1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/PriorityQueue.h" 30 #include "llvm/ADT/SCCIterator.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringMap.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/Analysis/AssumptionCache.h" 39 #include "llvm/Analysis/CallGraph.h" 40 #include "llvm/Analysis/CallGraphSCCPass.h" 41 #include "llvm/Analysis/InlineAdvisor.h" 42 #include "llvm/Analysis/InlineCost.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/PostDominators.h" 46 #include "llvm/Analysis/ProfileSummaryInfo.h" 47 #include "llvm/Analysis/ReplayInlineAdvisor.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DiagnosticInfo.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PassManager.h" 66 #include "llvm/IR/ValueSymbolTable.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/ProfileData/InstrProf.h" 70 #include "llvm/ProfileData/SampleProf.h" 71 #include "llvm/ProfileData/SampleProfReader.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/ErrorOr.h" 77 #include "llvm/Support/GenericDomTree.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/IPO.h" 80 #include "llvm/Transforms/IPO/SampleContextTracker.h" 81 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 82 #include "llvm/Transforms/Instrumentation.h" 83 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 84 #include "llvm/Transforms/Utils/Cloning.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <cstdint> 88 #include <functional> 89 #include <limits> 90 #include <map> 91 #include <memory> 92 #include <queue> 93 #include <string> 94 #include <system_error> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 using namespace sampleprof; 100 using ProfileCount = Function::ProfileCount; 101 #define DEBUG_TYPE "sample-profile" 102 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 103 104 STATISTIC(NumCSInlined, 105 "Number of functions inlined with context sensitive profile"); 106 STATISTIC(NumCSNotInlined, 107 "Number of functions not inlined with context sensitive profile"); 108 STATISTIC(NumMismatchedProfile, 109 "Number of functions with CFG mismatched profile"); 110 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 111 STATISTIC(NumDuplicatedInlinesite, 112 "Number of inlined callsites with a partial distribution factor"); 113 114 STATISTIC(NumCSInlinedHitMinLimit, 115 "Number of functions with FDO inline stopped due to min size limit"); 116 STATISTIC(NumCSInlinedHitMaxLimit, 117 "Number of functions with FDO inline stopped due to max size limit"); 118 STATISTIC( 119 NumCSInlinedHitGrowthLimit, 120 "Number of functions with FDO inline stopped due to growth size limit"); 121 122 // Command line option to specify the file to read samples from. This is 123 // mainly used for debugging. 124 static cl::opt<std::string> SampleProfileFile( 125 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 126 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 127 128 // The named file contains a set of transformations that may have been applied 129 // to the symbol names between the program from which the sample data was 130 // collected and the current program's symbols. 131 static cl::opt<std::string> SampleProfileRemappingFile( 132 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 133 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 134 135 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 136 "sample-profile-max-propagate-iterations", cl::init(100), 137 cl::desc("Maximum number of iterations to go through when propagating " 138 "sample block/edge weights through the CFG.")); 139 140 static cl::opt<unsigned> SampleProfileRecordCoverage( 141 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 142 cl::desc("Emit a warning if less than N% of records in the input profile " 143 "are matched to the IR.")); 144 145 static cl::opt<unsigned> SampleProfileSampleCoverage( 146 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 147 cl::desc("Emit a warning if less than N% of samples in the input profile " 148 "are matched to the IR.")); 149 150 static cl::opt<bool> NoWarnSampleUnused( 151 "no-warn-sample-unused", cl::init(false), cl::Hidden, 152 cl::desc("Use this option to turn off/on warnings about function with " 153 "samples but without debug information to use those samples. ")); 154 155 static cl::opt<bool> ProfileSampleAccurate( 156 "profile-sample-accurate", cl::Hidden, cl::init(false), 157 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 158 "callsite and function as having 0 samples. Otherwise, treat " 159 "un-sampled callsites and functions conservatively as unknown. ")); 160 161 static cl::opt<bool> ProfileAccurateForSymsInList( 162 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 163 cl::init(true), 164 cl::desc("For symbols in profile symbol list, regard their profiles to " 165 "be accurate. It may be overriden by profile-sample-accurate. ")); 166 167 static cl::opt<bool> ProfileMergeInlinee( 168 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 169 cl::desc("Merge past inlinee's profile to outline version if sample " 170 "profile loader decided not to inline a call site. It will " 171 "only be enabled when top-down order of profile loading is " 172 "enabled. ")); 173 174 static cl::opt<bool> ProfileTopDownLoad( 175 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 176 cl::desc("Do profile annotation and inlining for functions in top-down " 177 "order of call graph during sample profile loading. It only " 178 "works for new pass manager. ")); 179 180 static cl::opt<bool> UseProfileIndirectCallEdges( 181 "use-profile-indirect-call-edges", cl::init(true), cl::Hidden, 182 cl::desc("Considering indirect call samples from profile when top-down " 183 "processing functions. Only CSSPGO is supported.")); 184 185 static cl::opt<bool> UseProfileTopDownOrder( 186 "use-profile-top-down-order", cl::init(false), cl::Hidden, 187 cl::desc("Process functions in one SCC in a top-down order " 188 "based on the input profile.")); 189 190 static cl::opt<bool> ProfileSizeInline( 191 "sample-profile-inline-size", cl::Hidden, cl::init(false), 192 cl::desc("Inline cold call sites in profile loader if it's beneficial " 193 "for code size.")); 194 195 static cl::opt<int> ProfileInlineGrowthLimit( 196 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), 197 cl::desc("The size growth ratio limit for proirity-based sample profile " 198 "loader inlining.")); 199 200 static cl::opt<int> ProfileInlineLimitMin( 201 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), 202 cl::desc("The lower bound of size growth limit for " 203 "proirity-based sample profile loader inlining.")); 204 205 static cl::opt<int> ProfileInlineLimitMax( 206 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), 207 cl::desc("The upper bound of size growth limit for " 208 "proirity-based sample profile loader inlining.")); 209 210 static cl::opt<int> ProfileICPThreshold( 211 "sample-profile-icp-threshold", cl::Hidden, cl::init(5), 212 cl::desc( 213 "Relative hotness threshold for indirect " 214 "call promotion in proirity-based sample profile loader inlining.")); 215 216 static cl::opt<int> SampleHotCallSiteThreshold( 217 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), 218 cl::desc("Hot callsite threshold for proirity-based sample profile loader " 219 "inlining.")); 220 221 static cl::opt<bool> CallsitePrioritizedInline( 222 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, 223 cl::init(false), 224 cl::desc("Use call site prioritized inlining for sample profile loader." 225 "Currently only CSSPGO is supported.")); 226 227 static cl::opt<int> SampleColdCallSiteThreshold( 228 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 229 cl::desc("Threshold for inlining cold callsites")); 230 231 static cl::opt<std::string> ProfileInlineReplayFile( 232 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 233 cl::desc( 234 "Optimization remarks file containing inline remarks to be replayed " 235 "by inlining from sample profile loader."), 236 cl::Hidden); 237 238 namespace { 239 240 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 241 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 242 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 243 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 244 using BlockEdgeMap = 245 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 246 247 class SampleProfileLoader; 248 249 class SampleCoverageTracker { 250 public: 251 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 252 253 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 254 uint32_t Discriminator, uint64_t Samples); 255 unsigned computeCoverage(unsigned Used, unsigned Total) const; 256 unsigned countUsedRecords(const FunctionSamples *FS, 257 ProfileSummaryInfo *PSI) const; 258 unsigned countBodyRecords(const FunctionSamples *FS, 259 ProfileSummaryInfo *PSI) const; 260 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 261 uint64_t countBodySamples(const FunctionSamples *FS, 262 ProfileSummaryInfo *PSI) const; 263 264 void clear() { 265 SampleCoverage.clear(); 266 TotalUsedSamples = 0; 267 } 268 269 private: 270 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 271 using FunctionSamplesCoverageMap = 272 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 273 274 /// Coverage map for sampling records. 275 /// 276 /// This map keeps a record of sampling records that have been matched to 277 /// an IR instruction. This is used to detect some form of staleness in 278 /// profiles (see flag -sample-profile-check-coverage). 279 /// 280 /// Each entry in the map corresponds to a FunctionSamples instance. This is 281 /// another map that counts how many times the sample record at the 282 /// given location has been used. 283 FunctionSamplesCoverageMap SampleCoverage; 284 285 /// Number of samples used from the profile. 286 /// 287 /// When a sampling record is used for the first time, the samples from 288 /// that record are added to this accumulator. Coverage is later computed 289 /// based on the total number of samples available in this function and 290 /// its callsites. 291 /// 292 /// Note that this accumulator tracks samples used from a single function 293 /// and all the inlined callsites. Strictly, we should have a map of counters 294 /// keyed by FunctionSamples pointers, but these stats are cleared after 295 /// every function, so we just need to keep a single counter. 296 uint64_t TotalUsedSamples = 0; 297 298 SampleProfileLoader &SPLoader; 299 }; 300 301 class GUIDToFuncNameMapper { 302 public: 303 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 304 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 305 : CurrentReader(Reader), CurrentModule(M), 306 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 307 if (!CurrentReader.useMD5()) 308 return; 309 310 for (const auto &F : CurrentModule) { 311 StringRef OrigName = F.getName(); 312 CurrentGUIDToFuncNameMap.insert( 313 {Function::getGUID(OrigName), OrigName}); 314 315 // Local to global var promotion used by optimization like thinlto 316 // will rename the var and add suffix like ".llvm.xxx" to the 317 // original local name. In sample profile, the suffixes of function 318 // names are all stripped. Since it is possible that the mapper is 319 // built in post-thin-link phase and var promotion has been done, 320 // we need to add the substring of function name without the suffix 321 // into the GUIDToFuncNameMap. 322 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 323 if (CanonName != OrigName) 324 CurrentGUIDToFuncNameMap.insert( 325 {Function::getGUID(CanonName), CanonName}); 326 } 327 328 // Update GUIDToFuncNameMap for each function including inlinees. 329 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 330 } 331 332 ~GUIDToFuncNameMapper() { 333 if (!CurrentReader.useMD5()) 334 return; 335 336 CurrentGUIDToFuncNameMap.clear(); 337 338 // Reset GUIDToFuncNameMap for of each function as they're no 339 // longer valid at this point. 340 SetGUIDToFuncNameMapForAll(nullptr); 341 } 342 343 private: 344 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 345 std::queue<FunctionSamples *> FSToUpdate; 346 for (auto &IFS : CurrentReader.getProfiles()) { 347 FSToUpdate.push(&IFS.second); 348 } 349 350 while (!FSToUpdate.empty()) { 351 FunctionSamples *FS = FSToUpdate.front(); 352 FSToUpdate.pop(); 353 FS->GUIDToFuncNameMap = Map; 354 for (const auto &ICS : FS->getCallsiteSamples()) { 355 const FunctionSamplesMap &FSMap = ICS.second; 356 for (auto &IFS : FSMap) { 357 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 358 FSToUpdate.push(&FS); 359 } 360 } 361 } 362 } 363 364 SampleProfileReader &CurrentReader; 365 Module &CurrentModule; 366 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 367 }; 368 369 // Inline candidate used by iterative callsite prioritized inliner 370 struct InlineCandidate { 371 CallBase *CallInstr; 372 const FunctionSamples *CalleeSamples; 373 // Prorated callsite count, which will be used to guide inlining. For example, 374 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two 375 // copies will get their own distribution factors and their prorated counts 376 // will be used to decide if they should be inlined independently. 