap = Map;
285       for (const auto &ICS : FS->getCallsiteSamples()) {
286         const FunctionSamplesMap &FSMap = ICS.second;
287         for (auto &IFS : FSMap) {
288           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
289           FSToUpdate.push(&FS);
290         }
291       }
292     }
293   }
294 
295   SampleProfileReader &CurrentReader;
296   Module &CurrentModule;
297   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
298 };
299 
300 /// Sample profile pass.
301 ///
302 /// This pass reads profile data from the file specified by
303 /// -sample-profile-file and annotates every affected function with the
304 /// profile information found in that file.
305 class SampleProfileLoader {
306 public:
307   SampleProfileLoader(
308       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
309       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
310       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
311       : GetAC(std::move(GetAssumptionCache)),
312         GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this),
313         Filename(Name), RemappingFilename(RemapName),
314         IsThinLTOPreLink(IsThinLTOPreLink) {}
315 
316   bool doInitialization(Module &M);
317   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
318                    ProfileSummaryInfo *_PSI, CallGraph *CG);
319 
320   void dump() { Reader->dump(); }
321 
322 protected:
323   friend class SampleCoverageTracker;
324 
325   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
326   unsigned getFunctionLoc(Function &F);
327   bool emitAnnotations(Function &F);
328   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
329   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
330   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
331   std::vector<const FunctionSamples *>
332   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
333   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
334   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
335   bool inlineCallInstruction(Instruction *I);
336   bool inlineHotFunctions(Function &F,
337                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
338   // Inline cold/small functions in addition to hot ones
339   bool shouldInlineColdCallee(Instruction &CallInst);
340   void emitOptimizationRemarksForInlineCandidates(
341     const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot);
342   void printEdgeWeight(raw_ostream &OS, Edge E);
343   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
344   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
345   bool computeBlockWeights(Function &F);
346   void findEquivalenceClasses(Function &F);
347   template <bool IsPostDom>
348   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
349                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
350 
351   void propagateWeights(Function &F);
352   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
353   void buildEdges(Function &F);
354   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
355   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
356   void computeDominanceAndLoopInfo(Function &F);
357   void clearFunctionData();
358   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
359                      ProfileSummaryInfo *PSI);
360 
361   /// Map basic blocks to their computed weights.
362   ///
363   /// The weight of a basic block is defined to be the maximum
364   /// of all the instruction weights in that block.
365   BlockWeightMap BlockWeights;
366 
367   /// Map edges to their computed weights.
368   ///
369   /// Edge weights are computed by propagating basic block weights in
370   /// SampleProfile::propagateWeights.
371   EdgeWeightMap EdgeWeights;
372 
373   /// Set of visited blocks during propagation.
374   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
375 
376   /// Set of visited edges during propagation.
377   SmallSet<Edge, 32> VisitedEdges;
378 
379   /// Equivalence classes for block weights.
380   ///
381   /// Two blocks BB1 and BB2 are in the same equivalence class if they
382   /// dominate and post-dominate each other, and they are in the same loop
383   /// nest. When this happens, the two blocks are guaranteed to execute
384   /// the same number of times.
385   EquivalenceClassMap EquivalenceClass;
386 
387   /// Map from function name to Function *. Used to find the function from
388   /// the function name. If the function name contains suffix, additional
389   /// entry is added to map from the stripped name to the function if there
390   /// is one-to-one mapping.
391   StringMap<Function *> SymbolMap;
392 
393   /// Dominance, post-dominance and loop information.
394   std::unique_ptr<DominatorTree> DT;
395   std::unique_ptr<PostDominatorTree> PDT;
396   std::unique_ptr<LoopInfo> LI;
397 
398   std::function<AssumptionCache &(Function &)> GetAC;
399   std::function<TargetTransformInfo &(Function &)> GetTTI;
400 
401   /// Predecessors for each basic block in the CFG.
402   BlockEdgeMap Predecessors;
403 
404   /// Successors for each basic block in the CFG.
405   BlockEdgeMap Successors;
406 
407   SampleCoverageTracker CoverageTracker;
408 
409   /// Profile reader object.
410   std::unique_ptr<SampleProfileReader> Reader;
411 
412   /// Samples collected for the body of this function.
413   FunctionSamples *Samples = nullptr;
414 
415   /// Name of the profile file to load.
416   std::string Filename;
417 
418   /// Name of the profile remapping file to load.
419   std::string RemappingFilename;
420 
421   /// Flag indicating whether the profile input loaded successfully.
422   bool ProfileIsValid = false;
423 
424   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
425   ///
426   /// In this phase, in annotation, we should not promote indirect calls.
427   /// Instead, we will mark GUIDs that needs to be annotated to the function.
428   bool IsThinLTOPreLink;
429 
430   /// Profile Summary Info computed from sample profile.
431   ProfileSummaryInfo *PSI = nullptr;
432 
433   /// Profle Symbol list tells whether a function name appears in the binary
434   /// used to generate the current profile.
435   std::unique_ptr<ProfileSymbolList> PSL;
436 
437   /// Total number of samples collected in this profile.
438   ///
439   /// This is the sum of all the samples collected in all the functions executed
440   /// at runtime.
441   uint64_t TotalCollectedSamples = 0;
442 
443   /// Optimization Remark Emitter used to emit diagnostic remarks.
444   OptimizationRemarkEmitter *ORE = nullptr;
445 
446   // Information recorded when we declined to inline a call site
447   // because we have determined it is too cold is accumulated for
448   // each callee function. Initially this is just the entry count.
449   struct NotInlinedProfileInfo {
450     uint64_t entryCount;
451   };
452   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
453 
454   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
455   // all the function symbols defined or declared in current module.
456   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
457 
458   // All the Names used in FunctionSamples including outline function
459   // names, inline instance names and call target names.
460   StringSet<> NamesInProfile;
461 
462   // For symbol in profile symbol list, whether to regard their profiles
463   // to be accurate. It is mainly decided by existance of profile symbol
464   // list and -profile-accurate-for-symsinlist flag, but it can be
465   // overriden by -profile-sample-accurate or profile-sample-accurate
466   // attribute.
467   bool ProfAccForSymsInList;
468 };
469 
470 class SampleProfileLoaderLegacyPass : public ModulePass {
471 public:
472   // Class identification, replacement for typeinfo
473   static char ID;
474 
475   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
476                                 bool IsThinLTOPreLink = false)
477       : ModulePass(ID),
478         SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
479                      [&](Function &F) -> AssumptionCache & {
480                        return ACT->getAssumptionCache(F);
481                      },
482                      [&](Function &F) -> TargetTransformInfo & {
483                        return TTIWP->getTTI(F);
484                      }) {
485     initializeSampleProfileLoaderLegacyPassPass(
486         *PassRegistry::getPassRegistry());
487   }
488 
489   void dump() { SampleLoader.dump(); }
490 
491   bool doInitialization(Module &M) override {
492     return SampleLoader.doInitialization(M);
493   }
494 
495   StringRef getPassName() const override { return "Sample profile pass"; }
496   bool runOnModule(Module &M) override;
497 
498   void getAnalysisUsage(AnalysisUsage &AU) const override {
499     AU.addRequired<AssumptionCacheTracker>();
500     AU.addRequired<TargetTransformInfoWrapperPass>();
501     AU.addRequired<ProfileSummaryInfoWrapperPass>();
502   }
503 
504 private:
505   SampleProfileLoader SampleLoader;
506   AssumptionCacheTracker *ACT = nullptr;
507   TargetTransformInfoWrapperPass *TTIWP = nullptr;
508 };
509 
510 } // end anonymous namespace
511 
512 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
513 ///
514 /// Functions that were inlined in the original binary will be represented
515 /// in the inline stack in the sample profile. If the profile shows that
516 /// the original inline decision was "good" (i.e., the callsite is executed
517 /// frequently), then we will recreate the inline decision and apply the
518 /// profile from the inlined callsite.
