1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/PriorityQueue.h" 30 #include "llvm/ADT/SCCIterator.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringMap.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/Analysis/AssumptionCache.h" 39 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 40 #include "llvm/Analysis/CallGraph.h" 41 #include "llvm/Analysis/CallGraphSCCPass.h" 42 #include "llvm/Analysis/InlineAdvisor.h" 43 #include "llvm/Analysis/InlineCost.h" 44 #include "llvm/Analysis/LoopInfo.h" 45 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 46 #include "llvm/Analysis/PostDominators.h" 47 #include "llvm/Analysis/ProfileSummaryInfo.h" 48 #include "llvm/Analysis/ReplayInlineAdvisor.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DiagnosticInfo.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/ValueSymbolTable.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/ProfileData/InstrProf.h" 71 #include "llvm/ProfileData/SampleProf.h" 72 #include "llvm/ProfileData/SampleProfReader.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/ErrorOr.h" 78 #include "llvm/Support/GenericDomTree.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/IPO.h" 81 #include "llvm/Transforms/IPO/ProfiledCallGraph.h" 82 #include "llvm/Transforms/IPO/SampleContextTracker.h" 83 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 84 #include "llvm/Transforms/Instrumentation.h" 85 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 86 #include "llvm/Transforms/Utils/Cloning.h" 87 #include "llvm/Transforms/Utils/SampleProfileInference.h" 88 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" 89 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <functional> 94 #include <limits> 95 #include <map> 96 #include <memory> 97 #include <queue> 98 #include <string> 99 #include <system_error> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace sampleprof; 105 using namespace llvm::sampleprofutil; 106 using ProfileCount = Function::ProfileCount; 107 #define DEBUG_TYPE "sample-profile" 108 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 109 110 STATISTIC(NumCSInlined, 111 "Number of functions inlined with context sensitive profile"); 112 STATISTIC(NumCSNotInlined, 113 "Number of functions not inlined with context sensitive profile"); 114 STATISTIC(NumMismatchedProfile, 115 "Number of functions with CFG mismatched profile"); 116 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 117 STATISTIC(NumDuplicatedInlinesite, 118 "Number of inlined callsites with a partial distribution factor"); 119 120 STATISTIC(NumCSInlinedHitMinLimit, 121 "Number of functions with FDO inline stopped due to min size limit"); 122 STATISTIC(NumCSInlinedHitMaxLimit, 123 "Number of functions with FDO inline stopped due to max size limit"); 124 STATISTIC( 125 NumCSInlinedHitGrowthLimit, 126 "Number of functions with FDO inline stopped due to growth size limit"); 127 128 // Command line option to specify the file to read samples from. This is 129 // mainly used for debugging. 130 static cl::opt<std::string> SampleProfileFile( 131 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 132 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 133 134 // The named file contains a set of transformations that may have been applied 135 // to the symbol names between the program from which the sample data was 136 // collected and the current program's symbols. 137 static cl::opt<std::string> SampleProfileRemappingFile( 138 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 139 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 140 141 static cl::opt<bool> ProfileSampleAccurate( 142 "profile-sample-accurate", cl::Hidden, cl::init(false), 143 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 144 "callsite and function as having 0 samples. Otherwise, treat " 145 "un-sampled callsites and functions conservatively as unknown. ")); 146 147 static cl::opt<bool> ProfileSampleBlockAccurate( 148 "profile-sample-block-accurate", cl::Hidden, cl::init(false), 149 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 150 "branches and calls as having 0 samples. Otherwise, treat " 151 "them conservatively as unknown. ")); 152 153 static cl::opt<bool> ProfileAccurateForSymsInList( 154 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 155 cl::init(true), 156 cl::desc("For symbols in profile symbol list, regard their profiles to " 157 "be accurate. It may be overriden by profile-sample-accurate. ")); 158 159 static cl::opt<bool> ProfileMergeInlinee( 160 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 161 cl::desc("Merge past inlinee's profile to outline version if sample " 162 "profile loader decided not to inline a call site. It will " 163 "only be enabled when top-down order of profile loading is " 164 "enabled. ")); 165 166 static cl::opt<bool> ProfileTopDownLoad( 167 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 168 cl::desc("Do profile annotation and inlining for functions in top-down " 169 "order of call graph during sample profile loading. It only " 170 "works for new pass manager. ")); 171 172 static cl::opt<bool> 173 UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, 174 cl::desc("Process functions in a top-down order " 175 "defined by the profiled call graph when " 176 "-sample-profile-top-down-load is on.")); 177 cl::opt<bool> 178 SortProfiledSCC("sort-profiled-scc-member", cl::init(true), cl::Hidden, 179 cl::desc("Sort profiled recursion by edge weights.")); 180 181 static cl::opt<bool> ProfileSizeInline( 182 "sample-profile-inline-size", cl::Hidden, cl::init(false), 183 cl::desc("Inline cold call sites in profile loader if it's beneficial " 184 "for code size.")); 185 186 cl::opt<int> ProfileInlineGrowthLimit( 187 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), 188 cl::desc("The size growth ratio limit for proirity-based sample profile " 189 "loader inlining.")); 190 191 cl::opt<int> ProfileInlineLimitMin( 192 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), 193 cl::desc("The lower bound of size growth limit for " 194 "proirity-based sample profile loader inlining.")); 195 196 cl::opt<int> ProfileInlineLimitMax( 197 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), 198 cl::desc("The upper bound of size growth limit for " 199 "proirity-based sample profile loader inlining.")); 200 201 cl::opt<int> SampleHotCallSiteThreshold( 202 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), 203 cl::desc("Hot callsite threshold for proirity-based sample profile loader " 204 "inlining.")); 205 206 cl::opt<int> SampleColdCallSiteThreshold( 207 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 208 cl::desc("Threshold for inlining cold callsites")); 209 210 static cl::opt<unsigned> ProfileICPRelativeHotness( 211 "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), 212 cl::desc( 213 "Relative hotness percentage threshold for indirect " 214 "call promotion in proirity-based sample profile loader inlining.")); 215 216 static cl::opt<unsigned> ProfileICPRelativeHotnessSkip( 217 "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), 218 cl::desc( 219 "Skip relative hotness check for ICP up to given number of targets.")); 220 221 static cl::opt<bool> CallsitePrioritizedInline( 222 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, 223 cl::init(false), 224 cl::desc("Use call site prioritized inlining for sample profile loader." 225 "Currently only CSSPGO is supported.")); 226 227 static cl::opt<bool> UsePreInlinerDecision( 228 "sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore, 229 cl::init(false), 230 cl::desc("Use the preinliner decisions stored in profile context.")); 231 232 static cl::opt<bool> AllowRecursiveInline( 233 "sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore, 234 cl::init(false), 235 cl::desc("Allow sample loader inliner to inline recursive calls.")); 236 237 static cl::opt<std::string> ProfileInlineReplayFile( 238 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 239 cl::desc( 240 "Optimization remarks file containing inline remarks to be replayed " 241 "by inlining from sample profile loader."), 242 cl::Hidden); 243 244 static cl::opt<ReplayInlinerSettings::Scope> ProfileInlineReplayScope( 245 "sample-profile-inline-replay-scope", 246 cl::init(ReplayInlinerSettings::Scope::Function), 247 cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", 248 "Replay on functions that have remarks associated " 249 "with them (default)"), 250 clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", 251 "Replay on the entire module")), 252 cl::desc("Whether inline replay should be applied to the entire " 253 "Module or just the Functions (default) that are present as " 254 "callers in remarks during sample profile inlining."), 255 cl::Hidden); 256 257 static cl::opt<ReplayInlinerSettings::Fallback> ProfileInlineReplayFallback( 258 "sample-profile-inline-replay-fallback", 259 cl::init(ReplayInlinerSettings::Fallback::Original), 260 cl::values( 261 clEnumValN( 262 ReplayInlinerSettings::Fallback::Original, "Original", 263 "All decisions not in replay send to original advisor (default)"), 264 clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, 265 "AlwaysInline", "All decisions not in replay are inlined"), 266 clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", 267 "All decisions not in replay are not inlined")), 268 cl::desc("How sample profile inline replay treats sites that don't come " 269 "from the replay. Original: defers to original advisor, " 270 "AlwaysInline: inline all sites not in replay, NeverInline: " 271 "inline no sites not in replay"), 272 cl::Hidden); 273 274 static cl::opt<CallSiteFormat::Format> ProfileInlineReplayFormat( 275 "sample-profile-inline-replay-format", 276 cl::init(CallSiteFormat::Format::LineColumnDiscriminator), 277 cl::values( 278 clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), 279 clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", 280 "<Line Number>:<Column Number>"), 281 clEnumValN(CallSiteFormat::Format::LineDiscriminator, 282 "LineDiscriminator", "<Line Number>.<Discriminator>"), 283 clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, 284 "LineColumnDiscriminator", 285 "<Line Number>:<Column Number>.