xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/PartialInlining.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/CodeExtractor.h"
54 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <iterator>
60 #include <memory>
61 #include <tuple>
62 #include <vector>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "partial-inlining"
67 
68 STATISTIC(NumPartialInlined,
69           "Number of callsites functions partially inlined into.");
70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
71                                         "cold outlined regions were partially "
72                                         "inlined into its caller(s).");
73 STATISTIC(NumColdRegionsFound,
74            "Number of cold single entry/exit regions found.");
75 STATISTIC(NumColdRegionsOutlined,
76            "Number of cold single entry/exit regions outlined.");
77 
78 // Command line option to disable partial-inlining. The default is false:
79 static cl::opt<bool>
80     DisablePartialInlining("disable-partial-inlining", cl::init(false),
81                            cl::Hidden, cl::desc("Disable partial inlining"));
82 // Command line option to disable multi-region partial-inlining. The default is
83 // false:
84 static cl::opt<bool> DisableMultiRegionPartialInline(
85     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
86     cl::desc("Disable multi-region partial inlining"));
87 
88 // Command line option to force outlining in regions with live exit variables.
89 // The default is false:
90 static cl::opt<bool>
91     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
92                cl::desc("Force outline regions with live exits"));
93 
94 // Command line option to enable marking outline functions with Cold Calling
95 // Convention. The default is false:
96 static cl::opt<bool>
97     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
98                        cl::desc("Mark outline function calls with ColdCC"));
99 
100 // This is an option used by testing:
101 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
102                                       cl::init(false), cl::ZeroOrMore,
103                                       cl::ReallyHidden,
104                                       cl::desc("Skip Cost Analysis"));
105 // Used to determine if a cold region is worth outlining based on
106 // its inlining cost compared to the original function.  Default is set at 10%.
107 // ie. if the cold region reduces the inlining cost of the original function by
108 // at least 10%.
109 static cl::opt<float> MinRegionSizeRatio(
110     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
111     cl::desc("Minimum ratio comparing relative sizes of each "
112              "outline candidate and original function"));
113 // Used to tune the minimum number of execution counts needed in the predecessor
114 // block to the cold edge. ie. confidence interval.
115 static cl::opt<unsigned>
116     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
117                              cl::desc("Minimum block executions to consider "
118                                       "its BranchProbabilityInfo valid"));
119 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
120 // if the branch probability is 10% or less, then it is deemed as 'cold'.
121 static cl::opt<float> ColdBranchRatio(
122     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
123     cl::desc("Minimum BranchProbability to consider a region cold."));
124 
125 static cl::opt<unsigned> MaxNumInlineBlocks(
126     "max-num-inline-blocks", cl::init(5), cl::Hidden,
127     cl::desc("Max number of blocks to be partially inlined"));
128 
129 // Command line option to set the maximum number of partial inlining allowed
130 // for the module. The default value of -1 means no limit.
131 static cl::opt<int> MaxNumPartialInlining(
132     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
133     cl::desc("Max number of partial inlining. The default is unlimited"));
134 
135 // Used only when PGO or user annotated branch data is absent. It is
136 // the least value that is used to weigh the outline region. If BFI
137 // produces larger value, the BFI value will be used.
138 static cl::opt<int>
139     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
140                              cl::Hidden, cl::ZeroOrMore,
141                              cl::desc("Relative frequency of outline region to "
142                                       "the entry block"));
143 
144 static cl::opt<unsigned> ExtraOutliningPenalty(
145     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
146     cl::desc("A debug option to add additional penalty to the computed one."));
147 
148 namespace {
149 
150 struct FunctionOutliningInfo {
151   FunctionOutliningInfo() = default;
152 
153   // Returns the number of blocks to be inlined including all blocks
154   // in Entries and one return block.
155   unsigned getNumInlinedBlocks() const { return Entries.size() + 1; }
156 
157   // A set of blocks including the function entry that guard
158   // the region to be outlined.
159   SmallVector<BasicBlock *, 4> Entries;
160 
161   // The return block that is not included in the outlined region.
162   BasicBlock *ReturnBlock = nullptr;
163 
164   // The dominating block of the region to be outlined.
165   BasicBlock *NonReturnBlock = nullptr;
166 
167   // The set of blocks in Entries that that are predecessors to ReturnBlock
168   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
169 };
170 
171 struct FunctionOutliningMultiRegionInfo {
172   FunctionOutliningMultiRegionInfo()
173       : ORI() {}
174 
175   // Container for outline regions
176   struct OutlineRegionInfo {
177     OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
178                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
179                       BasicBlock *ReturnBlock)
180         : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
181           ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
182     SmallVector<BasicBlock *, 8> Region;
183     BasicBlock *EntryBlock;
184     BasicBlock *ExitBlock;
185     BasicBlock *ReturnBlock;
186   };
187 
188   SmallVector<OutlineRegionInfo, 4> ORI;
189 };
190 
191 struct PartialInlinerImpl {
192 
193   PartialInlinerImpl(
194       function_ref<AssumptionCache &(Function &)> GetAC,
195       function_ref<AssumptionCache *(Function &)> LookupAC,
196       function_ref<TargetTransformInfo &(Function &)> GTTI,
197       function_ref<const TargetLibraryInfo &(Function &)> GTLI,
198       ProfileSummaryInfo &ProfSI,
199       function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr)
200       : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
201         GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {}
202 
203   bool run(Module &M);
204   // Main part of the transformation that calls helper functions to find
205   // outlining candidates, clone & outline the function, and attempt to
206   // partially inline the resulting function. Returns true if
207   // inlining was successful, false otherwise.  Also returns the outline
208   // function (only if we partially inlined early returns) as there is a
209   // possibility to further "peel" early return statements that were left in the
210   // outline function due to code size.