519 ///
520 /// To decide whether an inlined callsite is hot, we compare the callsite
521 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
522 /// regarded as hot if the count is above the cutoff value.
523 ///
524 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
525 /// is present, functions in the profile symbol list but without profile will
526 /// be regarded as cold and much less inlining will happen in CGSCC inlining
527 /// pass, so we tend to lower the hot criteria here to allow more early
528 /// inlining to happen for warm callsites and it is helpful for performance.
529 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
530                                         ProfileSummaryInfo *PSI) {
531   if (!CallsiteFS)
532     return false; // The callsite was not inlined in the original binary.
533 
534   assert(PSI && "PSI is expected to be non null");
535   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
536   if (ProfAccForSymsInList)
537     return !PSI->isColdCount(CallsiteTotalSamples);
538   else
539     return PSI->isHotCount(CallsiteTotalSamples);
540 }
541 
542 /// Mark as used the sample record for the given function samples at
543 /// (LineOffset, Discriminator).
544 ///
545 /// \returns true if this is the first time we mark the given record.
546 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
547                                             uint32_t LineOffset,
548                                             uint32_t Discriminator,
549                                             uint64_t Samples) {
550   LineLocation Loc(LineOffset, Discriminator);
551   unsigned &Count = SampleCoverage[FS][Loc];
552   bool FirstTime = (++Count == 1);
553   if (FirstTime)
554     TotalUsedSamples += Samples;
555   return FirstTime;
556 }
557 
558 /// Return the number of sample records that were applied from this profile.
559 ///
560 /// This count does not include records from cold inlined callsites.
561 unsigned
562 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
563                                         ProfileSummaryInfo *PSI) const {
564   auto I = SampleCoverage.find(FS);
565 
566   // The size of the coverage map for FS represents the number of records
567   // that were marked used at least once.
568   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
569 
570   // If there are inlined callsites in this function, count the samples found
571   // in the respective bodies. However, do not bother counting callees with 0
572   // total samples, these are callees that were never invoked at runtime.
573   for (const auto &I : FS->getCallsiteSamples())
574     for (const auto &J : I.second) {
575       const FunctionSamples *CalleeSamples = &J.second;
576       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
577         Count += countUsedRecords(CalleeSamples, PSI);
578     }
579 
580   return Count;
581 }
582 
583 /// Return the number of sample records in the body of this profile.
584 ///
585 /// This count does not include records from cold inlined callsites.
586 unsigned
587 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
588                                         ProfileSummaryInfo *PSI) const {
589   unsigned Count = FS->getBodySamples().size();
590 
591   // Only count records in hot callsites.
592   for (const auto &I : FS->getCallsiteSamples())
593     for (const auto &J : I.second) {
594       const FunctionSamples *CalleeSamples = &J.second;
595       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
596         Count += countBodyRecords(CalleeSamples, PSI);
597     }
598 
599   return Count;
600 }
601 
602 /// Return the number of samples collected in the body of this profile.
603 ///
604 /// This count does not include samples from cold inlined callsites.
605 uint64_t
606 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
607                                         ProfileSummaryInfo *PSI) const {
608   uint64_t Total = 0;
609   for (const auto &I : FS->getBodySamples())
610     Total += I.second.getSamples();
611 
612   // Only count samples in hot callsites.
613   for (const auto &I : FS->getCallsiteSamples())
614     for (const auto &J : I.second) {
615       const FunctionSamples *CalleeSamples = &J.second;
616       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
617         Total += countBodySamples(CalleeSamples, PSI);
618     }
619 
620   return Total;
621 }
622 
623 /// Return the fraction of sample records used in this profile.
624 ///
625 /// The returned value is an unsigned integer in the range 0-100 indicating
626 /// the percentage of sample records that were used while applying this
627 /// profile to the associated function.
628 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
629                                                 unsigned Total) const {
630   assert(Used <= Total &&
631          "number of used records cannot exceed the total number of records");
632   return Total > 0 ? Used * 100 / Total : 100;
633 }
634 
635 /// Clear all the per-function data used to load samples and propagate weights.
636 void SampleProfileLoader::clearFunctionData() {
637   BlockWeights.clear();
638   EdgeWeights.clear();
639   VisitedBlocks.clear();
640   VisitedEdges.clear();
641   EquivalenceClass.clear();
642   DT = nullptr;
643   PDT = nullptr;
644   LI = nullptr;
645   Predecessors.clear();
646   Successors.clear();
647   CoverageTracker.clear();
648 }
649 
650 #ifndef NDEBUG
651 /// Print the weight of edge \p E on stream \p OS.
652 ///
653 /// \param OS  Stream to emit the output to.
654 /// \param E  Edge to print.
655 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
656   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
657      << "]: " << EdgeWeights[E] << "\n";
658 }
659 
660 /// Print the equivalence class of block \p BB on stream \p OS.
661 ///
662 /// \param OS  Stream to emit the output to.
663 /// \param BB  Block to print.
664 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
665                                                 const BasicBlock *BB) {
666   const BasicBlock *Equiv = EquivalenceClass[BB];
667   OS << "equivalence[" << BB->getName()
668      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
669 }
670 
671 /// Print the weight of block \p BB on stream \p OS.
672 ///
673 /// \param OS  Stream to emit the output to.
674 /// \param BB  Block to print.
675 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
676                                            const BasicBlock *BB) const {
677   const auto &I = BlockWeights.find(BB);
678   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
679   OS << "weight[" << BB->getName() << "]: " << W << "\n";
680 }
681 #endif
682 
683 /// Get the weight for an instruction.
684 ///
685 /// The "weight" of an instruction \p Inst is the number of samples
686 /// collected on that instruction at runtime. To retrieve it, we
687 /// need to compute the line number of \p Inst relative to the start of its
688 /// function. We use HeaderLineno to compute the offset. We then
689 /// look up the samples collected for \p Inst using BodySamples.
690 ///
691 /// \param Inst Instruction to query.
692 ///
693 /// \returns the weight of \p Inst.
694 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
695   const DebugLoc &DLoc = Inst.getDebugLoc();
696   if (!DLoc)
697     return std::error_code();
698 
699   const FunctionSamples *FS = findFunctionSamples(Inst);
700   if (!FS)
701     return std::error_code();
702 
703   // Ignore all intrinsics, phinodes and branch instructions.
704   // Branch and phinodes instruction usually contains debug info from sources outside of
705   // the residing basic block, thus we ignore them during annotation.
706   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
707     return std::error_code();
708 
709   // If a direct call/invoke instruction is inlined in profile
710   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
711   // it means that the inlined callsite has no sample, thus the call
712   // instruction should have 0 count.