<Discriminator> (default)")), 286 cl::desc("How sample profile inline replay file is formatted"), cl::Hidden); 287 288 static cl::opt<unsigned> 289 MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, 290 cl::ZeroOrMore, 291 cl::desc("Max number of promotions for a single indirect " 292 "call callsite in sample profile loader")); 293 294 static cl::opt<bool> OverwriteExistingWeights( 295 "overwrite-existing-weights", cl::Hidden, cl::init(false), 296 cl::desc("Ignore existing branch weights on IR and always overwrite.")); 297 298 namespace { 299 300 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 301 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 302 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 303 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 304 using BlockEdgeMap = 305 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 306 307 class GUIDToFuncNameMapper { 308 public: 309 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 310 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 311 : CurrentReader(Reader), CurrentModule(M), 312 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 313 if (!CurrentReader.useMD5()) 314 return; 315 316 for (const auto &F : CurrentModule) { 317 StringRef OrigName = F.getName(); 318 CurrentGUIDToFuncNameMap.insert( 319 {Function::getGUID(OrigName), OrigName}); 320 321 // Local to global var promotion used by optimization like thinlto 322 // will rename the var and add suffix like ".llvm.xxx" to the 323 // original local name. In sample profile, the suffixes of function 324 // names are all stripped. Since it is possible that the mapper is 325 // built in post-thin-link phase and var promotion has been done, 326 // we need to add the substring of function name without the suffix 327 // into the GUIDToFuncNameMap. 328 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 329 if (CanonName != OrigName) 330 CurrentGUIDToFuncNameMap.insert( 331 {Function::getGUID(CanonName), CanonName}); 332 } 333 334 // Update GUIDToFuncNameMap for each function including inlinees. 335 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 336 } 337 338 ~GUIDToFuncNameMapper() { 339 if (!CurrentReader.useMD5()) 340 return; 341 342 CurrentGUIDToFuncNameMap.clear(); 343 344 // Reset GUIDToFuncNameMap for of each function as they're no 345 // longer valid at this point. 346 SetGUIDToFuncNameMapForAll(nullptr); 347 } 348 349 private: 350 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 351 std::queue<FunctionSamples *> FSToUpdate; 352 for (auto &IFS : CurrentReader.getProfiles()) { 353 FSToUpdate.push(&IFS.second); 354 } 355 356 while (!FSToUpdate.empty()) { 357 FunctionSamples *FS = FSToUpdate.front(); 358 FSToUpdate.pop(); 359 FS->GUIDToFuncNameMap = Map; 360 for (const auto &ICS : FS->getCallsiteSamples()) { 361 const FunctionSamplesMap &FSMap = ICS.second; 362 for (auto &IFS : FSMap) { 363 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 364 FSToUpdate.push(&FS); 365 } 366 } 367 } 368 } 369 370 SampleProfileReader &CurrentReader; 371 Module &CurrentModule; 372 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 373 }; 374 375 // Inline candidate used by iterative callsite prioritized inliner 376 struct InlineCandidate { 377 CallBase *CallInstr; 378 const FunctionSamples *CalleeSamples; 379 // Prorated callsite count, which will be used to guide inlining. For example, 380 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two 381 // copies will get their own distribution factors and their prorated counts 382 // will be used to decide if they should be inlined independently. 383 uint64_t CallsiteCount; 384 // Call site distribution factor to prorate the profile samples for a 385 // duplicated callsite. Default value is 1.0. 386 float CallsiteDistribution; 387 }; 388 389 // Inline candidate comparer using call site weight 390 struct CandidateComparer { 391 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { 392 if (LHS.CallsiteCount != RHS.CallsiteCount) 393 return LHS.CallsiteCount < RHS.CallsiteCount; 394 395 const FunctionSamples *LCS = LHS.CalleeSamples; 396 const FunctionSamples *RCS = RHS.CalleeSamples; 397 assert(LCS && RCS && "Expect non-null FunctionSamples"); 398 399 // Tie breaker using number of samples try to favor smaller functions first 400 if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) 401 return LCS->getBodySamples().size() > RCS->getBodySamples().size(); 402 403 // Tie breaker using GUID so we have stable/deterministic inlining order 404 return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName()); 405 } 406 }; 407 408 using CandidateQueue = 409 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, 410 CandidateComparer>; 411 412 /// Sample profile pass. 413 /// 414 /// This pass reads profile data from the file specified by 415 /// -sample-profile-file and annotates every affected function with the 416 /// profile information found in that file. 417 class SampleProfileLoader final 418 : public SampleProfileLoaderBaseImpl<BasicBlock> { 419 public: 420 SampleProfileLoader( 421 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 422 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 423 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 424 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 425 : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)), 426 GetAC(std::move(GetAssumptionCache)), 427 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 428 LTOPhase(LTOPhase) {} 429 430 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 431 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 432 ProfileSummaryInfo *_PSI, CallGraph *CG); 433 434 protected: 435 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 436 bool emitAnnotations(Function &F); 437 ErrorOr<uint64_t> getInstWeight(const Instruction &I) override; 438 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 439 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 440 const FunctionSamples * 441 findFunctionSamples(const Instruction &I) const override; 442 std::vector<const FunctionSamples *> 443 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 444 void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples, 445 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 446 const StringMap<Function *> &SymbolMap, 447 uint64_t Threshold); 448 // Attempt to promote indirect call and also inline the promoted call 449 bool tryPromoteAndInlineCandidate( 450 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, 451 uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 452 453 bool inlineHotFunctions(Function &F, 454 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 455 Optional<InlineCost> getExternalInlineAdvisorCost(CallBase &CB); 456 bool getExternalInlineAdvisorShouldInline(CallBase &CB); 457 InlineCost shouldInlineCandidate(InlineCandidate &Candidate); 458 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); 459 bool 460 tryInlineCandidate(InlineCandidate &Candidate, 461 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 462 bool 463 inlineHotFunctionsWithPriority(Function &F, 464 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 465 // Inline cold/small functions in addition to hot ones 466 bool shouldInlineColdCallee(CallBase &CallInst); 467 void emitOptimizationRemarksForInlineCandidates( 468 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 469 bool Hot); 470 void promoteMergeNotInlinedContextSamples( 471 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 472 const Function &F); 473 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 474 std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG); 475 void generateMDProfMetadata(Function &F); 476 477 /// Map from function name to Function *. Used to find the function from 478 /// the function name. If the function name contains suffix, additional 479 /// entry is added to map from the stripped name to the function if there 480 /// is one-to-one mapping. 481 StringMap<Function *> SymbolMap; 482 483 std::function<AssumptionCache &(Function &)> GetAC; 484 std::function<TargetTransformInfo &(Function &)> GetTTI; 485 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 486 487 /// Profile tracker for different context. 488 std::unique_ptr<SampleContextTracker> ContextTracker; 489 490 /// Flag indicating whether input profile is context-sensitive 491 bool ProfileIsCSFlat = false; 492 493 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 494 /// 495 /// We need to know the LTO phase because for example in ThinLTOPrelink 496 /// phase, in annotation, we should not promote indirect calls. Instead, 497 /// we will mark GUIDs that needs to be annotated to the function. 498 ThinOrFullLTOPhase LTOPhase; 499 500 /// Profle Symbol list tells whether a function name appears in the binary 501 /// used to generate the current profile. 502 std::unique_ptr<ProfileSymbolList> PSL; 503 504 /// Total number of samples collected in this profile. 505 /// 506 /// This is the sum of all the samples collected in all the functions executed 507 /// at runtime. 508 uint64_t TotalCollectedSamples = 0; 509 510 // Information recorded when we declined to inline a call site 511 // because we have determined it is too cold is accumulated for 512 // each callee function. Initially this is just the entry count. 513 struct NotInlinedProfileInfo { 514 uint64_t entryCount; 515 }; 516 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 517 518 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 519 // all the function symbols defined or declared in current module. 520 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 521 522 // All the Names used in FunctionSamples including outline function 523 // names, inline instance names and call target names. 524 StringSet<> NamesInProfile; 525 526 // For symbol in profile symbol list, whether to regard their profiles 527 // to be accurate. It is mainly decided by existance of profile symbol 528 // list and -profile-accurate-for-symsinlist flag, but it can be 529 // overriden by -profile-sample-accurate or profile-sample-accurate 530 // attribute. 531 bool ProfAccForSymsInList; 532 533 // External inline advisor used to replay inline decision from remarks. 534 std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor; 535 536 // A pseudo probe helper to correlate the imported sample counts. 537 std::unique_ptr<PseudoProbeManager> ProbeManager; 538 }; 539 540 class SampleProfileLoaderLegacyPass : public ModulePass { 541 public: 542 // Class identification, replacement for typeinfo 543 static char ID; 544 545 SampleProfileLoaderLegacyPass( 546 StringRef Name = SampleProfileFile, 547 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 548 : ModulePass(ID), SampleLoader( 549 Name, SampleProfileRemappingFile, LTOPhase, 550 [&](Function &F) -> AssumptionCache & { 551 return ACT->getAssumptionCache(F); 552 }, 553 [&](Function &F) -> TargetTransformInfo & { 554 return TTIWP->getTTI(F); 555 }, 556 [&](Function &F) -> TargetLibraryInfo & { 557 return TLIWP->getTLI(F); 558 }) { 559 initializeSampleProfileLoaderLegacyPassPass( 560 *PassRegistry::getPassRegistry()); 561 } 562 563 void dump() { SampleLoader.dump(); } 564 565 bool doInitialization(Module &M) override { 566 return SampleLoader.doInitialization(M); 567 } 568 569 StringRef getPassName() const override { return "Sample profile pass"; } 570 bool runOnModule(Module &M) override; 571 572 void getAnalysisUsage(AnalysisUsage &AU) const override { 573 AU.addRequired<AssumptionCacheTracker>(); 574 AU.addRequired<TargetTransformInfoWrapperPass>(); 575 AU.addRequired<TargetLibraryInfoWrapperPass>(); 576 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 577 } 578 579 private: 580 SampleProfileLoader SampleLoader; 581 AssumptionCacheTracker *ACT = nullptr; 582 TargetTransformInfoWrapperPass *TTIWP = nullptr; 583 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 584 }; 585 586 } // end anonymous namespace 587 588 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 589 if (FunctionSamples::ProfileIsProbeBased) 590 return getProbeWeight(Inst); 591 592 const DebugLoc &DLoc = Inst.getDebugLoc(); 593 if (!DLoc) 594 return std::error_code(); 595 596 // Ignore all intrinsics, phinodes and branch instructions. 