xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/PriorityQueue.h"
30 #include "llvm/ADT/SCCIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringMap.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/AssumptionCache.h"
39 #include "llvm/Analysis/CallGraph.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/Analysis/InlineAdvisor.h"
42 #include "llvm/Analysis/InlineCost.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/PostDominators.h"
46 #include "llvm/Analysis/ProfileSummaryInfo.h"
47 #include "llvm/Analysis/ReplayInlineAdvisor.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DiagnosticInfo.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PassManager.h"
66 #include "llvm/IR/ValueSymbolTable.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/ProfileData/InstrProf.h"
70 #include "llvm/ProfileData/SampleProf.h"
71 #include "llvm/ProfileData/SampleProfReader.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/ErrorOr.h"
77 #include "llvm/Support/GenericDomTree.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/IPO.h"
80 #include "llvm/Transforms/IPO/SampleContextTracker.h"
81 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
82 #include "llvm/Transforms/Instrumentation.h"
83 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
84 #include "llvm/Transforms/Utils/Cloning.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstdint>
88 #include <functional>
89 #include <limits>
90 #include <map>
91 #include <memory>
92 #include <queue>
93 #include <string>
94 #include <system_error>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 using namespace sampleprof;
100 using ProfileCount = Function::ProfileCount;
101 #define DEBUG_TYPE "sample-profile"
102 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
103 
104 STATISTIC(NumCSInlined,
105           "Number of functions inlined with context sensitive profile");
106 STATISTIC(NumCSNotInlined,
107           "Number of functions not inlined with context sensitive profile");
108 STATISTIC(NumMismatchedProfile,
109           "Number of functions with CFG mismatched profile");
110 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile");
111 STATISTIC(NumDuplicatedInlinesite,
112           "Number of inlined callsites with a partial distribution factor");
113 
114 STATISTIC(NumCSInlinedHitMinLimit,
115           "Number of functions with FDO inline stopped due to min size limit");
116 STATISTIC(NumCSInlinedHitMaxLimit,
117           "Number of functions with FDO inline stopped due to max size limit");
118 STATISTIC(
119     NumCSInlinedHitGrowthLimit,
120     "Number of functions with FDO inline stopped due to growth size limit");
121 
122 // Command line option to specify the file to read samples from. This is
123 // mainly used for debugging.
124 static cl::opt<std::string> SampleProfileFile(
125     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
126     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
127 
128 // The named file contains a set of transformations that may have been applied
129 // to the symbol names between the program from which the sample data was
130 // collected and the current program's symbols.
131 static cl::opt<std::string> SampleProfileRemappingFile(
132     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
133     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
134 
135 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
136     "sample-profile-max-propagate-iterations", cl::init(100),
137     cl::desc("Maximum number of iterations to go through when propagating "
138              "sample block/edge weights through the CFG."));
139 
140 static cl::opt<unsigned> SampleProfileRecordCoverage(
141     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
142     cl::desc("Emit a warning if less than N% of records in the input profile "
143              "are matched to the IR."));
144 
145 static cl::opt<unsigned> SampleProfileSampleCoverage(
146     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
147     cl::desc("Emit a warning if less than N% of samples in the input profile "
148              "are matched to the IR."));
149 
150 static cl::opt<bool> NoWarnSampleUnused(
151     "no-warn-sample-unused", cl::init(false), cl::Hidden,
152     cl::desc("Use this option to turn off/on warnings about function with "
153              "samples but without debug information to use those samples. "));
154 
155 static cl::opt<bool> ProfileSampleAccurate(
156     "profile-sample-accurate", cl::Hidden, cl::init(false),
157     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
158              "callsite and function as having 0 samples. Otherwise, treat "
159              "un-sampled callsites and functions conservatively as unknown. "));
160 
161 static cl::opt<bool> ProfileAccurateForSymsInList(
162     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
163     cl::init(true),
164     cl::desc("For symbols in profile symbol list, regard their profiles to "
165              "be accurate. It may be overriden by profile-sample-accurate. "));
166 
167 static cl::opt<bool> ProfileMergeInlinee(
168     "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
169     cl::desc("Merge past inlinee's profile to outline version if sample "
170              "profile loader decided not to inline a call site. It will "
171              "only be enabled when top-down order of profile loading is "
172              "enabled. "));
173 
174 static cl::opt<bool> ProfileTopDownLoad(
175     "sample-profile-top-down-load", cl::Hidden, cl::init(true),
176     cl::desc("Do profile annotation and inlining for functions in top-down "
177              "order of call graph during sample profile loading. It only "
178              "works for new pass manager. "));
179 
180 static cl::opt<bool> UseProfileIndirectCallEdges(
181     "use-profile-indirect-call-edges", cl::init(true), cl::Hidden,
182     cl::desc("Considering indirect call samples from profile when top-down "
183              "processing functions. Only CSSPGO is supported."));
184 
185 static cl::opt<bool> UseProfileTopDownOrder(
186     "use-profile-top-down-order", cl::init(false), cl::Hidden,
187     cl::desc("Process functions in one SCC in a top-down order "
188              "based on the input profile."));
189 
190 static cl::opt<bool> ProfileSizeInline(
191     "sample-profile-inline-size", cl::Hidden, cl::init(false),
192     cl::desc("Inline cold call sites in profile loader if it's beneficial "
193              "for code size."));
194 
195 static cl::opt<int> ProfileInlineGrowthLimit(
196     "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12),
197     cl::desc("The size growth ratio limit for proirity-based sample profile "
198              "loader inlining."));
199 
200 static cl::opt<int> ProfileInlineLimitMin(
201     "sample-profile-inline-limit-min", cl::Hidden, cl::init(100),
202     cl::desc("The lower bound of size growth limit for "
203              "proirity-based sample profile loader inlining."));
204 
205 static cl::opt<int> ProfileInlineLimitMax(
206     "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000),
207     cl::desc("The upper bound of size growth limit for "
208              "proirity-based sample profile loader inlining."));
209 
210 static cl::opt<int> ProfileICPThreshold(
211     "sample-profile-icp-threshold", cl::Hidden, cl::init(5),
212     cl::desc(
213         "Relative hotness threshold for indirect "
214         "call promotion in proirity-based sample profile loader inlining."));
215 
216 static cl::opt<int> SampleHotCallSiteThreshold(
217     "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000),
218     cl::desc("Hot callsite threshold for proirity-based sample profile loader "
219              "inlining."));
220 
221 static cl::opt<bool> CallsitePrioritizedInline(
222     "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore,
223     cl::init(false),
224     cl::desc("Use call site prioritized inlining for sample profile loader."
225              "Currently only CSSPGO is supported."));
226 
227 static cl::opt<int> SampleColdCallSiteThreshold(
228     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
229     cl::desc("Threshold for inlining cold callsites"));
230 
231 static cl::opt<std::string> ProfileInlineReplayFile(
232     "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
233     cl::desc(
234         "Optimization remarks file containing inline remarks to be replayed "
235         "by inlining from sample profile loader."),
236     cl::Hidden);
237 
238 namespace {
239 
240 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
241 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
242 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
243 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
244 using BlockEdgeMap =
245     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
246 
247 class SampleProfileLoader;
248 
249 class SampleCoverageTracker {
250 public:
251   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
252 
253   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
254                        uint32_t Discriminator, uint64_t Samples);
255   unsigned computeCoverage(unsigned Used, unsigned Total) const;
256   unsigned countUsedRecords(const FunctionSamples *FS,
257                             ProfileSummaryInfo *PSI) const;
258   unsigned countBodyRecords(const FunctionSamples *FS,
259                             ProfileSummaryInfo *PSI) const;
260   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
261   uint64_t countBodySamples(const FunctionSamples *FS,
262                             ProfileSummaryInfo *PSI) const;
263 
264   void clear() {
265     SampleCoverage.clear();
266     TotalUsedSamples = 0;
267   }
268 
269 private:
270   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
271   using FunctionSamplesCoverageMap =
272       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
273 
274   /// Coverage map for sampling records.
275   ///
276   /// This map keeps a record of sampling records that have been matched to
277   /// an IR instruction. This is used to detect some form of staleness in
278   /// profiles (see flag -sample-profile-check-coverage).
279   ///
280   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
281   /// another map that counts how many times the sample record at the
282   /// given location has been used.
283   FunctionSamplesCoverageMap SampleCoverage;
284 
285   /// Number of samples used from the profile.
286   ///
287   /// When a sampling record is used for the first time, the samples from
288   /// that record are added to this accumulator.  Coverage is later computed
289   /// based on the total number of samples available in this function and
290   /// its callsites.
291   ///
292   /// Note that this accumulator tracks samples used from a single function
293   /// and all the inlined callsites. Strictly, we should have a map of counters
294   /// keyed by FunctionSamples pointers, but these stats are cleared after
295   /// every function, so we just need to keep a single counter.
296   uint64_t TotalUsedSamples = 0;
297 
298   SampleProfileLoader &SPLoader;
299 };
300 
301 class GUIDToFuncNameMapper {
302 public:
303   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
304                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
305       : CurrentReader(Reader), CurrentModule(M),
306       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
307     if (!CurrentReader.useMD5())
308       return;
309 
310     for (const auto &F : CurrentModule) {
311       StringRef OrigName = F.getName();
312       CurrentGUIDToFuncNameMap.insert(
313           {Function::getGUID(OrigName), OrigName});
314 
315       // Local to global var promotion used by optimization like thinlto
316       // will rename the var and add suffix like ".llvm.xxx" to the
317       // original local name. In sample profile, the suffixes of function
318       // names are all stripped. Since it is possible that the mapper is
319       // built in post-thin-link phase and var promotion has been done,
320       // we need to add the substring of function name without the suffix
321       // into the GUIDToFuncNameMap.
322       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
323       if (CanonName != OrigName)
324         CurrentGUIDToFuncNameMap.insert(
325             {Function::getGUID(CanonName), CanonName});
326     }
327 
328     // Update GUIDToFuncNameMap for each function including inlinees.
329     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
330   }
331 
332   ~GUIDToFuncNameMapper() {
333     if (!CurrentReader.useMD5())
334       return;
335 
336     CurrentGUIDToFuncNameMap.clear();
337 
338     // Reset GUIDToFuncNameMap for of each function as they're no
339     // longer valid at this point.
340     SetGUIDToFuncNameMapForAll(nullptr);
341   }
342 
343 private:
344   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
345     std::queue<FunctionSamples *> FSToUpdate;
346     for (auto &IFS : CurrentReader.getProfiles()) {
347       FSToUpdate.push(&IFS.second);
348     }
349 
350     while (!FSToUpdate.empty()) {
351       FunctionSamples *FS = FSToUpdate.front();
352       FSToUpdate.pop();
353       FS->GUIDToFuncNameMap = Map;
354       for (const auto &ICS : FS->getCallsiteSamples()) {
355         const FunctionSamplesMap &FSMap = ICS.second;
356         for (auto &IFS : FSMap) {
357           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
358           FSToUpdate.push(&FS);
359         }
360       }
361     }
362   }
363 
364   SampleProfileReader &CurrentReader;
365   Module &CurrentModule;
366   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
367 };
368 
369 // Inline candidate used by iterative callsite prioritized inliner
370 struct InlineCandidate {
371   CallBase *CallInstr;
372   const FunctionSamples *CalleeSamples;
373   // Prorated callsite count, which will be used to guide inlining. For example,
374   // if a callsite is duplicated in LTO prelink, then in LTO postlink the two
375   // copies will get their own distribution factors and their prorated counts
376   // will be used to decide if they should be inlined independently.
377   uint64_t CallsiteCount;
378   // Call site distribution factor to prorate the profile samples for a
379   // duplicated callsite. Default value is 1.0.
