xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SCCP.cpp (revision e0919a4bac2b57a086688ae8ec58058b91f61d86)
1 //===-- SCCP.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Interprocedural Sparse Conditional Constant Propagation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SCCP.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueLattice.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ModRef.h"
29 #include "llvm/Transforms/IPO.h"
30 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
31 #include "llvm/Transforms/Scalar/SCCP.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/SCCPSolver.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "sccp"
38 
39 STATISTIC(NumInstRemoved, "Number of instructions removed");
40 STATISTIC(NumArgsElimed ,"Number of arguments constant propagated");
41 STATISTIC(NumGlobalConst, "Number of globals found to be constant");
42 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
43 STATISTIC(NumInstReplaced,
44           "Number of instructions replaced with (simpler) instruction");
45 
46 static cl::opt<unsigned> FuncSpecMaxIters(
47     "funcspec-max-iters", cl::init(10), cl::Hidden, cl::desc(
48     "The maximum number of iterations function specialization is run"));
49 
50 static void findReturnsToZap(Function &F,
51                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
52                              SCCPSolver &Solver) {
53   // We can only do this if we know that nothing else can call the function.
54   if (!Solver.isArgumentTrackedFunction(&F))
55     return;
56 
57   if (Solver.mustPreserveReturn(&F)) {
58     LLVM_DEBUG(
59         dbgs()
60         << "Can't zap returns of the function : " << F.getName()
61         << " due to present musttail or \"clang.arc.attachedcall\" call of "
62            "it\n");
63     return;
64   }
65 
66   assert(
67       all_of(F.users(),
68              [&Solver](User *U) {
69                if (isa<Instruction>(U) &&
70                    !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
71                  return true;
72                // Non-callsite uses are not impacted by zapping. Also, constant
73                // uses (like blockaddresses) could stuck around, without being
74                // used in the underlying IR, meaning we do not have lattice
75                // values for them.
76                if (!isa<CallBase>(U))
77                  return true;
78                if (U->getType()->isStructTy()) {
79                  return all_of(Solver.getStructLatticeValueFor(U),
80                                [](const ValueLatticeElement &LV) {
81                                  return !SCCPSolver::isOverdefined(LV);
82                                });
83                }
84 
85                // We don't consider assume-like intrinsics to be actual address
86                // captures.
87                if (auto *II = dyn_cast<IntrinsicInst>(U)) {
88                  if (II->isAssumeLikeIntrinsic())
89                    return true;
90                }
91 
92                return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));
93              }) &&
94       "We can only zap functions where all live users have a concrete value");
95 
96   for (BasicBlock &BB : F) {
97     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
98       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
99                         << "musttail call : " << *CI << "\n");
100       (void)CI;
101       return;
102     }
103 
104     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
105       if (!isa<UndefValue>(RI->getOperand(0)))
106         ReturnsToZap.push_back(RI);
107   }
108 }
109 
110 static bool runIPSCCP(
111     Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM,
112     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
113     std::function<TargetTransformInfo &(Function &)> GetTTI,
114     std::function<AssumptionCache &(Function &)> GetAC,
115     std::function<DominatorTree &(Function &)> GetDT,
116     std::function<BlockFrequencyInfo &(Function &)> GetBFI,
117     bool IsFuncSpecEnabled) {
118   SCCPSolver Solver(DL, GetTLI, M.getContext());
119   FunctionSpecializer Specializer(Solver, M, FAM, GetBFI, GetTLI, GetTTI,
120                                   GetAC);
121 
122   // Loop over all functions, marking arguments to those with their addresses
123   // taken or that are external as overdefined.
124   for (Function &F : M) {
125     if (F.isDeclaration())
126       continue;
127 
128     DominatorTree &DT = GetDT(F);
129     AssumptionCache &AC = GetAC(F);
130     Solver.addPredicateInfo(F, DT, AC);
131 
132     // Determine if we can track the function's return values. If so, add the
133     // function to the solver's set of return-tracked functions.
134     if (canTrackReturnsInterprocedurally(&F))
135       Solver.addTrackedFunction(&F);
136 
137     // Determine if we can track the function's arguments. If so, add the
138     // function to the solver's set of argument-tracked functions.
139     if (canTrackArgumentsInterprocedurally(&F)) {
140       Solver.addArgumentTrackedFunction(&F);
141       continue;
142     }
143 
144     // Assume the function is called.
145     Solver.markBlockExecutable(&F.front());
146 
147     // Assume nothing about the incoming arguments.
148     for (Argument &AI : F.args())
149       Solver.markOverdefined(&AI);
150   }
151 
152   // Determine if we can track any of the module's global variables. If so, add
153   // the global variables we can track to the solver's set of tracked global
154   // variables.
155   for (GlobalVariable &G : M.globals()) {
156     G.removeDeadConstantUsers();
157     if (canTrackGlobalVariableInterprocedurally(&G))
158       Solver.trackValueOfGlobalVariable(&G);
159   }
160 
161   // Solve for constants.