597 // Branch and phinodes instruction usually contains debug info from sources 598 // outside of the residing basic block, thus we ignore them during annotation. 599 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 600 return std::error_code(); 601 602 // For non-CS profile, if a direct call/invoke instruction is inlined in 603 // profile (findCalleeFunctionSamples returns non-empty result), but not 604 // inlined here, it means that the inlined callsite has no sample, thus the 605 // call instruction should have 0 count. 606 // For CS profile, the callsite count of previously inlined callees is 607 // populated with the entry count of the callees. 608 if (!ProfileIsCSFlat) 609 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 610 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 611 return 0; 612 613 return getInstWeightImpl(Inst); 614 } 615 616 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight 617 // of non-probe instruction. So if all instructions of the BB give error_code, 618 // tell the inference algorithm to infer the BB weight. 619 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 620 assert(FunctionSamples::ProfileIsProbeBased && 621 "Profile is not pseudo probe based"); 622 Optional<PseudoProbe> Probe = extractProbe(Inst); 623 // Ignore the non-probe instruction. If none of the instruction in the BB is 624 // probe, we choose to infer the BB's weight. 625 if (!Probe) 626 return std::error_code(); 627 628 const FunctionSamples *FS = findFunctionSamples(Inst); 629 // If none of the instruction has FunctionSample, we choose to return zero 630 // value sample to indicate the BB is cold. This could happen when the 631 // instruction is from inlinee and no profile data is found. 632 // FIXME: This should not be affected by the source drift issue as 1) if the 633 // newly added function is top-level inliner, it won't match the CFG checksum 634 // in the function profile or 2) if it's the inlinee, the inlinee should have 635 // a profile, otherwise it wouldn't be inlined. For non-probe based profile, 636 // we can improve it by adding a switch for profile-sample-block-accurate for 637 // block level counts in the future. 638 if (!FS) 639 return 0; 640 641 // For non-CS profile, If a direct call/invoke instruction is inlined in 642 // profile (findCalleeFunctionSamples returns non-empty result), but not 643 // inlined here, it means that the inlined callsite has no sample, thus the 644 // call instruction should have 0 count. 645 // For CS profile, the callsite count of previously inlined callees is 646 // populated with the entry count of the callees. 647 if (!ProfileIsCSFlat) 648 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 649 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 650 return 0; 651 652 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 653 if (R) { 654 uint64_t Samples = R.get() * Probe->Factor; 655 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 656 if (FirstMark) { 657 ORE->emit([&]() { 658 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 659 Remark << "Applied " << ore::NV("NumSamples", Samples); 660 Remark << " samples from profile (ProbeId="; 661 Remark << ore::NV("ProbeId", Probe->Id); 662 Remark << ", Factor="; 663 Remark << ore::NV("Factor", Probe->Factor); 664 Remark << ", OriginalSamples="; 665 Remark << ore::NV("OriginalSamples", R.get()); 666 Remark << ")"; 667 return Remark; 668 }); 669 } 670 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 671 << " - weight: " << R.get() << " - factor: " 672 << format("%0.2f", Probe->Factor) << ")\n"); 673 return Samples; 674 } 675 return R; 676 } 677 678 /// Get the FunctionSamples for a call instruction. 679 /// 680 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 681 /// instance in which that call instruction is calling to. It contains 682 /// all samples that resides in the inlined instance. We first find the 683 /// inlined instance in which the call instruction is from, then we 684 /// traverse its children to find the callsite with the matching 685 /// location. 686 /// 687 /// \param Inst Call/Invoke instruction to query. 688 /// 689 /// \returns The FunctionSamples pointer to the inlined instance. 690 const FunctionSamples * 691 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 692 const DILocation *DIL = Inst.getDebugLoc(); 693 if (!DIL) { 694 return nullptr; 695 } 696 697 StringRef CalleeName; 698 if (Function *Callee = Inst.getCalledFunction()) 699 CalleeName = Callee->getName(); 700 701 if (ProfileIsCSFlat) 702 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 703 704 const FunctionSamples *FS = findFunctionSamples(Inst); 705 if (FS == nullptr) 706 return nullptr; 707 708 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 709 CalleeName, Reader->getRemapper()); 710 } 711 712 /// Returns a vector of FunctionSamples that are the indirect call targets 713 /// of \p Inst. The vector is sorted by the total number of samples. Stores 714 /// the total call count of the indirect call in \p Sum. 715 std::vector<const FunctionSamples *> 716 SampleProfileLoader::findIndirectCallFunctionSamples( 717 const Instruction &Inst, uint64_t &Sum) const { 718 const DILocation *DIL = Inst.getDebugLoc(); 719 std::vector<const FunctionSamples *> R; 720 721 if (!DIL) { 722 return R; 723 } 724 725 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { 726 assert(L && R && "Expect non-null FunctionSamples"); 727 if (L->getEntrySamples() != R->getEntrySamples()) 728 return L->getEntrySamples() > R->getEntrySamples(); 729 return FunctionSamples::getGUID(L->getName()) < 730 FunctionSamples::getGUID(R->getName()); 731 }; 732 733 if (ProfileIsCSFlat) { 734 auto CalleeSamples = 735 ContextTracker->getIndirectCalleeContextSamplesFor(DIL); 736 if (CalleeSamples.empty()) 737 return R; 738 739 // For CSSPGO, we only use target context profile's entry count 740 // as that already includes both inlined callee and non-inlined ones.. 741 Sum = 0; 742 for (const auto *const FS : CalleeSamples) { 743 Sum += FS->getEntrySamples(); 744 R.push_back(FS); 745 } 746 llvm::sort(R, FSCompare); 747 return R; 748 } 749 750 const FunctionSamples *FS = findFunctionSamples(Inst); 751 if (FS == nullptr) 752 return R; 753 754 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 755 auto T = FS->findCallTargetMapAt(CallSite); 756 Sum = 0; 757 if (T) 758 for (const auto &T_C : T.get()) 759 Sum += T_C.second; 760 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 761 if (M->empty()) 762 return R; 763 for (const auto &NameFS : *M) { 764 Sum += NameFS.second.getEntrySamples(); 765 R.push_back(&NameFS.second); 766 } 767 llvm::sort(R, FSCompare); 768 } 769 return R; 770 } 771 772 const FunctionSamples * 773 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 774 if (FunctionSamples::ProfileIsProbeBased) { 775 Optional<PseudoProbe> Probe = extractProbe(Inst); 776 if (!Probe) 777 return nullptr; 778 } 779 780 const DILocation *DIL = Inst.getDebugLoc(); 781 if (!DIL) 782 return Samples; 783 784 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 785 if (it.second) { 786 if (ProfileIsCSFlat) 787 it.first->second = ContextTracker->getContextSamplesFor(DIL); 788 else 789 it.first->second = 790 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 791 } 792 return it.first->second; 793 } 794 795 /// Check whether the indirect call promotion history of \p Inst allows 796 /// the promotion for \p Candidate. 797 /// If the profile count for the promotion candidate \p Candidate is 798 /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted 799 /// for \p Inst. If we already have at least MaxNumPromotions 800 /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we 801 /// cannot promote for \p Inst anymore. 802 static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { 803 uint32_t NumVals = 0; 804 uint64_t TotalCount = 0; 805 std::unique_ptr<InstrProfValueData[]> ValueData = 806 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 807 bool Valid = 808 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 809 ValueData.get(), NumVals, TotalCount, true); 810 // No valid value profile so no promoted targets have been recorded 811 // before. Ok to do ICP. 812 if (!Valid) 813 return true; 814 815 unsigned NumPromoted = 0; 816 for (uint32_t I = 0; I < NumVals; I++) { 817 if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) 818 continue; 819 820 // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the 821 // metadata, it means the candidate has been promoted for this 822 // indirect call. 823 if (ValueData[I].Value == Function::getGUID(Candidate)) 824 return false; 825 NumPromoted++; 826 // If already have MaxNumPromotions promotion, don't do it anymore. 827 if (NumPromoted == MaxNumPromotions) 828 return false; 829 } 830 return true; 831 } 832 833 /// Update indirect call target profile metadata for \p Inst. 834 /// Usually \p Sum is the sum of counts of all the targets for \p Inst. 835 /// If it is 0, it means updateIDTMetaData is used to mark a 836 /// certain target to be promoted already. If it is not zero, 837 /// we expect to use it to update the total count in the value profile. 838 static void 839 updateIDTMetaData(Instruction &Inst, 840 const SmallVectorImpl<InstrProfValueData> &CallTargets, 841 uint64_t Sum) { 842 uint32_t NumVals = 0; 843 // OldSum is the existing total count in the value profile data. 844 uint64_t OldSum = 0; 845 std::unique_ptr<InstrProfValueData[]> ValueData = 846 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 847 bool Valid = 848 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 849 ValueData.get(), NumVals, OldSum, true); 850 851 DenseMap<uint64_t, uint64_t> ValueCountMap; 852 if (Sum == 0) { 853 assert((CallTargets.size() == 1 && 854 CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && 855 "If sum is 0, assume only one element in CallTargets " 856 "with count being NOMORE_ICP_MAGICNUM"); 857 // Initialize ValueCountMap with existing value profile data. 858 if (Valid) { 859 for (uint32_t I = 0; I < NumVals; I++) 860 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 861 } 862 auto Pair = 863 ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); 864 // If the target already exists in value profile, decrease the total 865 // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. 