713   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
714       !ImmutableCallSite(&Inst).isIndirectCall() &&
715       findCalleeFunctionSamples(Inst))
716     return 0;
717 
718   const DILocation *DIL = DLoc;
719   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
720   uint32_t Discriminator = DIL->getBaseDiscriminator();
721   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
722   if (R) {
723     bool FirstMark =
724         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
725     if (FirstMark) {
726       ORE->emit([&]() {
727         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
728         Remark << "Applied " << ore::NV("NumSamples", *R);
729         Remark << " samples from profile (offset: ";
730         Remark << ore::NV("LineOffset", LineOffset);
731         if (Discriminator) {
732           Remark << ".";
733           Remark << ore::NV("Discriminator", Discriminator);
734         }
735         Remark << ")";
736         return Remark;
737       });
738     }
739     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
740                       << DIL->getBaseDiscriminator() << ":" << Inst
741                       << " (line offset: " << LineOffset << "."
742                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
743                       << ")\n");
744   }
745   return R;
746 }
747 
748 /// Compute the weight of a basic block.
749 ///
750 /// The weight of basic block \p BB is the maximum weight of all the
751 /// instructions in BB.
752 ///
753 /// \param BB The basic block to query.
754 ///
755 /// \returns the weight for \p BB.
756 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
757   uint64_t Max = 0;
758   bool HasWeight = false;
759   for (auto &I : BB->getInstList()) {
760     const ErrorOr<uint64_t> &R = getInstWeight(I);
761     if (R) {
762       Max = std::max(Max, R.get());
763       HasWeight = true;
764     }
765   }
766   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
767 }
768 
769 /// Compute and store the weights of every basic block.
770 ///
771 /// This populates the BlockWeights map by computing
772 /// the weights of every basic block in the CFG.
773 ///
774 /// \param F The function to query.
775 bool SampleProfileLoader::computeBlockWeights(Function &F) {
776   bool Changed = false;
777   LLVM_DEBUG(dbgs() << "Block weights\n");
778   for (const auto &BB : F) {
779     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
780     if (Weight) {
781       BlockWeights[&BB] = Weight.get();
782       VisitedBlocks.insert(&BB);
783       Changed = true;
784     }
785     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
786   }
787 
788   return Changed;
789 }
790 
791 /// Get the FunctionSamples for a call instruction.
792 ///
793 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
794 /// instance in which that call instruction is calling to. It contains
795 /// all samples that resides in the inlined instance. We first find the
796 /// inlined instance in which the call instruction is from, then we
797 /// traverse its children to find the callsite with the matching
798 /// location.
799 ///
800 /// \param Inst Call/Invoke instruction to query.
801 ///
802 /// \returns The FunctionSamples pointer to the inlined instance.
803 const FunctionSamples *
804 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
805   const DILocation *DIL = Inst.getDebugLoc();
806   if (!DIL) {
807     return nullptr;
808   }
809 
810   StringRef CalleeName;
811   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
812     if (Function *Callee = CI->getCalledFunction())
813       CalleeName = Callee->getName();
814 
815   const FunctionSamples *FS = findFunctionSamples(Inst);
816   if (FS == nullptr)
817     return nullptr;
818 
819   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
820                                                 DIL->getBaseDiscriminator()),
821                                    CalleeName);
822 }
823 
824 /// Returns a vector of FunctionSamples that are the indirect call targets
825 /// of \p Inst. The vector is sorted by the total number of samples. Stores
826 /// the total call count of the indirect call in \p Sum.
827 std::vector<const FunctionSamples *>
828 SampleProfileLoader::findIndirectCallFunctionSamples(
829     const Instruction &Inst, uint64_t &Sum) const {
830   const DILocation *DIL = Inst.getDebugLoc();
831   std::vector<const FunctionSamples *> R;
832 
833   if (!DIL) {
834     return R;
835   }
836 
837   const FunctionSamples *FS = findFunctionSamples(Inst);
838   if (FS == nullptr)
839     return R;
840 
841   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
842   uint32_t Discriminator = DIL->getBaseDiscriminator();
843 
844   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
845   Sum = 0;
846   if (T)
847     for (const auto &T_C : T.get())
848       Sum += T_C.second;
849   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
850           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
851     if (M->empty())
852       return R;
853     for (const auto &NameFS : *M) {
854       Sum += NameFS.second.getEntrySamples();
855       R.push_back(&NameFS.second);
856     }
857     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
858       if (L->getEntrySamples() != R->getEntrySamples())
859         return L->getEntrySamples() > R->getEntrySamples();
860       return FunctionSamples::getGUID(L->getName()) <
861              FunctionSamples::getGUID(R->getName());
862     });
863   }
864   return R;
865 }
866 
867 /// Get the FunctionSamples for an instruction.
868 ///
869 /// The FunctionSamples of an instruction \p Inst is the inlined instance
870 /// in which that instruction is coming from. We traverse the inline stack
871 /// of that instruction, and match it with the tree nodes in the profile.
872 ///
873 /// \param Inst Instruction to query.
874 ///
875 /// \returns the FunctionSamples pointer to the inlined instance.
876 const FunctionSamples *
877 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
878   const DILocation *DIL = Inst.getDebugLoc();
879   if (!DIL)
880     return Samples;
881 
882   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
883   if (it.second)
884     it.first->second = Samples->findFunctionSamples(DIL);
885   return it.first->second;
886 }
887 
888 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
889   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
890   CallSite CS(I);
891   Function *CalledFunction = CS.getCalledFunction();
892   assert(CalledFunction);
893   DebugLoc DLoc = I->getDebugLoc();
894   BasicBlock *BB = I->getParent();
895   InlineParams Params = getInlineParams();
896   Params.ComputeFullInlineCost = true;
897   // Checks if there is anything in the reachable portion of the callee at
898   // this callsite that makes this inlining potentially illegal. Need to
899   // set ComputeFullInlineCost, otherwise getInlineCost may return early
900   // when cost exceeds threshold without checking all IRs in the callee.
901   // The acutal cost does not matter because we only checks isNever() to
902   // see if it is legal to inline the callsite.
903   InlineCost Cost =
904       getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
905                     None, nullptr, nullptr);
906   if (Cost.isNever()) {
907     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
908               << "incompatible inlining");
909     return false;
910   }
911   InlineFunctionInfo IFI(nullptr, &GetAC);
912   if (InlineFunction(CS, IFI)) {
913     // The call to InlineFunction erases I, so we can't pass it here.
914     ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB)
915               << "inlined callee '" << ore::NV("Callee", CalledFunction)
916               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
917     return true;
918   }
919   return false;
920 }
921 
922 bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) {
923   if (!ProfileSizeInline)
924     return false;
925 
926   Function *Callee = CallSite(&CallInst).getCalledFunction();
927   if (Callee == nullptr)
928     return false;
929 
930   InlineCost Cost =
931       getInlineCost(cast<CallBase>(CallInst), getInlineParams(),
932                     GetTTI(*Callee), GetAC, None, nullptr, nullptr);
933 
934   return Cost.getCost() <= SampleColdCallSiteThreshold;
935 }
936 
937 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
938     const SmallVector<Instruction *, 10> &Candidates, const Function &F,
939     bool Hot) {
940   for (auto I : Candidates) {
941     Function *CalledFunction = CallSite(I).getCalledFunction();
942     if (CalledFunction) {
943       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
944                                            I->getDebugLoc(), I->getParent())
945                 << "previous inlining reattempted for "
946                 << (Hot ? "hotness: '" : "size: '")
947                 << ore::NV("Callee", CalledFunction) << "' into '"
948                 << ore::NV("Caller", &F) << "'");
949     }
950   }
951 }
952 
953 /// Iteratively inline hot callsites of a function.