380   float CallsiteDistribution;
381 };
382 
383 // Inline candidate comparer using call site weight
384 struct CandidateComparer {
385   bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) {
386     if (LHS.CallsiteCount != RHS.CallsiteCount)
387       return LHS.CallsiteCount < RHS.CallsiteCount;
388 
389     // Tie breaker using GUID so we have stable/deterministic inlining order
390     assert(LHS.CalleeSamples && RHS.CalleeSamples &&
391            "Expect non-null FunctionSamples");
392     return LHS.CalleeSamples->getGUID(LHS.CalleeSamples->getName()) <
393            RHS.CalleeSamples->getGUID(RHS.CalleeSamples->getName());
394   }
395 };
396 
397 using CandidateQueue =
398     PriorityQueue<InlineCandidate, std::vector<InlineCandidate>,
399                   CandidateComparer>;
400 
401 /// Sample profile pass.
402 ///
403 /// This pass reads profile data from the file specified by
404 /// -sample-profile-file and annotates every affected function with the
405 /// profile information found in that file.
406 class SampleProfileLoader {
407 public:
408   SampleProfileLoader(
409       StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase,
410       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
411       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
412       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
413       : GetAC(std::move(GetAssumptionCache)),
414         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
415         CoverageTracker(*this), Filename(std::string(Name)),
416         RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {}
417 
418   bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
419   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
420                    ProfileSummaryInfo *_PSI, CallGraph *CG);
421 
422   void dump() { Reader->dump(); }
423 
424 protected:
425   friend class SampleCoverageTracker;
426 
427   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
428   unsigned getFunctionLoc(Function &F);
429   bool emitAnnotations(Function &F);
430   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
431   ErrorOr<uint64_t> getProbeWeight(const Instruction &I);
432   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
433   const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
434   std::vector<const FunctionSamples *>
435   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
436   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
437   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
438   // Attempt to promote indirect call and also inline the promoted call
439   bool tryPromoteAndInlineCandidate(
440       Function &F, InlineCandidate &Candidate, uint64_t SumOrigin,
441       uint64_t &Sum, DenseSet<Instruction *> &PromotedInsns,
442       SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
443   bool inlineHotFunctions(Function &F,
444                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
445   InlineCost shouldInlineCandidate(InlineCandidate &Candidate);
446   bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB);
447   bool
448   tryInlineCandidate(InlineCandidate &Candidate,
449                      SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
450   bool
451   inlineHotFunctionsWithPriority(Function &F,
452                                  DenseSet<GlobalValue::GUID> &InlinedGUIDs);
453   // Inline cold/small functions in addition to hot ones
454   bool shouldInlineColdCallee(CallBase &CallInst);
455   void emitOptimizationRemarksForInlineCandidates(
456       const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
457       bool Hot);
458   void printEdgeWeight(raw_ostream &OS, Edge E);
459   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
460   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
461   bool computeBlockWeights(Function &F);
462   void findEquivalenceClasses(Function &F);
463   template <bool IsPostDom>
464   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
465                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
466 
467   void propagateWeights(Function &F);
468   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
469   void buildEdges(Function &F);
470   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
471   void addCallGraphEdges(CallGraph &CG, const FunctionSamples &Samples);
472   void replaceCallGraphEdges(CallGraph &CG, StringMap<Function *> &SymbolMap);
473   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
474   void computeDominanceAndLoopInfo(Function &F);
475   void clearFunctionData();
476   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
477                      ProfileSummaryInfo *PSI);
478 
479   /// Map basic blocks to their computed weights.
480   ///
481   /// The weight of a basic block is defined to be the maximum
482   /// of all the instruction weights in that block.
483   BlockWeightMap BlockWeights;
484 
485   /// Map edges to their computed weights.
486   ///
487   /// Edge weights are computed by propagating basic block weights in
488   /// SampleProfile::propagateWeights.
489   EdgeWeightMap EdgeWeights;
490 
491   /// Set of visited blocks during propagation.
492   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
493 
494   /// Set of visited edges during propagation.
495   SmallSet<Edge, 32> VisitedEdges;
496 
497   /// Equivalence classes for block weights.
498   ///
499   /// Two blocks BB1 and BB2 are in the same equivalence class if they
500   /// dominate and post-dominate each other, and they are in the same loop
501   /// nest. When this happens, the two blocks are guaranteed to execute
502   /// the same number of times.
503   EquivalenceClassMap EquivalenceClass;
504 
505   /// Map from function name to Function *. Used to find the function from
506   /// the function name. If the function name contains suffix, additional
507   /// entry is added to map from the stripped name to the function if there
508   /// is one-to-one mapping.
509   StringMap<Function *> SymbolMap;
510 
511   /// Dominance, post-dominance and loop information.
512   std::unique_ptr<DominatorTree> DT;
513   std::unique_ptr<PostDominatorTree> PDT;
514   std::unique_ptr<LoopInfo> LI;
515 
516   std::function<AssumptionCache &(Function &)> GetAC;
517   std::function<TargetTransformInfo &(Function &)> GetTTI;
518   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
519 
520   /// Predecessors for each basic block in the CFG.
521   BlockEdgeMap Predecessors;
522 
523   /// Successors for each basic block in the CFG.
524   BlockEdgeMap Successors;
525 
526   SampleCoverageTracker CoverageTracker;
527 
528   /// Profile reader object.
529   std::unique_ptr<SampleProfileReader> Reader;
530 
531   /// Profile tracker for different context.
532   std::unique_ptr<SampleContextTracker> ContextTracker;
533 
534   /// Samples collected for the body of this function.
535   FunctionSamples *Samples = nullptr;
536 
537   /// Name of the profile file to load.
538   std::string Filename;
539 
540   /// Name of the profile remapping file to load.
541   std::string RemappingFilename;
542 
543   /// Flag indicating whether the profile input loaded successfully.
544   bool ProfileIsValid = false;
545 
546   /// Flag indicating whether input profile is context-sensitive
547   bool ProfileIsCS = false;
548 
549   /// Flag indicating which LTO/ThinLTO phase the pass is invoked in.
550   ///
551   /// We need to know the LTO phase because for example in ThinLTOPrelink
552   /// phase, in annotation, we should not promote indirect calls. Instead,
553   /// we will mark GUIDs that needs to be annotated to the function.
554   ThinOrFullLTOPhase LTOPhase;
555 
556   /// Profile Summary Info computed from sample profile.
557   ProfileSummaryInfo *PSI = nullptr;
558 
559   /// Profle Symbol list tells whether a function name appears in the binary
560   /// used to generate the current profile.
561   std::unique_ptr<ProfileSymbolList> PSL;
562 
563   /// Total number of samples collected in this profile.
564   ///
565   /// This is the sum of all the samples collected in all the functions executed
566   /// at runtime.
567   uint64_t TotalCollectedSamples = 0;
568 
569   /// Optimization Remark Emitter used to emit diagnostic remarks.
570   OptimizationRemarkEmitter *ORE = nullptr;
571 
572   // Information recorded when we declined to inline a call site
573   // because we have determined it is too cold is accumulated for
574   // each callee function. Initially this is just the entry count.
575   struct NotInlinedProfileInfo {
576     uint64_t entryCount;
577   };
578   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
579 
580   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
581   // all the function symbols defined or declared in current module.
582   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
583 
584   // All the Names used in FunctionSamples including outline function
585   // names, inline instance names and call target names.
586   StringSet<> NamesInProfile;
587 
588   // For symbol in profile symbol list, whether to regard their profiles
589   // to be accurate. It is mainly decided by existance of profile symbol
590   // list and -profile-accurate-for-symsinlist flag, but it can be
591   // overriden by -profile-sample-accurate or profile-sample-accurate
592   // attribute.
593   bool ProfAccForSymsInList;
594 
595   // External inline advisor used to replay inline decision from remarks.
596   std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor;
597 
598   // A pseudo probe helper to correlate the imported sample counts.
599   std::unique_ptr<PseudoProbeManager> ProbeManager;
600 };
601 
602 class SampleProfileLoaderLegacyPass : public ModulePass {
603 public:
604   // Class identification, replacement for typeinfo
605   static char ID;
606 
607   SampleProfileLoaderLegacyPass(
608       StringRef Name = SampleProfileFile,
609       ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None)
610       : ModulePass(ID), SampleLoader(
611                             Name, SampleProfileRemappingFile, LTOPhase,
612                             [&](Function &F) -> AssumptionCache & {
613                               return ACT->getAssumptionCache(F);
614                             },
615                             [&](Function &F) -> TargetTransformInfo & {
616                               return TTIWP->getTTI(F);
617                             },
618                             [&](Function &F) -> TargetLibraryInfo & {
619                               return TLIWP->getTLI(F);
620                             }) {
621     initializeSampleProfileLoaderLegacyPassPass(
622         *PassRegistry::getPassRegistry());
623   }
624 
625   void dump() { SampleLoader.dump(); }
626 
627   bool doInitialization(Module &M) override {
628     return SampleLoader.doInitialization(M);
629   }
630 
631   StringRef getPassName() const override { return "Sample profile pass"; }
632   bool runOnModule(Module &M) override;
633 
634   void getAnalysisUsage(AnalysisUsage &AU) const override {
635     AU.addRequired<AssumptionCacheTracker>();
636     AU.addRequired<TargetTransformInfoWrapperPass>();
637     AU.addRequired<TargetLibraryInfoWrapperPass>();
638     AU.addRequired<ProfileSummaryInfoWrapperPass>();
639   }
640 
641 private:
642   SampleProfileLoader SampleLoader;
643   AssumptionCacheTracker *ACT = nullptr;
644   TargetTransformInfoWrapperPass *TTIWP = nullptr;
645   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
646 };
647 
648 } // end anonymous namespace
649 
650 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
651 ///
652 /// Functions that were inlined in the original binary will be represented
653 /// in the inline stack in the sample profile. If the profile shows that
654 /// the original inline decision was "good" (i.e., the callsite is executed
655 /// frequently), then we will recreate the inline decision and apply the
656 /// profile from the inlined callsite.
657 ///
658 /// To decide whether an inlined callsite is hot, we compare the callsite
659 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
660 /// regarded as hot if the count is above the cutoff value.
661 ///
662 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
663 /// is present, functions in the profile symbol list but without profile will
664 /// be regarded as cold and much less inlining will happen in CGSCC inlining
665 /// pass, so we tend to lower the hot criteria here to allow more early
666 /// inlining to happen for warm callsites and it is helpful for performance.
667 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
668                                         ProfileSummaryInfo *PSI) {
669   if (!CallsiteFS)
670     return false; // The callsite was not inlined in the original binary.
671 
672   assert(PSI && "PSI is expected to be non null");
673   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
674   if (ProfAccForSymsInList)
675     return !PSI->isColdCount(CallsiteTotalSamples);
676   else
677     return PSI->isHotCount(CallsiteTotalSamples);
678 }
679 
680 /// Mark as used the sample record for the given function samples at
681 /// (LineOffset, Discriminator).
682 ///
683 /// \returns true if this is the first time we mark the given record.
684 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
685                                             uint32_t LineOffset,
686                                             uint32_t Discriminator,
687                                             uint64_t Samples) {
688   LineLocation Loc(LineOffset, Discriminator);
689   unsigned &Count = SampleCoverage[FS][Loc];
690   bool FirstTime = (++Count == 1);
691   if (FirstTime)
692     TotalUsedSamples += Samples;
693   return FirstTime;
694 }
695 
696 /// Return the number of sample records that were applied from this profile.
697 ///
698 /// This count does not include records from cold inlined callsites.
699 unsigned
700 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
701                                         ProfileSummaryInfo *PSI) const {
702   auto I = SampleCoverage.find(FS);
703 
704   // The size of the coverage map for FS represents the number of records
705   // that were marked used at least once.
706   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
707 
708   // If there are inlined callsites in this function, count the samples found
709   // in the respective bodies. However, do not bother counting callees with 0
710   // total samples, these are callees that were never invoked at runtime.
711   for (const auto &I : FS->getCallsiteSamples())
712     for (const auto &J : I.second) {
713       const FunctionSamples *CalleeSamples = &J.second;
714       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
715         Count += countUsedRecords(CalleeSamples, PSI);
716     }
717 
718   return Count;
719 }
720 
721 /// Return the number of sample records in the body of this profile.
722 ///
723 /// This count does not include records from cold inlined callsites.
724 unsigned
725 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
726                                         ProfileSummaryInfo *PSI) const {
727   unsigned Count = FS->getBodySamples().size();
728 
729   // Only count records in hot callsites.