866 if (!Pair.second) { 867 OldSum -= Pair.first->second; 868 Pair.first->second = NOMORE_ICP_MAGICNUM; 869 } 870 Sum = OldSum; 871 } else { 872 // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM 873 // counts in the value profile. 874 if (Valid) { 875 for (uint32_t I = 0; I < NumVals; I++) { 876 if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) 877 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 878 } 879 } 880 881 for (const auto &Data : CallTargets) { 882 auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); 883 if (Pair.second) 884 continue; 885 // The target represented by Data.Value has already been promoted. 886 // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease 887 // Sum by Data.Count. 888 assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); 889 Sum -= Data.Count; 890 } 891 } 892 893 SmallVector<InstrProfValueData, 8> NewCallTargets; 894 for (const auto &ValueCount : ValueCountMap) { 895 NewCallTargets.emplace_back( 896 InstrProfValueData{ValueCount.first, ValueCount.second}); 897 } 898 899 llvm::sort(NewCallTargets, 900 [](const InstrProfValueData &L, const InstrProfValueData &R) { 901 if (L.Count != R.Count) 902 return L.Count > R.Count; 903 return L.Value > R.Value; 904 }); 905 906 uint32_t MaxMDCount = 907 std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions)); 908 annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, 909 NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); 910 } 911 912 /// Attempt to promote indirect call and also inline the promoted call. 913 /// 914 /// \param F Caller function. 915 /// \param Candidate ICP and inline candidate. 916 /// \param SumOrigin Original sum of target counts for indirect call before 917 /// promoting given candidate. 918 /// \param Sum Prorated sum of remaining target counts for indirect call 919 /// after promoting given candidate. 920 /// \param InlinedCallSite Output vector for new call sites exposed after 921 /// inlining. 922 bool SampleProfileLoader::tryPromoteAndInlineCandidate( 923 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, 924 SmallVector<CallBase *, 8> *InlinedCallSite) { 925 auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName(); 926 auto R = SymbolMap.find(CalleeFunctionName); 927 if (R == SymbolMap.end() || !R->getValue()) 928 return false; 929 930 auto &CI = *Candidate.CallInstr; 931 if (!doesHistoryAllowICP(CI, R->getValue()->getName())) 932 return false; 933 934 const char *Reason = "Callee function not available"; 935 // R->getValue() != &F is to prevent promoting a recursive call. 936 // If it is a recursive call, we do not inline it as it could bloat 937 // the code exponentially. There is way to better handle this, e.g. 938 // clone the caller first, and inline the cloned caller if it is 939 // recursive. As llvm does not inline recursive calls, we will 940 // simply ignore it instead of handling it explicitly. 941 if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && 942 R->getValue()->hasFnAttribute("use-sample-profile") && 943 R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) { 944 // For promoted target, set its value with NOMORE_ICP_MAGICNUM count 945 // in the value profile metadata so the target won't be promoted again. 946 SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{ 947 Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}}; 948 updateIDTMetaData(CI, SortedCallTargets, 0); 949 950 auto *DI = &pgo::promoteIndirectCall( 951 CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE); 952 if (DI) { 953 Sum -= Candidate.CallsiteCount; 954 // Do not prorate the indirect callsite distribution since the original 955 // distribution will be used to scale down non-promoted profile target 956 // counts later. By doing this we lose track of the real callsite count 957 // for the leftover indirect callsite as a trade off for accurate call 958 // target counts. 959 // TODO: Ideally we would have two separate factors, one for call site 960 // counts and one is used to prorate call target counts. 961 // Do not update the promoted direct callsite distribution at this 962 // point since the original distribution combined with the callee profile 963 // will be used to prorate callsites from the callee if inlined. Once not 964 // inlined, the direct callsite distribution should be prorated so that 965 // the it will reflect the real callsite counts. 966 Candidate.CallInstr = DI; 967 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { 968 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); 969 if (!Inlined) { 970 // Prorate the direct callsite distribution so that it reflects real 971 // callsite counts. 972 setProbeDistributionFactor( 973 *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin); 974 } 975 return Inlined; 976 } 977 } 978 } else { 979 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " 980 << Candidate.CalleeSamples->getFuncName() << " because " 981 << Reason << "\n"); 982 } 983 return false; 984 } 985 986 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 987 if (!ProfileSizeInline) 988 return false; 989 990 Function *Callee = CallInst.getCalledFunction(); 991 if (Callee == nullptr) 992 return false; 993 994 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 995 GetAC, GetTLI); 996 997 if (Cost.isNever()) 998 return false; 999 1000 if (Cost.isAlways()) 1001 return true; 1002 1003 return Cost.getCost() <= SampleColdCallSiteThreshold; 1004 } 1005 1006 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1007 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1008 bool Hot) { 1009 for (auto I : Candidates) { 1010 Function *CalledFunction = I->getCalledFunction(); 1011 if (CalledFunction) { 1012 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1013 I->getDebugLoc(), I->getParent()) 1014 << "previous inlining reattempted for " 1015 << (Hot ? "hotness: '" : "size: '") 1016 << ore::NV("Callee", CalledFunction) << "' into '" 1017 << ore::NV("Caller", &F) << "'"); 1018 } 1019 } 1020 } 1021 1022 void SampleProfileLoader::findExternalInlineCandidate( 1023 CallBase *CB, const FunctionSamples *Samples, 1024 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 1025 const StringMap<Function *> &SymbolMap, uint64_t Threshold) { 1026 1027 // If ExternalInlineAdvisor wants to inline an external function 1028 // make sure it's imported 1029 if (CB && getExternalInlineAdvisorShouldInline(*CB)) { 1030 // Samples may not exist for replayed function, if so 1031 // just add the direct GUID and move on 1032 if (!Samples) { 1033 InlinedGUIDs.insert( 1034 FunctionSamples::getGUID(CB->getCalledFunction()->getName())); 1035 return; 1036 } 1037 // Otherwise, drop the threshold to import everything that we can 1038 Threshold = 0; 1039 } 1040 1041 assert(Samples && "expect non-null caller profile"); 1042 1043 // For AutoFDO profile, retrieve candidate profiles by walking over 1044 // the nested inlinee profiles. 1045 if (!ProfileIsCSFlat) { 1046 Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); 1047 return; 1048 } 1049 1050 ContextTrieNode *Caller = 1051 ContextTracker->getContextFor(Samples->getContext()); 1052 std::queue<ContextTrieNode *> CalleeList; 1053 CalleeList.push(Caller); 1054 while (!CalleeList.empty()) { 1055 ContextTrieNode *Node = CalleeList.front(); 1056 CalleeList.pop(); 1057 FunctionSamples *CalleeSample = Node->getFunctionSamples(); 1058 // For CSSPGO profile, retrieve candidate profile by walking over the 1059 // trie built for context profile. Note that also take call targets 1060 // even if callee doesn't have a corresponding context profile. 1061 if (!CalleeSample) 1062 continue; 1063 1064 // If pre-inliner decision is used, honor that for importing as well. 1065 bool PreInline = 1066 UsePreInlinerDecision && 1067 CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); 1068 if (!PreInline && CalleeSample->getEntrySamples() < Threshold) 1069 continue; 1070 1071 StringRef Name = CalleeSample->getFuncName(); 1072 Function *Func = SymbolMap.lookup(Name); 1073 // Add to the import list only when it's defined out of module. 1074 if (!Func || Func->isDeclaration()) 1075 InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName())); 1076 1077 // Import hot CallTargets, which may not be available in IR because full 1078 // profile annotation cannot be done until backend compilation in ThinLTO. 1079 for (const auto &BS : CalleeSample->getBodySamples()) 1080 for (const auto &TS : BS.second.getCallTargets()) 1081 if (TS.getValue() > Threshold) { 1082 StringRef CalleeName = CalleeSample->getFuncName(TS.getKey()); 1083 const Function *Callee = SymbolMap.lookup(CalleeName); 1084 if (!Callee || Callee->isDeclaration()) 1085 InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey())); 1086 } 1087 1088 // Import hot child context profile associted with callees. Note that this 1089 // may have some overlap with the call target loop above, but doing this 1090 // based child context profile again effectively allow us to use the max of 1091 // entry count and call target count to determine importing. 1092 for (auto &Child : Node->getAllChildContext()) { 1093 ContextTrieNode *CalleeNode = &Child.second; 1094 CalleeList.push(CalleeNode); 1095 } 1096 } 1097 } 1098 1099 /// Iteratively inline hot callsites of a function. 1100 /// 1101 /// Iteratively traverse all callsites of the function \p F, and find if 1102 /// the corresponding inlined instance exists and is hot in profile. If 1103 /// it is hot enough, inline the callsites and adds new callsites of the 1104 /// callee into the caller. If the call is an indirect call, first promote 1105 /// it to direct call. Each indirect call is limited with a single target. 1106 /// 1107 /// \param F function to perform iterative inlining. 1108 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1109 /// inlined in the profiled binary. 1110 /// 1111 /// \returns True if there is any inline happened. 