211   std::pair<bool, Function *> unswitchFunction(Function &F);
212 
213   // This class speculatively clones the function to be partial inlined.
214   // At the end of partial inlining, the remaining callsites to the cloned
215   // function that are not partially inlined will be fixed up to reference
216   // the original function, and the cloned function will be erased.
217   struct FunctionCloner {
218     // Two constructors, one for single region outlining, the other for
219     // multi-region outlining.
220     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
221                    OptimizationRemarkEmitter &ORE,
222                    function_ref<AssumptionCache *(Function &)> LookupAC,
223                    function_ref<TargetTransformInfo &(Function &)> GetTTI);
224     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
225                    OptimizationRemarkEmitter &ORE,
226                    function_ref<AssumptionCache *(Function &)> LookupAC,
227                    function_ref<TargetTransformInfo &(Function &)> GetTTI);
228 
229     ~FunctionCloner();
230 
231     // Prepare for function outlining: making sure there is only
232     // one incoming edge from the extracted/outlined region to
233     // the return block.
234     void normalizeReturnBlock() const;
235 
236     // Do function outlining for cold regions.
237     bool doMultiRegionFunctionOutlining();
238     // Do function outlining for region after early return block(s).
239     // NOTE: For vararg functions that do the vararg handling in the outlined
240     //       function, we temporarily generate IR that does not properly
241     //       forward varargs to the outlined function. Calling InlineFunction
242     //       will update calls to the outlined functions to properly forward
243     //       the varargs.
244     Function *doSingleRegionFunctionOutlining();
245 
246     Function *OrigFunc = nullptr;
247     Function *ClonedFunc = nullptr;
248 
249     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
250     // Keep track of Outlined Functions and the basic block they're called from.
251     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
252 
253     // ClonedFunc is inlined in one of its callers after function
254     // outlining.
255     bool IsFunctionInlined = false;
256     // The cost of the region to be outlined.
257     InstructionCost OutlinedRegionCost = 0;
258     // ClonedOI is specific to outlining non-early return blocks.
259     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
260     // ClonedOMRI is specific to outlining cold regions.
261     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
262     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
263     OptimizationRemarkEmitter &ORE;
264     function_ref<AssumptionCache *(Function &)> LookupAC;
265     function_ref<TargetTransformInfo &(Function &)> GetTTI;
266   };
267 
268 private:
269   int NumPartialInlining = 0;
270   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
271   function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
272   function_ref<TargetTransformInfo &(Function &)> GetTTI;
273   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
274   function_ref<const TargetLibraryInfo &(Function &)> GetTLI;
275   ProfileSummaryInfo &PSI;
276 
277   // Return the frequency of the OutlininingBB relative to F's entry point.
278   // The result is no larger than 1 and is represented using BP.
279   // (Note that the outlined region's 'head' block can only have incoming
280   // edges from the guarding entry blocks).
281   BranchProbability
282   getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const;
283 
284   // Return true if the callee of CB should be partially inlined with
285   // profit.
286   bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner,
287                            BlockFrequency WeightedOutliningRcost,
288                            OptimizationRemarkEmitter &ORE) const;
289 
290   // Try to inline DuplicateFunction (cloned from F with call to
291   // the OutlinedFunction into its callers. Return true
292   // if there is any successful inlining.
293   bool tryPartialInline(FunctionCloner &Cloner);
294 
295   // Compute the mapping from use site of DuplicationFunction to the enclosing
296   // BB's profile count.
297   void
298   computeCallsiteToProfCountMap(Function *DuplicateFunction,
299                                 DenseMap<User *, uint64_t> &SiteCountMap) const;
300 
301   bool isLimitReached() const {
302     return (MaxNumPartialInlining != -1 &&
303             NumPartialInlining >= MaxNumPartialInlining);
304   }
305 
306   static CallBase *getSupportedCallBase(User *U) {
307     if (isa<CallInst>(U) || isa<InvokeInst>(U))
308       return cast<CallBase>(U);
309     llvm_unreachable("All uses must be calls");
310     return nullptr;
311   }
312 
313   static CallBase *getOneCallSiteTo(Function &F) {
314     User *User = *F.user_begin();
315     return getSupportedCallBase(User);
316   }
317 
318   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const {
319     CallBase *CB = getOneCallSiteTo(F);
320     DebugLoc DLoc = CB->getDebugLoc();
321     BasicBlock *Block = CB->getParent();
322     return std::make_tuple(DLoc, Block);
323   }
324 
325   // Returns the costs associated with function outlining:
326   // - The first value is the non-weighted runtime cost for making the call
327   //   to the outlined function, including the addtional  setup cost in the
328   //    outlined function itself;
329   // - The second value is the estimated size of the new call sequence in
330   //   basic block Cloner.OutliningCallBB;
331   std::tuple<InstructionCost, InstructionCost>
332   computeOutliningCosts(FunctionCloner &Cloner) const;
333 
334   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
335   // approximate both the size and runtime cost (Note that in the current
336   // inline cost analysis, there is no clear distinction there either).