954 ///
955 /// Iteratively traverse all callsites of the function \p F, and find if
956 /// the corresponding inlined instance exists and is hot in profile. If
957 /// it is hot enough, inline the callsites and adds new callsites of the
958 /// callee into the caller. If the call is an indirect call, first promote
959 /// it to direct call. Each indirect call is limited with a single target.
960 ///
961 /// \param F function to perform iterative inlining.
962 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
963 ///     inlined in the profiled binary.
964 ///
965 /// \returns True if there is any inline happened.
966 bool SampleProfileLoader::inlineHotFunctions(
967     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
968   DenseSet<Instruction *> PromotedInsns;
969 
970   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
971   // Profile symbol list is ignored when profile-sample-accurate is on.
972   assert((!ProfAccForSymsInList ||
973           (!ProfileSampleAccurate &&
974            !F.hasFnAttribute("profile-sample-accurate"))) &&
975          "ProfAccForSymsInList should be false when profile-sample-accurate "
976          "is enabled");
977 
978   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
979   bool Changed = false;
980   while (true) {
981     bool LocalChanged = false;
982     SmallVector<Instruction *, 10> CIS;
983     for (auto &BB : F) {
984       bool Hot = false;
985       SmallVector<Instruction *, 10> AllCandidates;
986       SmallVector<Instruction *, 10> ColdCandidates;
987       for (auto &I : BB.getInstList()) {
988         const FunctionSamples *FS = nullptr;
989         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
990             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
991           AllCandidates.push_back(&I);
992           if (FS->getEntrySamples() > 0)
993             localNotInlinedCallSites.try_emplace(&I, FS);
994           if (callsiteIsHot(FS, PSI))
995             Hot = true;
996           else if (shouldInlineColdCallee(I))
997             ColdCandidates.push_back(&I);
998         }
999       }
1000       if (Hot) {
1001         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1002         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1003       }
1004       else {
1005         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1006         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1007       }
1008     }
1009     for (auto I : CIS) {
1010       Function *CalledFunction = CallSite(I).getCalledFunction();
1011       // Do not inline recursive calls.
1012       if (CalledFunction == &F)
1013         continue;
1014       if (CallSite(I).isIndirectCall()) {
1015         if (PromotedInsns.count(I))
1016           continue;
1017         uint64_t Sum;
1018         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1019           if (IsThinLTOPreLink) {
1020             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1021                                      PSI->getOrCompHotCountThreshold());
1022             continue;
1023           }
1024           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
1025           // If it is a recursive call, we do not inline it as it could bloat
1026           // the code exponentially. There is way to better handle this, e.g.
1027           // clone the caller first, and inline the cloned caller if it is
1028           // recursive. As llvm does not inline recursive calls, we will
1029           // simply ignore it instead of handling it explicitly.
1030           if (CalleeFunctionName == F.getName())
1031             continue;
1032 
1033           if (!callsiteIsHot(FS, PSI))
1034             continue;
1035 
1036           const char *Reason = "Callee function not available";
1037           auto R = SymbolMap.find(CalleeFunctionName);
1038           if (R != SymbolMap.end() && R->getValue() &&
1039               !R->getValue()->isDeclaration() &&
1040               R->getValue()->getSubprogram() &&
1041               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
1042             uint64_t C = FS->getEntrySamples();
1043             Instruction *DI =
1044                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
1045             Sum -= C;
1046             PromotedInsns.insert(I);
1047             // If profile mismatches, we should not attempt to inline DI.
1048             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1049                 inlineCallInstruction(DI)) {
1050               localNotInlinedCallSites.erase(I);
1051               LocalChanged = true;
1052               ++NumCSInlined;
1053             }
1054           } else {
1055             LLVM_DEBUG(dbgs()
1056                        << "\nFailed to promote indirect call to "
1057                        << CalleeFunctionName << " because " << Reason << "\n");
1058           }
1059         }
1060       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1061                  !CalledFunction->isDeclaration()) {
1062         if (inlineCallInstruction(I)) {
1063           localNotInlinedCallSites.erase(I);
1064           LocalChanged = true;
1065           ++NumCSInlined;
1066         }
1067       } else if (IsThinLTOPreLink) {
1068         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1069             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1070       }
1071     }
1072     if (LocalChanged) {
1073       Changed = true;
1074     } else {
1075       break;
1076     }
1077   }
1078 
1079   // Accumulate not inlined callsite information into notInlinedSamples
1080   for (const auto &Pair : localNotInlinedCallSites) {
1081     Instruction *I = Pair.getFirst();
1082     Function *Callee = CallSite(I).getCalledFunction();
1083     if (!Callee || Callee->isDeclaration())
1084       continue;
1085 
1086     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1087                                          I->getDebugLoc(), I->getParent())
1088               << "previous inlining not repeated: '"
1089               << ore::NV("Callee", Callee) << "' into '"
1090               << ore::NV("Caller", &F) << "'");
1091 
1092     ++NumCSNotInlined;
1093     const FunctionSamples *FS = Pair.getSecond();
1094     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1095       continue;
1096     }
1097 
1098     if (ProfileMergeInlinee) {
1099       // Use entry samples as head samples during the merge, as inlinees
1100       // don't have head samples.
1101       assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1102       const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1103 
1104       // Note that we have to do the merge right after processing function.
1105       // This allows OutlineFS's profile to be used for annotation during
1106       // top-down processing of functions' annotation.
1107       FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1108       OutlineFS->merge(*FS);
1109     } else {
1110       auto pair =
1111           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1112       pair.first->second.entryCount += FS->getEntrySamples();
1113     }
1114   }
1115   return Changed;
1116 }
1117 
1118 /// Find equivalence classes for the given block.
1119 ///
1120 /// This finds all the blocks that are guaranteed to execute the same
1121 /// number of times as \p BB1. To do this, it traverses all the
1122 /// descendants of \p BB1 in the dominator or post-dominator tree.
1123 ///
1124 /// A block BB2 will be in the same equivalence class as \p BB1 if
1125 /// the following holds:
1126 ///
1127 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1128 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1129 ///    dominate BB1 in the post-dominator tree.
1130 ///
1131 /// 2- Both BB2 and \p BB1 must be in the same loop.
1132 ///
1133 /// For every block BB2 that meets those two requirements, we set BB2's
1134 /// equivalence class to \p BB1.
1135 ///
1136 /// \param BB1  Block to check.
1137 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1138 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1139 ///                 with blocks from \p BB1's dominator tree, then
1140 ///                 this is the post-dominator tree, and vice versa.
1141 template <bool IsPostDom>
1142 void SampleProfileLoader::findEquivalencesFor(
1143     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1144     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1145   const BasicBlock *EC = EquivalenceClass[BB1];
1146   uint64_t Weight = BlockWeights[EC];
1147   for (const auto *BB2 : Descendants) {
1148     bool IsDomParent = DomTree->dominates(BB2, BB1);
1149     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1150     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1151       EquivalenceClass[BB2] = EC;
1152       // If BB2 is visited, then the entire EC should be marked as visited.