1112 bool SampleProfileLoader::inlineHotFunctions( 1113 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1114 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1115 // Profile symbol list is ignored when profile-sample-accurate is on. 1116 assert((!ProfAccForSymsInList || 1117 (!ProfileSampleAccurate && 1118 !F.hasFnAttribute("profile-sample-accurate"))) && 1119 "ProfAccForSymsInList should be false when profile-sample-accurate " 1120 "is enabled"); 1121 1122 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1123 bool Changed = false; 1124 bool LocalChanged = true; 1125 while (LocalChanged) { 1126 LocalChanged = false; 1127 SmallVector<CallBase *, 10> CIS; 1128 for (auto &BB : F) { 1129 bool Hot = false; 1130 SmallVector<CallBase *, 10> AllCandidates; 1131 SmallVector<CallBase *, 10> ColdCandidates; 1132 for (auto &I : BB.getInstList()) { 1133 const FunctionSamples *FS = nullptr; 1134 if (auto *CB = dyn_cast<CallBase>(&I)) { 1135 if (!isa<IntrinsicInst>(I)) { 1136 if ((FS = findCalleeFunctionSamples(*CB))) { 1137 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1138 "GUIDToFuncNameMap has to be populated"); 1139 AllCandidates.push_back(CB); 1140 if (FS->getEntrySamples() > 0 || ProfileIsCSFlat) 1141 LocalNotInlinedCallSites.try_emplace(CB, FS); 1142 if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1143 Hot = true; 1144 else if (shouldInlineColdCallee(*CB)) 1145 ColdCandidates.push_back(CB); 1146 } else if (getExternalInlineAdvisorShouldInline(*CB)) { 1147 AllCandidates.push_back(CB); 1148 } 1149 } 1150 } 1151 } 1152 if (Hot || ExternalInlineAdvisor) { 1153 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1154 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1155 } else { 1156 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1157 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1158 } 1159 } 1160 for (CallBase *I : CIS) { 1161 Function *CalledFunction = I->getCalledFunction(); 1162 InlineCandidate Candidate = {I, LocalNotInlinedCallSites.lookup(I), 1163 0 /* dummy count */, 1164 1.0 /* dummy distribution factor */}; 1165 // Do not inline recursive calls. 1166 if (CalledFunction == &F) 1167 continue; 1168 if (I->isIndirectCall()) { 1169 uint64_t Sum; 1170 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1171 uint64_t SumOrigin = Sum; 1172 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1173 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1174 PSI->getOrCompHotCountThreshold()); 1175 continue; 1176 } 1177 if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1178 continue; 1179 1180 Candidate = {I, FS, FS->getEntrySamples(), 1.0}; 1181 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { 1182 LocalNotInlinedCallSites.erase(I); 1183 LocalChanged = true; 1184 } 1185 } 1186 } else if (CalledFunction && CalledFunction->getSubprogram() && 1187 !CalledFunction->isDeclaration()) { 1188 if (tryInlineCandidate(Candidate)) { 1189 LocalNotInlinedCallSites.erase(I); 1190 LocalChanged = true; 1191 } 1192 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1193 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1194 InlinedGUIDs, SymbolMap, 1195 PSI->getOrCompHotCountThreshold()); 1196 } 1197 } 1198 Changed |= LocalChanged; 1199 } 1200 1201 // For CS profile, profile for not inlined context will be merged when 1202 // base profile is being retrieved. 1203 if (!FunctionSamples::ProfileIsCSFlat) 1204 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1205 return Changed; 1206 } 1207 1208 bool SampleProfileLoader::tryInlineCandidate( 1209 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { 1210 1211 CallBase &CB = *Candidate.CallInstr; 1212 Function *CalledFunction = CB.getCalledFunction(); 1213 assert(CalledFunction && "Expect a callee with definition"); 1214 DebugLoc DLoc = CB.getDebugLoc(); 1215 BasicBlock *BB = CB.getParent(); 1216 1217 InlineCost Cost = shouldInlineCandidate(Candidate); 1218 if (Cost.isNever()) { 1219 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1220 << "incompatible inlining"); 1221 return false; 1222 } 1223 1224 if (!Cost) 1225 return false; 1226 1227 InlineFunctionInfo IFI(nullptr, GetAC); 1228 IFI.UpdateProfile = false; 1229 if (InlineFunction(CB, IFI).isSuccess()) { 1230 // Merge the attributes based on the inlining. 1231 AttributeFuncs::mergeAttributesForInlining(*BB->getParent(), 1232 *CalledFunction); 1233 1234 // The call to InlineFunction erases I, so we can't pass it here. 1235 emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, 1236 *BB->getParent(), Cost, true, CSINLINE_DEBUG); 1237 1238 // Now populate the list of newly exposed call sites. 1239 if (InlinedCallSites) { 1240 InlinedCallSites->clear(); 1241 for (auto &I : IFI.InlinedCallSites) 1242 InlinedCallSites->push_back(I); 1243 } 1244 1245 if (ProfileIsCSFlat) 1246 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); 1247 ++NumCSInlined; 1248 1249 // Prorate inlined probes for a duplicated inlining callsite which probably 1250 // has a distribution less than 100%. Samples for an inlinee should be 1251 // distributed among the copies of the original callsite based on each 1252 // callsite's distribution factor for counts accuracy. Note that an inlined 1253 // probe may come with its own distribution factor if it has been duplicated 1254 // in the inlinee body. The two factor are multiplied to reflect the 1255 // aggregation of duplication. 1256 if (Candidate.CallsiteDistribution < 1) { 1257 for (auto &I : IFI.InlinedCallSites) { 1258 if (Optional<PseudoProbe> Probe = extractProbe(*I)) 1259 setProbeDistributionFactor(*I, Probe->Factor * 1260 Candidate.CallsiteDistribution); 1261 } 1262 NumDuplicatedInlinesite++; 1263 } 1264 1265 return true; 1266 } 1267 return false; 1268 } 1269 1270 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, 1271 CallBase *CB) { 1272 assert(CB && "Expect non-null call instruction"); 1273 1274 if (isa<IntrinsicInst>(CB)) 1275 return false; 1276 1277 // Find the callee's profile. For indirect call, find hottest target profile. 1278 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); 1279 // If ExternalInlineAdvisor wants to inline this site, do so even 1280 // if Samples are not present. 1281 if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB)) 1282 return false; 1283 1284 float Factor = 1.0; 1285 if (Optional<PseudoProbe> Probe = extractProbe(*CB)) 1286 Factor = Probe->Factor; 1287 1288 uint64_t CallsiteCount = 0; 1289 ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent()); 1290 if (Weight) 1291 CallsiteCount = Weight.get(); 1292 if (CalleeSamples) 1293 CallsiteCount = std::max( 1294 CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor)); 1295 1296 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; 1297 return true; 1298 } 1299 1300 Optional<InlineCost> 1301 SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) { 1302 std::unique_ptr<InlineAdvice> Advice = nullptr; 1303 if (ExternalInlineAdvisor) { 1304 Advice = ExternalInlineAdvisor->getAdvice(CB); 1305 if (Advice) { 1306 if (!Advice->isInliningRecommended()) { 1307 Advice->recordUnattemptedInlining(); 1308 return InlineCost::getNever("not previously inlined"); 1309 } 1310 Advice->recordInlining(); 1311 return InlineCost::getAlways("previously inlined"); 1312 } 1313 } 1314 1315 return {}; 1316 } 1317 1318 bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) { 1319 Optional<InlineCost> Cost = getExternalInlineAdvisorCost(CB); 1320 return Cost ? !!Cost.getValue() : false; 1321 } 1322 1323 InlineCost 1324 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { 1325 if (Optional<InlineCost> ReplayCost = 1326 getExternalInlineAdvisorCost(*Candidate.CallInstr)) 1327 return ReplayCost.getValue(); 1328 // Adjust threshold based on call site hotness, only do this for callsite 1329 // prioritized inliner because otherwise cost-benefit check is done earlier. 1330 int SampleThreshold = SampleColdCallSiteThreshold; 1331 if (CallsitePrioritizedInline) { 1332 if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) 1333 SampleThreshold = SampleHotCallSiteThreshold; 1334 else if (!ProfileSizeInline) 1335 return InlineCost::getNever("cold callsite"); 1336 } 1337 1338 Function *Callee = Candidate.CallInstr->getCalledFunction(); 1339 assert(Callee && "Expect a definition for inline candidate of direct call"); 1340 1341 InlineParams Params = getInlineParams(); 1342 // We will ignore the threshold from inline cost, so always get full cost. 1343 Params.ComputeFullInlineCost = true; 1344 Params.AllowRecursiveCall = AllowRecursiveInline; 1345 // Checks if there is anything in the reachable portion of the callee at 1346 // this callsite that makes this inlining potentially illegal. Need to 1347 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1348 // when cost exceeds threshold without checking all IRs in the callee. 1349 // The acutal cost does not matter because we only checks isNever() to 1350 // see if it is legal to inline the callsite. 1351 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, 1352 GetTTI(*Callee), GetAC, GetTLI); 1353 1354 // Honor always inline and never inline from call analyzer 1355 if (Cost.isNever() || Cost.isAlways()) 1356 return Cost; 1357 1358 // With CSSPGO, the preinliner in llvm-profgen can estimate global inline 1359 // decisions based on hotness as well as accurate function byte sizes for 1360 // given context using function/inlinee sizes from previous build. It 1361 // stores the decision in profile, and also adjust/merge context profile 1362 // aiming at better context-sensitive post-inline profile quality, assuming 1363 // all inline decision estimates are going to be honored by compiler. Here 1364 // we replay that inline decision under `sample-profile-use-preinliner`. 1365 // Note that we don't need to handle negative decision from preinliner as 1366 // context profile for not inlined calls are merged by preinliner already. 1367 if (UsePreInlinerDecision && Candidate.CalleeSamples) { 1368 // Once two node are merged due to promotion, we're losing some context 1369 // so the original context-sensitive preinliner decision should be ignored 1370 // for SyntheticContext. 1371 SampleContext &Context = Candidate.CalleeSamples->getContext(); 1372 if (!Context.hasState(SyntheticContext) && 1373 Context.hasAttribute(ContextShouldBeInlined)) 1374 return InlineCost::getAlways("preinliner"); 1375 } 1376 1377 // For old FDO inliner, we inline the call site as long as cost is not 1378 // "Never". The cost-benefit check is done earlier. 1379 if (!CallsitePrioritizedInline) { 1380 return InlineCost::get(Cost.getCost(), INT_MAX); 1381 } 1382 1383 // Otherwise only use the cost from call analyzer, but overwite threshold with 1384 // Sample PGO threshold. 1385 return InlineCost::get(Cost.getCost(), SampleThreshold); 1386 } 1387 1388 bool SampleProfileLoader::inlineHotFunctionsWithPriority( 1389 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1390 1391 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1392 // Profile symbol list is ignored when profile-sample-accurate is on. 1393 assert((!ProfAccForSymsInList || 1394 (!ProfileSampleAccurate && 1395 !F.hasFnAttribute("profile-sample-accurate"))) && 1396 "ProfAccForSymsInList should be false when profile-sample-accurate " 1397 "is enabled"); 1398 1399 // Populating worklist with initial call sites from root inliner, along 1400 // with call site weights. 