162   Solver.solveWhileResolvedUndefsIn(M);
163 
164   if (IsFuncSpecEnabled) {
165     unsigned Iters = 0;
166     while (Iters++ < FuncSpecMaxIters && Specializer.run());
167   }
168 
169   // Iterate over all of the instructions in the module, replacing them with
170   // constants if we have found them to be of constant values.
171   bool MadeChanges = false;
172   for (Function &F : M) {
173     if (F.isDeclaration())
174       continue;
175 
176     SmallVector<BasicBlock *, 512> BlocksToErase;
177 
178     if (Solver.isBlockExecutable(&F.front())) {
179       bool ReplacedPointerArg = false;
180       for (Argument &Arg : F.args()) {
181         if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) {
182           ReplacedPointerArg |= Arg.getType()->isPointerTy();
183           ++NumArgsElimed;
184         }
185       }
186 
187       // If we replaced an argument, we may now also access a global (currently
188       // classified as "other" memory). Update memory attribute to reflect this.
189       if (ReplacedPointerArg) {
190         auto UpdateAttrs = [&](AttributeList AL) {
191           MemoryEffects ME = AL.getMemoryEffects();
192           if (ME == MemoryEffects::unknown())
193             return AL;
194 
195           ME |= MemoryEffects(IRMemLocation::Other,
196                               ME.getModRef(IRMemLocation::ArgMem));
197           return AL.addFnAttribute(
198               F.getContext(),
199               Attribute::getWithMemoryEffects(F.getContext(), ME));
200         };
201 
202         F.setAttributes(UpdateAttrs(F.getAttributes()));
203         for (User *U : F.users()) {
204           auto *CB = dyn_cast<CallBase>(U);
205           if (!CB || CB->getCalledFunction() != &F)
206             continue;
207 
208           CB->setAttributes(UpdateAttrs(CB->getAttributes()));
209         }
210       }
211       MadeChanges |= ReplacedPointerArg;
212     }
213 
214     SmallPtrSet<Value *, 32> InsertedValues;
215     for (BasicBlock &BB : F) {
216       if (!Solver.isBlockExecutable(&BB)) {
217         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
218         ++NumDeadBlocks;
219 
220         MadeChanges = true;
221 
222         if (&BB != &F.front())
223           BlocksToErase.push_back(&BB);
224         continue;
225       }
226 
227       MadeChanges |= Solver.simplifyInstsInBlock(
228           BB, InsertedValues, NumInstRemoved, NumInstReplaced);
229     }
230 
231     DominatorTree *DT = FAM->getCachedResult<DominatorTreeAnalysis>(F);
232     PostDominatorTree *PDT = FAM->getCachedResult<PostDominatorTreeAnalysis>(F);
233     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
234     // Change dead blocks to unreachable. We do it after replacing constants
235     // in all executable blocks, because changeToUnreachable may remove PHI
236     // nodes in executable blocks we found values for. The function's entry
237     // block is not part of BlocksToErase, so we have to handle it separately.
238     for (BasicBlock *BB : BlocksToErase) {
239       NumInstRemoved += changeToUnreachable(BB->getFirstNonPHIOrDbg(),
240                                             /*PreserveLCSSA=*/false, &DTU);
241     }
242     if (!Solver.isBlockExecutable(&F.front()))
243       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHIOrDbg(),
244                                             /*PreserveLCSSA=*/false, &DTU);
245 
246     BasicBlock *NewUnreachableBB = nullptr;
247     for (BasicBlock &BB : F)
248       MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB);
249 
250     for (BasicBlock *DeadBB : BlocksToErase)
251       if (!DeadBB->hasAddressTaken())
252         DTU.deleteBB(DeadBB);
253 
254     for (BasicBlock &BB : F) {
255       for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
256         if (Solver.getPredicateInfoFor(&Inst)) {
257           if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) {
258             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
259               Value *Op = II->getOperand(0);
260               Inst.replaceAllUsesWith(Op);
261               Inst.eraseFromParent();
262             }
263           }
264         }
265       }
266     }
267   }
268 
269   // If we inferred constant or undef return values for a function, we replaced
270   // all call uses with the inferred value.  This means we don't need to bother
271   // actually returning anything from the function.  Replace all return
272   // instructions with return undef.
273   //
274   // Do this in two stages: first identify the functions we should process, then
275   // actually zap their returns.  This is important because we can only do this
276   // if the address of the function isn't taken.  In cases where a return is the
277   // last use of a function, the order of processing functions would affect
278   // whether other functions are optimizable.
279   SmallVector<ReturnInst*, 8> ReturnsToZap;
280 
281   for (const auto &I : Solver.getTrackedRetVals()) {
282     Function *F = I.first;
283     const ValueLatticeElement &ReturnValue = I.second;
284 
285     // If there is a known constant range for the return value, add !range
286     // metadata to the function's call sites.
287     if (ReturnValue.isConstantRange() &&
288         !ReturnValue.getConstantRange().isSingleElement()) {
289       // Do not add range metadata if the return value may include undef.