377 uint64_t CallsiteCount; 378 // Call site distribution factor to prorate the profile samples for a 379 // duplicated callsite. Default value is 1.0. 380 float CallsiteDistribution; 381 }; 382 383 // Inline candidate comparer using call site weight 384 struct CandidateComparer { 385 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { 386 if (LHS.CallsiteCount != RHS.CallsiteCount) 387 return LHS.CallsiteCount < RHS.CallsiteCount; 388 389 // Tie breaker using GUID so we have stable/deterministic inlining order 390 assert(LHS.CalleeSamples && RHS.CalleeSamples && 391 "Expect non-null FunctionSamples"); 392 return LHS.CalleeSamples->getGUID(LHS.CalleeSamples->getName()) < 393 RHS.CalleeSamples->getGUID(RHS.CalleeSamples->getName()); 394 } 395 }; 396 397 using CandidateQueue = 398 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, 399 CandidateComparer>; 400 401 /// Sample profile pass. 402 /// 403 /// This pass reads profile data from the file specified by 404 /// -sample-profile-file and annotates every affected function with the 405 /// profile information found in that file. 406 class SampleProfileLoader { 407 public: 408 SampleProfileLoader( 409 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 410 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 411 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 412 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 413 : GetAC(std::move(GetAssumptionCache)), 414 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 415 CoverageTracker(*this), Filename(std::string(Name)), 416 RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {} 417 418 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 419 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 420 ProfileSummaryInfo *_PSI, CallGraph *CG); 421 422 void dump() { Reader->dump(); } 423 424 protected: 425 friend class SampleCoverageTracker; 426 427 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 428 unsigned getFunctionLoc(Function &F); 429 bool emitAnnotations(Function &F); 430 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 431 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 432 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 433 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 434 std::vector<const FunctionSamples *> 435 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 436 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 437 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 438 // Attempt to promote indirect call and also inline the promoted call 439 bool tryPromoteAndInlineCandidate( 440 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, 441 uint64_t &Sum, DenseSet<Instruction *> &PromotedInsns, 442 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 443 bool inlineHotFunctions(Function &F, 444 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 445 InlineCost shouldInlineCandidate(InlineCandidate &Candidate); 446 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); 447 bool 448 tryInlineCandidate(InlineCandidate &Candidate, 449 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 450 bool 451 inlineHotFunctionsWithPriority(Function &F, 452 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 453 // Inline cold/small functions in addition to hot ones 454 bool shouldInlineColdCallee(CallBase &CallInst); 455 void emitOptimizationRemarksForInlineCandidates( 456 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 457 bool Hot); 458 void printEdgeWeight(raw_ostream &OS, Edge E); 459 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 460 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 461 bool computeBlockWeights(Function &F); 462 void findEquivalenceClasses(Function &F); 463 template <bool IsPostDom> 464 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 465 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 466 467 void propagateWeights(Function &F); 468 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 469 void buildEdges(Function &F); 470 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 471 void addCallGraphEdges(CallGraph &CG, const FunctionSamples &Samples); 472 void replaceCallGraphEdges(CallGraph &CG, StringMap<Function *> &SymbolMap); 473 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 474 void computeDominanceAndLoopInfo(Function &F); 475 void clearFunctionData(); 476 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 477 ProfileSummaryInfo *PSI); 478 479 /// Map basic blocks to their computed weights. 480 /// 481 /// The weight of a basic block is defined to be the maximum 482 /// of all the instruction weights in that block. 483 BlockWeightMap BlockWeights; 484 485 /// Map edges to their computed weights. 486 /// 487 /// Edge weights are computed by propagating basic block weights in 488 /// SampleProfile::propagateWeights. 489 EdgeWeightMap EdgeWeights; 490 491 /// Set of visited blocks during propagation. 492 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 493 494 /// Set of visited edges during propagation. 495 SmallSet<Edge, 32> VisitedEdges; 496 497 /// Equivalence classes for block weights. 498 /// 499 /// Two blocks BB1 and BB2 are in the same equivalence class if they 500 /// dominate and post-dominate each other, and they are in the same loop 501 /// nest. When this happens, the two blocks are guaranteed to execute 502 /// the same number of times. 503 EquivalenceClassMap EquivalenceClass; 504 505 /// Map from function name to Function *. Used to find the function from 506 /// the function name. If the function name contains suffix, additional 507 /// entry is added to map from the stripped name to the function if there 508 /// is one-to-one mapping. 509 StringMap<Function *> SymbolMap; 510 511 /// Dominance, post-dominance and loop information. 512 std::unique_ptr<DominatorTree> DT; 513 std::unique_ptr<PostDominatorTree> PDT; 514 std::unique_ptr<LoopInfo> LI; 515 516 std::function<AssumptionCache &(Function &)> GetAC; 517 std::function<TargetTransformInfo &(Function &)> GetTTI; 518 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 519 520 /// Predecessors for each basic block in the CFG. 521 BlockEdgeMap Predecessors; 522 523 /// Successors for each basic block in the CFG. 524 BlockEdgeMap Successors; 525 526 SampleCoverageTracker CoverageTracker; 527 528 /// Profile reader object. 529 std::unique_ptr<SampleProfileReader> Reader; 530 531 /// Profile tracker for different context. 532 std::unique_ptr<SampleContextTracker> ContextTracker; 533 534 /// Samples collected for the body of this function. 535 FunctionSamples *Samples = nullptr; 536 537 /// Name of the profile file to load. 538 std::string Filename; 539 540 /// Name of the profile remapping file to load. 541 std::string RemappingFilename; 542 543 /// Flag indicating whether the profile input loaded successfully. 544 bool ProfileIsValid = false; 545 546 /// Flag indicating whether input profile is context-sensitive 547 bool ProfileIsCS = false; 548 549 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 550 /// 551 /// We need to know the LTO phase because for example in ThinLTOPrelink 552 /// phase, in annotation, we should not promote indirect calls. Instead, 553 /// we will mark GUIDs that needs to be annotated to the function. 554 ThinOrFullLTOPhase LTOPhase; 555 556 /// Profile Summary Info computed from sample profile. 557 ProfileSummaryInfo *PSI = nullptr; 558 559 /// Profle Symbol list tells whether a function name appears in the binary 560 /// used to generate the current profile. 561 std::unique_ptr<ProfileSymbolList> PSL; 562 563 /// Total number of samples collected in this profile. 564 /// 565 /// This is the sum of all the samples collected in all the functions executed 566 /// at runtime. 567 uint64_t TotalCollectedSamples = 0; 568 569 /// Optimization Remark Emitter used to emit diagnostic remarks. 570 OptimizationRemarkEmitter *ORE = nullptr; 571 572 // Information recorded when we declined to inline a call site 573 // because we have determined it is too cold is accumulated for 574 // each callee function. Initially this is just the entry count. 575 struct NotInlinedProfileInfo { 576 uint64_t entryCount; 577 }; 578 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 579 580 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 581 // all the function symbols defined or declared in current module. 582 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 583 584 // All the Names used in FunctionSamples including outline function 585 // names, inline instance names and call target names. 586 StringSet<> NamesInProfile; 587 588 // For symbol in profile symbol list, whether to regard their profiles 589 // to be accurate. It is mainly decided by existance of profile symbol 590 // list and -profile-accurate-for-symsinlist flag, but it can be 591 // overriden by -profile-sample-accurate or profile-sample-accurate 592 // attribute. 593 bool ProfAccForSymsInList; 594 595 // External inline advisor used to replay inline decision from remarks. 596 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor; 597 598 // A pseudo probe helper to correlate the imported sample counts. 599 std::unique_ptr<PseudoProbeManager> ProbeManager; 600 }; 601 602 class SampleProfileLoaderLegacyPass : public ModulePass { 603 public: 604 // Class identification, replacement for typeinfo 605 static char ID; 606 607 SampleProfileLoaderLegacyPass( 608 StringRef Name = SampleProfileFile, 609 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 610 : ModulePass(ID), SampleLoader( 611 Name, SampleProfileRemappingFile, LTOPhase, 612 [&](Function &F) -> AssumptionCache & { 613 return ACT->getAssumptionCache(F); 614 }, 615 [&](Function &F) -> TargetTransformInfo & { 616 return TTIWP->getTTI(F); 617 }, 618 [&](Function &F) -> TargetLibraryInfo & { 619 return TLIWP->getTLI(F); 620 }) { 621 initializeSampleProfileLoaderLegacyPassPass( 622 *PassRegistry::getPassRegistry()); 623 } 624 625 void dump() { SampleLoader.dump(); } 626 627 bool doInitialization(Module &M) override { 628 return SampleLoader.doInitialization(M); 629 } 630 631 StringRef getPassName() const override { return "Sample profile pass"; } 632 bool runOnModule(Module &M) override; 633 634 void getAnalysisUsage(AnalysisUsage &AU) const override { 635 AU.addRequired<AssumptionCacheTracker>(); 636 AU.addRequired<TargetTransformInfoWrapperPass>(); 637 AU.addRequired<TargetLibraryInfoWrapperPass>(); 638 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 639 } 640 641 private: 642 SampleProfileLoader SampleLoader; 643 AssumptionCacheTracker *ACT = nullptr; 644 TargetTransformInfoWrapperPass *TTIWP = nullptr; 645 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 646 }; 647 648 } // end anonymous namespace 649 650 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 651 /// 652 /// Functions that were inlined in the original binary will be represented 653 /// in the inline stack in the sample profile. If the profile shows that 654 /// the original inline decision was "good" (i.e., the callsite is executed 655 /// frequently), then we will recreate the inline decision and apply the 656 /// profile from the inlined callsite. 657 /// 658 /// To decide whether an inlined callsite is hot, we compare the callsite 659 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 660 /// regarded as hot if the count is above the cutoff value. 661 /// 662 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 663 /// is present, functions in the profile symbol list but without profile will 664 /// be regarded as cold and much less inlining will happen in CGSCC inlining 665 /// pass, so we tend to lower the hot criteria here to allow more early 666 /// inlining to happen for warm callsites and it is helpful for performance. 667 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 668 ProfileSummaryInfo *PSI) { 669 if (!CallsiteFS) 670 return false; // The callsite was not inlined in the original binary. 671 672 assert(PSI && "PSI is expected to be non null"); 673 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 674 if (ProfAccForSymsInList) 675 return !PSI->isColdCount(CallsiteTotalSamples); 676 else 677 return PSI->isHotCount(CallsiteTotalSamples); 678 } 679 680 /// Mark as used the sample record for the given function samples at 681 /// (LineOffset, Discriminator). 