337   static InstructionCost computeBBInlineCost(BasicBlock *BB,
338                                              TargetTransformInfo *TTI);
339 
340   std::unique_ptr<FunctionOutliningInfo>
341   computeOutliningInfo(Function &F) const;
342 
343   std::unique_ptr<FunctionOutliningMultiRegionInfo>
344   computeOutliningColdRegionsInfo(Function &F,
345                                   OptimizationRemarkEmitter &ORE) const;
346 };
347 
348 struct PartialInlinerLegacyPass : public ModulePass {
349   static char ID; // Pass identification, replacement for typeid
350 
351   PartialInlinerLegacyPass() : ModulePass(ID) {
352     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
353   }
354 
355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.addRequired<AssumptionCacheTracker>();
357     AU.addRequired<ProfileSummaryInfoWrapperPass>();
358     AU.addRequired<TargetTransformInfoWrapperPass>();
359     AU.addRequired<TargetLibraryInfoWrapperPass>();
360   }
361 
362   bool runOnModule(Module &M) override {
363     if (skipModule(M))
364       return false;
365 
366     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
367     TargetTransformInfoWrapperPass *TTIWP =
368         &getAnalysis<TargetTransformInfoWrapperPass>();
369     ProfileSummaryInfo &PSI =
370         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
371 
372     auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & {
373       return ACT->getAssumptionCache(F);
374     };
375 
376     auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
377       return ACT->lookupAssumptionCache(F);
378     };
379 
380     auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & {
381       return TTIWP->getTTI(F);
382     };
383 
384     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
385       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
386     };
387 
388     return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
389                               GetTLI, PSI)
390         .run(M);
391   }
392 };
393 
394 } // end anonymous namespace
395 
396 std::unique_ptr<FunctionOutliningMultiRegionInfo>
397 PartialInlinerImpl::computeOutliningColdRegionsInfo(
398     Function &F, OptimizationRemarkEmitter &ORE) const {
399   BasicBlock *EntryBlock = &F.front();
400 
401   DominatorTree DT(F);
402   LoopInfo LI(DT);
403   BranchProbabilityInfo BPI(F, LI);
404   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
405   BlockFrequencyInfo *BFI;
406   if (!GetBFI) {
407     ScopedBFI.reset(new BlockFrequencyInfo(F, BPI, LI));
408     BFI = ScopedBFI.get();
409   } else
410     BFI = &(GetBFI(F));
411 
412   // Return if we don't have profiling information.
413   if (!PSI.hasInstrumentationProfile())
414     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
415 
416   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
417       std::make_unique<FunctionOutliningMultiRegionInfo>();
418 
419   auto IsSingleExit =
420       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
421     BasicBlock *ExitBlock = nullptr;
422     for (auto *Block : BlockList) {
423       for (BasicBlock *Succ : successors(Block)) {
424         if (!is_contained(BlockList, Succ)) {
425           if (ExitBlock) {
426             ORE.emit([&]() {
427               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
428                                               &Succ->front())
429                      << "Region dominated by "
430                      << ore::NV("Block", BlockList.front()->getName())
431                      << " has more than one region exit edge.";
432             });
433             return nullptr;
434           }
435 
436           ExitBlock = Block;
437         }
438       }
439     }
440     return ExitBlock;
441   };
442 
443   auto BBProfileCount = [BFI](BasicBlock *BB) {
444     return BFI->getBlockProfileCount(BB)
445                ? BFI->getBlockProfileCount(BB).getValue()
446                : 0;
447   };
448 
449   // Use the same computeBBInlineCost function to compute the cost savings of
450   // the outlining the candidate region.
451   TargetTransformInfo *FTTI = &GetTTI(F);
452   InstructionCost OverallFunctionCost = 0;
453   for (auto &BB : F)
454     OverallFunctionCost += computeBBInlineCost(&BB, FTTI);
455 
456   LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost
457                     << "\n";);
458 
459   InstructionCost MinOutlineRegionCost = OverallFunctionCost.map(
460       [&](auto Cost) { return Cost * MinRegionSizeRatio; });
461 
462   BranchProbability MinBranchProbability(
463       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
464       MinBlockCounterExecution);
465   bool ColdCandidateFound = false;
466   BasicBlock *CurrEntry = EntryBlock;
467   std::vector<BasicBlock *> DFS;
468   DenseMap<BasicBlock *, bool> VisitedMap;
469   DFS.push_back(CurrEntry);
470   VisitedMap[CurrEntry] = true;
471 
472   // Use Depth First Search on the basic blocks to find CFG edges that are
473   // considered cold.
474   // Cold regions considered must also have its inline cost compared to the
475   // overall inline cost of the original function.  The region is outlined only
476   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
477   // more.
478   while (!DFS.empty()) {
479     auto *ThisBB = DFS.back();
480     DFS.pop_back();
481     // Only consider regions with predecessor blocks that are considered
482     // not-cold (default: part of the top 99.99% of all block counters)
483     // AND greater than our minimum block execution count (default: 100).
484     if (PSI.isColdBlock(ThisBB, BFI) ||
485         BBProfileCount(ThisBB) < MinBlockCounterExecution)
486       continue;
487     for (auto SI = succ_begin(ThisBB); SI != succ_end(ThisBB); ++SI) {
488       if (VisitedMap[*SI])
489         continue;
490       VisitedMap[*SI] = true;
491       DFS.push_back(*SI);
492       // If branch isn't cold, we skip to the next one.
493       BranchProbability SuccProb = BPI.getEdgeProbability(ThisBB, *SI);
494       if (SuccProb > MinBranchProbability)
495         continue;
496 
497       LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->"
498                         << SI->getName()
499                         << "\nBranch Probability = " << SuccProb << "\n";);
500 
501       SmallVector<BasicBlock *, 8> DominateVector;
502       DT.getDescendants(*SI, DominateVector);
503       assert(!DominateVector.empty() &&
504              "SI should be reachable and have at least itself as descendant");
505 
506       // We can only outline single entry regions (for now).