730   for (const auto &I : FS->getCallsiteSamples())
731     for (const auto &J : I.second) {
732       const FunctionSamples *CalleeSamples = &J.second;
733       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
734         Count += countBodyRecords(CalleeSamples, PSI);
735     }
736 
737   return Count;
738 }
739 
740 /// Return the number of samples collected in the body of this profile.
741 ///
742 /// This count does not include samples from cold inlined callsites.
743 uint64_t
744 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
745                                         ProfileSummaryInfo *PSI) const {
746   uint64_t Total = 0;
747   for (const auto &I : FS->getBodySamples())
748     Total += I.second.getSamples();
749 
750   // Only count samples in hot callsites.
751   for (const auto &I : FS->getCallsiteSamples())
752     for (const auto &J : I.second) {
753       const FunctionSamples *CalleeSamples = &J.second;
754       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
755         Total += countBodySamples(CalleeSamples, PSI);
756     }
757 
758   return Total;
759 }
760 
761 /// Return the fraction of sample records used in this profile.
762 ///
763 /// The returned value is an unsigned integer in the range 0-100 indicating
764 /// the percentage of sample records that were used while applying this
765 /// profile to the associated function.
766 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
767                                                 unsigned Total) const {
768   assert(Used <= Total &&
769          "number of used records cannot exceed the total number of records");
770   return Total > 0 ? Used * 100 / Total : 100;
771 }
772 
773 /// Clear all the per-function data used to load samples and propagate weights.
774 void SampleProfileLoader::clearFunctionData() {
775   BlockWeights.clear();
776   EdgeWeights.clear();
777   VisitedBlocks.clear();
778   VisitedEdges.clear();
779   EquivalenceClass.clear();
780   DT = nullptr;
781   PDT = nullptr;
782   LI = nullptr;
783   Predecessors.clear();
784   Successors.clear();
785   CoverageTracker.clear();
786 }
787 
788 #ifndef NDEBUG
789 /// Print the weight of edge \p E on stream \p OS.
790 ///
791 /// \param OS  Stream to emit the output to.
792 /// \param E  Edge to print.
793 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
794   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
795      << "]: " << EdgeWeights[E] << "\n";
796 }
797 
798 /// Print the equivalence class of block \p BB on stream \p OS.
799 ///
800 /// \param OS  Stream to emit the output to.
801 /// \param BB  Block to print.
802 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
803                                                 const BasicBlock *BB) {
804   const BasicBlock *Equiv = EquivalenceClass[BB];
805   OS << "equivalence[" << BB->getName()
806      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
807 }
808 
809 /// Print the weight of block \p BB on stream \p OS.
810 ///
811 /// \param OS  Stream to emit the output to.
812 /// \param BB  Block to print.
813 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
814                                            const BasicBlock *BB) const {
815   const auto &I = BlockWeights.find(BB);
816   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
817   OS << "weight[" << BB->getName() << "]: " << W << "\n";
818 }
819 #endif
820 
821 /// Get the weight for an instruction.
822 ///
823 /// The "weight" of an instruction \p Inst is the number of samples
824 /// collected on that instruction at runtime. To retrieve it, we
825 /// need to compute the line number of \p Inst relative to the start of its
826 /// function. We use HeaderLineno to compute the offset. We then
827 /// look up the samples collected for \p Inst using BodySamples.
828 ///
829 /// \param Inst Instruction to query.
830 ///
831 /// \returns the weight of \p Inst.
832 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
833   if (FunctionSamples::ProfileIsProbeBased)
834     return getProbeWeight(Inst);
835 
836   const DebugLoc &DLoc = Inst.getDebugLoc();
837   if (!DLoc)
838     return std::error_code();
839 
840   const FunctionSamples *FS = findFunctionSamples(Inst);
841   if (!FS)
842     return std::error_code();
843 
844   // Ignore all intrinsics, phinodes and branch instructions.
845   // Branch and phinodes instruction usually contains debug info from sources outside of
846   // the residing basic block, thus we ignore them during annotation.
847   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
848     return std::error_code();
849 
850   // If a direct call/invoke instruction is inlined in profile
851   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
852   // it means that the inlined callsite has no sample, thus the call
853   // instruction should have 0 count.
854   if (!ProfileIsCS)
855     if (const auto *CB = dyn_cast<CallBase>(&Inst))
856       if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
857         return 0;
858 
859   const DILocation *DIL = DLoc;
860   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
861   uint32_t Discriminator = DIL->getBaseDiscriminator();
862   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
863   if (R) {
864     bool FirstMark =
865         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
866     if (FirstMark) {
867       ORE->emit([&]() {
868         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
869         Remark << "Applied " << ore::NV("NumSamples", *R);
870         Remark << " samples from profile (offset: ";
871         Remark << ore::NV("LineOffset", LineOffset);
872         if (Discriminator) {
873           Remark << ".";
874           Remark << ore::NV("Discriminator", Discriminator);
875         }
876         Remark << ")";
877         return Remark;
878       });
879     }
880     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
881                       << DIL->getBaseDiscriminator() << ":" << Inst
882                       << " (line offset: " << LineOffset << "."
883                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
884                       << ")\n");
885   }
886   return R;
887 }
888 
889 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) {
890   assert(FunctionSamples::ProfileIsProbeBased &&
891          "Profile is not pseudo probe based");
892   Optional<PseudoProbe> Probe = extractProbe(Inst);
893   if (!Probe)
894     return std::error_code();
895 
896   const FunctionSamples *FS = findFunctionSamples(Inst);
897   if (!FS)
898     return std::error_code();
899 
900   // If a direct call/invoke instruction is inlined in profile
901   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
902   // it means that the inlined callsite has no sample, thus the call
903   // instruction should have 0 count.
904   if (const auto *CB = dyn_cast<CallBase>(&Inst))
905     if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
906       return 0;
907 
908   const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0);
909   if (R) {
910     uint64_t Samples = R.get() * Probe->Factor;
911     bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
912     if (FirstMark) {
913       ORE->emit([&]() {
914         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
915         Remark << "Applied " << ore::NV("NumSamples", Samples);
916         Remark << " samples from profile (ProbeId=";
917         Remark << ore::NV("ProbeId", Probe->Id);
918         Remark << ", Factor=";
919         Remark << ore::NV("Factor", Probe->Factor);
920         Remark << ", OriginalSamples=";
921         Remark << ore::NV("OriginalSamples", R.get());
922         Remark << ")";
923         return Remark;
924       });
925     }
926     LLVM_DEBUG(dbgs() << "    " << Probe->Id << ":" << Inst
927                       << " - weight: " << R.get() << " - factor: "
928                       << format("%0.2f", Probe->Factor) << ")\n");
929     return Samples;
930   }
931   return R;
932 }
933 
934 /// Compute the weight of a basic block.
935 ///
936 /// The weight of basic block \p BB is the maximum weight of all the
937 /// instructions in BB.
938 ///
939 /// \param BB The basic block to query.
940 ///
941 /// \returns the weight for \p BB.
942 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
943   uint64_t Max = 0;
944   bool HasWeight = false;
945   for (auto &I : BB->getInstList()) {
946     const ErrorOr<uint64_t> &R = getInstWeight(I);
947     if (R) {
948       Max = std::max(Max, R.get());
949       HasWeight = true;
950     }
951   }
952   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
953 }
954 
955 /// Compute and store the weights of every basic block.
956 ///
957 /// This populates the BlockWeights map by computing
958 /// the weights of every basic block in the CFG.
959 ///
960 /// \param F The function to query.
961 bool SampleProfileLoader::computeBlockWeights(Function &F) {
962   bool Changed = false;
963   LLVM_DEBUG(dbgs() << "Block weights\n");
964   for (const auto &BB : F) {
965     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
966     if (Weight) {
967       BlockWeights[&BB] = Weight.get();
968       VisitedBlocks.insert(&BB);
969       Changed = true;
970     }
971     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
972   }
973 
974   return Changed;
975 }
976 
977 /// Get the FunctionSamples for a call instruction.
978 ///
979 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
980 /// instance in which that call instruction is calling to. It contains
981 /// all samples that resides in the inlined instance. We first find the
982 /// inlined instance in which the call instruction is from, then we
983 /// traverse its children to find the callsite with the matching
984 /// location.
985 ///
986 /// \param Inst Call/Invoke instruction to query.
987 ///
988 /// \returns The FunctionSamples pointer to the inlined instance.
989 const FunctionSamples *
990 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
991   const DILocation *DIL = Inst.getDebugLoc();
992   if (!DIL) {
993     return nullptr;
994   }
995 
996   StringRef CalleeName;
997   if (Function *Callee = Inst.getCalledFunction())
998     CalleeName = FunctionSamples::getCanonicalFnName(*Callee);
999 
1000   if (ProfileIsCS)
1001     return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);
1002 
1003   const FunctionSamples *FS = findFunctionSamples(Inst);
1004   if (FS == nullptr)
1005     return nullptr;
1006 
1007   return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL),
1008                                    CalleeName, Reader->getRemapper());
1009 }
1010 
1011 /// Returns a vector of FunctionSamples that are the indirect call targets
1012 /// of \p Inst. The vector is sorted by the total number of samples. Stores
1013 /// the total call count of the indirect call in \p Sum.
1014 std::vector<const FunctionSamples *>
1015 SampleProfileLoader::findIndirectCallFunctionSamples(
1016     const Instruction &Inst, uint64_t &Sum) const {
1017   const DILocation *DIL = Inst.getDebugLoc();
1018   std::vector<const FunctionSamples *> R;
1019 
1020   if (!DIL) {
1021     return R;
1022   }
1023 
1024   auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) {
1025     assert(L && R && "Expect non-null FunctionSamples");
1026     if (L->getEntrySamples() != R->getEntrySamples())
1027       return L->getEntrySamples() > R->getEntrySamples();
1028     return FunctionSamples::getGUID(L->getName()) <
1029            FunctionSamples::getGUID(R->getName());
1030   };
1031 
1032   if (ProfileIsCS) {
1033     auto CalleeSamples =
1034         ContextTracker->getIndirectCalleeContextSamplesFor(DIL);
1035     if (CalleeSamples.empty())
1036       return R;
1037 
1038     // For CSSPGO, we only use target context profile's entry count
1039     // as that already includes both inlined callee and non-inlined ones..
1040     Sum = 0;
1041     for (const auto *const FS : CalleeSamples) {
1042       Sum += FS->getEntrySamples();
1043       R.push_back(FS);
1044     }
1045     llvm::sort(R, FSCompare);
1046     return R;
1047   }
1048 
1049   const FunctionSamples *FS = findFunctionSamples(Inst);
1050   if (FS == nullptr)
1051     return R;
1052 
1053   auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
1054   auto T = FS->findCallTargetMapAt(CallSite);
1055   Sum = 0;
1056   if (T)
1057     for (const auto &T_C : T.get())
1058       Sum += T_C.second;
1059   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) {
1060     if (M->empty())
1061       return R;
1062     for (const auto &NameFS : *M) {
1063       Sum += NameFS.second.getEntrySamples();
1064       R.push_back(&NameFS.second);
1065     }
1066     llvm::sort(R, FSCompare);
1067   }
1068   return R;
1069 }
1070 
1071 /// Get the FunctionSamples for an instruction.
1072 ///
1073 /// The FunctionSamples of an instruction \p Inst is the inlined instance
1074 /// in which that instruction is coming from. We traverse the inline stack
1075 /// of that instruction, and match it with the tree nodes in the profile.
1076 ///
1077 /// \param Inst Instruction to query.
1078 ///
1079 /// \returns the FunctionSamples pointer to the inlined instance.
1080 const FunctionSamples *
1081 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
1082   if (FunctionSamples::ProfileIsProbeBased) {
1083     Optional<PseudoProbe> Probe = extractProbe(Inst);
1084     if (!Probe)
1085       return nullptr;
1086   }
1087 
1088   const DILocation *DIL = Inst.getDebugLoc();
1089   if (!DIL)
1090     return Samples;
1091 
1092   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
1093   if (it.second) {
1094     if (ProfileIsCS)
1095       it.first->second = ContextTracker->getContextSamplesFor(DIL);
1096     else
1097       it.first->second =
1098           Samples->findFunctionSamples(DIL, Reader->getRemapper());
1099   }
1100   return it.first->second;
1101 }
1102 
1103 /// Attempt to promote indirect call and also inline the promoted call.