682 /// 683 /// \returns true if this is the first time we mark the given record. 684 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 685 uint32_t LineOffset, 686 uint32_t Discriminator, 687 uint64_t Samples) { 688 LineLocation Loc(LineOffset, Discriminator); 689 unsigned &Count = SampleCoverage[FS][Loc]; 690 bool FirstTime = (++Count == 1); 691 if (FirstTime) 692 TotalUsedSamples += Samples; 693 return FirstTime; 694 } 695 696 /// Return the number of sample records that were applied from this profile. 697 /// 698 /// This count does not include records from cold inlined callsites. 699 unsigned 700 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 701 ProfileSummaryInfo *PSI) const { 702 auto I = SampleCoverage.find(FS); 703 704 // The size of the coverage map for FS represents the number of records 705 // that were marked used at least once. 706 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 707 708 // If there are inlined callsites in this function, count the samples found 709 // in the respective bodies. However, do not bother counting callees with 0 710 // total samples, these are callees that were never invoked at runtime. 711 for (const auto &I : FS->getCallsiteSamples()) 712 for (const auto &J : I.second) { 713 const FunctionSamples *CalleeSamples = &J.second; 714 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 715 Count += countUsedRecords(CalleeSamples, PSI); 716 } 717 718 return Count; 719 } 720 721 /// Return the number of sample records in the body of this profile. 722 /// 723 /// This count does not include records from cold inlined callsites. 724 unsigned 725 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 726 ProfileSummaryInfo *PSI) const { 727 unsigned Count = FS->getBodySamples().size(); 728 729 // Only count records in hot callsites. 730 for (const auto &I : FS->getCallsiteSamples()) 731 for (const auto &J : I.second) { 732 const FunctionSamples *CalleeSamples = &J.second; 733 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 734 Count += countBodyRecords(CalleeSamples, PSI); 735 } 736 737 return Count; 738 } 739 740 /// Return the number of samples collected in the body of this profile. 741 /// 742 /// This count does not include samples from cold inlined callsites. 743 uint64_t 744 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 745 ProfileSummaryInfo *PSI) const { 746 uint64_t Total = 0; 747 for (const auto &I : FS->getBodySamples()) 748 Total += I.second.getSamples(); 749 750 // Only count samples in hot callsites. 751 for (const auto &I : FS->getCallsiteSamples()) 752 for (const auto &J : I.second) { 753 const FunctionSamples *CalleeSamples = &J.second; 754 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 755 Total += countBodySamples(CalleeSamples, PSI); 756 } 757 758 return Total; 759 } 760 761 /// Return the fraction of sample records used in this profile. 762 /// 763 /// The returned value is an unsigned integer in the range 0-100 indicating 764 /// the percentage of sample records that were used while applying this 765 /// profile to the associated function. 766 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 767 unsigned Total) const { 768 assert(Used <= Total && 769 "number of used records cannot exceed the total number of records"); 770 return Total > 0 ? Used * 100 / Total : 100; 771 } 772 773 /// Clear all the per-function data used to load samples and propagate weights. 774 void SampleProfileLoader::clearFunctionData() { 775 BlockWeights.clear(); 776 EdgeWeights.clear(); 777 VisitedBlocks.clear(); 778 VisitedEdges.clear(); 779 EquivalenceClass.clear(); 780 DT = nullptr; 781 PDT = nullptr; 782 LI = nullptr; 783 Predecessors.clear(); 784 Successors.clear(); 785 CoverageTracker.clear(); 786 } 787 788 #ifndef NDEBUG 789 /// Print the weight of edge \p E on stream \p OS. 790 /// 791 /// \param OS Stream to emit the output to. 792 /// \param E Edge to print. 793 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 794 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 795 << "]: " << EdgeWeights[E] << "\n"; 796 } 797 798 /// Print the equivalence class of block \p BB on stream \p OS. 799 /// 800 /// \param OS Stream to emit the output to. 801 /// \param BB Block to print. 802 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 803 const BasicBlock *BB) { 804 const BasicBlock *Equiv = EquivalenceClass[BB]; 805 OS << "equivalence[" << BB->getName() 806 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 807 } 808 809 /// Print the weight of block \p BB on stream \p OS. 810 /// 811 /// \param OS Stream to emit the output to. 812 /// \param BB Block to print. 813 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 814 const BasicBlock *BB) const { 815 const auto &I = BlockWeights.find(BB); 816 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 817 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 818 } 819 #endif 820 821 /// Get the weight for an instruction. 822 /// 823 /// The "weight" of an instruction \p Inst is the number of samples 824 /// collected on that instruction at runtime. To retrieve it, we 825 /// need to compute the line number of \p Inst relative to the start of its 826 /// function. We use HeaderLineno to compute the offset. We then 827 /// look up the samples collected for \p Inst using BodySamples. 828 /// 829 /// \param Inst Instruction to query. 830 /// 831 /// \returns the weight of \p Inst. 832 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 833 if (FunctionSamples::ProfileIsProbeBased) 834 return getProbeWeight(Inst); 835 836 const DebugLoc &DLoc = Inst.getDebugLoc(); 837 if (!DLoc) 838 return std::error_code(); 839 840 const FunctionSamples *FS = findFunctionSamples(Inst); 841 if (!FS) 842 return std::error_code(); 843 844 // Ignore all intrinsics, phinodes and branch instructions. 845 // Branch and phinodes instruction usually contains debug info from sources outside of 846 // the residing basic block, thus we ignore them during annotation. 847 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 848 return std::error_code(); 849 850 // If a direct call/invoke instruction is inlined in profile 851 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 852 // it means that the inlined callsite has no sample, thus the call 853 // instruction should have 0 count. 854 if (!ProfileIsCS) 855 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 856 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 857 return 0; 858 859 const DILocation *DIL = DLoc; 860 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 861 uint32_t Discriminator = DIL->getBaseDiscriminator(); 862 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 863 if (R) { 864 bool FirstMark = 865 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 866 if (FirstMark) { 867 ORE->emit([&]() { 868 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 869 Remark << "Applied " << ore::NV("NumSamples", *R); 870 Remark << " samples from profile (offset: "; 871 Remark << ore::NV("LineOffset", LineOffset); 872 if (Discriminator) { 873 Remark << "."; 874 Remark << ore::NV("Discriminator", Discriminator); 875 } 876 Remark << ")"; 877 return Remark; 878 }); 879 } 880 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 881 << DIL->getBaseDiscriminator() << ":" << Inst 882 << " (line offset: " << LineOffset << "." 883 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 884 << ")\n"); 885 } 886 return R; 887 } 888 889 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 890 assert(FunctionSamples::ProfileIsProbeBased && 891 "Profile is not pseudo probe based"); 892 Optional<PseudoProbe> Probe = extractProbe(Inst); 893 if (!Probe) 894 return std::error_code(); 895 896 const FunctionSamples *FS = findFunctionSamples(Inst); 897 if (!FS) 898 return std::error_code(); 899 900 // If a direct call/invoke instruction is inlined in profile 901 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 902 // it means that the inlined callsite has no sample, thus the call 903 // instruction should have 0 count. 904 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 905 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 906 return 0; 907 908 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 909 if (R) { 910 uint64_t Samples = R.get() * Probe->Factor; 911 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 912 if (FirstMark) { 913 ORE->emit([&]() { 914 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 915 Remark << "Applied " << ore::NV("NumSamples", Samples); 916 Remark << " samples from profile (ProbeId="; 917 Remark << ore::NV("ProbeId", Probe->Id); 918 Remark << ", Factor="; 919 Remark << ore::NV("Factor", Probe->Factor); 920 Remark << ", OriginalSamples="; 921 Remark << ore::NV("OriginalSamples", R.get()); 922 Remark << ")"; 923 return Remark; 924 }); 925 } 926 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 927 << " - weight: " << R.get() << " - factor: " 928 << format("%0.2f", Probe->Factor) << ")\n"); 929 return Samples; 930 } 931 return R; 932 } 933 934 /// Compute the weight of a basic block. 935 /// 936 /// The weight of basic block \p BB is the maximum weight of all the 937 /// instructions in BB. 938 /// 939 /// \param BB The basic block to query. 940 /// 941 /// \returns the weight for \p BB. 942 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 943 uint64_t Max = 0; 944 bool HasWeight = false; 945 for (auto &I : BB->getInstList()) { 946 const ErrorOr<uint64_t> &R = getInstWeight(I); 947 if (R) { 948 Max = std::max(Max, R.get()); 949 HasWeight = true; 950 } 951 } 952 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 953 } 954 955 /// Compute and store the weights of every basic block. 956 /// 957 /// This populates the BlockWeights map by computing 958 /// the weights of every basic block in the CFG. 959 /// 960 /// \param F The function to query. 961 bool SampleProfileLoader::computeBlockWeights(Function &F) { 962 bool Changed = false; 963 LLVM_DEBUG(dbgs() << "Block weights\n"); 964 for (const auto &BB : F) { 965 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 966 if (Weight) { 967 BlockWeights[&BB] = Weight.get(); 968 VisitedBlocks.insert(&BB); 969 Changed = true; 970 } 971 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 972 } 973 974 return Changed; 975 } 976 977 /// Get the FunctionSamples for a call instruction. 978 /// 979 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 980 /// instance in which that call instruction is calling to. It contains 981 /// all samples that resides in the inlined instance. We first find the 982 /// inlined instance in which the call instruction is from, then we 983 /// traverse its children to find the callsite with the matching 984 /// location. 985 /// 986 /// \param Inst Call/Invoke instruction to query. 987 /// 988 /// \returns The FunctionSamples pointer to the inlined instance. 989 const FunctionSamples * 990 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 991 const DILocation *DIL = Inst.getDebugLoc(); 992 if (!DIL) { 993 return nullptr; 994 } 995 996 StringRef CalleeName; 997 if (Function *Callee = Inst.getCalledFunction()) 998 CalleeName = FunctionSamples::getCanonicalFnName(*Callee); 999 1000 if (ProfileIsCS) 1001 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 1002 1003 const FunctionSamples *FS = findFunctionSamples(Inst); 1004 if (FS == nullptr) 1005 return nullptr; 1006 1007 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 1008 CalleeName, Reader->getRemapper()); 1009 } 1010 1011 /// Returns a vector of FunctionSamples that are the indirect call targets 1012 /// of \p Inst. The vector is sorted by the total number of samples. Stores 1013 /// the total call count of the indirect call in \p Sum. 1014 std::vector<const FunctionSamples *> 1015 SampleProfileLoader::findIndirectCallFunctionSamples( 1016 const Instruction &Inst, uint64_t &Sum) const { 1017 const DILocation *DIL = Inst.getDebugLoc(); 1018 std::vector<const FunctionSamples *> R; 1019 1020 if (!DIL) { 1021 return R; 1022 } 1023 1024 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { 1025 assert(L && R && "Expect non-null FunctionSamples"); 1026 if (L->getEntrySamples() != R->getEntrySamples()) 1027 return L->getEntrySamples() > R->getEntrySamples(); 1028 return FunctionSamples::getGUID(L->getName()) < 1029 FunctionSamples::getGUID(R->getName()); 1030 }; 1031 1032 if (ProfileIsCS) { 1033 auto CalleeSamples = 1034 ContextTracker->getIndirectCalleeContextSamplesFor(DIL); 1035 if (CalleeSamples.empty()) 1036 return R; 1037 1038 // For CSSPGO, we only use target context profile's entry count 1039 // as that already includes both inlined callee and non-inlined ones.. 1040 Sum = 0; 1041 for (const auto *const FS : CalleeSamples) { 1042 Sum += FS->getEntrySamples(); 1043 R.push_back(FS); 1044 } 1045 llvm::sort(R, FSCompare); 1046 return R; 1047 } 1048 1049 const FunctionSamples *FS = findFunctionSamples(Inst); 1050 if (FS == nullptr) 1051 return R; 1052 1053 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1054 auto T = FS->findCallTargetMapAt(CallSite); 1055 Sum = 0; 1056 if (T) 1057 for (const auto &T_C : T.get()) 1058 Sum += T_C.second; 1059 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 1060 if (M->empty()) 1061 return R; 1062 for (const auto &NameFS : *M) { 1063 Sum += NameFS.second.getEntrySamples(); 1064 R.push_back(&NameFS.second); 1065 } 1066 llvm::sort(R, FSCompare); 1067 } 1068 return R; 1069 } 1070 1071 /// Get the FunctionSamples for an instruction. 