1401 CandidateQueue CQueue; 1402 InlineCandidate NewCandidate; 1403 for (auto &BB : F) { 1404 for (auto &I : BB.getInstList()) { 1405 auto *CB = dyn_cast<CallBase>(&I); 1406 if (!CB) 1407 continue; 1408 if (getInlineCandidate(&NewCandidate, CB)) 1409 CQueue.push(NewCandidate); 1410 } 1411 } 1412 1413 // Cap the size growth from profile guided inlining. This is needed even 1414 // though cost of each inline candidate already accounts for callee size, 1415 // because with top-down inlining, we can grow inliner size significantly 1416 // with large number of smaller inlinees each pass the cost check. 1417 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && 1418 "Max inline size limit should not be smaller than min inline size " 1419 "limit."); 1420 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; 1421 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); 1422 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); 1423 if (ExternalInlineAdvisor) 1424 SizeLimit = std::numeric_limits<unsigned>::max(); 1425 1426 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1427 1428 // Perform iterative BFS call site prioritized inlining 1429 bool Changed = false; 1430 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { 1431 InlineCandidate Candidate = CQueue.top(); 1432 CQueue.pop(); 1433 CallBase *I = Candidate.CallInstr; 1434 Function *CalledFunction = I->getCalledFunction(); 1435 1436 if (CalledFunction == &F) 1437 continue; 1438 if (I->isIndirectCall()) { 1439 uint64_t Sum = 0; 1440 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); 1441 uint64_t SumOrigin = Sum; 1442 Sum *= Candidate.CallsiteDistribution; 1443 unsigned ICPCount = 0; 1444 for (const auto *FS : CalleeSamples) { 1445 // TODO: Consider disable pre-lTO ICP for MonoLTO as well 1446 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1447 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1448 PSI->getOrCompHotCountThreshold()); 1449 continue; 1450 } 1451 uint64_t EntryCountDistributed = 1452 FS->getEntrySamples() * Candidate.CallsiteDistribution; 1453 // In addition to regular inline cost check, we also need to make sure 1454 // ICP isn't introducing excessive speculative checks even if individual 1455 // target looks beneficial to promote and inline. That means we should 1456 // only do ICP when there's a small number dominant targets. 1457 if (ICPCount >= ProfileICPRelativeHotnessSkip && 1458 EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) 1459 break; 1460 // TODO: Fix CallAnalyzer to handle all indirect calls. 1461 // For indirect call, we don't run CallAnalyzer to get InlineCost 1462 // before actual inlining. This is because we could see two different 1463 // types from the same definition, which makes CallAnalyzer choke as 1464 // it's expecting matching parameter type on both caller and callee 1465 // side. See example from PR18962 for the triggering cases (the bug was 1466 // fixed, but we generate different types). 1467 if (!PSI->isHotCount(EntryCountDistributed)) 1468 break; 1469 SmallVector<CallBase *, 8> InlinedCallSites; 1470 // Attach function profile for promoted indirect callee, and update 1471 // call site count for the promoted inline candidate too. 1472 Candidate = {I, FS, EntryCountDistributed, 1473 Candidate.CallsiteDistribution}; 1474 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1475 &InlinedCallSites)) { 1476 for (auto *CB : InlinedCallSites) { 1477 if (getInlineCandidate(&NewCandidate, CB)) 1478 CQueue.emplace(NewCandidate); 1479 } 1480 ICPCount++; 1481 Changed = true; 1482 } else if (!ContextTracker) { 1483 LocalNotInlinedCallSites.try_emplace(I, FS); 1484 } 1485 } 1486 } else if (CalledFunction && CalledFunction->getSubprogram() && 1487 !CalledFunction->isDeclaration()) { 1488 SmallVector<CallBase *, 8> InlinedCallSites; 1489 if (tryInlineCandidate(Candidate, &InlinedCallSites)) { 1490 for (auto *CB : InlinedCallSites) { 1491 if (getInlineCandidate(&NewCandidate, CB)) 1492 CQueue.emplace(NewCandidate); 1493 } 1494 Changed = true; 1495 } else if (!ContextTracker) { 1496 LocalNotInlinedCallSites.try_emplace(I, Candidate.CalleeSamples); 1497 } 1498 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1499 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1500 InlinedGUIDs, SymbolMap, 1501 PSI->getOrCompHotCountThreshold()); 1502 } 1503 } 1504 1505 if (!CQueue.empty()) { 1506 if (SizeLimit == (unsigned)ProfileInlineLimitMax) 1507 ++NumCSInlinedHitMaxLimit; 1508 else if (SizeLimit == (unsigned)ProfileInlineLimitMin) 1509 ++NumCSInlinedHitMinLimit; 1510 else 1511 ++NumCSInlinedHitGrowthLimit; 1512 } 1513 1514 // For CS profile, profile for not inlined context will be merged when 1515 // base profile is being retrieved. 1516 if (!FunctionSamples::ProfileIsCSFlat) 1517 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1518 return Changed; 1519 } 1520 1521 void SampleProfileLoader::promoteMergeNotInlinedContextSamples( 1522 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 1523 const Function &F) { 1524 // Accumulate not inlined callsite information into notInlinedSamples 1525 for (const auto &Pair : NonInlinedCallSites) { 1526 CallBase *I = Pair.getFirst(); 1527 Function *Callee = I->getCalledFunction(); 1528 if (!Callee || Callee->isDeclaration()) 1529 continue; 1530 1531 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1532 I->getDebugLoc(), I->getParent()) 1533 << "previous inlining not repeated: '" 1534 << ore::NV("Callee", Callee) << "' into '" 1535 << ore::NV("Caller", &F) << "'"); 1536 1537 ++NumCSNotInlined; 1538 const FunctionSamples *FS = Pair.getSecond(); 1539 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1540 continue; 1541 } 1542 1543 if (ProfileMergeInlinee) { 1544 // A function call can be replicated by optimizations like callsite 1545 // splitting or jump threading and the replicates end up sharing the 1546 // sample nested callee profile instead of slicing the original 1547 // inlinee's profile. We want to do merge exactly once by filtering out 1548 // callee profiles with a non-zero head sample count. 1549 if (FS->getHeadSamples() == 0) { 1550 // Use entry samples as head samples during the merge, as inlinees 1551 // don't have head samples. 1552 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1553 FS->getEntrySamples()); 1554 1555 // Note that we have to do the merge right after processing function. 1556 // This allows OutlineFS's profile to be used for annotation during 1557 // top-down processing of functions' annotation. 1558 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1559 OutlineFS->merge(*FS, 1); 1560 // Set outlined profile to be synthetic to not bias the inliner. 1561 OutlineFS->SetContextSynthetic(); 1562 } 1563 } else { 1564 auto pair = 1565 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1566 pair.first->second.entryCount += FS->getEntrySamples(); 1567 } 1568 } 1569 } 1570 1571 /// Returns the sorted CallTargetMap \p M by count in descending order. 1572 static SmallVector<InstrProfValueData, 2> 1573 GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { 1574 SmallVector<InstrProfValueData, 2> R; 1575 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1576 R.emplace_back( 1577 InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1578 } 1579 return R; 1580 } 1581 1582 // Generate MD_prof metadata for every branch instruction using the 1583 // edge weights computed during propagation. 1584 void SampleProfileLoader::generateMDProfMetadata(Function &F) { 1585 // Generate MD_prof metadata for every branch instruction using the 1586 // edge weights computed during propagation. 1587 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1588 LLVMContext &Ctx = F.getContext(); 1589 MDBuilder MDB(Ctx); 1590 for (auto &BI : F) { 1591 BasicBlock *BB = &BI; 1592 1593 if (BlockWeights[BB]) { 1594 for (auto &I : BB->getInstList()) { 1595 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1596 continue; 1597 if (!cast<CallBase>(I).getCalledFunction()) { 1598 const DebugLoc &DLoc = I.getDebugLoc(); 1599 if (!DLoc) 1600 continue; 1601 const DILocation *DIL = DLoc; 1602 const FunctionSamples *FS = findFunctionSamples(I); 1603 if (!FS) 1604 continue; 1605 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1606 auto T = FS->findCallTargetMapAt(CallSite); 1607 if (!T || T.get().empty()) 1608 continue; 1609 if (FunctionSamples::ProfileIsProbeBased) { 1610 // Prorate the callsite counts based on the pre-ICP distribution 1611 // factor to reflect what is already done to the callsite before 1612 // ICP, such as calliste cloning. 1613 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 1614 if (Probe->Factor < 1) 1615 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); 1616 } 1617 } 1618 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1619 GetSortedValueDataFromCallTargets(T.get()); 1620 uint64_t Sum = 0; 1621 for (const auto &C : T.get()) 1622 Sum += C.second; 1623 // With CSSPGO all indirect call targets are counted torwards the 1624 // original indirect call site in the profile, including both 1625 // inlined and non-inlined targets. 1626 if (!FunctionSamples::ProfileIsCSFlat) { 1627 if (const FunctionSamplesMap *M = 1628 FS->findFunctionSamplesMapAt(CallSite)) { 1629 for (const auto &NameFS : *M) 1630 Sum += NameFS.second.getEntrySamples(); 1631 } 1632 } 1633 if (Sum) 1634 updateIDTMetaData(I, SortedCallTargets, Sum); 1635 else if (OverwriteExistingWeights) 1636 I.setMetadata(LLVMContext::MD_prof, nullptr); 1637 } else if (!isa<IntrinsicInst>(&I)) { 1638 I.setMetadata(LLVMContext::MD_prof, 1639 MDB.createBranchWeights( 1640 {static_cast<uint32_t>(BlockWeights[BB])})); 1641 } 1642 } 1643 } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { 1644 // Set profile metadata (possibly annotated by LTO prelink) to zero or 1645 // clear it for cold code. 1646 for (auto &I : BB->getInstList()) { 1647 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1648 if (cast<CallBase>(I).isIndirectCall()) 1649 I.setMetadata(LLVMContext::MD_prof, nullptr); 1650 else 1651 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0)); 1652 } 1653 } 1654 } 1655 1656 Instruction *TI = BB->getTerminator(); 1657 if (TI->getNumSuccessors() == 1) 1658 continue; 1659 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) && 1660 !isa<IndirectBrInst>(TI)) 1661 continue; 1662 1663 DebugLoc BranchLoc = TI->getDebugLoc(); 1664 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1665 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1666 : Twine("<UNKNOWN LOCATION>")) 1667 << ".\n"); 1668 SmallVector<uint32_t, 4> Weights; 1669 uint32_t MaxWeight = 0; 1670 Instruction *MaxDestInst; 1671 // Since profi treats multiple edges (multiway branches) as a single edge, 1672 // we need to distribute the computed weight among the branches. We do 1673 // this by evenly splitting the edge weight among destinations. 