1104 ///
1105 /// \param F  Caller function.
1106 /// \param Candidate  ICP and inline candidate.
1107 /// \param Sum  Sum of target counts for indirect call.
1108 /// \param PromotedInsns  Map to keep track of indirect call already processed.
1109 /// \param Candidate  ICP and inline candidate.
1110 /// \param InlinedCallSite  Output vector for new call sites exposed after
1111 /// inlining.
1112 bool SampleProfileLoader::tryPromoteAndInlineCandidate(
1113     Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum,
1114     DenseSet<Instruction *> &PromotedInsns,
1115     SmallVector<CallBase *, 8> *InlinedCallSite) {
1116   const char *Reason = "Callee function not available";
1117   // R->getValue() != &F is to prevent promoting a recursive call.
1118   // If it is a recursive call, we do not inline it as it could bloat
1119   // the code exponentially. There is way to better handle this, e.g.
1120   // clone the caller first, and inline the cloned caller if it is
1121   // recursive. As llvm does not inline recursive calls, we will
1122   // simply ignore it instead of handling it explicitly.
1123   auto R = SymbolMap.find(Candidate.CalleeSamples->getFuncName());
1124   if (R != SymbolMap.end() && R->getValue() &&
1125       !R->getValue()->isDeclaration() && R->getValue()->getSubprogram() &&
1126       R->getValue()->hasFnAttribute("use-sample-profile") &&
1127       R->getValue() != &F &&
1128       isLegalToPromote(*Candidate.CallInstr, R->getValue(), &Reason)) {
1129     auto *DI =
1130         &pgo::promoteIndirectCall(*Candidate.CallInstr, R->getValue(),
1131                                   Candidate.CallsiteCount, Sum, false, ORE);
1132     if (DI) {
1133       Sum -= Candidate.CallsiteCount;
1134       // Prorate the indirect callsite distribution.
1135       // Do not update the promoted direct callsite distribution at this
1136       // point since the original distribution combined with the callee
1137       // profile will be used to prorate callsites from the callee if
1138       // inlined. Once not inlined, the direct callsite distribution should
1139       // be prorated so that the it will reflect the real callsite counts.
1140       setProbeDistributionFactor(*Candidate.CallInstr,
1141                                  Candidate.CallsiteDistribution * Sum /
1142                                      SumOrigin);
1143       PromotedInsns.insert(Candidate.CallInstr);
1144       Candidate.CallInstr = DI;
1145       if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) {
1146         bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite);
1147         if (!Inlined) {
1148           // Prorate the direct callsite distribution so that it reflects real
1149           // callsite counts.
1150           setProbeDistributionFactor(*DI, Candidate.CallsiteDistribution *
1151                                               Candidate.CallsiteCount /
1152                                               SumOrigin);
1153         }
1154         return Inlined;
1155       }
1156     }
1157   } else {
1158     LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to "
1159                       << Candidate.CalleeSamples->getFuncName() << " because "
1160                       << Reason << "\n");
1161   }
1162   return false;
1163 }
1164 
1165 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
1166   if (!ProfileSizeInline)
1167     return false;
1168 
1169   Function *Callee = CallInst.getCalledFunction();
1170   if (Callee == nullptr)
1171     return false;
1172 
1173   InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
1174                                   GetAC, GetTLI);
1175 
1176   if (Cost.isNever())
1177     return false;
1178 
1179   if (Cost.isAlways())
1180     return true;
1181 
1182   return Cost.getCost() <= SampleColdCallSiteThreshold;
1183 }
1184 
1185 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
1186     const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
1187     bool Hot) {
1188   for (auto I : Candidates) {
1189     Function *CalledFunction = I->getCalledFunction();
1190     if (CalledFunction) {
1191       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
1192                                            I->getDebugLoc(), I->getParent())
1193                 << "previous inlining reattempted for "
1194                 << (Hot ? "hotness: '" : "size: '")
1195                 << ore::NV("Callee", CalledFunction) << "' into '"
1196                 << ore::NV("Caller", &F) << "'");
1197     }
1198   }
1199 }
1200 
1201 /// Iteratively inline hot callsites of a function.
1202 ///
1203 /// Iteratively traverse all callsites of the function \p F, and find if
1204 /// the corresponding inlined instance exists and is hot in profile. If
1205 /// it is hot enough, inline the callsites and adds new callsites of the
1206 /// callee into the caller. If the call is an indirect call, first promote
1207 /// it to direct call. Each indirect call is limited with a single target.
1208 ///
1209 /// \param F function to perform iterative inlining.
1210 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
1211 ///     inlined in the profiled binary.
1212 ///
1213 /// \returns True if there is any inline happened.
1214 bool SampleProfileLoader::inlineHotFunctions(
1215     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1216   DenseSet<Instruction *> PromotedInsns;
1217 
1218   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
1219   // Profile symbol list is ignored when profile-sample-accurate is on.
1220   assert((!ProfAccForSymsInList ||
1221           (!ProfileSampleAccurate &&
1222            !F.hasFnAttribute("profile-sample-accurate"))) &&
1223          "ProfAccForSymsInList should be false when profile-sample-accurate "
1224          "is enabled");
1225 
1226   DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites;
1227   bool Changed = false;
1228   bool LocalChanged = true;
1229   while (LocalChanged) {
1230     LocalChanged = false;
1231     SmallVector<CallBase *, 10> CIS;
1232     for (auto &BB : F) {
1233       bool Hot = false;
1234       SmallVector<CallBase *, 10> AllCandidates;
1235       SmallVector<CallBase *, 10> ColdCandidates;
1236       for (auto &I : BB.getInstList()) {
1237         const FunctionSamples *FS = nullptr;
1238         if (auto *CB = dyn_cast<CallBase>(&I)) {
1239           if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
1240             assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
1241                    "GUIDToFuncNameMap has to be populated");
1242             AllCandidates.push_back(CB);
1243             if (FS->getEntrySamples() > 0 || ProfileIsCS)
1244               LocalNotInlinedCallSites.try_emplace(CB, FS);
1245             if (callsiteIsHot(FS, PSI))
1246               Hot = true;
1247             else if (shouldInlineColdCallee(*CB))
1248               ColdCandidates.push_back(CB);
1249           }
1250         }
1251       }
1252       if (Hot || ExternalInlineAdvisor) {
1253         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1254         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1255       } else {
1256         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1257         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1258       }
1259     }
1260     for (CallBase *I : CIS) {
1261       Function *CalledFunction = I->getCalledFunction();
1262       InlineCandidate Candidate = {
1263           I,
1264           LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I]
1265                                             : nullptr,
1266           0 /* dummy count */, 1.0 /* dummy distribution factor */};
1267       // Do not inline recursive calls.
1268       if (CalledFunction == &F)
1269         continue;
1270       if (I->isIndirectCall()) {
1271         if (PromotedInsns.count(I))
1272           continue;
1273         uint64_t Sum;
1274         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1275           uint64_t SumOrigin = Sum;
1276           if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1277             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1278                                      PSI->getOrCompHotCountThreshold());
1279             continue;
1280           }
1281           if (!callsiteIsHot(FS, PSI))
1282             continue;
1283 
1284           Candidate = {I, FS, FS->getEntrySamples(), 1.0};
1285           if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
1286                                            PromotedInsns)) {
1287             LocalNotInlinedCallSites.erase(I);
1288             LocalChanged = true;
1289           }
1290         }
1291       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1292                  !CalledFunction->isDeclaration()) {
1293         if (tryInlineCandidate(Candidate)) {
1294           LocalNotInlinedCallSites.erase(I);
1295           LocalChanged = true;
1296         }
1297       } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1298         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1299             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1300       }
1301     }
1302     Changed |= LocalChanged;
1303   }
1304 
1305   // For CS profile, profile for not inlined context will be merged when
1306   // base profile is being trieved
1307   if (ProfileIsCS)
1308     return Changed;
1309 
1310   // Accumulate not inlined callsite information into notInlinedSamples
1311   for (const auto &Pair : LocalNotInlinedCallSites) {
1312     CallBase *I = Pair.getFirst();
1313     Function *Callee = I->getCalledFunction();
1314     if (!Callee || Callee->isDeclaration())
1315       continue;
1316 
1317     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1318                                          I->getDebugLoc(), I->getParent())
1319               << "previous inlining not repeated: '"
1320               << ore::NV("Callee", Callee) << "' into '"
1321               << ore::NV("Caller", &F) << "'");
1322 
1323     ++NumCSNotInlined;
1324     const FunctionSamples *FS = Pair.getSecond();
1325     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1326       continue;
1327     }
1328 
1329     if (ProfileMergeInlinee) {
1330       // A function call can be replicated by optimizations like callsite
1331       // splitting or jump threading and the replicates end up sharing the
1332       // sample nested callee profile instead of slicing the original inlinee's
1333       // profile. We want to do merge exactly once by filtering out callee
1334       // profiles with a non-zero head sample count.
1335       if (FS->getHeadSamples() == 0) {
1336         // Use entry samples as head samples during the merge, as inlinees
1337         // don't have head samples.
1338         const_cast<FunctionSamples *>(FS)->addHeadSamples(
1339             FS->getEntrySamples());
1340 
1341         // Note that we have to do the merge right after processing function.
1342         // This allows OutlineFS's profile to be used for annotation during
1343         // top-down processing of functions' annotation.
1344         FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1345         OutlineFS->merge(*FS);
1346       }
1347     } else {
1348       auto pair =
1349           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1350       pair.first->second.entryCount += FS->getEntrySamples();
1351     }
1352   }
1353   return Changed;
1354 }
1355 
1356 bool SampleProfileLoader::tryInlineCandidate(
1357     InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) {
1358 
1359   CallBase &CB = *Candidate.CallInstr;
1360   Function *CalledFunction = CB.getCalledFunction();
1361   assert(CalledFunction && "Expect a callee with definition");
1362   DebugLoc DLoc = CB.getDebugLoc();
1363   BasicBlock *BB = CB.getParent();
1364 
1365   InlineCost Cost = shouldInlineCandidate(Candidate);
1366   if (Cost.isNever()) {
1367     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
1368               << "incompatible inlining");
1369     return false;
1370   }
1371 
1372   if (!Cost)
1373     return false;
1374 
1375   InlineFunctionInfo IFI(nullptr, GetAC);
1376   if (InlineFunction(CB, IFI).isSuccess()) {
1377     // The call to InlineFunction erases I, so we can't pass it here.
1378     emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
1379                     true, CSINLINE_DEBUG);
1380 
1381     // Now populate the list of newly exposed call sites.
1382     if (InlinedCallSites) {
1383       InlinedCallSites->clear();
1384       for (auto &I : IFI.InlinedCallSites)
1385         InlinedCallSites->push_back(I);
1386     }
1387 
1388     if (ProfileIsCS)
1389       ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples);
1390     ++NumCSInlined;
1391 
1392     // Prorate inlined probes for a duplicated inlining callsite which probably
1393     // has a distribution less than 100%. Samples for an inlinee should be
1394     // distributed among the copies of the original callsite based on each
1395     // callsite's distribution factor for counts accuracy. Note that an inlined
1396     // probe may come with its own distribution factor if it has been duplicated
1397     // in the inlinee body. The two factor are multiplied to reflect the
1398     // aggregation of duplication.
1399     if (Candidate.CallsiteDistribution < 1) {
1400       for (auto &I : IFI.InlinedCallSites) {
1401         if (Optional<PseudoProbe> Probe = extractProbe(*I))
1402           setProbeDistributionFactor(*I, Probe->Factor *
1403                                              Candidate.CallsiteDistribution);
1404       }
1405       NumDuplicatedInlinesite++;
1406     }
1407 
1408     return true;
1409   }
1410   return false;
1411 }
1412 
1413 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate,
1414                                              CallBase *CB) {
1415   assert(CB && "Expect non-null call instruction");
1416 
1417   if (isa<IntrinsicInst>(CB))
1418     return false;
1419 
1420   // Find the callee's profile. For indirect call, find hottest target profile.