507       if (!DominateVector.front()->hasNPredecessors(1)) {
508         LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName()
509                           << " doesn't have a single predecessor in the "
510                              "dominator tree\n";);
511         continue;
512       }
513 
514       BasicBlock *ExitBlock = nullptr;
515       // We can only outline single exit regions (for now).
516       if (!(ExitBlock = IsSingleExit(DominateVector))) {
517         LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName()
518                           << " doesn't have a unique successor\n";);
519         continue;
520       }
521 
522       InstructionCost OutlineRegionCost = 0;
523       for (auto *BB : DominateVector)
524         OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));
525 
526       LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost
527                         << "\n";);
528 
529       if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) {
530         ORE.emit([&]() {
531           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
532                                             &SI->front())
533                  << ore::NV("Callee", &F)
534                  << " inline cost-savings smaller than "
535                  << ore::NV("Cost", MinOutlineRegionCost);
536         });
537 
538         LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than "
539                           << MinOutlineRegionCost << "\n";);
540         continue;
541       }
542 
543       // For now, ignore blocks that belong to a SISE region that is a
544       // candidate for outlining.  In the future, we may want to look
545       // at inner regions because the outer region may have live-exit
546       // variables.
547       for (auto *BB : DominateVector)
548         VisitedMap[BB] = true;
549 
550       // ReturnBlock here means the block after the outline call
551       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
552       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
553           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
554       OutliningInfo->ORI.push_back(RegInfo);
555       LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: "
556                         << DominateVector.front()->getName() << "\n";);
557       ColdCandidateFound = true;
558       NumColdRegionsFound++;
559     }
560   }
561 
562   if (ColdCandidateFound)
563     return OutliningInfo;
564 
565   return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
566 }
567 
568 std::unique_ptr<FunctionOutliningInfo>
569 PartialInlinerImpl::computeOutliningInfo(Function &F) const {
570   BasicBlock *EntryBlock = &F.front();
571   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
572   if (!BR || BR->isUnconditional())
573     return std::unique_ptr<FunctionOutliningInfo>();
574 
575   // Returns true if Succ is BB's successor
576   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
577     return is_contained(successors(BB), Succ);
578   };
579 
580   auto IsReturnBlock = [](BasicBlock *BB) {
581     Instruction *TI = BB->getTerminator();
582     return isa<ReturnInst>(TI);
583   };
584 
585   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
586     if (IsReturnBlock(Succ1))
587       return std::make_tuple(Succ1, Succ2);
588     if (IsReturnBlock(Succ2))
589       return std::make_tuple(Succ2, Succ1);
590 
591     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
592   };
593 
594   // Detect a triangular shape:
595   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
596     if (IsSuccessor(Succ1, Succ2))
597       return std::make_tuple(Succ1, Succ2);
598     if (IsSuccessor(Succ2, Succ1))
599       return std::make_tuple(Succ2, Succ1);
600 
601     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
602   };
603 
604   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
605       std::make_unique<FunctionOutliningInfo>();
606 
607   BasicBlock *CurrEntry = EntryBlock;
608   bool CandidateFound = false;
609   do {
610     // The number of blocks to be inlined has already reached
611     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
612     // disables partial inlining for the function.
613     if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks)
614       break;
615 
616     if (succ_size(CurrEntry) != 2)
617       break;
618 
619     BasicBlock *Succ1 = *succ_begin(CurrEntry);
620     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
621 
622     BasicBlock *ReturnBlock, *NonReturnBlock;
623     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
624 
625     if (ReturnBlock) {
626       OutliningInfo->Entries.push_back(CurrEntry);
627       OutliningInfo->ReturnBlock = ReturnBlock;
628       OutliningInfo->NonReturnBlock = NonReturnBlock;
629       CandidateFound = true;
630       break;
631     }
632 
633     BasicBlock *CommSucc, *OtherSucc;
634     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
635 
636     if (!CommSucc)
637       break;
638 
639     OutliningInfo->Entries.push_back(CurrEntry);
640     CurrEntry = OtherSucc;
641   } while (true);
642 
643   if (!CandidateFound)
644     return std::unique_ptr<FunctionOutliningInfo>();
645 
646   // Do sanity check of the entries: threre should not
647   // be any successors (not in the entry set) other than
648   // {ReturnBlock, NonReturnBlock}
649   assert(OutliningInfo->Entries[0] == &F.front() &&
650          "Function Entry must be the first in Entries vector");
651   DenseSet<BasicBlock *> Entries;
652   for (BasicBlock *E : OutliningInfo->Entries)
653     Entries.insert(E);
654 
655   // Returns true of BB has Predecessor which is not
656   // in Entries set.