1072 /// 1073 /// The FunctionSamples of an instruction \p Inst is the inlined instance 1074 /// in which that instruction is coming from. We traverse the inline stack 1075 /// of that instruction, and match it with the tree nodes in the profile. 1076 /// 1077 /// \param Inst Instruction to query. 1078 /// 1079 /// \returns the FunctionSamples pointer to the inlined instance. 1080 const FunctionSamples * 1081 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 1082 if (FunctionSamples::ProfileIsProbeBased) { 1083 Optional<PseudoProbe> Probe = extractProbe(Inst); 1084 if (!Probe) 1085 return nullptr; 1086 } 1087 1088 const DILocation *DIL = Inst.getDebugLoc(); 1089 if (!DIL) 1090 return Samples; 1091 1092 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 1093 if (it.second) { 1094 if (ProfileIsCS) 1095 it.first->second = ContextTracker->getContextSamplesFor(DIL); 1096 else 1097 it.first->second = 1098 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 1099 } 1100 return it.first->second; 1101 } 1102 1103 /// Attempt to promote indirect call and also inline the promoted call. 1104 /// 1105 /// \param F Caller function. 1106 /// \param Candidate ICP and inline candidate. 1107 /// \param Sum Sum of target counts for indirect call. 1108 /// \param PromotedInsns Map to keep track of indirect call already processed. 1109 /// \param Candidate ICP and inline candidate. 1110 /// \param InlinedCallSite Output vector for new call sites exposed after 1111 /// inlining. 1112 bool SampleProfileLoader::tryPromoteAndInlineCandidate( 1113 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, 1114 DenseSet<Instruction *> &PromotedInsns, 1115 SmallVector<CallBase *, 8> *InlinedCallSite) { 1116 const char *Reason = "Callee function not available"; 1117 // R->getValue() != &F is to prevent promoting a recursive call. 1118 // If it is a recursive call, we do not inline it as it could bloat 1119 // the code exponentially. There is way to better handle this, e.g. 1120 // clone the caller first, and inline the cloned caller if it is 1121 // recursive. As llvm does not inline recursive calls, we will 1122 // simply ignore it instead of handling it explicitly. 1123 auto R = SymbolMap.find(Candidate.CalleeSamples->getFuncName()); 1124 if (R != SymbolMap.end() && R->getValue() && 1125 !R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && 1126 R->getValue()->hasFnAttribute("use-sample-profile") && 1127 R->getValue() != &F && 1128 isLegalToPromote(*Candidate.CallInstr, R->getValue(), &Reason)) { 1129 auto *DI = 1130 &pgo::promoteIndirectCall(*Candidate.CallInstr, R->getValue(), 1131 Candidate.CallsiteCount, Sum, false, ORE); 1132 if (DI) { 1133 Sum -= Candidate.CallsiteCount; 1134 // Prorate the indirect callsite distribution. 1135 // Do not update the promoted direct callsite distribution at this 1136 // point since the original distribution combined with the callee 1137 // profile will be used to prorate callsites from the callee if 1138 // inlined. Once not inlined, the direct callsite distribution should 1139 // be prorated so that the it will reflect the real callsite counts. 1140 setProbeDistributionFactor(*Candidate.CallInstr, 1141 Candidate.CallsiteDistribution * Sum / 1142 SumOrigin); 1143 PromotedInsns.insert(Candidate.CallInstr); 1144 Candidate.CallInstr = DI; 1145 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { 1146 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); 1147 if (!Inlined) { 1148 // Prorate the direct callsite distribution so that it reflects real 1149 // callsite counts. 1150 setProbeDistributionFactor(*DI, Candidate.CallsiteDistribution * 1151 Candidate.CallsiteCount / 1152 SumOrigin); 1153 } 1154 return Inlined; 1155 } 1156 } 1157 } else { 1158 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " 1159 << Candidate.CalleeSamples->getFuncName() << " because " 1160 << Reason << "\n"); 1161 } 1162 return false; 1163 } 1164 1165 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 1166 if (!ProfileSizeInline) 1167 return false; 1168 1169 Function *Callee = CallInst.getCalledFunction(); 1170 if (Callee == nullptr) 1171 return false; 1172 1173 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 1174 GetAC, GetTLI); 1175 1176 if (Cost.isNever()) 1177 return false; 1178 1179 if (Cost.isAlways()) 1180 return true; 1181 1182 return Cost.getCost() <= SampleColdCallSiteThreshold; 1183 } 1184 1185 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1186 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1187 bool Hot) { 1188 for (auto I : Candidates) { 1189 Function *CalledFunction = I->getCalledFunction(); 1190 if (CalledFunction) { 1191 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1192 I->getDebugLoc(), I->getParent()) 1193 << "previous inlining reattempted for " 1194 << (Hot ? "hotness: '" : "size: '") 1195 << ore::NV("Callee", CalledFunction) << "' into '" 1196 << ore::NV("Caller", &F) << "'"); 1197 } 1198 } 1199 } 1200 1201 /// Iteratively inline hot callsites of a function. 1202 /// 1203 /// Iteratively traverse all callsites of the function \p F, and find if 1204 /// the corresponding inlined instance exists and is hot in profile. If 1205 /// it is hot enough, inline the callsites and adds new callsites of the 1206 /// callee into the caller. If the call is an indirect call, first promote 1207 /// it to direct call. Each indirect call is limited with a single target. 1208 /// 1209 /// \param F function to perform iterative inlining. 1210 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1211 /// inlined in the profiled binary. 1212 /// 1213 /// \returns True if there is any inline happened. 1214 bool SampleProfileLoader::inlineHotFunctions( 1215 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1216 DenseSet<Instruction *> PromotedInsns; 1217 1218 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1219 // Profile symbol list is ignored when profile-sample-accurate is on. 1220 assert((!ProfAccForSymsInList || 1221 (!ProfileSampleAccurate && 1222 !F.hasFnAttribute("profile-sample-accurate"))) && 1223 "ProfAccForSymsInList should be false when profile-sample-accurate " 1224 "is enabled"); 1225 1226 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1227 bool Changed = false; 1228 bool LocalChanged = true; 1229 while (LocalChanged) { 1230 LocalChanged = false; 1231 SmallVector<CallBase *, 10> CIS; 1232 for (auto &BB : F) { 1233 bool Hot = false; 1234 SmallVector<CallBase *, 10> AllCandidates; 1235 SmallVector<CallBase *, 10> ColdCandidates; 1236 for (auto &I : BB.getInstList()) { 1237 const FunctionSamples *FS = nullptr; 1238 if (auto *CB = dyn_cast<CallBase>(&I)) { 1239 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1240 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1241 "GUIDToFuncNameMap has to be populated"); 1242 AllCandidates.push_back(CB); 1243 if (FS->getEntrySamples() > 0 || ProfileIsCS) 1244 LocalNotInlinedCallSites.try_emplace(CB, FS); 1245 if (callsiteIsHot(FS, PSI)) 1246 Hot = true; 1247 else if (shouldInlineColdCallee(*CB)) 1248 ColdCandidates.push_back(CB); 1249 } 1250 } 1251 } 1252 if (Hot || ExternalInlineAdvisor) { 1253 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1254 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1255 } else { 1256 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1257 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1258 } 1259 } 1260 for (CallBase *I : CIS) { 1261 Function *CalledFunction = I->getCalledFunction(); 1262 InlineCandidate Candidate = { 1263 I, 1264 LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I] 1265 : nullptr, 1266 0 /* dummy count */, 1.0 /* dummy distribution factor */}; 1267 // Do not inline recursive calls. 1268 if (CalledFunction == &F) 1269 continue; 1270 if (I->isIndirectCall()) { 1271 if (PromotedInsns.count(I)) 1272 continue; 1273 uint64_t Sum; 1274 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1275 uint64_t SumOrigin = Sum; 1276 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1277 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1278 PSI->getOrCompHotCountThreshold()); 1279 continue; 1280 } 1281 if (!callsiteIsHot(FS, PSI)) 1282 continue; 1283 1284 Candidate = {I, FS, FS->getEntrySamples(), 1.0}; 1285 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1286 PromotedInsns)) { 1287 LocalNotInlinedCallSites.erase(I); 1288 LocalChanged = true; 1289 } 1290 } 1291 } else if (CalledFunction && CalledFunction->getSubprogram() && 1292 !CalledFunction->isDeclaration()) { 1293 if (tryInlineCandidate(Candidate)) { 1294 LocalNotInlinedCallSites.erase(I); 1295 LocalChanged = true; 1296 } 1297 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1298 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1299 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1300 } 1301 } 1302 Changed |= LocalChanged; 1303 } 1304 1305 // For CS profile, profile for not inlined context will be merged when 1306 // base profile is being trieved 1307 if (ProfileIsCS) 1308 return Changed; 1309 1310 // Accumulate not inlined callsite information into notInlinedSamples 1311 for (const auto &Pair : LocalNotInlinedCallSites) { 1312 CallBase *I = Pair.getFirst(); 1313 Function *Callee = I->getCalledFunction(); 1314 if (!Callee || Callee->isDeclaration()) 1315 continue; 1316 1317 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1318 I->getDebugLoc(), I->getParent()) 1319 << "previous inlining not repeated: '" 1320 << ore::NV("Callee", Callee) << "' into '" 1321 << ore::NV("Caller", &F) << "'"); 1322 1323 ++NumCSNotInlined; 1324 const FunctionSamples *FS = Pair.getSecond(); 1325 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1326 continue; 1327 } 1328 1329 if (ProfileMergeInlinee) { 1330 // A function call can be replicated by optimizations like callsite 1331 // splitting or jump threading and the replicates end up sharing the 1332 // sample nested callee profile instead of slicing the original inlinee's 1333 // profile. We want to do merge exactly once by filtering out callee 1334 // profiles with a non-zero head sample count. 1335 if (FS->getHeadSamples() == 0) { 1336 // Use entry samples as head samples during the merge, as inlinees 1337 // don't have head samples. 1338 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1339 FS->getEntrySamples()); 1340 1341 // Note that we have to do the merge right after processing function. 1342 // This allows OutlineFS's profile to be used for annotation during 1343 // top-down processing of functions' annotation. 1344 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1345 OutlineFS->merge(*FS); 1346 } 1347 } else { 1348 auto pair = 1349 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1350 pair.first->second.entryCount += FS->getEntrySamples(); 1351 } 1352 } 1353 return Changed; 1354 } 1355 1356 bool SampleProfileLoader::tryInlineCandidate( 1357 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { 1358 1359 CallBase &CB = *Candidate.CallInstr; 1360 Function *CalledFunction = CB.getCalledFunction(); 1361 assert(CalledFunction && "Expect a callee with definition"); 1362 DebugLoc DLoc = CB.getDebugLoc(); 1363 BasicBlock *BB = CB.getParent(); 1364 1365 InlineCost Cost = shouldInlineCandidate(Candidate); 1366 if (Cost.isNever()) { 1367 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1368 << "incompatible inlining"); 1369 return false; 1370 } 1371 1372 if (!Cost) 1373 return false; 1374 1375 InlineFunctionInfo IFI(nullptr, GetAC); 1376 if (InlineFunction(CB, IFI).isSuccess()) { 1377 // The call to InlineFunction erases I, so we can't pass it here. 1378 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, 1379 true, CSINLINE_DEBUG); 1380 1381 // Now populate the list of newly exposed call sites. 