1421   const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB);
1422   if (!CalleeSamples)
1423     return false;
1424 
1425   float Factor = 1.0;
1426   if (Optional<PseudoProbe> Probe = extractProbe(*CB))
1427     Factor = Probe->Factor;
1428 
1429   uint64_t CallsiteCount = 0;
1430   ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent());
1431   if (Weight)
1432     CallsiteCount = Weight.get();
1433   if (CalleeSamples)
1434     CallsiteCount = std::max(
1435         CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor));
1436 
1437   *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor};
1438   return true;
1439 }
1440 
1441 InlineCost
1442 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) {
1443   std::unique_ptr<InlineAdvice> Advice = nullptr;
1444   if (ExternalInlineAdvisor) {
1445     Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr);
1446     if (!Advice->isInliningRecommended()) {
1447       Advice->recordUnattemptedInlining();
1448       return InlineCost::getNever("not previously inlined");
1449     }
1450     Advice->recordInlining();
1451     return InlineCost::getAlways("previously inlined");
1452   }
1453 
1454   // Adjust threshold based on call site hotness, only do this for callsite
1455   // prioritized inliner because otherwise cost-benefit check is done earlier.
1456   int SampleThreshold = SampleColdCallSiteThreshold;
1457   if (CallsitePrioritizedInline) {
1458     if (Candidate.CallsiteCount > PSI->getHotCountThreshold())
1459       SampleThreshold = SampleHotCallSiteThreshold;
1460     else if (!ProfileSizeInline)
1461       return InlineCost::getNever("cold callsite");
1462   }
1463 
1464   Function *Callee = Candidate.CallInstr->getCalledFunction();
1465   assert(Callee && "Expect a definition for inline candidate of direct call");
1466 
1467   InlineParams Params = getInlineParams();
1468   Params.ComputeFullInlineCost = true;
1469   // Checks if there is anything in the reachable portion of the callee at
1470   // this callsite that makes this inlining potentially illegal. Need to
1471   // set ComputeFullInlineCost, otherwise getInlineCost may return early
1472   // when cost exceeds threshold without checking all IRs in the callee.
1473   // The acutal cost does not matter because we only checks isNever() to
1474   // see if it is legal to inline the callsite.
1475   InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params,
1476                                   GetTTI(*Callee), GetAC, GetTLI);
1477 
1478   // Honor always inline and never inline from call analyzer
1479   if (Cost.isNever() || Cost.isAlways())
1480     return Cost;
1481 
1482   // For old FDO inliner, we inline the call site as long as cost is not
1483   // "Never". The cost-benefit check is done earlier.
1484   if (!CallsitePrioritizedInline) {
1485     return InlineCost::get(Cost.getCost(), INT_MAX);
1486   }
1487 
1488   // Otherwise only use the cost from call analyzer, but overwite threshold with
1489   // Sample PGO threshold.
1490   return InlineCost::get(Cost.getCost(), SampleThreshold);
1491 }
1492 
1493 bool SampleProfileLoader::inlineHotFunctionsWithPriority(
1494     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1495   DenseSet<Instruction *> PromotedInsns;
1496   assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now");
1497 
1498   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
1499   // Profile symbol list is ignored when profile-sample-accurate is on.
1500   assert((!ProfAccForSymsInList ||
1501           (!ProfileSampleAccurate &&
1502            !F.hasFnAttribute("profile-sample-accurate"))) &&
1503          "ProfAccForSymsInList should be false when profile-sample-accurate "
1504          "is enabled");
1505 
1506   // Populating worklist with initial call sites from root inliner, along
1507   // with call site weights.
1508   CandidateQueue CQueue;
1509   InlineCandidate NewCandidate;
1510   for (auto &BB : F) {
1511     for (auto &I : BB.getInstList()) {
1512       auto *CB = dyn_cast<CallBase>(&I);
1513       if (!CB)
1514         continue;
1515       if (getInlineCandidate(&NewCandidate, CB))
1516         CQueue.push(NewCandidate);
1517     }
1518   }
1519 
1520   // Cap the size growth from profile guided inlining. This is needed even
1521   // though cost of each inline candidate already accounts for callee size,
1522   // because with top-down inlining, we can grow inliner size significantly
1523   // with large number of smaller inlinees each pass the cost check.
1524   assert(ProfileInlineLimitMax >= ProfileInlineLimitMin &&
1525          "Max inline size limit should not be smaller than min inline size "
1526          "limit.");
1527   unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit;
1528   SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax);
1529   SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin);
1530   if (ExternalInlineAdvisor)
1531     SizeLimit = std::numeric_limits<unsigned>::max();
1532 
1533   // Perform iterative BFS call site prioritized inlining
1534   bool Changed = false;
1535   while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) {
1536     InlineCandidate Candidate = CQueue.top();
1537     CQueue.pop();
1538     CallBase *I = Candidate.CallInstr;
1539     Function *CalledFunction = I->getCalledFunction();
1540 
1541     if (CalledFunction == &F)
1542       continue;
1543     if (I->isIndirectCall()) {
1544       if (PromotedInsns.count(I))
1545         continue;
1546       uint64_t Sum;
1547       auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum);
1548       uint64_t SumOrigin = Sum;
1549       Sum *= Candidate.CallsiteDistribution;
1550       for (const auto *FS : CalleeSamples) {
1551         // TODO: Consider disable pre-lTO ICP for MonoLTO as well
1552         if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1553           FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1554                                    PSI->getOrCompHotCountThreshold());
1555           continue;
1556         }
1557         uint64_t EntryCountDistributed =
1558             FS->getEntrySamples() * Candidate.CallsiteDistribution;
1559         // In addition to regular inline cost check, we also need to make sure
1560         // ICP isn't introducing excessive speculative checks even if individual
1561         // target looks beneficial to promote and inline. That means we should
1562         // only do ICP when there's a small number dominant targets.
1563         if (EntryCountDistributed < SumOrigin / ProfileICPThreshold)
1564           break;
1565         // TODO: Fix CallAnalyzer to handle all indirect calls.
1566         // For indirect call, we don't run CallAnalyzer to get InlineCost
1567         // before actual inlining. This is because we could see two different
1568         // types from the same definition, which makes CallAnalyzer choke as
1569         // it's expecting matching parameter type on both caller and callee
1570         // side. See example from PR18962 for the triggering cases (the bug was
1571         // fixed, but we generate different types).
1572         if (!PSI->isHotCount(EntryCountDistributed))
1573           break;
1574         SmallVector<CallBase *, 8> InlinedCallSites;
1575         // Attach function profile for promoted indirect callee, and update
1576         // call site count for the promoted inline candidate too.
1577         Candidate = {I, FS, EntryCountDistributed,
1578                      Candidate.CallsiteDistribution};
1579         if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
1580                                          PromotedInsns, &InlinedCallSites)) {
1581           for (auto *CB : InlinedCallSites) {
1582             if (getInlineCandidate(&NewCandidate, CB))
1583               CQueue.emplace(NewCandidate);
1584           }
1585           Changed = true;
1586         }
1587       }
1588     } else if (CalledFunction && CalledFunction->getSubprogram() &&
1589                !CalledFunction->isDeclaration()) {
1590       SmallVector<CallBase *, 8> InlinedCallSites;
1591       if (tryInlineCandidate(Candidate, &InlinedCallSites)) {
1592         for (auto *CB : InlinedCallSites) {
1593           if (getInlineCandidate(&NewCandidate, CB))
1594             CQueue.emplace(NewCandidate);
1595         }
1596         Changed = true;
1597       }
1598     } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1599       findCalleeFunctionSamples(*I)->findInlinedFunctions(
1600           InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1601     }
1602   }
1603 
1604   if (!CQueue.empty()) {
1605     if (SizeLimit == (unsigned)ProfileInlineLimitMax)
1606       ++NumCSInlinedHitMaxLimit;
1607     else if (SizeLimit == (unsigned)ProfileInlineLimitMin)
1608       ++NumCSInlinedHitMinLimit;
1609     else
1610       ++NumCSInlinedHitGrowthLimit;
1611   }
1612 
1613   return Changed;
1614 }
1615 
1616 /// Find equivalence classes for the given block.
1617 ///
1618 /// This finds all the blocks that are guaranteed to execute the same
1619 /// number of times as \p BB1. To do this, it traverses all the
1620 /// descendants of \p BB1 in the dominator or post-dominator tree.
1621 ///
1622 /// A block BB2 will be in the same equivalence class as \p BB1 if
1623 /// the following holds:
1624 ///
1625 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1626 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1627 ///    dominate BB1 in the post-dominator tree.
1628 ///
1629 /// 2- Both BB2 and \p BB1 must be in the same loop.
1630 ///
1631 /// For every block BB2 that meets those two requirements, we set BB2's
1632 /// equivalence class to \p BB1.
1633 ///
1634 /// \param BB1  Block to check.
1635 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1636 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1637 ///                 with blocks from \p BB1's dominator tree, then
1638 ///                 this is the post-dominator tree, and vice versa.
1639 template <bool IsPostDom>
1640 void SampleProfileLoader::findEquivalencesFor(
1641     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1642     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1643   const BasicBlock *EC = EquivalenceClass[BB1];
1644   uint64_t Weight = BlockWeights[EC];
1645   for (const auto *BB2 : Descendants) {
1646     bool IsDomParent = DomTree->dominates(BB2, BB1);
1647     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1648     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1649       EquivalenceClass[BB2] = EC;
1650       // If BB2 is visited, then the entire EC should be marked as visited.
1651       if (VisitedBlocks.count(BB2)) {
1652         VisitedBlocks.insert(EC);
1653       }
1654 
1655       // If BB2 is heavier than BB1, make BB2 have the same weight
1656       // as BB1.
1657       //
1658       // Note that we don't worry about the opposite situation here
1659       // (when BB2 is lighter than BB1). We will deal with this
1660       // during the propagation phase. Right now, we just want to
1661       // make sure that BB1 has the largest weight of all the
1662       // members of its equivalence set.
1663       Weight = std::max(Weight, BlockWeights[BB2]);
1664     }
1665   }
1666   if (EC == &EC->getParent()->getEntryBlock()) {
1667     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1668   } else {
1669     BlockWeights[EC] = Weight;
1670   }
1671 }
1672 
1673 /// Find equivalence classes.
1674 ///
1675 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1676 /// the weights of all the blocks in the same equivalence class to the same
1677 /// weight. To compute the concept of equivalence, we use dominance and loop
1678 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1679 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1680 ///
1681 /// \param F The function to query.
1682 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1683   SmallVector<BasicBlock *, 8> DominatedBBs;
1684   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1685   // Find equivalence sets based on dominance and post-dominance information.
1686   for (auto &BB : F) {
1687     BasicBlock *BB1 = &BB;
1688 
1689     // Compute BB1's equivalence class once.
1690     if (EquivalenceClass.count(BB1)) {
1691       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1692       continue;
1693     }
1694 
1695     // By default, blocks are in their own equivalence class.
1696     EquivalenceClass[BB1] = BB1;
1697 
1698     // Traverse all the blocks dominated by BB1. We are looking for
1699     // every basic block BB2 such that:
1700     //
1701     // 1- BB1 dominates BB2.
1702     // 2- BB2 post-dominates BB1.
1703     // 3- BB1 and BB2 are in the same loop nest.
1704     //
1705     // If all those conditions hold, it means that BB2 is executed
1706     // as many times as BB1, so they are placed in the same equivalence
1707     // class by making BB2's equivalence class be BB1.
1708     DominatedBBs.clear();
1709     DT->getDescendants(BB1, DominatedBBs);
1710     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1711 
1712     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1713   }
1714 
1715   // Assign weights to equivalence classes.
1716   //
1717   // All the basic blocks in the same equivalence class will execute
1718   // the same number of times. Since we know that the head block in
1719   // each equivalence class has the largest weight, assign that weight
1720   // to all the blocks in that equivalence class.