1674 DenseMap<const BasicBlock *, uint64_t> EdgeMultiplicity; 1675 std::vector<uint64_t> EdgeIndex; 1676 if (SampleProfileUseProfi) { 1677 EdgeIndex.resize(TI->getNumSuccessors()); 1678 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1679 const BasicBlock *Succ = TI->getSuccessor(I); 1680 EdgeIndex[I] = EdgeMultiplicity[Succ]; 1681 EdgeMultiplicity[Succ]++; 1682 } 1683 } 1684 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1685 BasicBlock *Succ = TI->getSuccessor(I); 1686 Edge E = std::make_pair(BB, Succ); 1687 uint64_t Weight = EdgeWeights[E]; 1688 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1689 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1690 // if needed. Sample counts in profiles are 64-bit unsigned values, 1691 // but internally branch weights are expressed as 32-bit values. 1692 if (Weight > std::numeric_limits<uint32_t>::max()) { 1693 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1694 Weight = std::numeric_limits<uint32_t>::max(); 1695 } 1696 if (!SampleProfileUseProfi) { 1697 // Weight is added by one to avoid propagation errors introduced by 1698 // 0 weights. 1699 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1700 } else { 1701 // Profi creates proper weights that do not require "+1" adjustments but 1702 // we evenly split the weight among branches with the same destination. 1703 uint64_t W = Weight / EdgeMultiplicity[Succ]; 1704 // Rounding up, if needed, so that first branches are hotter. 1705 if (EdgeIndex[I] < Weight % EdgeMultiplicity[Succ]) 1706 W++; 1707 Weights.push_back(static_cast<uint32_t>(W)); 1708 } 1709 if (Weight != 0) { 1710 if (Weight > MaxWeight) { 1711 MaxWeight = Weight; 1712 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1713 } 1714 } 1715 } 1716 1717 uint64_t TempWeight; 1718 // Only set weights if there is at least one non-zero weight. 1719 // In any other case, let the analyzer set weights. 1720 // Do not set weights if the weights are present unless under 1721 // OverwriteExistingWeights. In ThinLTO, the profile annotation is done 1722 // twice. If the first annotation already set the weights, the second pass 1723 // does not need to set it. With OverwriteExistingWeights, Blocks with zero 1724 // weight should have their existing metadata (possibly annotated by LTO 1725 // prelink) cleared. 1726 if (MaxWeight > 0 && 1727 (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { 1728 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1729 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1730 ORE->emit([&]() { 1731 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1732 << "most popular destination for conditional branches at " 1733 << ore::NV("CondBranchesLoc", BranchLoc); 1734 }); 1735 } else { 1736 if (OverwriteExistingWeights) { 1737 TI->setMetadata(LLVMContext::MD_prof, nullptr); 1738 LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); 1739 } else { 1740 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1741 } 1742 } 1743 } 1744 } 1745 1746 /// Once all the branch weights are computed, we emit the MD_prof 1747 /// metadata on BB using the computed values for each of its branches. 1748 /// 1749 /// \param F The function to query. 1750 /// 1751 /// \returns true if \p F was modified. Returns false, otherwise. 1752 bool SampleProfileLoader::emitAnnotations(Function &F) { 1753 bool Changed = false; 1754 1755 if (FunctionSamples::ProfileIsProbeBased) { 1756 if (!ProbeManager->profileIsValid(F, *Samples)) { 1757 LLVM_DEBUG( 1758 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1759 << F.getName()); 1760 ++NumMismatchedProfile; 1761 return false; 1762 } 1763 ++NumMatchedProfile; 1764 } else { 1765 if (getFunctionLoc(F) == 0) 1766 return false; 1767 1768 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1769 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1770 } 1771 1772 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1773 if (CallsitePrioritizedInline) 1774 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); 1775 else 1776 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1777 1778 Changed |= computeAndPropagateWeights(F, InlinedGUIDs); 1779 1780 if (Changed) 1781 generateMDProfMetadata(F); 1782 1783 emitCoverageRemarks(F); 1784 return Changed; 1785 } 1786 1787 char SampleProfileLoaderLegacyPass::ID = 0; 1788 1789 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1790 "Sample Profile loader", false, false) 1791 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1792 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1793 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1794 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1795 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1796 "Sample Profile loader", false, false) 1797 1798 std::unique_ptr<ProfiledCallGraph> 1799 SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) { 1800 std::unique_ptr<ProfiledCallGraph> ProfiledCG; 1801 if (ProfileIsCSFlat) 1802 ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker); 1803 else 1804 ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles()); 1805 1806 // Add all functions into the profiled call graph even if they are not in 1807 // the profile. This makes sure functions missing from the profile still 1808 // gets a chance to be processed. 1809 for (auto &Node : CG) { 1810 const auto *F = Node.first; 1811 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) 1812 continue; 1813 ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F)); 1814 } 1815 1816 return ProfiledCG; 1817 } 1818 1819 std::vector<Function *> 1820 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1821 std::vector<Function *> FunctionOrderList; 1822 FunctionOrderList.reserve(M.size()); 1823 1824 if (!ProfileTopDownLoad && UseProfiledCallGraph) 1825 errs() << "WARNING: -use-profiled-call-graph ignored, should be used " 1826 "together with -sample-profile-top-down-load.\n"; 1827 1828 if (!ProfileTopDownLoad || CG == nullptr) { 1829 if (ProfileMergeInlinee) { 1830 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1831 // because the profile for a function may be used for the profile 1832 // annotation of its outline copy before the profile merging of its 1833 // non-inlined inline instances, and that is not the way how 1834 // ProfileMergeInlinee is supposed to work. 1835 ProfileMergeInlinee = false; 1836 } 1837 1838 for (Function &F : M) 1839 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1840 FunctionOrderList.push_back(&F); 1841 return FunctionOrderList; 1842 } 1843 1844 assert(&CG->getModule() == &M); 1845 1846 if (UseProfiledCallGraph || 1847 (ProfileIsCSFlat && !UseProfiledCallGraph.getNumOccurrences())) { 1848 // Use profiled call edges to augment the top-down order. There are cases 1849 // that the top-down order computed based on the static call graph doesn't 1850 // reflect real execution order. For example 1851 // 1852 // 1. Incomplete static call graph due to unknown indirect call targets. 1853 // Adjusting the order by considering indirect call edges from the 1854 // profile can enable the inlining of indirect call targets by allowing 1855 // the caller processed before them. 1856 // 2. Mutual call edges in an SCC. The static processing order computed for 1857 // an SCC may not reflect the call contexts in the context-sensitive 1858 // profile, thus may cause potential inlining to be overlooked. The 1859 // function order in one SCC is being adjusted to a top-down order based 1860 // on the profile to favor more inlining. This is only a problem with CS 1861 // profile. 1862 // 3. Transitive indirect call edges due to inlining. When a callee function 1863 // (say B) is inlined into into a caller function (say A) in LTO prelink, 1864 // every call edge originated from the callee B will be transferred to 1865 // the caller A. If any transferred edge (say A->C) is indirect, the 1866 // original profiled indirect edge B->C, even if considered, would not 1867 // enforce a top-down order from the caller A to the potential indirect 1868 // call target C in LTO postlink since the inlined callee B is gone from 1869 // the static call graph. 1870 // 4. #3 can happen even for direct call targets, due to functions defined 1871 // in header files. A header function (say A), when included into source 1872 // files, is defined multiple times but only one definition survives due 1873 // to ODR. Therefore, the LTO prelink inlining done on those dropped 1874 // definitions can be useless based on a local file scope. More 1875 // importantly, the inlinee (say B), once fully inlined to a 1876 // to-be-dropped A, will have no profile to consume when its outlined 1877 // version is compiled. This can lead to a profile-less prelink 1878 // compilation for the outlined version of B which may be called from 1879 // external modules. while this isn't easy to fix, we rely on the 1880 // postlink AutoFDO pipeline to optimize B. Since the survived copy of 1881 // the A can be inlined in its local scope in prelink, it may not exist 1882 // in the merged IR in postlink, and we'll need the profiled call edges 1883 // to enforce a top-down order for the rest of the functions. 1884 // 1885 // Considering those cases, a profiled call graph completely independent of 1886 // the static call graph is constructed based on profile data, where 1887 // function objects are not even needed to handle case #3 and case 4. 1888 // 1889 // Note that static callgraph edges are completely ignored since they 1890 // can be conflicting with profiled edges for cyclic SCCs and may result in 1891 // an SCC order incompatible with profile-defined one. Using strictly 1892 // profile order ensures a maximum inlining experience. On the other hand, 1893 // static call edges are not so important when they don't correspond to a 1894 // context in the profile. 1895 1896 std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG); 1897 scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get()); 1898 while (!CGI.isAtEnd()) { 1899 auto Range = *CGI; 1900 if (SortProfiledSCC) { 1901 // Sort nodes in one SCC based on callsite hotness. 