290       if (ReturnValue.isConstantRangeIncludingUndef())
291         continue;
292 
293       auto &CR = ReturnValue.getConstantRange();
294       for (User *User : F->users()) {
295         auto *CB = dyn_cast<CallBase>(User);
296         if (!CB || CB->getCalledFunction() != F)
297           continue;
298 
299         // Do not touch existing metadata for now.
300         // TODO: We should be able to take the intersection of the existing
301         // metadata and the inferred range.
302         if (CB->getMetadata(LLVMContext::MD_range))
303           continue;
304 
305         LLVMContext &Context = CB->getParent()->getContext();
306         Metadata *RangeMD[] = {
307             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
308             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
309         CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
310       }
311       continue;
312     }
313     if (F->getReturnType()->isVoidTy())
314       continue;
315     if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
316       findReturnsToZap(*F, ReturnsToZap, Solver);
317   }
318 
319   for (auto *F : Solver.getMRVFunctionsTracked()) {
320     assert(F->getReturnType()->isStructTy() &&
321            "The return type should be a struct");
322     StructType *STy = cast<StructType>(F->getReturnType());
323     if (Solver.isStructLatticeConstant(F, STy))
324       findReturnsToZap(*F, ReturnsToZap, Solver);
325   }
326 
327   // Zap all returns which we've identified as zap to change.
328   SmallSetVector<Function *, 8> FuncZappedReturn;
329   for (ReturnInst *RI : ReturnsToZap) {
330     Function *F = RI->getParent()->getParent();
331     RI->setOperand(0, UndefValue::get(F->getReturnType()));
332     // Record all functions that are zapped.
333     FuncZappedReturn.insert(F);
334   }
335 
336   // Remove the returned attribute for zapped functions and the
337   // corresponding call sites.
338   // Also remove any attributes that convert an undef return value into
339   // immediate undefined behavior
340   AttributeMask UBImplyingAttributes =
341       AttributeFuncs::getUBImplyingAttributes();
342   for (Function *F : FuncZappedReturn) {
343     for (Argument &A : F->args())
344       F->removeParamAttr(A.getArgNo(), Attribute::Returned);
345     F->removeRetAttrs(UBImplyingAttributes);
346     for (Use &U : F->uses()) {
347       CallBase *CB = dyn_cast<CallBase>(U.getUser());
348       if (!CB) {
349         assert(isa<BlockAddress>(U.getUser()) ||
350                (isa<Constant>(U.getUser()) &&
351                 all_of(U.getUser()->users(), [](const User *UserUser) {
352                   return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();
353                 })));
354         continue;
355       }
356 
357       for (Use &Arg : CB->args())
358         CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
359       CB->removeRetAttrs(UBImplyingAttributes);
360     }
361   }
362 
363   // If we inferred constant or undef values for globals variables, we can
364   // delete the global and any stores that remain to it.
365   for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
366     GlobalVariable *GV = I.first;
367     if (SCCPSolver::isOverdefined(I.second))
368       continue;
369     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
370                       << "' is constant!\n");
371     while (!GV->use_empty()) {
372       StoreInst *SI = cast<StoreInst>(GV->user_back());
373       SI->eraseFromParent();
374     }
375 
376     // Try to create a debug constant expression for the global variable
377     // initializer value.
378     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
379     GV->getDebugInfo(GVEs);
380     if (GVEs.size() == 1) {
381       DIBuilder DIB(M);
382       if (DIExpression *InitExpr = getExpressionForConstant(
383               DIB, *GV->getInitializer(), *GV->getValueType()))
384         GVEs[0]->replaceOperandWith(1, InitExpr);
385     }
386 
387     MadeChanges = true;
388     M.eraseGlobalVariable(GV);
389     ++NumGlobalConst;
390   }
391 
392   return MadeChanges;
393 }
394 
395 PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) {
396   const DataLayout &DL = M.getDataLayout();
397   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
398   auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & {
399     return FAM.getResult<TargetLibraryAnalysis>(F);
400   };
401   auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
402     return FAM.getResult<TargetIRAnalysis>(F);
403   };
404   auto GetAC = [&FAM](Function &F) -> AssumptionCache & {
405     return FAM.getResult<AssumptionAnalysis>(F);
406   };
407   auto GetDT = [&FAM](Function &F) -> DominatorTree & {
408     return FAM.getResult<DominatorTreeAnalysis>(F);
409   };
410   auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
411     return FAM.getResult<BlockFrequencyAnalysis>(F);
412   };
413 
414 
415   if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, GetDT, GetBFI,
416                  isFuncSpecEnabled()))
417     return PreservedAnalyses::all();
418 
419   PreservedAnalyses PA;
420   PA.preserve<DominatorTreeAnalysis>();
421   PA.preserve<PostDominatorTreeAnalysis>();
422   PA.preserve<FunctionAnalysisManagerModuleProxy>();
423   return PA;
424 }
425