1153       if (VisitedBlocks.count(BB2)) {
1154         VisitedBlocks.insert(EC);
1155       }
1156 
1157       // If BB2 is heavier than BB1, make BB2 have the same weight
1158       // as BB1.
1159       //
1160       // Note that we don't worry about the opposite situation here
1161       // (when BB2 is lighter than BB1). We will deal with this
1162       // during the propagation phase. Right now, we just want to
1163       // make sure that BB1 has the largest weight of all the
1164       // members of its equivalence set.
1165       Weight = std::max(Weight, BlockWeights[BB2]);
1166     }
1167   }
1168   if (EC == &EC->getParent()->getEntryBlock()) {
1169     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1170   } else {
1171     BlockWeights[EC] = Weight;
1172   }
1173 }
1174 
1175 /// Find equivalence classes.
1176 ///
1177 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1178 /// the weights of all the blocks in the same equivalence class to the same
1179 /// weight. To compute the concept of equivalence, we use dominance and loop
1180 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1181 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1182 ///
1183 /// \param F The function to query.
1184 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1185   SmallVector<BasicBlock *, 8> DominatedBBs;
1186   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1187   // Find equivalence sets based on dominance and post-dominance information.
1188   for (auto &BB : F) {
1189     BasicBlock *BB1 = &BB;
1190 
1191     // Compute BB1's equivalence class once.
1192     if (EquivalenceClass.count(BB1)) {
1193       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1194       continue;
1195     }
1196 
1197     // By default, blocks are in their own equivalence class.
1198     EquivalenceClass[BB1] = BB1;
1199 
1200     // Traverse all the blocks dominated by BB1. We are looking for
1201     // every basic block BB2 such that:
1202     //
1203     // 1- BB1 dominates BB2.
1204     // 2- BB2 post-dominates BB1.
1205     // 3- BB1 and BB2 are in the same loop nest.
1206     //
1207     // If all those conditions hold, it means that BB2 is executed
1208     // as many times as BB1, so they are placed in the same equivalence
1209     // class by making BB2's equivalence class be BB1.
1210     DominatedBBs.clear();
1211     DT->getDescendants(BB1, DominatedBBs);
1212     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1213 
1214     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1215   }
1216 
1217   // Assign weights to equivalence classes.
1218   //
1219   // All the basic blocks in the same equivalence class will execute
1220   // the same number of times. Since we know that the head block in
1221   // each equivalence class has the largest weight, assign that weight
1222   // to all the blocks in that equivalence class.
1223   LLVM_DEBUG(
1224       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1225   for (auto &BI : F) {
1226     const BasicBlock *BB = &BI;
1227     const BasicBlock *EquivBB = EquivalenceClass[BB];
1228     if (BB != EquivBB)
1229       BlockWeights[BB] = BlockWeights[EquivBB];
1230     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1231   }
1232 }
1233 
1234 /// Visit the given edge to decide if it has a valid weight.
1235 ///
1236 /// If \p E has not been visited before, we copy to \p UnknownEdge
1237 /// and increment the count of unknown edges.
1238 ///
1239 /// \param E  Edge to visit.
1240 /// \param NumUnknownEdges  Current number of unknown edges.
1241 /// \param UnknownEdge  Set if E has not been visited before.
1242 ///
1243 /// \returns E's weight, if known. Otherwise, return 0.
1244 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1245                                         Edge *UnknownEdge) {
1246   if (!VisitedEdges.count(E)) {
1247     (*NumUnknownEdges)++;
1248     *UnknownEdge = E;
1249     return 0;
1250   }
1251 
1252   return EdgeWeights[E];
1253 }
1254 
1255 /// Propagate weights through incoming/outgoing edges.
1256 ///
1257 /// If the weight of a basic block is known, and there is only one edge
1258 /// with an unknown weight, we can calculate the weight of that edge.
1259 ///
1260 /// Similarly, if all the edges have a known count, we can calculate the
1261 /// count of the basic block, if needed.
1262 ///
1263 /// \param F  Function to process.
1264 /// \param UpdateBlockCount  Whether we should update basic block counts that
1265 ///                          has already been annotated.
1266 ///
1267 /// \returns  True if new weights were assigned to edges or blocks.
1268 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1269                                                 bool UpdateBlockCount) {
1270   bool Changed = false;
1271   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1272   for (const auto &BI : F) {
1273     const BasicBlock *BB = &BI;
1274     const BasicBlock *EC = EquivalenceClass[BB];
1275 
1276     // Visit all the predecessor and successor edges to determine
1277     // which ones have a weight assigned already. Note that it doesn't
1278     // matter that we only keep track of a single unknown edge. The
1279     // only case we are interested in handling is when only a single
1280     // edge is unknown (see setEdgeOrBlockWeight).
1281     for (unsigned i = 0; i < 2; i++) {
1282       uint64_t TotalWeight = 0;
1283       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1284       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1285 
1286       if (i == 0) {
1287         // First, visit all predecessor edges.
1288         NumTotalEdges = Predecessors[BB].size();
1289         for (auto *Pred : Predecessors[BB]) {
1290           Edge E = std::make_pair(Pred, BB);
1291           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1292           if (E.first == E.second)
1293             SelfReferentialEdge = E;
1294         }
1295         if (NumTotalEdges == 1) {
1296           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1297         }
1298       } else {
1299         // On the second round, visit all successor edges.
1300         NumTotalEdges = Successors[BB].size();
1301         for (auto *Succ : Successors[BB]) {
1302           Edge E = std::make_pair(BB, Succ);
1303           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1304         }
1305         if (NumTotalEdges == 1) {
1306           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1307         }
1308       }
1309 
1310       // After visiting all the edges, there are three cases that we
1311       // can handle immediately:
1312       //
1313       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1314       //   In this case, we simply check that the sum of all the edges
1315       //   is the same as BB's weight. If not, we change BB's weight
1316       //   to match. Additionally, if BB had not been visited before,
1317       //   we mark it visited.
1318       //
1319       // - Only one edge is unknown and BB has already been visited.
1320       //   In this case, we can compute the weight of the edge by
1321       //   subtracting the total block weight from all the known
1322       //   edge weights. If the edges weight more than BB, then the
1323       //   edge of the last remaining edge is set to zero.
1324       //
1325       // - There exists a self-referential edge and the weight of BB is
1326       //   known. In this case, this edge can be based on BB's weight.
1327       //   We add up all the other known edges and set the weight on
1328       //   the self-referential edge as we did in the previous case.
1329       //
1330       // In any other case, we must continue iterating. Eventually,
1331       // all edges will get a weight, or iteration will stop when
1332       // it reaches SampleProfileMaxPropagateIterations.
1333       if (NumUnknownEdges <= 1) {
1334         uint64_t &BBWeight = BlockWeights[EC];
1335         if (NumUnknownEdges == 0) {
1336           if (!VisitedBlocks.count(EC)) {
1337             // If we already know the weight of all edges, the weight of the
1338             // basic block can be computed. It should be no larger than the sum
1339             // of all edge weights.