1902 scc_member_iterator<ProfiledCallGraph *> SI(*CGI); 1903 Range = *SI; 1904 } 1905 for (auto *Node : Range) { 1906 Function *F = SymbolMap.lookup(Node->Name); 1907 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1908 FunctionOrderList.push_back(F); 1909 } 1910 ++CGI; 1911 } 1912 } else { 1913 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1914 while (!CGI.isAtEnd()) { 1915 for (CallGraphNode *Node : *CGI) { 1916 auto *F = Node->getFunction(); 1917 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1918 FunctionOrderList.push_back(F); 1919 } 1920 ++CGI; 1921 } 1922 } 1923 1924 LLVM_DEBUG({ 1925 dbgs() << "Function processing order:\n"; 1926 for (auto F : reverse(FunctionOrderList)) { 1927 dbgs() << F->getName() << "\n"; 1928 } 1929 }); 1930 1931 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1932 return FunctionOrderList; 1933 } 1934 1935 bool SampleProfileLoader::doInitialization(Module &M, 1936 FunctionAnalysisManager *FAM) { 1937 auto &Ctx = M.getContext(); 1938 1939 auto ReaderOrErr = SampleProfileReader::create( 1940 Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename); 1941 if (std::error_code EC = ReaderOrErr.getError()) { 1942 std::string Msg = "Could not open profile: " + EC.message(); 1943 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1944 return false; 1945 } 1946 Reader = std::move(ReaderOrErr.get()); 1947 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 1948 // set module before reading the profile so reader may be able to only 1949 // read the function profiles which are used by the current module. 1950 Reader->setModule(&M); 1951 if (std::error_code EC = Reader->read()) { 1952 std::string Msg = "profile reading failed: " + EC.message(); 1953 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1954 return false; 1955 } 1956 1957 PSL = Reader->getProfileSymbolList(); 1958 1959 // While profile-sample-accurate is on, ignore symbol list. 1960 ProfAccForSymsInList = 1961 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1962 if (ProfAccForSymsInList) { 1963 NamesInProfile.clear(); 1964 if (auto NameTable = Reader->getNameTable()) 1965 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1966 CoverageTracker.setProfAccForSymsInList(true); 1967 } 1968 1969 if (FAM && !ProfileInlineReplayFile.empty()) { 1970 ExternalInlineAdvisor = getReplayInlineAdvisor( 1971 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, 1972 ReplayInlinerSettings{ProfileInlineReplayFile, 1973 ProfileInlineReplayScope, 1974 ProfileInlineReplayFallback, 1975 {ProfileInlineReplayFormat}}, 1976 /*EmitRemarks=*/false); 1977 } 1978 1979 // Apply tweaks if context-sensitive profile is available. 1980 if (Reader->profileIsCSFlat() || Reader->profileIsCSNested()) { 1981 ProfileIsCSFlat = Reader->profileIsCSFlat(); 1982 // Enable priority-base inliner and size inline by default for CSSPGO. 1983 if (!ProfileSizeInline.getNumOccurrences()) 1984 ProfileSizeInline = true; 1985 if (!CallsitePrioritizedInline.getNumOccurrences()) 1986 CallsitePrioritizedInline = true; 1987 1988 // For CSSPGO, use preinliner decision by default when available. 1989 if (!UsePreInlinerDecision.getNumOccurrences()) 1990 UsePreInlinerDecision = true; 1991 1992 // For CSSPGO, we also allow recursive inline to best use context profile. 1993 if (!AllowRecursiveInline.getNumOccurrences()) 1994 AllowRecursiveInline = true; 1995 1996 // Enable iterative-BFI by default for CSSPGO. 1997 if (!UseIterativeBFIInference.getNumOccurrences()) 1998 UseIterativeBFIInference = true; 1999 // Enable Profi by default for CSSPGO. 2000 if (!SampleProfileUseProfi.getNumOccurrences()) 2001 SampleProfileUseProfi = true; 2002 2003 if (FunctionSamples::ProfileIsCSFlat) { 2004 // Tracker for profiles under different context 2005 ContextTracker = std::make_unique<SampleContextTracker>( 2006 Reader->getProfiles(), &GUIDToFuncNameMap); 2007 } 2008 } 2009 2010 // Load pseudo probe descriptors for probe-based function samples. 2011 if (Reader->profileIsProbeBased()) { 2012 ProbeManager = std::make_unique<PseudoProbeManager>(M); 2013 if (!ProbeManager->moduleIsProbed(M)) { 2014 const char *Msg = 2015 "Pseudo-probe-based profile requires SampleProfileProbePass"; 2016 Ctx.diagnose(DiagnosticInfoSampleProfile(M.getModuleIdentifier(), Msg, 2017 DS_Warning)); 2018 return false; 2019 } 2020 } 2021 2022 return true; 2023 } 2024 2025 ModulePass *llvm::createSampleProfileLoaderPass() { 2026 return new SampleProfileLoaderLegacyPass(); 2027 } 2028 2029 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 2030 return new SampleProfileLoaderLegacyPass(Name); 2031 } 2032 2033 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2034 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2035 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2036 2037 PSI = _PSI; 2038 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2039 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2040 ProfileSummary::PSK_Sample); 2041 PSI->refresh(); 2042 } 2043 // Compute the total number of samples collected in this profile. 2044 for (const auto &I : Reader->getProfiles()) 2045 TotalCollectedSamples += I.second.getTotalSamples(); 2046 2047 auto Remapper = Reader->getRemapper(); 2048 // Populate the symbol map. 2049 for (const auto &N_F : M.getValueSymbolTable()) { 2050 StringRef OrigName = N_F.getKey(); 2051 Function *F = dyn_cast<Function>(N_F.getValue()); 2052 if (F == nullptr || OrigName.empty()) 2053 continue; 2054 SymbolMap[OrigName] = F; 2055 StringRef NewName = FunctionSamples::getCanonicalFnName(*F); 2056 if (OrigName != NewName && !NewName.empty()) { 2057 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2058 // Failiing to insert means there is already an entry in SymbolMap, 2059 // thus there are multiple functions that are mapped to the same 2060 // stripped name. In this case of name conflicting, set the value 2061 // to nullptr to avoid confusion. 2062 if (!r.second) 2063 r.first->second = nullptr; 2064 OrigName = NewName; 2065 } 2066 // Insert the remapped names into SymbolMap. 2067 if (Remapper) { 2068 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2069 if (*MapName != OrigName && !MapName->empty()) 2070 SymbolMap.insert(std::make_pair(*MapName, F)); 2071 } 2072 } 2073 } 2074 assert(SymbolMap.count(StringRef()) == 0 && 2075 "No empty StringRef should be added in SymbolMap"); 2076 2077 bool retval = false; 2078 for (auto F : buildFunctionOrder(M, CG)) { 2079 assert(!F->isDeclaration()); 2080 clearFunctionData(); 2081 retval |= runOnFunction(*F, AM); 2082 } 2083 2084 // Account for cold calls not inlined.... 2085 if (!ProfileIsCSFlat) 2086 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2087 notInlinedCallInfo) 2088 updateProfileCallee(pair.first, pair.second.entryCount); 2089 2090 return retval; 2091 } 2092 2093 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2094 ACT = &getAnalysis<AssumptionCacheTracker>(); 2095 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2096 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2097 ProfileSummaryInfo *PSI = 2098 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2099 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2100 } 2101 2102 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2103 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); 2104 DILocation2SampleMap.clear(); 2105 // By default the entry count is initialized to -1, which will be treated 2106 // conservatively by getEntryCount as the same as unknown (None). This is 2107 // to avoid newly added code to be treated as cold. If we have samples 2108 // this will be overwritten in emitAnnotations. 2109 uint64_t initialEntryCount = -1; 2110 2111 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2112 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2113 // initialize all the function entry counts to 0. It means all the 2114 // functions without profile will be regarded as cold. 2115 initialEntryCount = 0; 2116 // profile-sample-accurate is a user assertion which has a higher precedence 2117 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2118 ProfAccForSymsInList = false; 2119 } 2120 CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); 2121 2122 // PSL -- profile symbol list include all the symbols in sampled binary. 2123 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2124 // old functions without samples being cold, without having to worry 2125 // about new and hot functions being mistakenly treated as cold. 2126 if (ProfAccForSymsInList) { 2127 // Initialize the entry count to 0 for functions in the list. 2128 if (PSL->contains(F.getName())) 2129 initialEntryCount = 0; 2130 2131 // Function in the symbol list but without sample will be regarded as 2132 // cold. To minimize the potential negative performance impact it could 2133 // have, we want to be a little conservative here saying if a function 2134 // shows up in the profile, no matter as outline function, inline instance 2135 // or call targets, treat the function as not being cold. This will handle 2136 // the cases such as most callsites of a function are inlined in sampled 2137 // binary but not inlined in current build (because of source code drift, 2138 // imprecise debug information, or the callsites are all cold individually 2139 // but not cold accumulatively...), so the outline function showing up as 2140 // cold in sampled binary will actually not be cold after current build. 2141 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2142 if (NamesInProfile.count(CanonName)) 2143 initialEntryCount = -1; 2144 } 2145 2146 // Initialize entry count when the function has no existing entry 2147 // count value. 2148 if (!F.getEntryCount().hasValue()) 2149 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2150 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2151 if (AM) { 2152 auto &FAM = 2153 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2154 .getManager(); 2155 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2156 } else { 2157 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2158 ORE = OwnedORE.get(); 2159 } 2160 2161 if (ProfileIsCSFlat) 2162 Samples = ContextTracker->getBaseSamplesFor(F); 2163 else 2164 Samples = Reader->getSamplesFor(F); 2165 2166 if (Samples && !Samples->empty()) 2167 return emitAnnotations(F); 2168 return false; 2169 } 2170 2171 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2172 ModuleAnalysisManager &AM) { 2173 FunctionAnalysisManager &FAM = 2174 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2175 2176 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2177 return FAM.getResult<AssumptionAnalysis>(F); 2178 }; 2179 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2180 return FAM.getResult<TargetIRAnalysis>(F); 2181 }; 2182 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2183 return FAM.getResult<TargetLibraryAnalysis>(F); 2184 }; 2185 2186 SampleProfileLoader SampleLoader( 2187 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2188 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2189 : ProfileRemappingFileName, 2190 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2191 2192 if (!SampleLoader.doInitialization(M, &FAM)) 2193 return PreservedAnalyses::all(); 2194 2195 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2196 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2197 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2198 return PreservedAnalyses::all(); 2199 2200 return PreservedAnalyses::none(); 2201 } 2202