1382 if (InlinedCallSites) { 1383 InlinedCallSites->clear(); 1384 for (auto &I : IFI.InlinedCallSites) 1385 InlinedCallSites->push_back(I); 1386 } 1387 1388 if (ProfileIsCS) 1389 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); 1390 ++NumCSInlined; 1391 1392 // Prorate inlined probes for a duplicated inlining callsite which probably 1393 // has a distribution less than 100%. Samples for an inlinee should be 1394 // distributed among the copies of the original callsite based on each 1395 // callsite's distribution factor for counts accuracy. Note that an inlined 1396 // probe may come with its own distribution factor if it has been duplicated 1397 // in the inlinee body. The two factor are multiplied to reflect the 1398 // aggregation of duplication. 1399 if (Candidate.CallsiteDistribution < 1) { 1400 for (auto &I : IFI.InlinedCallSites) { 1401 if (Optional<PseudoProbe> Probe = extractProbe(*I)) 1402 setProbeDistributionFactor(*I, Probe->Factor * 1403 Candidate.CallsiteDistribution); 1404 } 1405 NumDuplicatedInlinesite++; 1406 } 1407 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, 1414 CallBase *CB) { 1415 assert(CB && "Expect non-null call instruction"); 1416 1417 if (isa<IntrinsicInst>(CB)) 1418 return false; 1419 1420 // Find the callee's profile. For indirect call, find hottest target profile. 1421 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); 1422 if (!CalleeSamples) 1423 return false; 1424 1425 float Factor = 1.0; 1426 if (Optional<PseudoProbe> Probe = extractProbe(*CB)) 1427 Factor = Probe->Factor; 1428 1429 uint64_t CallsiteCount = 0; 1430 ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent()); 1431 if (Weight) 1432 CallsiteCount = Weight.get(); 1433 if (CalleeSamples) 1434 CallsiteCount = std::max( 1435 CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor)); 1436 1437 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; 1438 return true; 1439 } 1440 1441 InlineCost 1442 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { 1443 std::unique_ptr<InlineAdvice> Advice = nullptr; 1444 if (ExternalInlineAdvisor) { 1445 Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr); 1446 if (!Advice->isInliningRecommended()) { 1447 Advice->recordUnattemptedInlining(); 1448 return InlineCost::getNever("not previously inlined"); 1449 } 1450 Advice->recordInlining(); 1451 return InlineCost::getAlways("previously inlined"); 1452 } 1453 1454 // Adjust threshold based on call site hotness, only do this for callsite 1455 // prioritized inliner because otherwise cost-benefit check is done earlier. 1456 int SampleThreshold = SampleColdCallSiteThreshold; 1457 if (CallsitePrioritizedInline) { 1458 if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) 1459 SampleThreshold = SampleHotCallSiteThreshold; 1460 else if (!ProfileSizeInline) 1461 return InlineCost::getNever("cold callsite"); 1462 } 1463 1464 Function *Callee = Candidate.CallInstr->getCalledFunction(); 1465 assert(Callee && "Expect a definition for inline candidate of direct call"); 1466 1467 InlineParams Params = getInlineParams(); 1468 Params.ComputeFullInlineCost = true; 1469 // Checks if there is anything in the reachable portion of the callee at 1470 // this callsite that makes this inlining potentially illegal. Need to 1471 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1472 // when cost exceeds threshold without checking all IRs in the callee. 1473 // The acutal cost does not matter because we only checks isNever() to 1474 // see if it is legal to inline the callsite. 1475 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, 1476 GetTTI(*Callee), GetAC, GetTLI); 1477 1478 // Honor always inline and never inline from call analyzer 1479 if (Cost.isNever() || Cost.isAlways()) 1480 return Cost; 1481 1482 // For old FDO inliner, we inline the call site as long as cost is not 1483 // "Never". The cost-benefit check is done earlier. 1484 if (!CallsitePrioritizedInline) { 1485 return InlineCost::get(Cost.getCost(), INT_MAX); 1486 } 1487 1488 // Otherwise only use the cost from call analyzer, but overwite threshold with 1489 // Sample PGO threshold. 1490 return InlineCost::get(Cost.getCost(), SampleThreshold); 1491 } 1492 1493 bool SampleProfileLoader::inlineHotFunctionsWithPriority( 1494 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1495 DenseSet<Instruction *> PromotedInsns; 1496 assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now"); 1497 1498 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1499 // Profile symbol list is ignored when profile-sample-accurate is on. 1500 assert((!ProfAccForSymsInList || 1501 (!ProfileSampleAccurate && 1502 !F.hasFnAttribute("profile-sample-accurate"))) && 1503 "ProfAccForSymsInList should be false when profile-sample-accurate " 1504 "is enabled"); 1505 1506 // Populating worklist with initial call sites from root inliner, along 1507 // with call site weights. 1508 CandidateQueue CQueue; 1509 InlineCandidate NewCandidate; 1510 for (auto &BB : F) { 1511 for (auto &I : BB.getInstList()) { 1512 auto *CB = dyn_cast<CallBase>(&I); 1513 if (!CB) 1514 continue; 1515 if (getInlineCandidate(&NewCandidate, CB)) 1516 CQueue.push(NewCandidate); 1517 } 1518 } 1519 1520 // Cap the size growth from profile guided inlining. This is needed even 1521 // though cost of each inline candidate already accounts for callee size, 1522 // because with top-down inlining, we can grow inliner size significantly 1523 // with large number of smaller inlinees each pass the cost check. 1524 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && 1525 "Max inline size limit should not be smaller than min inline size " 1526 "limit."); 1527 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; 1528 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); 1529 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); 1530 if (ExternalInlineAdvisor) 1531 SizeLimit = std::numeric_limits<unsigned>::max(); 1532 1533 // Perform iterative BFS call site prioritized inlining 1534 bool Changed = false; 1535 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { 1536 InlineCandidate Candidate = CQueue.top(); 1537 CQueue.pop(); 1538 CallBase *I = Candidate.CallInstr; 1539 Function *CalledFunction = I->getCalledFunction(); 1540 1541 if (CalledFunction == &F) 1542 continue; 1543 if (I->isIndirectCall()) { 1544 if (PromotedInsns.count(I)) 1545 continue; 1546 uint64_t Sum; 1547 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); 1548 uint64_t SumOrigin = Sum; 1549 Sum *= Candidate.CallsiteDistribution; 1550 for (const auto *FS : CalleeSamples) { 1551 // TODO: Consider disable pre-lTO ICP for MonoLTO as well 1552 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1553 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1554 PSI->getOrCompHotCountThreshold()); 1555 continue; 1556 } 1557 uint64_t EntryCountDistributed = 1558 FS->getEntrySamples() * Candidate.CallsiteDistribution; 1559 // In addition to regular inline cost check, we also need to make sure 1560 // ICP isn't introducing excessive speculative checks even if individual 1561 // target looks beneficial to promote and inline. That means we should 1562 // only do ICP when there's a small number dominant targets. 1563 if (EntryCountDistributed < SumOrigin / ProfileICPThreshold) 1564 break; 1565 // TODO: Fix CallAnalyzer to handle all indirect calls. 1566 // For indirect call, we don't run CallAnalyzer to get InlineCost 1567 // before actual inlining. This is because we could see two different 1568 // types from the same definition, which makes CallAnalyzer choke as 1569 // it's expecting matching parameter type on both caller and callee 1570 // side. See example from PR18962 for the triggering cases (the bug was 1571 // fixed, but we generate different types). 1572 if (!PSI->isHotCount(EntryCountDistributed)) 1573 break; 1574 SmallVector<CallBase *, 8> InlinedCallSites; 1575 // Attach function profile for promoted indirect callee, and update 1576 // call site count for the promoted inline candidate too. 1577 Candidate = {I, FS, EntryCountDistributed, 1578 Candidate.CallsiteDistribution}; 1579 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1580 PromotedInsns, &InlinedCallSites)) { 1581 for (auto *CB : InlinedCallSites) { 1582 if (getInlineCandidate(&NewCandidate, CB)) 1583 CQueue.emplace(NewCandidate); 1584 } 1585 Changed = true; 1586 } 1587 } 1588 } else if (CalledFunction && CalledFunction->getSubprogram() && 1589 !CalledFunction->isDeclaration()) { 1590 SmallVector<CallBase *, 8> InlinedCallSites; 1591 if (tryInlineCandidate(Candidate, &InlinedCallSites)) { 1592 for (auto *CB : InlinedCallSites) { 1593 if (getInlineCandidate(&NewCandidate, CB)) 1594 CQueue.emplace(NewCandidate); 1595 } 1596 Changed = true; 1597 } 1598 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1599 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1600 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1601 } 1602 } 1603 1604 if (!CQueue.empty()) { 1605 if (SizeLimit == (unsigned)ProfileInlineLimitMax) 1606 ++NumCSInlinedHitMaxLimit; 1607 else if (SizeLimit == (unsigned)ProfileInlineLimitMin) 1608 ++NumCSInlinedHitMinLimit; 1609 else 1610 ++NumCSInlinedHitGrowthLimit; 1611 } 1612 1613 return Changed; 1614 } 1615 1616 /// Find equivalence classes for the given block. 1617 /// 1618 /// This finds all the blocks that are guaranteed to execute the same 1619 /// number of times as \p BB1. To do this, it traverses all the 1620 /// descendants of \p BB1 in the dominator or post-dominator tree. 1621 /// 1622 /// A block BB2 will be in the same equivalence class as \p BB1 if 1623 /// the following holds: 1624 /// 1625 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1626 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1627 /// dominate BB1 in the post-dominator tree. 1628 /// 1629 /// 2- Both BB2 and \p BB1 must be in the same loop. 1630 /// 1631 /// For every block BB2 that meets those two requirements, we set BB2's 1632 /// equivalence class to \p BB1. 1633 /// 1634 /// \param BB1 Block to check. 1635 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1636 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1637 /// with blocks from \p BB1's dominator tree, then 1638 /// this is the post-dominator tree, and vice versa. 1639 template <bool IsPostDom> 1640 void SampleProfileLoader::findEquivalencesFor( 1641 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1642 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1643 const BasicBlock *EC = EquivalenceClass[BB1]; 1644 uint64_t Weight = BlockWeights[EC]; 1645 for (const auto *BB2 : Descendants) { 1646 bool IsDomParent = DomTree->dominates(BB2, BB1); 1647 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1648 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1649 EquivalenceClass[BB2] = EC; 1650 // If BB2 is visited, then the entire EC should be marked as visited. 1651 if (VisitedBlocks.count(BB2)) { 1652 VisitedBlocks.insert(EC); 1653 } 1654 1655 // If BB2 is heavier than BB1, make BB2 have the same weight 1656 // as BB1. 1657 // 1658 // Note that we don't worry about the opposite situation here 1659 // (when BB2 is lighter than BB1). We will deal with this 1660 // during the propagation phase. Right now, we just want to 1661 // make sure that BB1 has the largest weight of all the 1662 // members of its equivalence set. 1663 Weight = std::max(Weight, BlockWeights[BB2]); 1664 } 1665 } 1666 if (EC == &EC->getParent()->getEntryBlock()) { 1667 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1668 } else { 1669 BlockWeights[EC] = Weight; 1670 } 1671 } 1672 1673 /// Find equivalence classes. 1674 /// 1675 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1676 /// the weights of all the blocks in the same equivalence class to the same 1677 /// weight. To compute the concept of equivalence, we use dominance and loop 1678 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1679 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1680 /// 1681 /// \param F The function to query. 1682 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1683 SmallVector<BasicBlock *, 8> DominatedBBs; 1684 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1685 // Find equivalence sets based on dominance and post-dominance information. 1686 for (auto &BB : F) { 1687 BasicBlock *BB1 = &BB; 1688 1689 // Compute BB1's equivalence class once. 1690 if (EquivalenceClass.count(BB1)) { 1691 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1692 continue; 1693 } 1694 1695 // By default, blocks are in their own equivalence class. 1696 EquivalenceClass[BB1] = BB1; 1697 1698 // Traverse all the blocks dominated by BB1. We are looking for 1699 // every basic block BB2 such that: 1700 // 1701 // 1- BB1 dominates BB2. 1702 // 2- BB2 post-dominates BB1. 1703 // 3- BB1 and BB2 are in the same loop nest. 1704 // 1705 // If all those conditions hold, it means that BB2 is executed 1706 // as many times as BB1, so they are placed in the same equivalence 1707 // class by making BB2's equivalence class be BB1. 