657   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
658     for (auto *Pred : predecessors(BB)) {
659       if (!Entries.count(Pred))
660         return true;
661     }
662     return false;
663   };
664   auto CheckAndNormalizeCandidate =
665       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
666         for (BasicBlock *E : OutliningInfo->Entries) {
667           for (auto *Succ : successors(E)) {
668             if (Entries.count(Succ))
669               continue;
670             if (Succ == OutliningInfo->ReturnBlock)
671               OutliningInfo->ReturnBlockPreds.push_back(E);
672             else if (Succ != OutliningInfo->NonReturnBlock)
673               return false;
674           }
675           // There should not be any outside incoming edges either:
676           if (HasNonEntryPred(E))
677             return false;
678         }
679         return true;
680       };
681 
682   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
683     return std::unique_ptr<FunctionOutliningInfo>();
684 
685   // Now further growing the candidate's inlining region by
686   // peeling off dominating blocks from the outlining region:
687   while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) {
688     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
689     if (succ_size(Cand) != 2)
690       break;
691 
692     if (HasNonEntryPred(Cand))
693       break;
694 
695     BasicBlock *Succ1 = *succ_begin(Cand);
696     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
697 
698     BasicBlock *ReturnBlock, *NonReturnBlock;
699     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
700     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
701       break;
702 
703     if (NonReturnBlock->getSinglePredecessor() != Cand)
704       break;
705 
706     // Now grow and update OutlininigInfo:
707     OutliningInfo->Entries.push_back(Cand);
708     OutliningInfo->NonReturnBlock = NonReturnBlock;
709     OutliningInfo->ReturnBlockPreds.push_back(Cand);
710     Entries.insert(Cand);
711   }
712 
713   return OutliningInfo;
714 }
715 
716 // Check if there is PGO data or user annotated branch data:
717 static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) {
718   if (F.hasProfileData())
719     return true;
720   // Now check if any of the entry block has MD_prof data:
721   for (auto *E : OI.Entries) {
722     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
723     if (!BR || BR->isUnconditional())
724       continue;
725     uint64_t T, F;
726     if (BR->extractProfMetadata(T, F))
727       return true;
728   }
729   return false;
730 }
731 
732 BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq(
733     FunctionCloner &Cloner) const {
734   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
735   auto EntryFreq =
736       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
737   auto OutliningCallFreq =
738       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
739   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
740   // we outlined any regions, so we may encounter situations where the
741   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
742   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency())
743     OutliningCallFreq = EntryFreq;
744 
745   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
746       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
747 
748   if (hasProfileData(*Cloner.OrigFunc, *Cloner.ClonedOI.get()))
749     return OutlineRegionRelFreq;
750 
751   // When profile data is not available, we need to be conservative in
752   // estimating the overall savings. Static branch prediction can usually
753   // guess the branch direction right (taken/non-taken), but the guessed
754   // branch probability is usually not biased enough. In case when the
755   // outlined region is predicted to be likely, its probability needs
756   // to be made higher (more biased) to not under-estimate the cost of
757   // function outlining. On the other hand, if the outlined region
758   // is predicted to be less likely, the predicted probablity is usually
759   // higher than the actual. For instance, the actual probability of the
760   // less likely target is only 5%, but the guessed probablity can be
761   // 40%. In the latter case, there is no need for further adjustement.
762   // FIXME: add an option for this.
763   if (OutlineRegionRelFreq < BranchProbability(45, 100))
764     return OutlineRegionRelFreq;
765 
766   OutlineRegionRelFreq = std::max(
767       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
768 
769   return OutlineRegionRelFreq;
770 }
771 
772 bool PartialInlinerImpl::shouldPartialInline(
773     CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost,
774     OptimizationRemarkEmitter &ORE) const {
775   using namespace ore;
776 
777   Function *Callee = CB.getCalledFunction();
778   assert(Callee == Cloner.ClonedFunc);
779 
780   if (SkipCostAnalysis)
781     return isInlineViable(*Callee).isSuccess();
782 
783   Function *Caller = CB.getCaller();
784   auto &CalleeTTI = GetTTI(*Callee);
785   bool RemarksEnabled =
786       Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
787           DEBUG_TYPE);
788   InlineCost IC =
789       getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache,
790                     GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr);
791 
792   if (IC.isAlways()) {
793     ORE.emit([&]() {
794       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB)
795              << NV("Callee", Cloner.OrigFunc)
796              << " should always be fully inlined, not partially";
797     });
798     return false;
799   }
800 
801   if (IC.isNever()) {
802     ORE.emit([&]() {
803       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB)
804              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
805              << NV("Caller", Caller)
806              << " because it should never be inlined (cost=never)";
807     });
808     return false;
809   }
810 
811   if (!IC) {
812     ORE.emit([&]() {
813       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB)
814              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
815              << NV("Caller", Caller) << " because too costly to inline (cost="
816              << NV("Cost", IC.getCost()) << ", threshold="
817              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
818     });
819     return false;
820   }
821   const DataLayout &DL = Caller->getParent()->getDataLayout();
822 
823   // The savings of eliminating the call:
824   int NonWeightedSavings = getCallsiteCost(CB, DL);
825   BlockFrequency NormWeightedSavings(NonWeightedSavings);
826 
827   // Weighted saving is smaller than weighted cost, return false
828   if (NormWeightedSavings < WeightedOutliningRcost) {
829     ORE.emit([&]() {
830       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
831                                         &CB)
832              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
833              << NV("Caller", Caller) << " runtime overhead (overhead="
834              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
835              << ", savings="
836              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
837              << ")"
838              << " of making the outlined call is too high";
839     });
840 
841     return false;
842   }
843 
844   ORE.emit([&]() {
845     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB)
846            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
847            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
848            << " (threshold="
849            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
850   });
851   return true;
852 }
853 
854 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
855 // For now use a simplified version. The returned 'InlineCost' will be used
856 // to esimate the size cost as well as runtime cost of the BB.
857 InstructionCost
858 PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB,
859                                         TargetTransformInfo *TTI) {
860   InstructionCost InlineCost = 0;
861   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
862   for (Instruction &I : BB->instructionsWithoutDebug()) {
863     // Skip free instructions.