1721   LLVM_DEBUG(
1722       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1723   for (auto &BI : F) {
1724     const BasicBlock *BB = &BI;
1725     const BasicBlock *EquivBB = EquivalenceClass[BB];
1726     if (BB != EquivBB)
1727       BlockWeights[BB] = BlockWeights[EquivBB];
1728     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1729   }
1730 }
1731 
1732 /// Visit the given edge to decide if it has a valid weight.
1733 ///
1734 /// If \p E has not been visited before, we copy to \p UnknownEdge
1735 /// and increment the count of unknown edges.
1736 ///
1737 /// \param E  Edge to visit.
1738 /// \param NumUnknownEdges  Current number of unknown edges.
1739 /// \param UnknownEdge  Set if E has not been visited before.
1740 ///
1741 /// \returns E's weight, if known. Otherwise, return 0.
1742 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1743                                         Edge *UnknownEdge) {
1744   if (!VisitedEdges.count(E)) {
1745     (*NumUnknownEdges)++;
1746     *UnknownEdge = E;
1747     return 0;
1748   }
1749 
1750   return EdgeWeights[E];
1751 }
1752 
1753 /// Propagate weights through incoming/outgoing edges.
1754 ///
1755 /// If the weight of a basic block is known, and there is only one edge
1756 /// with an unknown weight, we can calculate the weight of that edge.
1757 ///
1758 /// Similarly, if all the edges have a known count, we can calculate the
1759 /// count of the basic block, if needed.
1760 ///
1761 /// \param F  Function to process.
1762 /// \param UpdateBlockCount  Whether we should update basic block counts that
1763 ///                          has already been annotated.
1764 ///
1765 /// \returns  True if new weights were assigned to edges or blocks.
1766 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1767                                                 bool UpdateBlockCount) {
1768   bool Changed = false;
1769   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1770   for (const auto &BI : F) {
1771     const BasicBlock *BB = &BI;
1772     const BasicBlock *EC = EquivalenceClass[BB];
1773 
1774     // Visit all the predecessor and successor edges to determine
1775     // which ones have a weight assigned already. Note that it doesn't
1776     // matter that we only keep track of a single unknown edge. The
1777     // only case we are interested in handling is when only a single
1778     // edge is unknown (see setEdgeOrBlockWeight).
1779     for (unsigned i = 0; i < 2; i++) {
1780       uint64_t TotalWeight = 0;
1781       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1782       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1783 
1784       if (i == 0) {
1785         // First, visit all predecessor edges.
1786         NumTotalEdges = Predecessors[BB].size();
1787         for (auto *Pred : Predecessors[BB]) {
1788           Edge E = std::make_pair(Pred, BB);
1789           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1790           if (E.first == E.second)
1791             SelfReferentialEdge = E;
1792         }
1793         if (NumTotalEdges == 1) {
1794           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1795         }
1796       } else {
1797         // On the second round, visit all successor edges.
1798         NumTotalEdges = Successors[BB].size();
1799         for (auto *Succ : Successors[BB]) {
1800           Edge E = std::make_pair(BB, Succ);
1801           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1802         }
1803         if (NumTotalEdges == 1) {
1804           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1805         }
1806       }
1807 
1808       // After visiting all the edges, there are three cases that we
1809       // can handle immediately:
1810       //
1811       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1812       //   In this case, we simply check that the sum of all the edges
1813       //   is the same as BB's weight. If not, we change BB's weight
1814       //   to match. Additionally, if BB had not been visited before,
1815       //   we mark it visited.
1816       //
1817       // - Only one edge is unknown and BB has already been visited.
1818       //   In this case, we can compute the weight of the edge by
1819       //   subtracting the total block weight from all the known
1820       //   edge weights. If the edges weight more than BB, then the
1821       //   edge of the last remaining edge is set to zero.
1822       //
1823       // - There exists a self-referential edge and the weight of BB is
1824       //   known. In this case, this edge can be based on BB's weight.
1825       //   We add up all the other known edges and set the weight on
1826       //   the self-referential edge as we did in the previous case.
1827       //
1828       // In any other case, we must continue iterating. Eventually,
1829       // all edges will get a weight, or iteration will stop when
1830       // it reaches SampleProfileMaxPropagateIterations.
1831       if (NumUnknownEdges <= 1) {
1832         uint64_t &BBWeight = BlockWeights[EC];
1833         if (NumUnknownEdges == 0) {
1834           if (!VisitedBlocks.count(EC)) {
1835             // If we already know the weight of all edges, the weight of the
1836             // basic block can be computed. It should be no larger than the sum
1837             // of all edge weights.
1838             if (TotalWeight > BBWeight) {
1839               BBWeight = TotalWeight;
1840               Changed = true;
1841               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1842                                 << " known. Set weight for block: ";
1843                          printBlockWeight(dbgs(), BB););
1844             }
1845           } else if (NumTotalEdges == 1 &&
1846                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1847             // If there is only one edge for the visited basic block, use the
1848             // block weight to adjust edge weight if edge weight is smaller.
1849             EdgeWeights[SingleEdge] = BlockWeights[EC];
1850             Changed = true;
1851           }
1852         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1853           // If there is a single unknown edge and the block has been
1854           // visited, then we can compute E's weight.
1855           if (BBWeight >= TotalWeight)
1856             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1857           else
1858             EdgeWeights[UnknownEdge] = 0;
1859           const BasicBlock *OtherEC;
1860           if (i == 0)
1861             OtherEC = EquivalenceClass[UnknownEdge.first];
1862           else
1863             OtherEC = EquivalenceClass[UnknownEdge.second];
1864           // Edge weights should never exceed the BB weights it connects.
1865           if (VisitedBlocks.count(OtherEC) &&
1866               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1867             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1868           VisitedEdges.insert(UnknownEdge);
1869           Changed = true;
1870           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1871                      printEdgeWeight(dbgs(), UnknownEdge));
1872         }
1873       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1874         // If a block Weights 0, all its in/out edges should weight 0.
1875         if (i == 0) {
1876           for (auto *Pred : Predecessors[BB]) {
1877             Edge E = std::make_pair(Pred, BB);
1878             EdgeWeights[E] = 0;
1879             VisitedEdges.insert(E);
1880           }
1881         } else {
1882           for (auto *Succ : Successors[BB]) {
1883             Edge E = std::make_pair(BB, Succ);
1884             EdgeWeights[E] = 0;
1885             VisitedEdges.insert(E);
1886           }
1887         }
1888       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1889         uint64_t &BBWeight = BlockWeights[BB];
1890         // We have a self-referential edge and the weight of BB is known.
1891         if (BBWeight >= TotalWeight)
1892           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1893         else
1894           EdgeWeights[SelfReferentialEdge] = 0;
1895         VisitedEdges.insert(SelfReferentialEdge);
1896         Changed = true;
1897         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1898                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1899       }
1900       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1901         BlockWeights[EC] = TotalWeight;
1902         VisitedBlocks.insert(EC);
1903         Changed = true;
1904       }
1905     }
1906   }
1907 
1908   return Changed;
1909 }
1910 
1911 /// Build in/out edge lists for each basic block in the CFG.
1912 ///
1913 /// We are interested in unique edges. If a block B1 has multiple
1914 /// edges to another block B2, we only add a single B1->B2 edge.
1915 void SampleProfileLoader::buildEdges(Function &F) {
1916   for (auto &BI : F) {
1917     BasicBlock *B1 = &BI;
1918 
1919     // Add predecessors for B1.
1920     SmallPtrSet<BasicBlock *, 16> Visited;
1921     if (!Predecessors[B1].empty())
1922       llvm_unreachable("Found a stale predecessors list in a basic block.");
1923     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1924       BasicBlock *B2 = *PI;
1925       if (Visited.insert(B2).second)
1926         Predecessors[B1].push_back(B2);
1927     }
1928 
1929     // Add successors for B1.
1930     Visited.clear();
1931     if (!Successors[B1].empty())
1932       llvm_unreachable("Found a stale successors list in a basic block.");
1933     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1934       BasicBlock *B2 = *SI;
1935       if (Visited.insert(B2).second)
1936         Successors[B1].push_back(B2);
1937     }
1938   }
1939 }
1940 
1941 /// Returns the sorted CallTargetMap \p M by count in descending order.
1942 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1943     const SampleRecord::CallTargetMap & M) {
1944   SmallVector<InstrProfValueData, 2> R;
1945   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1946     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1947   }
1948   return R;
1949 }
1950 
1951 /// Propagate weights into edges
1952 ///
1953 /// The following rules are applied to every block BB in the CFG:
1954 ///
1955 /// - If BB has a single predecessor/successor, then the weight
1956 ///   of that edge is the weight of the block.
1957 ///
1958 /// - If all incoming or outgoing edges are known except one, and the
1959 ///   weight of the block is already known, the weight of the unknown
1960 ///   edge will be the weight of the block minus the sum of all the known
1961 ///   edges. If the sum of all the known edges is larger than BB's weight,
1962 ///   we set the unknown edge weight to zero.
1963 ///
1964 /// - If there is a self-referential edge, and the weight of the block is
1965 ///   known, the weight for that edge is set to the weight of the block
1966 ///   minus the weight of the other incoming edges to that block (if
1967 ///   known).
1968 void SampleProfileLoader::propagateWeights(Function &F) {
1969   bool Changed = true;
1970   unsigned I = 0;
1971 
1972   // If BB weight is larger than its corresponding loop's header BB weight,
1973   // use the BB weight to replace the loop header BB weight.
1974   for (auto &BI : F) {
1975     BasicBlock *BB = &BI;
1976     Loop *L = LI->getLoopFor(BB);
1977     if (!L) {
1978       continue;
1979     }
1980     BasicBlock *Header = L->getHeader();
1981     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1982       BlockWeights[Header] = BlockWeights[BB];
1983     }
1984   }
1985 
1986   // Before propagation starts, build, for each block, a list of
1987   // unique predecessors and successors. This is necessary to handle
1988   // identical edges in multiway branches. Since we visit all blocks and all
1989   // edges of the CFG, it is cleaner to build these lists once at the start
1990   // of the pass.
1991   buildEdges(F);
1992 
1993   // Propagate until we converge or we go past the iteration limit.
1994   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1995     Changed = propagateThroughEdges(F, false);
1996   }
1997 
1998   // The first propagation propagates BB counts from annotated BBs to unknown
1999   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
2000   // to propagate edge weights.
2001   VisitedEdges.clear();
2002   Changed = true;
2003   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
2004     Changed = propagateThroughEdges(F, false);
2005   }
2006 
2007   // The 3rd propagation pass allows adjust annotated BB weights that are
2008   // obviously wrong.
2009   Changed = true;
2010   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
2011     Changed = propagateThroughEdges(F, true);
2012   }
2013 
2014   // Generate MD_prof metadata for every branch instruction using the
2015   // edge weights computed during propagation.
2016   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
2017   LLVMContext &Ctx = F.getContext();
2018   MDBuilder MDB(Ctx);
2019   for (auto &BI : F) {
2020     BasicBlock *BB = &BI;
2021 
2022     if (BlockWeights[BB]) {
2023       for (auto &I : BB->getInstList()) {
2024         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
2025           continue;
2026         if (!cast<CallBase>(I).getCalledFunction()) {
2027           const DebugLoc &DLoc = I.getDebugLoc();
2028           if (!DLoc)
2029             continue;
2030           const DILocation *DIL = DLoc;
2031           const FunctionSamples *FS = findFunctionSamples(I);
2032           if (!FS)
2033             continue;
2034           auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
2035           auto T = FS->findCallTargetMapAt(CallSite);
2036           if (!T || T.get().empty())
2037             continue;
2038           // Prorate the callsite counts to reflect what is already done to the
2039           // callsite, such as ICP or calliste cloning.