1708 DominatedBBs.clear(); 1709 DT->getDescendants(BB1, DominatedBBs); 1710 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1711 1712 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1713 } 1714 1715 // Assign weights to equivalence classes. 1716 // 1717 // All the basic blocks in the same equivalence class will execute 1718 // the same number of times. Since we know that the head block in 1719 // each equivalence class has the largest weight, assign that weight 1720 // to all the blocks in that equivalence class. 1721 LLVM_DEBUG( 1722 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1723 for (auto &BI : F) { 1724 const BasicBlock *BB = &BI; 1725 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1726 if (BB != EquivBB) 1727 BlockWeights[BB] = BlockWeights[EquivBB]; 1728 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1729 } 1730 } 1731 1732 /// Visit the given edge to decide if it has a valid weight. 1733 /// 1734 /// If \p E has not been visited before, we copy to \p UnknownEdge 1735 /// and increment the count of unknown edges. 1736 /// 1737 /// \param E Edge to visit. 1738 /// \param NumUnknownEdges Current number of unknown edges. 1739 /// \param UnknownEdge Set if E has not been visited before. 1740 /// 1741 /// \returns E's weight, if known. Otherwise, return 0. 1742 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1743 Edge *UnknownEdge) { 1744 if (!VisitedEdges.count(E)) { 1745 (*NumUnknownEdges)++; 1746 *UnknownEdge = E; 1747 return 0; 1748 } 1749 1750 return EdgeWeights[E]; 1751 } 1752 1753 /// Propagate weights through incoming/outgoing edges. 1754 /// 1755 /// If the weight of a basic block is known, and there is only one edge 1756 /// with an unknown weight, we can calculate the weight of that edge. 1757 /// 1758 /// Similarly, if all the edges have a known count, we can calculate the 1759 /// count of the basic block, if needed. 1760 /// 1761 /// \param F Function to process. 1762 /// \param UpdateBlockCount Whether we should update basic block counts that 1763 /// has already been annotated. 1764 /// 1765 /// \returns True if new weights were assigned to edges or blocks. 1766 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1767 bool UpdateBlockCount) { 1768 bool Changed = false; 1769 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1770 for (const auto &BI : F) { 1771 const BasicBlock *BB = &BI; 1772 const BasicBlock *EC = EquivalenceClass[BB]; 1773 1774 // Visit all the predecessor and successor edges to determine 1775 // which ones have a weight assigned already. Note that it doesn't 1776 // matter that we only keep track of a single unknown edge. The 1777 // only case we are interested in handling is when only a single 1778 // edge is unknown (see setEdgeOrBlockWeight). 1779 for (unsigned i = 0; i < 2; i++) { 1780 uint64_t TotalWeight = 0; 1781 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1782 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1783 1784 if (i == 0) { 1785 // First, visit all predecessor edges. 1786 NumTotalEdges = Predecessors[BB].size(); 1787 for (auto *Pred : Predecessors[BB]) { 1788 Edge E = std::make_pair(Pred, BB); 1789 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1790 if (E.first == E.second) 1791 SelfReferentialEdge = E; 1792 } 1793 if (NumTotalEdges == 1) { 1794 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1795 } 1796 } else { 1797 // On the second round, visit all successor edges. 1798 NumTotalEdges = Successors[BB].size(); 1799 for (auto *Succ : Successors[BB]) { 1800 Edge E = std::make_pair(BB, Succ); 1801 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1802 } 1803 if (NumTotalEdges == 1) { 1804 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1805 } 1806 } 1807 1808 // After visiting all the edges, there are three cases that we 1809 // can handle immediately: 1810 // 1811 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1812 // In this case, we simply check that the sum of all the edges 1813 // is the same as BB's weight. If not, we change BB's weight 1814 // to match. Additionally, if BB had not been visited before, 1815 // we mark it visited. 1816 // 1817 // - Only one edge is unknown and BB has already been visited. 1818 // In this case, we can compute the weight of the edge by 1819 // subtracting the total block weight from all the known 1820 // edge weights. If the edges weight more than BB, then the 1821 // edge of the last remaining edge is set to zero. 1822 // 1823 // - There exists a self-referential edge and the weight of BB is 1824 // known. In this case, this edge can be based on BB's weight. 1825 // We add up all the other known edges and set the weight on 1826 // the self-referential edge as we did in the previous case. 1827 // 1828 // In any other case, we must continue iterating. Eventually, 1829 // all edges will get a weight, or iteration will stop when 1830 // it reaches SampleProfileMaxPropagateIterations. 1831 if (NumUnknownEdges <= 1) { 1832 uint64_t &BBWeight = BlockWeights[EC]; 1833 if (NumUnknownEdges == 0) { 1834 if (!VisitedBlocks.count(EC)) { 1835 // If we already know the weight of all edges, the weight of the 1836 // basic block can be computed. It should be no larger than the sum 1837 // of all edge weights. 1838 if (TotalWeight > BBWeight) { 1839 BBWeight = TotalWeight; 1840 Changed = true; 1841 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1842 << " known. Set weight for block: "; 1843 printBlockWeight(dbgs(), BB);); 1844 } 1845 } else if (NumTotalEdges == 1 && 1846 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1847 // If there is only one edge for the visited basic block, use the 1848 // block weight to adjust edge weight if edge weight is smaller. 1849 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1850 Changed = true; 1851 } 1852 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1853 // If there is a single unknown edge and the block has been 1854 // visited, then we can compute E's weight. 1855 if (BBWeight >= TotalWeight) 1856 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1857 else 1858 EdgeWeights[UnknownEdge] = 0; 1859 const BasicBlock *OtherEC; 1860 if (i == 0) 1861 OtherEC = EquivalenceClass[UnknownEdge.first]; 1862 else 1863 OtherEC = EquivalenceClass[UnknownEdge.second]; 1864 // Edge weights should never exceed the BB weights it connects. 1865 if (VisitedBlocks.count(OtherEC) && 1866 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1867 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1868 VisitedEdges.insert(UnknownEdge); 1869 Changed = true; 1870 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1871 printEdgeWeight(dbgs(), UnknownEdge)); 1872 } 1873 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1874 // If a block Weights 0, all its in/out edges should weight 0. 1875 if (i == 0) { 1876 for (auto *Pred : Predecessors[BB]) { 1877 Edge E = std::make_pair(Pred, BB); 1878 EdgeWeights[E] = 0; 1879 VisitedEdges.insert(E); 1880 } 1881 } else { 1882 for (auto *Succ : Successors[BB]) { 1883 Edge E = std::make_pair(BB, Succ); 1884 EdgeWeights[E] = 0; 1885 VisitedEdges.insert(E); 1886 } 1887 } 1888 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1889 uint64_t &BBWeight = BlockWeights[BB]; 1890 // We have a self-referential edge and the weight of BB is known. 1891 if (BBWeight >= TotalWeight) 1892 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1893 else 1894 EdgeWeights[SelfReferentialEdge] = 0; 1895 VisitedEdges.insert(SelfReferentialEdge); 1896 Changed = true; 1897 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1898 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1899 } 1900 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1901 BlockWeights[EC] = TotalWeight; 1902 VisitedBlocks.insert(EC); 1903 Changed = true; 1904 } 1905 } 1906 } 1907 1908 return Changed; 1909 } 1910 1911 /// Build in/out edge lists for each basic block in the CFG. 1912 /// 1913 /// We are interested in unique edges. If a block B1 has multiple 1914 /// edges to another block B2, we only add a single B1->B2 edge. 1915 void SampleProfileLoader::buildEdges(Function &F) { 1916 for (auto &BI : F) { 1917 BasicBlock *B1 = &BI; 1918 1919 // Add predecessors for B1. 1920 SmallPtrSet<BasicBlock *, 16> Visited; 1921 if (!Predecessors[B1].empty()) 1922 llvm_unreachable("Found a stale predecessors list in a basic block."); 1923 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1924 BasicBlock *B2 = *PI; 1925 if (Visited.insert(B2).second) 1926 Predecessors[B1].push_back(B2); 1927 } 1928 1929 // Add successors for B1. 1930 Visited.clear(); 1931 if (!Successors[B1].empty()) 1932 llvm_unreachable("Found a stale successors list in a basic block."); 1933 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1934 BasicBlock *B2 = *SI; 1935 if (Visited.insert(B2).second) 1936 Successors[B1].push_back(B2); 1937 } 1938 } 1939 } 1940 1941 /// Returns the sorted CallTargetMap \p M by count in descending order. 1942 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1943 const SampleRecord::CallTargetMap & M) { 1944 SmallVector<InstrProfValueData, 2> R; 1945 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1946 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1947 } 1948 return R; 1949 } 1950 1951 /// Propagate weights into edges 1952 /// 1953 /// The following rules are applied to every block BB in the CFG: 1954 /// 1955 /// - If BB has a single predecessor/successor, then the weight 1956 /// of that edge is the weight of the block. 1957 /// 1958 /// - If all incoming or outgoing edges are known except one, and the 1959 /// weight of the block is already known, the weight of the unknown 1960 /// edge will be the weight of the block minus the sum of all the known 1961 /// edges. If the sum of all the known edges is larger than BB's weight, 1962 /// we set the unknown edge weight to zero. 1963 /// 1964 /// - If there is a self-referential edge, and the weight of the block is 1965 /// known, the weight for that edge is set to the weight of the block 1966 /// minus the weight of the other incoming edges to that block (if 1967 /// known). 1968 void SampleProfileLoader::propagateWeights(Function &F) { 1969 bool Changed = true; 1970 unsigned I = 0; 1971 1972 // If BB weight is larger than its corresponding loop's header BB weight, 1973 // use the BB weight to replace the loop header BB weight. 1974 for (auto &BI : F) { 1975 BasicBlock *BB = &BI; 1976 Loop *L = LI->getLoopFor(BB); 1977 if (!L) { 1978 continue; 1979 } 1980 BasicBlock *Header = L->getHeader(); 1981 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1982 BlockWeights[Header] = BlockWeights[BB]; 1983 } 1984 } 1985 1986 // Before propagation starts, build, for each block, a list of 1987 // unique predecessors and successors. This is necessary to handle 1988 // identical edges in multiway branches. Since we visit all blocks and all 1989 // edges of the CFG, it is cleaner to build these lists once at the start 1990 // of the pass. 1991 buildEdges(F); 1992 1993 // Propagate until we converge or we go past the iteration limit. 1994 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1995 Changed = propagateThroughEdges(F, false); 1996 } 1997 1998 // The first propagation propagates BB counts from annotated BBs to unknown 1999 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 2000 // to propagate edge weights. 2001 VisitedEdges.clear(); 2002 Changed = true; 2003 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 2004 Changed = propagateThroughEdges(F, false); 2005 } 2006 2007 // The 3rd propagation pass allows adjust annotated BB weights that are 2008 // obviously wrong. 2009 Changed = true; 2010 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 2011 Changed = propagateThroughEdges(F, true); 2012 } 2013 2014 // Generate MD_prof metadata for every branch instruction using the 2015 // edge weights computed during propagation. 2016 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 2017 LLVMContext &Ctx = F.getContext(); 2018 MDBuilder MDB(Ctx); 2019 for (auto &BI : F) { 2020 BasicBlock *BB = &BI; 2021 2022 if (BlockWeights[BB]) { 2023 for (auto &I : BB->getInstList()) { 2024 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 2025 continue; 2026 if (!cast<CallBase>(I).getCalledFunction()) { 2027 const DebugLoc &DLoc = I.getDebugLoc(); 2028 if (!DLoc) 2029 continue; 2030 const DILocation *DIL = DLoc; 2031 const FunctionSamples *FS = findFunctionSamples(I); 2032 if (!FS) 2033 continue; 2034 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 2035 auto T = FS->findCallTargetMapAt(CallSite); 2036 if (!T || T.get().empty()) 2037 continue; 2038 // Prorate the callsite counts to reflect what is already done to the 2039 // callsite, such as ICP or calliste cloning. 