864     switch (I.getOpcode()) {
865     case Instruction::BitCast:
866     case Instruction::PtrToInt:
867     case Instruction::IntToPtr:
868     case Instruction::Alloca:
869     case Instruction::PHI:
870       continue;
871     case Instruction::GetElementPtr:
872       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
873         continue;
874       break;
875     default:
876       break;
877     }
878 
879     if (I.isLifetimeStartOrEnd())
880       continue;
881 
882     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
883       Intrinsic::ID IID = II->getIntrinsicID();
884       SmallVector<Type *, 4> Tys;
885       FastMathFlags FMF;
886       for (Value *Val : II->args())
887         Tys.push_back(Val->getType());
888 
889       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
890         FMF = FPMO->getFastMathFlags();
891 
892       IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF);
893       InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency);
894       continue;
895     }
896 
897     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
898       InlineCost += getCallsiteCost(*CI, DL);
899       continue;
900     }
901 
902     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
903       InlineCost += getCallsiteCost(*II, DL);
904       continue;
905     }
906 
907     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
908       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
909       continue;
910     }
911     InlineCost += InlineConstants::InstrCost;
912   }
913 
914   return InlineCost;
915 }
916 
917 std::tuple<InstructionCost, InstructionCost>
918 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const {
919   InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
920   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
921     Function *OutlinedFunc = FuncBBPair.first;
922     BasicBlock* OutliningCallBB = FuncBBPair.second;
923     // Now compute the cost of the call sequence to the outlined function
924     // 'OutlinedFunction' in BB 'OutliningCallBB':
925     auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc);
926     OutliningFuncCallCost +=
927         computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI);
928 
929     // Now compute the cost of the extracted/outlined function itself:
930     for (BasicBlock &BB : *OutlinedFunc)
931       OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI);
932   }
933   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
934          "Outlined function cost should be no less than the outlined region");
935 
936   // The code extractor introduces a new root and exit stub blocks with
937   // additional unconditional branches. Those branches will be eliminated
938   // later with bb layout. The cost should be adjusted accordingly:
939   OutlinedFunctionCost -=
940       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
941 
942   InstructionCost OutliningRuntimeOverhead =
943       OutliningFuncCallCost +
944       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
945       ExtraOutliningPenalty.getValue();
946 
947   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
948 }
949 
950 // Create the callsite to profile count map which is
951 // used to update the original function's entry count,
952 // after the function is partially inlined into the callsite.
953 void PartialInlinerImpl::computeCallsiteToProfCountMap(
954     Function *DuplicateFunction,
955     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const {
956   std::vector<User *> Users(DuplicateFunction->user_begin(),
957                             DuplicateFunction->user_end());
958   Function *CurrentCaller = nullptr;
959   std::unique_ptr<BlockFrequencyInfo> TempBFI;
960   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
961 
962   auto ComputeCurrBFI = [&,this](Function *Caller) {
963       // For the old pass manager:
964       if (!GetBFI) {
965         DominatorTree DT(*Caller);
966         LoopInfo LI(DT);
967         BranchProbabilityInfo BPI(*Caller, LI);
968         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
969         CurrentCallerBFI = TempBFI.get();
970       } else {
971         // New pass manager:
972         CurrentCallerBFI = &(GetBFI(*Caller));
973       }
974   };
975 
976   for (User *User : Users) {
977     CallBase *CB = getSupportedCallBase(User);
978     Function *Caller = CB->getCaller();
979     if (CurrentCaller != Caller) {
980       CurrentCaller = Caller;
981       ComputeCurrBFI(Caller);
982     } else {
983       assert(CurrentCallerBFI && "CallerBFI is not set");
984     }
985     BasicBlock *CallBB = CB->getParent();
986     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
987     if (Count)
988       CallSiteToProfCountMap[User] = *Count;
989     else
990       CallSiteToProfCountMap[User] = 0;
991   }
992 }
993 
994 PartialInlinerImpl::FunctionCloner::FunctionCloner(
995     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
996     function_ref<AssumptionCache *(Function &)> LookupAC,
997     function_ref<TargetTransformInfo &(Function &)> GetTTI)
998     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
999   ClonedOI = std::make_unique<FunctionOutliningInfo>();
1000 
1001   // Clone the function, so that we can hack away on it.
1002   ValueToValueMapTy VMap;
1003   ClonedFunc = CloneFunction(F, VMap);
1004 
1005   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
1006   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
1007   for (BasicBlock *BB : OI->Entries)
1008     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
1009 
1010   for (BasicBlock *E : OI->ReturnBlockPreds) {
1011     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
1012     ClonedOI->ReturnBlockPreds.push_back(NewE);
1013   }
1014   // Go ahead and update all uses to the duplicate, so that we can just
1015   // use the inliner functionality when we're done hacking.
1016   F->replaceAllUsesWith(ClonedFunc);
1017 }
1018 
1019 PartialInlinerImpl::FunctionCloner::FunctionCloner(
1020     Function *F, FunctionOutliningMultiRegionInfo *OI,
1021     OptimizationRemarkEmitter &ORE,
1022     function_ref<AssumptionCache *(Function &)> LookupAC,
1023     function_ref<TargetTransformInfo &(Function &)> GetTTI)
1024     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
1025   ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>();
1026 
1027   // Clone the function, so that we can hack away on it.
1028   ValueToValueMapTy VMap;
1029   ClonedFunc = CloneFunction(F, VMap);
1030 
1031   // Go through all Outline Candidate Regions and update all BasicBlock
1032   // information.
1033   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1034        OI->ORI) {
1035     SmallVector<BasicBlock *, 8> Region;
1036     for (BasicBlock *BB : RegionInfo.Region)
1037       Region.push_back(cast<BasicBlock>(VMap[BB]));
1038 
1039     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1040     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1041     BasicBlock *NewReturnBlock = nullptr;
1042     if (RegionInfo.ReturnBlock)
1043       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1044     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1045         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1046     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1047   }
1048   // Go ahead and update all uses to the duplicate, so that we can just
1049   // use the inliner functionality when we're done hacking.