2040           if (FunctionSamples::ProfileIsProbeBased) {
2041             if (Optional<PseudoProbe> Probe = extractProbe(I)) {
2042               if (Probe->Factor < 1)
2043                 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor);
2044             }
2045           }
2046           SmallVector<InstrProfValueData, 2> SortedCallTargets =
2047               GetSortedValueDataFromCallTargets(T.get());
2048           uint64_t Sum;
2049           findIndirectCallFunctionSamples(I, Sum);
2050           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
2051                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
2052                             SortedCallTargets.size());
2053         } else if (!isa<IntrinsicInst>(&I)) {
2054           I.setMetadata(LLVMContext::MD_prof,
2055                         MDB.createBranchWeights(
2056                             {static_cast<uint32_t>(BlockWeights[BB])}));
2057         }
2058       }
2059     }
2060     Instruction *TI = BB->getTerminator();
2061     if (TI->getNumSuccessors() == 1)
2062       continue;
2063     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
2064       continue;
2065 
2066     DebugLoc BranchLoc = TI->getDebugLoc();
2067     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
2068                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
2069                                       : Twine("<UNKNOWN LOCATION>"))
2070                       << ".\n");
2071     SmallVector<uint32_t, 4> Weights;
2072     uint32_t MaxWeight = 0;
2073     Instruction *MaxDestInst;
2074     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
2075       BasicBlock *Succ = TI->getSuccessor(I);
2076       Edge E = std::make_pair(BB, Succ);
2077       uint64_t Weight = EdgeWeights[E];
2078       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
2079       // Use uint32_t saturated arithmetic to adjust the incoming weights,
2080       // if needed. Sample counts in profiles are 64-bit unsigned values,
2081       // but internally branch weights are expressed as 32-bit values.
2082       if (Weight > std::numeric_limits<uint32_t>::max()) {
2083         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
2084         Weight = std::numeric_limits<uint32_t>::max();
2085       }
2086       // Weight is added by one to avoid propagation errors introduced by
2087       // 0 weights.
2088       Weights.push_back(static_cast<uint32_t>(Weight + 1));
2089       if (Weight != 0) {
2090         if (Weight > MaxWeight) {
2091           MaxWeight = Weight;
2092           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
2093         }
2094       }
2095     }
2096 
2097     uint64_t TempWeight;
2098     // Only set weights if there is at least one non-zero weight.
2099     // In any other case, let the analyzer set weights.
2100     // Do not set weights if the weights are present. In ThinLTO, the profile
2101     // annotation is done twice. If the first annotation already set the
2102     // weights, the second pass does not need to set it.
2103     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
2104       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
2105       TI->setMetadata(LLVMContext::MD_prof,
2106                       MDB.createBranchWeights(Weights));
2107       ORE->emit([&]() {
2108         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
2109                << "most popular destination for conditional branches at "
2110                << ore::NV("CondBranchesLoc", BranchLoc);
2111       });
2112     } else {
2113       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
2114     }
2115   }
2116 }
2117 
2118 /// Get the line number for the function header.
2119 ///
2120 /// This looks up function \p F in the current compilation unit and
2121 /// retrieves the line number where the function is defined. This is
2122 /// line 0 for all the samples read from the profile file. Every line
2123 /// number is relative to this line.
2124 ///
2125 /// \param F  Function object to query.
2126 ///
2127 /// \returns the line number where \p F is defined. If it returns 0,
2128 ///          it means that there is no debug information available for \p F.
2129 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
2130   if (DISubprogram *S = F.getSubprogram())
2131     return S->getLine();
2132 
2133   if (NoWarnSampleUnused)
2134     return 0;
2135 
2136   // If the start of \p F is missing, emit a diagnostic to inform the user
2137   // about the missed opportunity.
2138   F.getContext().diagnose(DiagnosticInfoSampleProfile(
2139       "No debug information found in function " + F.getName() +
2140           ": Function profile not used",
2141       DS_Warning));
2142   return 0;
2143 }
2144 
2145 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
2146   DT.reset(new DominatorTree);
2147   DT->recalculate(F);
2148 
2149   PDT.reset(new PostDominatorTree(F));
2150 
2151   LI.reset(new LoopInfo);
2152   LI->analyze(*DT);
2153 }
2154 
2155 /// Generate branch weight metadata for all branches in \p F.
2156 ///
2157 /// Branch weights are computed out of instruction samples using a
2158 /// propagation heuristic. Propagation proceeds in 3 phases:
2159 ///
2160 /// 1- Assignment of block weights. All the basic blocks in the function
2161 ///    are initial assigned the same weight as their most frequently
2162 ///    executed instruction.
2163 ///
2164 /// 2- Creation of equivalence classes. Since samples may be missing from
2165 ///    blocks, we can fill in the gaps by setting the weights of all the
2166 ///    blocks in the same equivalence class to the same weight. To compute
2167 ///    the concept of equivalence, we use dominance and loop information.
2168 ///    Two blocks B1 and B2 are in the same equivalence class if B1
2169 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
2170 ///
2171 /// 3- Propagation of block weights into edges. This uses a simple
2172 ///    propagation heuristic. The following rules are applied to every
2173 ///    block BB in the CFG:
2174 ///
2175 ///    - If BB has a single predecessor/successor, then the weight
2176 ///      of that edge is the weight of the block.
2177 ///
2178 ///    - If all the edges are known except one, and the weight of the
2179 ///      block is already known, the weight of the unknown edge will
2180 ///      be the weight of the block minus the sum of all the known
2181 ///      edges. If the sum of all the known edges is larger than BB's weight,
2182 ///      we set the unknown edge weight to zero.
2183 ///
2184 ///    - If there is a self-referential edge, and the weight of the block is
2185 ///      known, the weight for that edge is set to the weight of the block
2186 ///      minus the weight of the other incoming edges to that block (if
2187 ///      known).
2188 ///
2189 /// Since this propagation is not guaranteed to finalize for every CFG, we
2190 /// only allow it to proceed for a limited number of iterations (controlled
2191 /// by -sample-profile-max-propagate-iterations).
2192 ///
2193 /// FIXME: Try to replace this propagation heuristic with a scheme
2194 /// that is guaranteed to finalize. A work-list approach similar to
2195 /// the standard value propagation algorithm used by SSA-CCP might
2196 /// work here.
2197 ///
2198 /// Once all the branch weights are computed, we emit the MD_prof
2199 /// metadata on BB using the computed values for each of its branches.
2200 ///
2201 /// \param F The function to query.
2202 ///
2203 /// \returns true if \p F was modified. Returns false, otherwise.
2204 bool SampleProfileLoader::emitAnnotations(Function &F) {
2205   bool Changed = false;
2206 
2207   if (FunctionSamples::ProfileIsProbeBased) {
2208     if (!ProbeManager->profileIsValid(F, *Samples)) {
2209       LLVM_DEBUG(
2210           dbgs() << "Profile is invalid due to CFG mismatch for Function "
2211                  << F.getName());
2212       ++NumMismatchedProfile;
2213       return false;
2214     }
2215     ++NumMatchedProfile;
2216   } else {
2217     if (getFunctionLoc(F) == 0)
2218       return false;
2219 
2220     LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
2221                       << F.getName() << ": " << getFunctionLoc(F) << "\n");
2222   }
2223 
2224   DenseSet<GlobalValue::GUID> InlinedGUIDs;
2225   if (ProfileIsCS && CallsitePrioritizedInline)
2226     Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs);
2227   else
2228     Changed |= inlineHotFunctions(F, InlinedGUIDs);
2229 
2230   // Compute basic block weights.
2231   Changed |= computeBlockWeights(F);
2232 
2233   if (Changed) {
2234     // Add an entry count to the function using the samples gathered at the
2235     // function entry.
2236     // Sets the GUIDs that are inlined in the profiled binary. This is used
2237     // for ThinLink to make correct liveness analysis, and also make the IR
2238     // match the profiled binary before annotation.
2239     F.setEntryCount(
2240         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
2241         &InlinedGUIDs);
2242 
2243     // Compute dominance and loop info needed for propagation.
2244     computeDominanceAndLoopInfo(F);
2245 
2246     // Find equivalence classes.
2247     findEquivalenceClasses(F);
2248 
2249     // Propagate weights to all edges.
2250     propagateWeights(F);
2251   }
2252 
2253   // If coverage checking was requested, compute it now.
2254   if (SampleProfileRecordCoverage) {
2255     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
2256     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
2257     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
2258     if (Coverage < SampleProfileRecordCoverage) {
2259       F.getContext().diagnose(DiagnosticInfoSampleProfile(
2260           F.getSubprogram()->getFilename(), getFunctionLoc(F),
2261           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
2262               Twine(Coverage) + "%) were applied",
2263           DS_Warning));
2264     }
2265   }
2266 
2267   if (SampleProfileSampleCoverage) {
2268     uint64_t Used = CoverageTracker.getTotalUsedSamples();
2269     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
2270     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
2271     if (Coverage < SampleProfileSampleCoverage) {
2272       F.getContext().diagnose(DiagnosticInfoSampleProfile(
2273           F.getSubprogram()->getFilename(), getFunctionLoc(F),
2274           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
2275               Twine(Coverage) + "%) were applied",
2276           DS_Warning));
2277     }
2278   }
2279   return Changed;
2280 }
2281 
2282 char SampleProfileLoaderLegacyPass::ID = 0;
2283 
2284 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
2285                       "Sample Profile loader", false, false)
2286 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2287 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2288 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2289 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
2290 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
2291                     "Sample Profile loader", false, false)
2292 
2293 // Add inlined profile call edges to the call graph.
2294 void SampleProfileLoader::addCallGraphEdges(CallGraph &CG,
2295                                             const FunctionSamples &Samples) {
2296   Function *Caller = SymbolMap.lookup(Samples.getFuncName());
2297   if (!Caller || Caller->isDeclaration())
2298     return;
2299 
2300   // Skip non-inlined call edges which are not important since top down inlining
2301   // for non-CS profile is to get more precise profile matching, not to enable
2302   // more inlining.
2303 
2304   for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
2305     for (const auto &InlinedSamples : CallsiteSamples.second) {
2306       Function *Callee = SymbolMap.lookup(InlinedSamples.first);
2307       if (Callee && !Callee->isDeclaration())
2308         CG[Caller]->addCalledFunction(nullptr, CG[Callee]);
2309       addCallGraphEdges(CG, InlinedSamples.second);
2310     }
2311   }
2312 }
2313 
2314 // Replace call graph edges with dynamic call edges from the profile.
2315 void SampleProfileLoader::replaceCallGraphEdges(
2316     CallGraph &CG, StringMap<Function *> &SymbolMap) {
2317   // Remove static call edges from the call graph except for the ones from the
2318   // root which make the call graph connected.
2319   for (const auto &Node : CG)
2320     if (Node.second.get() != CG.getExternalCallingNode())
2321       Node.second->removeAllCalledFunctions();
2322 
2323   // Add profile call edges to the call graph.
2324   if (ProfileIsCS) {
2325     ContextTracker->addCallGraphEdges(CG, SymbolMap);
2326   } else {
2327     for (const auto &Samples : Reader->getProfiles())
2328       addCallGraphEdges(CG, Samples.second);
2329   }
2330 }
2331 
2332 std::vector<Function *>
2333 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
2334   std::vector<Function *> FunctionOrderList;
2335   FunctionOrderList.reserve(M.size());
2336 
2337   if (!ProfileTopDownLoad || CG == nullptr) {
2338     if (ProfileMergeInlinee) {
2339       // Disable ProfileMergeInlinee if profile is not loaded in top down order,
2340       // because the profile for a function may be used for the profile
2341       // annotation of its outline copy before the profile merging of its
2342       // non-inlined inline instances, and that is not the way how
2343       // ProfileMergeInlinee is supposed to work.
2344       ProfileMergeInlinee = false;
2345     }
2346 
2347     for (Function &F : M)
2348       if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
2349         FunctionOrderList.push_back(&F);
2350     return FunctionOrderList;
2351   }
2352 
2353   assert(&CG->getModule() == &M);
2354 
2355   // Add indirect call edges from profile to augment the static call graph.
2356   // Functions will be processed in a top-down order defined by the static call
2357   // graph. Adjusting the order by considering indirect call edges from the
2358   // profile (which don't exist in the static call graph) can enable the
2359   // inlining of indirect call targets by processing the caller before them.