1340             if (TotalWeight > BBWeight) {
1341               BBWeight = TotalWeight;
1342               Changed = true;
1343               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1344                                 << " known. Set weight for block: ";
1345                          printBlockWeight(dbgs(), BB););
1346             }
1347           } else if (NumTotalEdges == 1 &&
1348                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1349             // If there is only one edge for the visited basic block, use the
1350             // block weight to adjust edge weight if edge weight is smaller.
1351             EdgeWeights[SingleEdge] = BlockWeights[EC];
1352             Changed = true;
1353           }
1354         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1355           // If there is a single unknown edge and the block has been
1356           // visited, then we can compute E's weight.
1357           if (BBWeight >= TotalWeight)
1358             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1359           else
1360             EdgeWeights[UnknownEdge] = 0;
1361           const BasicBlock *OtherEC;
1362           if (i == 0)
1363             OtherEC = EquivalenceClass[UnknownEdge.first];
1364           else
1365             OtherEC = EquivalenceClass[UnknownEdge.second];
1366           // Edge weights should never exceed the BB weights it connects.
1367           if (VisitedBlocks.count(OtherEC) &&
1368               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1369             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1370           VisitedEdges.insert(UnknownEdge);
1371           Changed = true;
1372           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1373                      printEdgeWeight(dbgs(), UnknownEdge));
1374         }
1375       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1376         // If a block Weights 0, all its in/out edges should weight 0.
1377         if (i == 0) {
1378           for (auto *Pred : Predecessors[BB]) {
1379             Edge E = std::make_pair(Pred, BB);
1380             EdgeWeights[E] = 0;
1381             VisitedEdges.insert(E);
1382           }
1383         } else {
1384           for (auto *Succ : Successors[BB]) {
1385             Edge E = std::make_pair(BB, Succ);
1386             EdgeWeights[E] = 0;
1387             VisitedEdges.insert(E);
1388           }
1389         }
1390       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1391         uint64_t &BBWeight = BlockWeights[BB];
1392         // We have a self-referential edge and the weight of BB is known.
1393         if (BBWeight >= TotalWeight)
1394           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1395         else
1396           EdgeWeights[SelfReferentialEdge] = 0;
1397         VisitedEdges.insert(SelfReferentialEdge);
1398         Changed = true;
1399         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1400                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1401       }
1402       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1403         BlockWeights[EC] = TotalWeight;
1404         VisitedBlocks.insert(EC);
1405         Changed = true;
1406       }
1407     }
1408   }
1409 
1410   return Changed;
1411 }
1412 
1413 /// Build in/out edge lists for each basic block in the CFG.
1414 ///
1415 /// We are interested in unique edges. If a block B1 has multiple
1416 /// edges to another block B2, we only add a single B1->B2 edge.
1417 void SampleProfileLoader::buildEdges(Function &F) {
1418   for (auto &BI : F) {
1419     BasicBlock *B1 = &BI;
1420 
1421     // Add predecessors for B1.
1422     SmallPtrSet<BasicBlock *, 16> Visited;
1423     if (!Predecessors[B1].empty())
1424       llvm_unreachable("Found a stale predecessors list in a basic block.");
1425     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1426       BasicBlock *B2 = *PI;
1427       if (Visited.insert(B2).second)
1428         Predecessors[B1].push_back(B2);
1429     }
1430 
1431     // Add successors for B1.
1432     Visited.clear();
1433     if (!Successors[B1].empty())
1434       llvm_unreachable("Found a stale successors list in a basic block.");
1435     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1436       BasicBlock *B2 = *SI;
1437       if (Visited.insert(B2).second)
1438         Successors[B1].push_back(B2);
1439     }
1440   }
1441 }
1442 
1443 /// Returns the sorted CallTargetMap \p M by count in descending order.
1444 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1445     const SampleRecord::CallTargetMap & M) {
1446   SmallVector<InstrProfValueData, 2> R;
1447   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1448     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1449   }
1450   return R;
1451 }
1452 
1453 /// Propagate weights into edges
1454 ///
1455 /// The following rules are applied to every block BB in the CFG:
1456 ///
1457 /// - If BB has a single predecessor/successor, then the weight
1458 ///   of that edge is the weight of the block.
1459 ///
1460 /// - If all incoming or outgoing edges are known except one, and the
1461 ///   weight of the block is already known, the weight of the unknown
1462 ///   edge will be the weight of the block minus the sum of all the known
1463 ///   edges. If the sum of all the known edges is larger than BB's weight,
1464 ///   we set the unknown edge weight to zero.
1465 ///
1466 /// - If there is a self-referential edge, and the weight of the block is
1467 ///   known, the weight for that edge is set to the weight of the block
1468 ///   minus the weight of the other incoming edges to that block (if
1469 ///   known).
1470 void SampleProfileLoader::propagateWeights(Function &F) {
1471   bool Changed = true;
1472   unsigned I = 0;
1473 
1474   // If BB weight is larger than its corresponding loop's header BB weight,
1475   // use the BB weight to replace the loop header BB weight.
1476   for (auto &BI : F) {
1477     BasicBlock *BB = &BI;
1478     Loop *L = LI->getLoopFor(BB);
1479     if (!L) {
1480       continue;
1481     }
1482     BasicBlock *Header = L->getHeader();
1483     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1484       BlockWeights[Header] = BlockWeights[BB];
1485     }
1486   }
1487 
1488   // Before propagation starts, build, for each block, a list of
1489   // unique predecessors and successors. This is necessary to handle
1490   // identical edges in multiway branches. Since we visit all blocks and all
1491   // edges of the CFG, it is cleaner to build these lists once at the start
1492   // of the pass.
1493   buildEdges(F);
1494 
1495   // Propagate until we converge or we go past the iteration limit.
1496   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1497     Changed = propagateThroughEdges(F, false);
1498   }
1499 
1500   // The first propagation propagates BB counts from annotated BBs to unknown
1501   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1502   // to propagate edge weights.
1503   VisitedEdges.clear();
1504   Changed = true;
1505   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1506     Changed = propagateThroughEdges(F, false);
1507   }
1508 
1509   // The 3rd propagation pass allows adjust annotated BB weights that are
1510   // obviously wrong.
1511   Changed = true;
1512   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1513     Changed = propagateThroughEdges(F, true);
1514   }
1515 
1516   // Generate MD_prof metadata for every branch instruction using the
1517   // edge weights computed during propagation.