1050   F->replaceAllUsesWith(ClonedFunc);
1051 }
1052 
1053 void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const {
1054   auto GetFirstPHI = [](BasicBlock *BB) {
1055     BasicBlock::iterator I = BB->begin();
1056     PHINode *FirstPhi = nullptr;
1057     while (I != BB->end()) {
1058       PHINode *Phi = dyn_cast<PHINode>(I);
1059       if (!Phi)
1060         break;
1061       if (!FirstPhi) {
1062         FirstPhi = Phi;
1063         break;
1064       }
1065     }
1066     return FirstPhi;
1067   };
1068 
1069   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1070   // blocks.
1071   if (!ClonedOI)
1072     return;
1073 
1074   // Special hackery is needed with PHI nodes that have inputs from more than
1075   // one extracted block.  For simplicity, just split the PHIs into a two-level
1076   // sequence of PHIs, some of which will go in the extracted region, and some
1077   // of which will go outside.
1078   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1079   // only split block when necessary:
1080   PHINode *FirstPhi = GetFirstPHI(PreReturn);
1081   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1082 
1083   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1084     return;
1085 
1086   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1087     Value *CommonValue = PN->getIncomingValue(0);
1088     if (all_of(PN->incoming_values(),
1089                [&](Value *V) { return V == CommonValue; }))
1090       return CommonValue;
1091     return nullptr;
1092   };
1093 
1094   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1095       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1096   BasicBlock::iterator I = PreReturn->begin();
1097   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1098   SmallVector<Instruction *, 4> DeadPhis;
1099   while (I != PreReturn->end()) {
1100     PHINode *OldPhi = dyn_cast<PHINode>(I);
1101     if (!OldPhi)
1102       break;
1103 
1104     PHINode *RetPhi =
1105         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1106     OldPhi->replaceAllUsesWith(RetPhi);
1107     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1108 
1109     RetPhi->addIncoming(&*I, PreReturn);
1110     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1111       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1112       OldPhi->removeIncomingValue(E);
1113     }
1114 
1115     // After incoming values splitting, the old phi may become trivial.
1116     // Keeping the trivial phi can introduce definition inside the outline
1117     // region which is live-out, causing necessary overhead (load, store
1118     // arg passing etc).
1119     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1120       OldPhi->replaceAllUsesWith(OldPhiVal);
1121       DeadPhis.push_back(OldPhi);
1122     }
1123     ++I;
1124   }
1125   for (auto *DP : DeadPhis)
1126     DP->eraseFromParent();
1127 
1128   for (auto *E : ClonedOI->ReturnBlockPreds)
1129     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1130 }
1131 
1132 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1133 
1134   auto ComputeRegionCost =
1135       [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost {
1136     InstructionCost Cost = 0;
1137     for (BasicBlock* BB : Region)
1138       Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));
1139     return Cost;
1140   };
1141 
1142   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1143 
1144   if (ClonedOMRI->ORI.empty())
1145     return false;
1146 
1147   // The CodeExtractor needs a dominator tree.
1148   DominatorTree DT;
1149   DT.recalculate(*ClonedFunc);
1150 
1151   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1152   LoopInfo LI(DT);
1153   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1154   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1155 
1156   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
1157   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1158 
1159   SetVector<Value *> Inputs, Outputs, Sinks;
1160   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1161        ClonedOMRI->ORI) {
1162     InstructionCost CurrentOutlinedRegionCost =
1163         ComputeRegionCost(RegionInfo.Region);
1164 
1165     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1166                      ClonedFuncBFI.get(), &BPI,
1167                      LookupAC(*RegionInfo.EntryBlock->getParent()),
1168                      /* AllowVarargs */ false);
1169 
1170     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1171 
1172     LLVM_DEBUG({
1173       dbgs() << "inputs: " << Inputs.size() << "\n";
1174       dbgs() << "outputs: " << Outputs.size() << "\n";
1175       for (Value *value : Inputs)
1176         dbgs() << "value used in func: " << *value << "\n";
1177       for (Value *output : Outputs)
1178         dbgs() << "instr used in func: " << *output << "\n";
1179     });
1180 
1181     // Do not extract regions that have live exit variables.
1182     if (Outputs.size() > 0 && !ForceLiveExit)
1183       continue;
1184 
1185     if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) {
1186       CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc);
1187       BasicBlock *OutliningCallBB = OCS->getParent();
1188       assert(OutliningCallBB->getParent() == ClonedFunc);
1189       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1190       NumColdRegionsOutlined++;
1191       OutlinedRegionCost += CurrentOutlinedRegionCost;
1192 
1193       if (MarkOutlinedColdCC) {
1194         OutlinedFunc->setCallingConv(CallingConv::Cold);
1195         OCS->setCallingConv(CallingConv::Cold);
1196       }
1197     } else
1198       ORE.emit([&]() {
1199         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1200                                         &RegionInfo.Region.front()->front())
1201                << "Failed to extract region at block "
1202                << ore::NV("Block", RegionInfo.Region.front());
1203       });
1204   }
1205 
1206   return !OutlinedFunctions.empty();
1207 }
1208 
1209 Function *
1210 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1211   // Returns true if the block is to be partial inlined into the caller
1212   // (i.e. not to be extracted to the out of line function)
1213   auto ToBeInlined = [&, this](BasicBlock *BB) {
1214     return BB == ClonedOI->ReturnBlock ||
1215            llvm::is_contained(ClonedOI->Entries, BB);
1216   };
1217 
1218   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1219   // The CodeExtractor needs a dominator tree.