2040 if (FunctionSamples::ProfileIsProbeBased) { 2041 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 2042 if (Probe->Factor < 1) 2043 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); 2044 } 2045 } 2046 SmallVector<InstrProfValueData, 2> SortedCallTargets = 2047 GetSortedValueDataFromCallTargets(T.get()); 2048 uint64_t Sum; 2049 findIndirectCallFunctionSamples(I, Sum); 2050 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 2051 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 2052 SortedCallTargets.size()); 2053 } else if (!isa<IntrinsicInst>(&I)) { 2054 I.setMetadata(LLVMContext::MD_prof, 2055 MDB.createBranchWeights( 2056 {static_cast<uint32_t>(BlockWeights[BB])})); 2057 } 2058 } 2059 } 2060 Instruction *TI = BB->getTerminator(); 2061 if (TI->getNumSuccessors() == 1) 2062 continue; 2063 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 2064 continue; 2065 2066 DebugLoc BranchLoc = TI->getDebugLoc(); 2067 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 2068 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 2069 : Twine("<UNKNOWN LOCATION>")) 2070 << ".\n"); 2071 SmallVector<uint32_t, 4> Weights; 2072 uint32_t MaxWeight = 0; 2073 Instruction *MaxDestInst; 2074 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 2075 BasicBlock *Succ = TI->getSuccessor(I); 2076 Edge E = std::make_pair(BB, Succ); 2077 uint64_t Weight = EdgeWeights[E]; 2078 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 2079 // Use uint32_t saturated arithmetic to adjust the incoming weights, 2080 // if needed. Sample counts in profiles are 64-bit unsigned values, 2081 // but internally branch weights are expressed as 32-bit values. 2082 if (Weight > std::numeric_limits<uint32_t>::max()) { 2083 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 2084 Weight = std::numeric_limits<uint32_t>::max(); 2085 } 2086 // Weight is added by one to avoid propagation errors introduced by 2087 // 0 weights. 2088 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 2089 if (Weight != 0) { 2090 if (Weight > MaxWeight) { 2091 MaxWeight = Weight; 2092 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 2093 } 2094 } 2095 } 2096 2097 uint64_t TempWeight; 2098 // Only set weights if there is at least one non-zero weight. 2099 // In any other case, let the analyzer set weights. 2100 // Do not set weights if the weights are present. In ThinLTO, the profile 2101 // annotation is done twice. If the first annotation already set the 2102 // weights, the second pass does not need to set it. 2103 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 2104 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 2105 TI->setMetadata(LLVMContext::MD_prof, 2106 MDB.createBranchWeights(Weights)); 2107 ORE->emit([&]() { 2108 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 2109 << "most popular destination for conditional branches at " 2110 << ore::NV("CondBranchesLoc", BranchLoc); 2111 }); 2112 } else { 2113 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 2114 } 2115 } 2116 } 2117 2118 /// Get the line number for the function header. 2119 /// 2120 /// This looks up function \p F in the current compilation unit and 2121 /// retrieves the line number where the function is defined. This is 2122 /// line 0 for all the samples read from the profile file. Every line 2123 /// number is relative to this line. 2124 /// 2125 /// \param F Function object to query. 2126 /// 2127 /// \returns the line number where \p F is defined. If it returns 0, 2128 /// it means that there is no debug information available for \p F. 2129 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 2130 if (DISubprogram *S = F.getSubprogram()) 2131 return S->getLine(); 2132 2133 if (NoWarnSampleUnused) 2134 return 0; 2135 2136 // If the start of \p F is missing, emit a diagnostic to inform the user 2137 // about the missed opportunity. 2138 F.getContext().diagnose(DiagnosticInfoSampleProfile( 2139 "No debug information found in function " + F.getName() + 2140 ": Function profile not used", 2141 DS_Warning)); 2142 return 0; 2143 } 2144 2145 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 2146 DT.reset(new DominatorTree); 2147 DT->recalculate(F); 2148 2149 PDT.reset(new PostDominatorTree(F)); 2150 2151 LI.reset(new LoopInfo); 2152 LI->analyze(*DT); 2153 } 2154 2155 /// Generate branch weight metadata for all branches in \p F. 2156 /// 2157 /// Branch weights are computed out of instruction samples using a 2158 /// propagation heuristic. Propagation proceeds in 3 phases: 2159 /// 2160 /// 1- Assignment of block weights. All the basic blocks in the function 2161 /// are initial assigned the same weight as their most frequently 2162 /// executed instruction. 2163 /// 2164 /// 2- Creation of equivalence classes. Since samples may be missing from 2165 /// blocks, we can fill in the gaps by setting the weights of all the 2166 /// blocks in the same equivalence class to the same weight. To compute 2167 /// the concept of equivalence, we use dominance and loop information. 2168 /// Two blocks B1 and B2 are in the same equivalence class if B1 2169 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 2170 /// 2171 /// 3- Propagation of block weights into edges. This uses a simple 2172 /// propagation heuristic. The following rules are applied to every 2173 /// block BB in the CFG: 2174 /// 2175 /// - If BB has a single predecessor/successor, then the weight 2176 /// of that edge is the weight of the block. 2177 /// 2178 /// - If all the edges are known except one, and the weight of the 2179 /// block is already known, the weight of the unknown edge will 2180 /// be the weight of the block minus the sum of all the known 2181 /// edges. If the sum of all the known edges is larger than BB's weight, 2182 /// we set the unknown edge weight to zero. 2183 /// 2184 /// - If there is a self-referential edge, and the weight of the block is 2185 /// known, the weight for that edge is set to the weight of the block 2186 /// minus the weight of the other incoming edges to that block (if 2187 /// known). 2188 /// 2189 /// Since this propagation is not guaranteed to finalize for every CFG, we 2190 /// only allow it to proceed for a limited number of iterations (controlled 2191 /// by -sample-profile-max-propagate-iterations). 2192 /// 2193 /// FIXME: Try to replace this propagation heuristic with a scheme 2194 /// that is guaranteed to finalize. A work-list approach similar to 2195 /// the standard value propagation algorithm used by SSA-CCP might 2196 /// work here. 2197 /// 2198 /// Once all the branch weights are computed, we emit the MD_prof 2199 /// metadata on BB using the computed values for each of its branches. 2200 /// 2201 /// \param F The function to query. 2202 /// 2203 /// \returns true if \p F was modified. Returns false, otherwise. 2204 bool SampleProfileLoader::emitAnnotations(Function &F) { 2205 bool Changed = false; 2206 2207 if (FunctionSamples::ProfileIsProbeBased) { 2208 if (!ProbeManager->profileIsValid(F, *Samples)) { 2209 LLVM_DEBUG( 2210 dbgs() << "Profile is invalid due to CFG mismatch for Function " 2211 << F.getName()); 2212 ++NumMismatchedProfile; 2213 return false; 2214 } 2215 ++NumMatchedProfile; 2216 } else { 2217 if (getFunctionLoc(F) == 0) 2218 return false; 2219 2220 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 2221 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 2222 } 2223 2224 DenseSet<GlobalValue::GUID> InlinedGUIDs; 2225 if (ProfileIsCS && CallsitePrioritizedInline) 2226 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); 2227 else 2228 Changed |= inlineHotFunctions(F, InlinedGUIDs); 2229 2230 // Compute basic block weights. 2231 Changed |= computeBlockWeights(F); 2232 2233 if (Changed) { 2234 // Add an entry count to the function using the samples gathered at the 2235 // function entry. 2236 // Sets the GUIDs that are inlined in the profiled binary. This is used 2237 // for ThinLink to make correct liveness analysis, and also make the IR 2238 // match the profiled binary before annotation. 2239 F.setEntryCount( 2240 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 2241 &InlinedGUIDs); 2242 2243 // Compute dominance and loop info needed for propagation. 2244 computeDominanceAndLoopInfo(F); 2245 2246 // Find equivalence classes. 2247 findEquivalenceClasses(F); 2248 2249 // Propagate weights to all edges. 2250 propagateWeights(F); 2251 } 2252 2253 // If coverage checking was requested, compute it now. 2254 if (SampleProfileRecordCoverage) { 2255 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 2256 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 2257 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 2258 if (Coverage < SampleProfileRecordCoverage) { 2259 F.getContext().diagnose(DiagnosticInfoSampleProfile( 2260 F.getSubprogram()->getFilename(), getFunctionLoc(F), 2261 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 2262 Twine(Coverage) + "%) were applied", 2263 DS_Warning)); 2264 } 2265 } 2266 2267 if (SampleProfileSampleCoverage) { 2268 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 2269 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 2270 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 2271 if (Coverage < SampleProfileSampleCoverage) { 2272 F.getContext().diagnose(DiagnosticInfoSampleProfile( 2273 F.getSubprogram()->getFilename(), getFunctionLoc(F), 2274 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 2275 Twine(Coverage) + "%) were applied", 2276 DS_Warning)); 2277 } 2278 } 2279 return Changed; 2280 } 2281 2282 char SampleProfileLoaderLegacyPass::ID = 0; 2283 2284 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 2285 "Sample Profile loader", false, false) 2286 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2287 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2288 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2289 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 2290 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 2291 "Sample Profile loader", false, false) 2292 2293 // Add inlined profile call edges to the call graph. 2294 void SampleProfileLoader::addCallGraphEdges(CallGraph &CG, 2295 const FunctionSamples &Samples) { 2296 Function *Caller = SymbolMap.lookup(Samples.getFuncName()); 2297 if (!Caller || Caller->isDeclaration()) 2298 return; 2299 2300 // Skip non-inlined call edges which are not important since top down inlining 2301 // for non-CS profile is to get more precise profile matching, not to enable 2302 // more inlining. 2303 2304 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 2305 for (const auto &InlinedSamples : CallsiteSamples.second) { 2306 Function *Callee = SymbolMap.lookup(InlinedSamples.first); 2307 if (Callee && !Callee->isDeclaration()) 2308 CG[Caller]->addCalledFunction(nullptr, CG[Callee]); 2309 addCallGraphEdges(CG, InlinedSamples.second); 2310 } 2311 } 2312 } 2313 2314 // Replace call graph edges with dynamic call edges from the profile. 2315 void SampleProfileLoader::replaceCallGraphEdges( 2316 CallGraph &CG, StringMap<Function *> &SymbolMap) { 2317 // Remove static call edges from the call graph except for the ones from the 2318 // root which make the call graph connected. 2319 for (const auto &Node : CG) 2320 if (Node.second.get() != CG.getExternalCallingNode()) 2321 Node.second->removeAllCalledFunctions(); 2322 2323 // Add profile call edges to the call graph. 2324 if (ProfileIsCS) { 2325 ContextTracker->addCallGraphEdges(CG, SymbolMap); 2326 } else { 2327 for (const auto &Samples : Reader->getProfiles()) 2328 addCallGraphEdges(CG, Samples.second); 2329 } 2330 } 2331 2332 std::vector<Function *> 2333 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 2334 std::vector<Function *> FunctionOrderList; 2335 FunctionOrderList.reserve(M.size()); 2336 2337 if (!ProfileTopDownLoad || CG == nullptr) { 2338 if (ProfileMergeInlinee) { 2339 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 2340 // because the profile for a function may be used for the profile 2341 // annotation of its outline copy before the profile merging of its 2342 // non-inlined inline instances, and that is not the way how 2343 // ProfileMergeInlinee is supposed to work. 2344 ProfileMergeInlinee = false; 2345 } 2346 2347 for (Function &F : M) 2348 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 2349 FunctionOrderList.push_back(&F); 2350 return FunctionOrderList; 2351 } 2352 2353 assert(&CG->getModule() == &M); 2354 2355 // Add indirect call edges from profile to augment the static call graph. 