1518   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1519   LLVMContext &Ctx = F.getContext();
1520   MDBuilder MDB(Ctx);
1521   for (auto &BI : F) {
1522     BasicBlock *BB = &BI;
1523 
1524     if (BlockWeights[BB]) {
1525       for (auto &I : BB->getInstList()) {
1526         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1527           continue;
1528         CallSite CS(&I);
1529         if (!CS.getCalledFunction()) {
1530           const DebugLoc &DLoc = I.getDebugLoc();
1531           if (!DLoc)
1532             continue;
1533           const DILocation *DIL = DLoc;
1534           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1535           uint32_t Discriminator = DIL->getBaseDiscriminator();
1536 
1537           const FunctionSamples *FS = findFunctionSamples(I);
1538           if (!FS)
1539             continue;
1540           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1541           if (!T || T.get().empty())
1542             continue;
1543           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1544               GetSortedValueDataFromCallTargets(T.get());
1545           uint64_t Sum;
1546           findIndirectCallFunctionSamples(I, Sum);
1547           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1548                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1549                             SortedCallTargets.size());
1550         } else if (!isa<IntrinsicInst>(&I)) {
1551           I.setMetadata(LLVMContext::MD_prof,
1552                         MDB.createBranchWeights(
1553                             {static_cast<uint32_t>(BlockWeights[BB])}));
1554         }
1555       }
1556     }
1557     Instruction *TI = BB->getTerminator();
1558     if (TI->getNumSuccessors() == 1)
1559       continue;
1560     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1561       continue;
1562 
1563     DebugLoc BranchLoc = TI->getDebugLoc();
1564     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1565                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1566                                       : Twine("<UNKNOWN LOCATION>"))
1567                       << ".\n");
1568     SmallVector<uint32_t, 4> Weights;
1569     uint32_t MaxWeight = 0;
1570     Instruction *MaxDestInst;
1571     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1572       BasicBlock *Succ = TI->getSuccessor(I);
1573       Edge E = std::make_pair(BB, Succ);
1574       uint64_t Weight = EdgeWeights[E];
1575       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1576       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1577       // if needed. Sample counts in profiles are 64-bit unsigned values,
1578       // but internally branch weights are expressed as 32-bit values.
1579       if (Weight > std::numeric_limits<uint32_t>::max()) {
1580         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1581         Weight = std::numeric_limits<uint32_t>::max();
1582       }
1583       // Weight is added by one to avoid propagation errors introduced by
1584       // 0 weights.
1585       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1586       if (Weight != 0) {
1587         if (Weight > MaxWeight) {
1588           MaxWeight = Weight;
1589           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1590         }
1591       }
1592     }
1593 
1594     misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1595 
1596     uint64_t TempWeight;
1597     // Only set weights if there is at least one non-zero weight.
1598     // In any other case, let the analyzer set weights.
1599     // Do not set weights if the weights are present. In ThinLTO, the profile
1600     // annotation is done twice. If the first annotation already set the
1601     // weights, the second pass does not need to set it.
1602     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1603       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1604       TI->setMetadata(LLVMContext::MD_prof,
1605                       MDB.createBranchWeights(Weights));
1606       ORE->emit([&]() {
1607         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1608                << "most popular destination for conditional branches at "
1609                << ore::NV("CondBranchesLoc", BranchLoc);
1610       });
1611     } else {
1612       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1613     }
1614   }
1615 }
1616 
1617 /// Get the line number for the function header.
1618 ///
1619 /// This looks up function \p F in the current compilation unit and
1620 /// retrieves the line number where the function is defined. This is
1621 /// line 0 for all the samples read from the profile file. Every line
1622 /// number is relative to this line.
1623 ///
1624 /// \param F  Function object to query.
1625 ///
1626 /// \returns the line number where \p F is defined. If it returns 0,
1627 ///          it means that there is no debug information available for \p F.
1628 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1629   if (DISubprogram *S = F.getSubprogram())
1630     return S->getLine();
1631 
1632   if (NoWarnSampleUnused)
1633     return 0;
1634 
1635   // If the start of \p F is missing, emit a diagnostic to inform the user
1636   // about the missed opportunity.
1637   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1638       "No debug information found in function " + F.getName() +
1639           ": Function profile not used",
1640       DS_Warning));
1641   return 0;
1642 }
1643 
1644 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1645   DT.reset(new DominatorTree);
1646   DT->recalculate(F);
1647 
1648   PDT.reset(new PostDominatorTree(F));
1649 
1650   LI.reset(new LoopInfo);
1651   LI->analyze(*DT);
1652 }
1653 
1654 /// Generate branch weight metadata for all branches in \p F.
1655 ///
1656 /// Branch weights are computed out of instruction samples using a
1657 /// propagation heuristic. Propagation proceeds in 3 phases:
1658 ///
1659 /// 1- Assignment of block weights. All the basic blocks in the function
1660 ///    are initial assigned the same weight as their most frequently
1661 ///    executed instruction.
1662 ///
1663 /// 2- Creation of equivalence classes. Since samples may be missing from
1664 ///    blocks, we can fill in the gaps by setting the weights of all the
1665 ///    blocks in the same equivalence class to the same weight. To compute
1666 ///    the concept of equivalence, we use dominance and loop information.
1667 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1668 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1669 ///
1670 /// 3- Propagation of block weights into edges. This uses a simple
1671 ///    propagation heuristic. The following rules are applied to every
1672 ///    block BB in the CFG:
1673 ///
1674 ///    - If BB has a single predecessor/successor, then the weight
1675 ///      of that edge is the weight of the block.
1676 ///
1677 ///    - If all the edges are known except one, and the weight of the
1678 ///      block is already known, the weight of the unknown edge will
1679 ///      be the weight of the block minus the sum of all the known
1680 ///      edges. If the sum of all the known edges is larger than BB's weight,
1681 ///      we set the unknown edge weight to zero.
1682 ///
1683 ///    - If there is a self-referential edge, and the weight of the block is
1684 ///      known, the weight for that edge is set to the weight of the block
1685 ///      minus the weight of the other incoming edges to that block (if
1686 ///      known).
1687 ///
1688 /// Since this propagation is not guaranteed to finalize for every CFG, we
1689 /// only allow it to proceed for a limited number of iterations (controlled
1690 /// by -sample-profile-max-propagate-iterations).
1691 ///
1692 /// FIXME: Try to replace this propagation heuristic with a scheme
1693 /// that is guaranteed to finalize. A work-list approach similar to
1694 /// the standard value propagation algorithm used by SSA-CCP might
1695 /// work here.
1696 ///
1697 /// Once all the branch weights are computed, we emit the MD_prof
1698 /// metadata on BB using the computed values for each of its branches.
1699 ///
1700 /// \param F The function to query.
1701 ///
1702 /// \returns true if \p F was modified. Returns false, otherwise.
1703 bool SampleProfileLoader::emitAnnotations(Function &F) {
1704   bool Changed = false;
1705 
1706   if (getFunctionLoc(F) == 0)
1707     return false;
1708 
1709   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1710                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1711 
1712   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1713   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1714 
1715   // Compute basic block weights.
1716   Changed |= computeBlockWeights(F);
1717 
1718   if (Changed) {
1719     // Add an entry count to the function using the samples gathered at the
1720     // function entry.
1721     // Sets the GUIDs that are inlined in the profiled binary. This is used
1722     // for ThinLink to make correct liveness analysis, and also make the IR
1723     // match the profiled binary before annotation.
1724     F.setEntryCount(
1725         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1726         &InlinedGUIDs);
1727 
1728     // Compute dominance and loop info needed for propagation.
1729     computeDominanceAndLoopInfo(F);
1730 
1731     // Find equivalence classes.
1732     findEquivalenceClasses(F);
1733 
1734     // Propagate weights to all edges.
1735     propagateWeights(F);
1736   }
1737 
1738   // If coverage checking was requested, compute it now.