2360   // TODO: enable this for non-CS profile and fix the counts returning logic to
2361   // have a full support for indirect calls.
2362   if (UseProfileIndirectCallEdges && ProfileIsCS) {
2363     for (auto &Entry : *CG) {
2364       const auto *F = Entry.first;
2365       if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile"))
2366         continue;
2367       auto &AllContexts = ContextTracker->getAllContextSamplesFor(F->getName());
2368       if (AllContexts.empty())
2369         continue;
2370 
2371       for (const auto &BB : *F) {
2372         for (const auto &I : BB.getInstList()) {
2373           const auto *CB = dyn_cast<CallBase>(&I);
2374           if (!CB || !CB->isIndirectCall())
2375             continue;
2376           const DebugLoc &DLoc = I.getDebugLoc();
2377           if (!DLoc)
2378             continue;
2379           auto CallSite = FunctionSamples::getCallSiteIdentifier(DLoc);
2380           for (FunctionSamples *Samples : AllContexts) {
2381             if (auto CallTargets = Samples->findCallTargetMapAt(CallSite)) {
2382               for (const auto &Target : CallTargets.get()) {
2383                 Function *Callee = SymbolMap.lookup(Target.first());
2384                 if (Callee && !Callee->isDeclaration())
2385                   Entry.second->addCalledFunction(nullptr, (*CG)[Callee]);
2386               }
2387             }
2388           }
2389         }
2390       }
2391     }
2392   }
2393 
2394   // Compute a top-down order the profile which is used to sort functions in
2395   // one SCC later. The static processing order computed for an SCC may not
2396   // reflect the call contexts in the context-sensitive profile, thus may cause
2397   // potential inlining to be overlooked. The function order in one SCC is being
2398   // adjusted to a top-down order based on the profile to favor more inlining.
2399   DenseMap<Function *, uint64_t> ProfileOrderMap;
2400   if (UseProfileTopDownOrder ||
2401       (ProfileIsCS && !UseProfileTopDownOrder.getNumOccurrences())) {
2402     // Create a static call graph. The call edges are not important since they
2403     // will be replaced by dynamic edges from the profile.
2404     CallGraph ProfileCG(M);
2405     replaceCallGraphEdges(ProfileCG, SymbolMap);
2406     scc_iterator<CallGraph *> CGI = scc_begin(&ProfileCG);
2407     uint64_t I = 0;
2408     while (!CGI.isAtEnd()) {
2409       for (CallGraphNode *Node : *CGI) {
2410         if (auto *F = Node->getFunction())
2411           ProfileOrderMap[F] = ++I;
2412       }
2413       ++CGI;
2414     }
2415   }
2416 
2417   scc_iterator<CallGraph *> CGI = scc_begin(CG);
2418   while (!CGI.isAtEnd()) {
2419     uint64_t Start = FunctionOrderList.size();
2420     for (CallGraphNode *Node : *CGI) {
2421       auto *F = Node->getFunction();
2422       if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
2423         FunctionOrderList.push_back(F);
2424     }
2425 
2426     // Sort nodes in SCC based on the profile top-down order.
2427     if (!ProfileOrderMap.empty()) {
2428       std::stable_sort(FunctionOrderList.begin() + Start,
2429                        FunctionOrderList.end(),
2430                        [&ProfileOrderMap](Function *Left, Function *Right) {
2431                          return ProfileOrderMap[Left] < ProfileOrderMap[Right];
2432                        });
2433     }
2434 
2435     ++CGI;
2436   }
2437 
2438   LLVM_DEBUG({
2439     dbgs() << "Function processing order:\n";
2440     for (auto F : reverse(FunctionOrderList)) {
2441       dbgs() << F->getName() << "\n";
2442     }
2443   });
2444 
2445   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
2446   return FunctionOrderList;
2447 }
2448 
2449 bool SampleProfileLoader::doInitialization(Module &M,
2450                                            FunctionAnalysisManager *FAM) {
2451   auto &Ctx = M.getContext();
2452 
2453   auto ReaderOrErr =
2454       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
2455   if (std::error_code EC = ReaderOrErr.getError()) {
2456     std::string Msg = "Could not open profile: " + EC.message();
2457     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
2458     return false;
2459   }
2460   Reader = std::move(ReaderOrErr.get());
2461   Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink);
2462   Reader->collectFuncsFrom(M);
2463   if (std::error_code EC = Reader->read()) {
2464     std::string Msg = "profile reading failed: " + EC.message();
2465     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
2466     return false;
2467   }
2468 
2469   PSL = Reader->getProfileSymbolList();
2470 
2471   // While profile-sample-accurate is on, ignore symbol list.
2472   ProfAccForSymsInList =
2473       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
2474   if (ProfAccForSymsInList) {
2475     NamesInProfile.clear();
2476     if (auto NameTable = Reader->getNameTable())
2477       NamesInProfile.insert(NameTable->begin(), NameTable->end());
2478   }
2479 
2480   if (FAM && !ProfileInlineReplayFile.empty()) {
2481     ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>(
2482         M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile,
2483         /*EmitRemarks=*/false);
2484     if (!ExternalInlineAdvisor->areReplayRemarksLoaded())
2485       ExternalInlineAdvisor.reset();
2486   }
2487 
2488   // Apply tweaks if context-sensitive profile is available.
2489   if (Reader->profileIsCS()) {
2490     ProfileIsCS = true;
2491     FunctionSamples::ProfileIsCS = true;
2492 
2493     // Enable priority-base inliner and size inline by default for CSSPGO.
2494     if (!ProfileSizeInline.getNumOccurrences())
2495       ProfileSizeInline = true;
2496     if (!CallsitePrioritizedInline.getNumOccurrences())
2497       CallsitePrioritizedInline = true;
2498 
2499     // Tracker for profiles under different context
2500     ContextTracker =
2501         std::make_unique<SampleContextTracker>(Reader->getProfiles());
2502   }
2503 
2504   // Load pseudo probe descriptors for probe-based function samples.
2505   if (Reader->profileIsProbeBased()) {
2506     ProbeManager = std::make_unique<PseudoProbeManager>(M);
2507     if (!ProbeManager->moduleIsProbed(M)) {
2508       const char *Msg =
2509           "Pseudo-probe-based profile requires SampleProfileProbePass";
2510       Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
2511       return false;
2512     }
2513   }
2514 
2515   return true;
2516 }
2517 
2518 ModulePass *llvm::createSampleProfileLoaderPass() {
2519   return new SampleProfileLoaderLegacyPass();
2520 }
2521 
2522 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
2523   return new SampleProfileLoaderLegacyPass(Name);
2524 }
2525 
2526 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
2527                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
2528   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
2529 
2530   PSI = _PSI;
2531   if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
2532     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
2533                         ProfileSummary::PSK_Sample);
2534     PSI->refresh();
2535   }
2536   // Compute the total number of samples collected in this profile.
2537   for (const auto &I : Reader->getProfiles())
2538     TotalCollectedSamples += I.second.getTotalSamples();
2539 
2540   auto Remapper = Reader->getRemapper();
2541   // Populate the symbol map.
2542   for (const auto &N_F : M.getValueSymbolTable()) {
2543     StringRef OrigName = N_F.getKey();
2544     Function *F = dyn_cast<Function>(N_F.getValue());
2545     if (F == nullptr)
2546       continue;
2547     SymbolMap[OrigName] = F;
2548     auto pos = OrigName.find('.');
2549     if (pos != StringRef::npos) {
2550       StringRef NewName = OrigName.substr(0, pos);
2551       auto r = SymbolMap.insert(std::make_pair(NewName, F));
2552       // Failiing to insert means there is already an entry in SymbolMap,
2553       // thus there are multiple functions that are mapped to the same
2554       // stripped name. In this case of name conflicting, set the value
2555       // to nullptr to avoid confusion.
2556       if (!r.second)
2557         r.first->second = nullptr;
2558       OrigName = NewName;
2559     }
2560     // Insert the remapped names into SymbolMap.
2561     if (Remapper) {
2562       if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
2563         if (*MapName == OrigName)
2564           continue;
2565         SymbolMap.insert(std::make_pair(*MapName, F));
2566       }
2567     }
2568   }
2569 
2570   bool retval = false;
2571   for (auto F : buildFunctionOrder(M, CG)) {
2572     assert(!F->isDeclaration());
2573     clearFunctionData();
2574     retval |= runOnFunction(*F, AM);
2575   }
2576 
2577   // Account for cold calls not inlined....
2578   if (!ProfileIsCS)
2579     for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
2580          notInlinedCallInfo)
2581       updateProfileCallee(pair.first, pair.second.entryCount);
2582 
2583   return retval;
2584 }
2585 
2586 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
2587   ACT = &getAnalysis<AssumptionCacheTracker>();
2588   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
2589   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
2590   ProfileSummaryInfo *PSI =
2591       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2592   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
2593 }
2594 
2595 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
2596   LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n");
2597   DILocation2SampleMap.clear();
2598   // By default the entry count is initialized to -1, which will be treated
2599   // conservatively by getEntryCount as the same as unknown (None). This is
2600   // to avoid newly added code to be treated as cold. If we have samples
2601   // this will be overwritten in emitAnnotations.
2602   uint64_t initialEntryCount = -1;
2603 
2604   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
2605   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
2606     // initialize all the function entry counts to 0. It means all the
2607     // functions without profile will be regarded as cold.
2608     initialEntryCount = 0;
2609     // profile-sample-accurate is a user assertion which has a higher precedence
2610     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
2611     ProfAccForSymsInList = false;
2612   }
2613 
2614   // PSL -- profile symbol list include all the symbols in sampled binary.
2615   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
2616   // old functions without samples being cold, without having to worry
2617   // about new and hot functions being mistakenly treated as cold.
2618   if (ProfAccForSymsInList) {
2619     // Initialize the entry count to 0 for functions in the list.
2620     if (PSL->contains(F.getName()))
2621       initialEntryCount = 0;
2622 
2623     // Function in the symbol list but without sample will be regarded as
2624     // cold. To minimize the potential negative performance impact it could
2625     // have, we want to be a little conservative here saying if a function
2626     // shows up in the profile, no matter as outline function, inline instance
2627     // or call targets, treat the function as not being cold. This will handle
2628     // the cases such as most callsites of a function are inlined in sampled
2629     // binary but not inlined in current build (because of source code drift,
2630     // imprecise debug information, or the callsites are all cold individually
2631     // but not cold accumulatively...), so the outline function showing up as
2632     // cold in sampled binary will actually not be cold after current build.
2633     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
2634     if (NamesInProfile.count(CanonName))
2635       initialEntryCount = -1;
2636   }
2637 
2638   // Initialize entry count when the function has no existing entry
2639   // count value.
2640   if (!F.getEntryCount().hasValue())
2641     F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
2642   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
2643   if (AM) {
2644     auto &FAM =
2645         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
2646             .getManager();
2647     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2648   } else {
2649     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2650     ORE = OwnedORE.get();
2651   }
2652 
2653   if (ProfileIsCS)
2654     Samples = ContextTracker->getBaseSamplesFor(F);
2655   else
2656     Samples = Reader->getSamplesFor(F);
2657 
2658   if (Samples && !Samples->empty())
2659     return emitAnnotations(F);
2660   return false;
2661 }
2662 
2663 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
2664                                                ModuleAnalysisManager &AM) {
2665   FunctionAnalysisManager &FAM =
2666       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2667 
2668   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
2669     return FAM.getResult<AssumptionAnalysis>(F);
2670   };
2671   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
2672     return FAM.getResult<TargetIRAnalysis>(F);
2673   };
2674   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
2675     return FAM.getResult<TargetLibraryAnalysis>(F);
2676   };
2677 
2678   SampleProfileLoader SampleLoader(
2679       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
2680       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
2681                                        : ProfileRemappingFileName,
2682       LTOPhase, GetAssumptionCache, GetTTI, GetTLI);
2683 
2684   if (!SampleLoader.doInitialization(M, &FAM))
2685     return PreservedAnalyses::all();
2686 
2687   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2688   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2689   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2690     return PreservedAnalyses::all();
2691 
2692   return PreservedAnalyses::none();
2693 }
2694