2356 // Functions will be processed in a top-down order defined by the static call 2357 // graph. Adjusting the order by considering indirect call edges from the 2358 // profile (which don't exist in the static call graph) can enable the 2359 // inlining of indirect call targets by processing the caller before them. 2360 // TODO: enable this for non-CS profile and fix the counts returning logic to 2361 // have a full support for indirect calls. 2362 if (UseProfileIndirectCallEdges && ProfileIsCS) { 2363 for (auto &Entry : *CG) { 2364 const auto *F = Entry.first; 2365 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) 2366 continue; 2367 auto &AllContexts = ContextTracker->getAllContextSamplesFor(F->getName()); 2368 if (AllContexts.empty()) 2369 continue; 2370 2371 for (const auto &BB : *F) { 2372 for (const auto &I : BB.getInstList()) { 2373 const auto *CB = dyn_cast<CallBase>(&I); 2374 if (!CB || !CB->isIndirectCall()) 2375 continue; 2376 const DebugLoc &DLoc = I.getDebugLoc(); 2377 if (!DLoc) 2378 continue; 2379 auto CallSite = FunctionSamples::getCallSiteIdentifier(DLoc); 2380 for (FunctionSamples *Samples : AllContexts) { 2381 if (auto CallTargets = Samples->findCallTargetMapAt(CallSite)) { 2382 for (const auto &Target : CallTargets.get()) { 2383 Function *Callee = SymbolMap.lookup(Target.first()); 2384 if (Callee && !Callee->isDeclaration()) 2385 Entry.second->addCalledFunction(nullptr, (*CG)[Callee]); 2386 } 2387 } 2388 } 2389 } 2390 } 2391 } 2392 } 2393 2394 // Compute a top-down order the profile which is used to sort functions in 2395 // one SCC later. The static processing order computed for an SCC may not 2396 // reflect the call contexts in the context-sensitive profile, thus may cause 2397 // potential inlining to be overlooked. The function order in one SCC is being 2398 // adjusted to a top-down order based on the profile to favor more inlining. 2399 DenseMap<Function *, uint64_t> ProfileOrderMap; 2400 if (UseProfileTopDownOrder || 2401 (ProfileIsCS && !UseProfileTopDownOrder.getNumOccurrences())) { 2402 // Create a static call graph. The call edges are not important since they 2403 // will be replaced by dynamic edges from the profile. 2404 CallGraph ProfileCG(M); 2405 replaceCallGraphEdges(ProfileCG, SymbolMap); 2406 scc_iterator<CallGraph *> CGI = scc_begin(&ProfileCG); 2407 uint64_t I = 0; 2408 while (!CGI.isAtEnd()) { 2409 for (CallGraphNode *Node : *CGI) { 2410 if (auto *F = Node->getFunction()) 2411 ProfileOrderMap[F] = ++I; 2412 } 2413 ++CGI; 2414 } 2415 } 2416 2417 scc_iterator<CallGraph *> CGI = scc_begin(CG); 2418 while (!CGI.isAtEnd()) { 2419 uint64_t Start = FunctionOrderList.size(); 2420 for (CallGraphNode *Node : *CGI) { 2421 auto *F = Node->getFunction(); 2422 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 2423 FunctionOrderList.push_back(F); 2424 } 2425 2426 // Sort nodes in SCC based on the profile top-down order. 2427 if (!ProfileOrderMap.empty()) { 2428 std::stable_sort(FunctionOrderList.begin() + Start, 2429 FunctionOrderList.end(), 2430 [&ProfileOrderMap](Function *Left, Function *Right) { 2431 return ProfileOrderMap[Left] < ProfileOrderMap[Right]; 2432 }); 2433 } 2434 2435 ++CGI; 2436 } 2437 2438 LLVM_DEBUG({ 2439 dbgs() << "Function processing order:\n"; 2440 for (auto F : reverse(FunctionOrderList)) { 2441 dbgs() << F->getName() << "\n"; 2442 } 2443 }); 2444 2445 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 2446 return FunctionOrderList; 2447 } 2448 2449 bool SampleProfileLoader::doInitialization(Module &M, 2450 FunctionAnalysisManager *FAM) { 2451 auto &Ctx = M.getContext(); 2452 2453 auto ReaderOrErr = 2454 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 2455 if (std::error_code EC = ReaderOrErr.getError()) { 2456 std::string Msg = "Could not open profile: " + EC.message(); 2457 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 2458 return false; 2459 } 2460 Reader = std::move(ReaderOrErr.get()); 2461 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 2462 Reader->collectFuncsFrom(M); 2463 if (std::error_code EC = Reader->read()) { 2464 std::string Msg = "profile reading failed: " + EC.message(); 2465 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 2466 return false; 2467 } 2468 2469 PSL = Reader->getProfileSymbolList(); 2470 2471 // While profile-sample-accurate is on, ignore symbol list. 2472 ProfAccForSymsInList = 2473 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 2474 if (ProfAccForSymsInList) { 2475 NamesInProfile.clear(); 2476 if (auto NameTable = Reader->getNameTable()) 2477 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 2478 } 2479 2480 if (FAM && !ProfileInlineReplayFile.empty()) { 2481 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>( 2482 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile, 2483 /*EmitRemarks=*/false); 2484 if (!ExternalInlineAdvisor->areReplayRemarksLoaded()) 2485 ExternalInlineAdvisor.reset(); 2486 } 2487 2488 // Apply tweaks if context-sensitive profile is available. 2489 if (Reader->profileIsCS()) { 2490 ProfileIsCS = true; 2491 FunctionSamples::ProfileIsCS = true; 2492 2493 // Enable priority-base inliner and size inline by default for CSSPGO. 2494 if (!ProfileSizeInline.getNumOccurrences()) 2495 ProfileSizeInline = true; 2496 if (!CallsitePrioritizedInline.getNumOccurrences()) 2497 CallsitePrioritizedInline = true; 2498 2499 // Tracker for profiles under different context 2500 ContextTracker = 2501 std::make_unique<SampleContextTracker>(Reader->getProfiles()); 2502 } 2503 2504 // Load pseudo probe descriptors for probe-based function samples. 2505 if (Reader->profileIsProbeBased()) { 2506 ProbeManager = std::make_unique<PseudoProbeManager>(M); 2507 if (!ProbeManager->moduleIsProbed(M)) { 2508 const char *Msg = 2509 "Pseudo-probe-based profile requires SampleProfileProbePass"; 2510 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 2511 return false; 2512 } 2513 } 2514 2515 return true; 2516 } 2517 2518 ModulePass *llvm::createSampleProfileLoaderPass() { 2519 return new SampleProfileLoaderLegacyPass(); 2520 } 2521 2522 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 2523 return new SampleProfileLoaderLegacyPass(Name); 2524 } 2525 2526 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2527 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2528 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2529 2530 PSI = _PSI; 2531 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2532 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2533 ProfileSummary::PSK_Sample); 2534 PSI->refresh(); 2535 } 2536 // Compute the total number of samples collected in this profile. 2537 for (const auto &I : Reader->getProfiles()) 2538 TotalCollectedSamples += I.second.getTotalSamples(); 2539 2540 auto Remapper = Reader->getRemapper(); 2541 // Populate the symbol map. 2542 for (const auto &N_F : M.getValueSymbolTable()) { 2543 StringRef OrigName = N_F.getKey(); 2544 Function *F = dyn_cast<Function>(N_F.getValue()); 2545 if (F == nullptr) 2546 continue; 2547 SymbolMap[OrigName] = F; 2548 auto pos = OrigName.find('.'); 2549 if (pos != StringRef::npos) { 2550 StringRef NewName = OrigName.substr(0, pos); 2551 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2552 // Failiing to insert means there is already an entry in SymbolMap, 2553 // thus there are multiple functions that are mapped to the same 2554 // stripped name. In this case of name conflicting, set the value 2555 // to nullptr to avoid confusion. 2556 if (!r.second) 2557 r.first->second = nullptr; 2558 OrigName = NewName; 2559 } 2560 // Insert the remapped names into SymbolMap. 2561 if (Remapper) { 2562 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2563 if (*MapName == OrigName) 2564 continue; 2565 SymbolMap.insert(std::make_pair(*MapName, F)); 2566 } 2567 } 2568 } 2569 2570 bool retval = false; 2571 for (auto F : buildFunctionOrder(M, CG)) { 2572 assert(!F->isDeclaration()); 2573 clearFunctionData(); 2574 retval |= runOnFunction(*F, AM); 2575 } 2576 2577 // Account for cold calls not inlined.... 2578 if (!ProfileIsCS) 2579 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2580 notInlinedCallInfo) 2581 updateProfileCallee(pair.first, pair.second.entryCount); 2582 2583 return retval; 2584 } 2585 2586 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2587 ACT = &getAnalysis<AssumptionCacheTracker>(); 2588 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2589 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2590 ProfileSummaryInfo *PSI = 2591 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2592 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2593 } 2594 2595 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2596 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); 2597 DILocation2SampleMap.clear(); 2598 // By default the entry count is initialized to -1, which will be treated 2599 // conservatively by getEntryCount as the same as unknown (None). This is 2600 // to avoid newly added code to be treated as cold. If we have samples 2601 // this will be overwritten in emitAnnotations. 2602 uint64_t initialEntryCount = -1; 2603 2604 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2605 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2606 // initialize all the function entry counts to 0. It means all the 2607 // functions without profile will be regarded as cold. 2608 initialEntryCount = 0; 2609 // profile-sample-accurate is a user assertion which has a higher precedence 2610 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2611 ProfAccForSymsInList = false; 2612 } 2613 2614 // PSL -- profile symbol list include all the symbols in sampled binary. 2615 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2616 // old functions without samples being cold, without having to worry 2617 // about new and hot functions being mistakenly treated as cold. 2618 if (ProfAccForSymsInList) { 2619 // Initialize the entry count to 0 for functions in the list. 2620 if (PSL->contains(F.getName())) 2621 initialEntryCount = 0; 2622 2623 // Function in the symbol list but without sample will be regarded as 2624 // cold. To minimize the potential negative performance impact it could 2625 // have, we want to be a little conservative here saying if a function 2626 // shows up in the profile, no matter as outline function, inline instance 2627 // or call targets, treat the function as not being cold. This will handle 2628 // the cases such as most callsites of a function are inlined in sampled 2629 // binary but not inlined in current build (because of source code drift, 2630 // imprecise debug information, or the callsites are all cold individually 2631 // but not cold accumulatively...), so the outline function showing up as 2632 // cold in sampled binary will actually not be cold after current build. 2633 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2634 if (NamesInProfile.count(CanonName)) 2635 initialEntryCount = -1; 2636 } 2637 2638 // Initialize entry count when the function has no existing entry 2639 // count value. 2640 if (!F.getEntryCount().hasValue()) 2641 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2642 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2643 if (AM) { 2644 auto &FAM = 2645 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2646 .getManager(); 2647 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2648 } else { 2649 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2650 ORE = OwnedORE.get(); 2651 } 2652 2653 if (ProfileIsCS) 2654 Samples = ContextTracker->getBaseSamplesFor(F); 2655 else 2656 Samples = Reader->getSamplesFor(F); 2657 2658 if (Samples && !Samples->empty()) 2659 return emitAnnotations(F); 2660 return false; 2661 } 2662 2663 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2664 ModuleAnalysisManager &AM) { 2665 FunctionAnalysisManager &FAM = 2666 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2667 2668 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2669 return FAM.getResult<AssumptionAnalysis>(F); 2670 }; 2671 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2672 return FAM.getResult<TargetIRAnalysis>(F); 2673 }; 2674 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2675 return FAM.getResult<TargetLibraryAnalysis>(F); 2676 }; 2677 2678 SampleProfileLoader SampleLoader( 2679 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2680 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2681 : ProfileRemappingFileName, 2682 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2683 2684 if (!SampleLoader.doInitialization(M, &FAM)) 2685 return PreservedAnalyses::all(); 2686 2687 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2688 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2689 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2690 return PreservedAnalyses::all(); 2691 2692 return PreservedAnalyses::none(); 2693 } 2694