1739   if (SampleProfileRecordCoverage) {
1740     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1741     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1742     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1743     if (Coverage < SampleProfileRecordCoverage) {
1744       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1745           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1746           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1747               Twine(Coverage) + "%) were applied",
1748           DS_Warning));
1749     }
1750   }
1751 
1752   if (SampleProfileSampleCoverage) {
1753     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1754     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1755     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1756     if (Coverage < SampleProfileSampleCoverage) {
1757       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1758           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1759           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1760               Twine(Coverage) + "%) were applied",
1761           DS_Warning));
1762     }
1763   }
1764   return Changed;
1765 }
1766 
1767 char SampleProfileLoaderLegacyPass::ID = 0;
1768 
1769 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1770                       "Sample Profile loader", false, false)
1771 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1772 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1773 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1774 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1775                     "Sample Profile loader", false, false)
1776 
1777 std::vector<Function *>
1778 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1779   std::vector<Function *> FunctionOrderList;
1780   FunctionOrderList.reserve(M.size());
1781 
1782   if (!ProfileTopDownLoad || CG == nullptr) {
1783     for (Function &F : M)
1784       if (!F.isDeclaration())
1785         FunctionOrderList.push_back(&F);
1786     return FunctionOrderList;
1787   }
1788 
1789   assert(&CG->getModule() == &M);
1790   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1791   while (!CGI.isAtEnd()) {
1792     for (CallGraphNode *node : *CGI) {
1793       auto F = node->getFunction();
1794       if (F && !F->isDeclaration())
1795         FunctionOrderList.push_back(F);
1796     }
1797     ++CGI;
1798   }
1799 
1800   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1801   return FunctionOrderList;
1802 }
1803 
1804 bool SampleProfileLoader::doInitialization(Module &M) {
1805   auto &Ctx = M.getContext();
1806 
1807   std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1808   auto ReaderOrErr =
1809       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1810   if (std::error_code EC = ReaderOrErr.getError()) {
1811     std::string Msg = "Could not open profile: " + EC.message();
1812     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1813     return false;
1814   }
1815   Reader = std::move(ReaderOrErr.get());
1816   Reader->collectFuncsFrom(M);
1817   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1818   PSL = Reader->getProfileSymbolList();
1819 
1820   // While profile-sample-accurate is on, ignore symbol list.
1821   ProfAccForSymsInList =
1822       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1823   if (ProfAccForSymsInList) {
1824     NamesInProfile.clear();
1825     if (auto NameTable = Reader->getNameTable())
1826       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1827   }
1828 
1829   return true;
1830 }
1831 
1832 ModulePass *llvm::createSampleProfileLoaderPass() {
1833   return new SampleProfileLoaderLegacyPass();
1834 }
1835 
1836 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1837   return new SampleProfileLoaderLegacyPass(Name);
1838 }
1839 
1840 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1841                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1842   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1843   if (!ProfileIsValid)
1844     return false;
1845 
1846   PSI = _PSI;
1847   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1848     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1849                         ProfileSummary::PSK_Sample);
1850 
1851   // Compute the total number of samples collected in this profile.
1852   for (const auto &I : Reader->getProfiles())
1853     TotalCollectedSamples += I.second.getTotalSamples();
1854 
1855   // Populate the symbol map.
1856   for (const auto &N_F : M.getValueSymbolTable()) {
1857     StringRef OrigName = N_F.getKey();
1858     Function *F = dyn_cast<Function>(N_F.getValue());
1859     if (F == nullptr)
1860       continue;
1861     SymbolMap[OrigName] = F;
1862     auto pos = OrigName.find('.');
1863     if (pos != StringRef::npos) {
1864       StringRef NewName = OrigName.substr(0, pos);
1865       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1866       // Failiing to insert means there is already an entry in SymbolMap,
1867       // thus there are multiple functions that are mapped to the same
1868       // stripped name. In this case of name conflicting, set the value
1869       // to nullptr to avoid confusion.
1870       if (!r.second)
1871         r.first->second = nullptr;
1872     }
1873   }
1874 
1875   bool retval = false;
1876   for (auto F : buildFunctionOrder(M, CG)) {
1877     assert(!F->isDeclaration());
1878     clearFunctionData();
1879     retval |= runOnFunction(*F, AM);
1880   }
1881 
1882   // Account for cold calls not inlined....
1883   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1884        notInlinedCallInfo)
1885     updateProfileCallee(pair.first, pair.second.entryCount);
1886 
1887   return retval;
1888 }
1889 
1890 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1891   ACT = &getAnalysis<AssumptionCacheTracker>();
1892   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1893   ProfileSummaryInfo *PSI =
1894       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1895   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1896 }
1897 
1898 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1899 
1900   DILocation2SampleMap.clear();
1901   // By default the entry count is initialized to -1, which will be treated
1902   // conservatively by getEntryCount as the same as unknown (None). This is
1903   // to avoid newly added code to be treated as cold. If we have samples
1904   // this will be overwritten in emitAnnotations.
1905   uint64_t initialEntryCount = -1;
1906 
1907   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1908   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1909     // initialize all the function entry counts to 0. It means all the
1910     // functions without profile will be regarded as cold.
1911     initialEntryCount = 0;
1912     // profile-sample-accurate is a user assertion which has a higher precedence
1913     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1914     ProfAccForSymsInList = false;
1915   }
1916 
1917   // PSL -- profile symbol list include all the symbols in sampled binary.
1918   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1919   // old functions without samples being cold, without having to worry
1920   // about new and hot functions being mistakenly treated as cold.
1921   if (ProfAccForSymsInList) {
1922     // Initialize the entry count to 0 for functions in the list.
1923     if (PSL->contains(F.getName()))
1924       initialEntryCount = 0;
1925 
1926     // Function in the symbol list but without sample will be regarded as
1927     // cold. To minimize the potential negative performance impact it could
1928     // have, we want to be a little conservative here saying if a function
1929     // shows up in the profile, no matter as outline function, inline instance
1930     // or call targets, treat the function as not being cold. This will handle
1931     // the cases such as most callsites of a function are inlined in sampled
1932     // binary but not inlined in current build (because of source code drift,
1933     // imprecise debug information, or the callsites are all cold individually
1934     // but not cold accumulatively...), so the outline function showing up as
1935     // cold in sampled binary will actually not be cold after current build.
1936     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1937     if (NamesInProfile.count(CanonName))
1938       initialEntryCount = -1;
1939   }
1940 
1941   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1942   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1943   if (AM) {
1944     auto &FAM =
1945         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1946             .getManager();
1947     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1948   } else {
1949     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1950     ORE = OwnedORE.get();
1951   }
1952   Samples = Reader->getSamplesFor(F);
1953   if (Samples && !Samples->empty())
1954     return emitAnnotations(F);
1955   return false;
1956 }
1957 
1958 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1959                                                ModuleAnalysisManager &AM) {
1960   FunctionAnalysisManager &FAM =
1961       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1962 
1963   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1964     return FAM.getResult<AssumptionAnalysis>(F);
1965   };
1966   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1967     return FAM.getResult<TargetIRAnalysis>(F);
1968   };
1969 
1970   SampleProfileLoader SampleLoader(
1971       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1972       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1973                                        : ProfileRemappingFileName,
1974       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1975 
1976   if (!SampleLoader.doInitialization(M))
1977     return PreservedAnalyses::all();
1978 
1979   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1980   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
1981   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
1982     return PreservedAnalyses::all();
1983 
1984   return PreservedAnalyses::none();
1985 }
1986