1220   DominatorTree DT;
1221   DT.recalculate(*ClonedFunc);
1222 
1223   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1224   LoopInfo LI(DT);
1225   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1226   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1227 
1228   // Gather up the blocks that we're going to extract.
1229   std::vector<BasicBlock *> ToExtract;
1230   auto *ClonedFuncTTI = &GetTTI(*ClonedFunc);
1231   ToExtract.push_back(ClonedOI->NonReturnBlock);
1232   OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost(
1233       ClonedOI->NonReturnBlock, ClonedFuncTTI);
1234   for (BasicBlock &BB : *ClonedFunc)
1235     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1236       ToExtract.push_back(&BB);
1237       // FIXME: the code extractor may hoist/sink more code
1238       // into the outlined function which may make the outlining
1239       // overhead (the difference of the outlined function cost
1240       // and OutliningRegionCost) look larger.
1241       OutlinedRegionCost += computeBBInlineCost(&BB, ClonedFuncTTI);
1242     }
1243 
1244   // Extract the body of the if.
1245   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1246   Function *OutlinedFunc =
1247       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1248                     ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1249                     /* AllowVarargs */ true)
1250           .extractCodeRegion(CEAC);
1251 
1252   if (OutlinedFunc) {
1253     BasicBlock *OutliningCallBB =
1254         PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc)->getParent();
1255     assert(OutliningCallBB->getParent() == ClonedFunc);
1256     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1257   } else
1258     ORE.emit([&]() {
1259       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1260                                       &ToExtract.front()->front())
1261              << "Failed to extract region at block "
1262              << ore::NV("Block", ToExtract.front());
1263     });
1264 
1265   return OutlinedFunc;
1266 }
1267 
1268 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1269   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1270   // users (function pointers, etc.) back to the original function.
1271   ClonedFunc->replaceAllUsesWith(OrigFunc);
1272   ClonedFunc->eraseFromParent();
1273   if (!IsFunctionInlined) {
1274     // Remove each function that was speculatively created if there is no
1275     // reference.
1276     for (auto FuncBBPair : OutlinedFunctions) {
1277       Function *Func = FuncBBPair.first;
1278       Func->eraseFromParent();
1279     }
1280   }
1281 }
1282 
1283 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) {
1284   if (F.hasAddressTaken())
1285     return {false, nullptr};
1286 
1287   // Let inliner handle it
1288   if (F.hasFnAttribute(Attribute::AlwaysInline))
1289     return {false, nullptr};
1290 
1291   if (F.hasFnAttribute(Attribute::NoInline))
1292     return {false, nullptr};
1293 
1294   if (PSI.isFunctionEntryCold(&F))
1295     return {false, nullptr};
1296 
1297   if (F.users().empty())
1298     return {false, nullptr};
1299 
1300   OptimizationRemarkEmitter ORE(&F);
1301 
1302   // Only try to outline cold regions if we have a profile summary, which
1303   // implies we have profiling information.
1304   if (PSI.hasProfileSummary() && F.hasProfileData() &&
1305       !DisableMultiRegionPartialInline) {
1306     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1307         computeOutliningColdRegionsInfo(F, ORE);
1308     if (OMRI) {
1309       FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI);
1310 
1311       LLVM_DEBUG({
1312         dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n";
1313         dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold()
1314                << "\n";
1315       });
1316 
1317       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1318 
1319       if (DidOutline) {
1320         LLVM_DEBUG({
1321           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1322           Cloner.ClonedFunc->print(dbgs());
1323           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1324         });
1325 
1326         if (tryPartialInline(Cloner))
1327           return {true, nullptr};
1328       }
1329     }
1330   }
1331 
1332   // Fall-thru to regular partial inlining if we:
1333   //    i) can't find any cold regions to outline, or
1334   //   ii) can't inline the outlined function anywhere.
1335   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1336   if (!OI)
1337     return {false, nullptr};
1338 
1339   FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI);
1340   Cloner.normalizeReturnBlock();
1341 
1342   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1343 
1344   if (!OutlinedFunction)
1345     return {false, nullptr};
1346 
1347   if (tryPartialInline(Cloner))
1348     return {true, OutlinedFunction};
1349 
1350   return {false, nullptr};
1351 }
1352 
1353 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1354   if (Cloner.OutlinedFunctions.empty())
1355     return false;
1356 
1357   int SizeCost = 0;
1358   BlockFrequency WeightedRcost;
1359   int NonWeightedRcost;
1360 
1361   auto OutliningCosts = computeOutliningCosts(Cloner);
1362   assert(std::get<0>(OutliningCosts).isValid() &&
1363          std::get<1>(OutliningCosts).isValid() && "Expected valid costs");
1364 
1365   SizeCost = *std::get<0>(OutliningCosts).getValue();
1366   NonWeightedRcost = *std::get<1>(OutliningCosts).getValue();
1367 
1368   // Only calculate RelativeToEntryFreq when we are doing single region
1369   // outlining.
1370   BranchProbability RelativeToEntryFreq;
1371   if (Cloner.ClonedOI)
1372     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1373   else
1374     // RelativeToEntryFreq doesn't make sense when we have more than one
1375     // outlined call because each call will have a different relative frequency
1376     // to the entry block.  We can consider using the average, but the
1377     // usefulness of that information is questionable. For now, assume we never
1378     // execute the calls to outlined functions.
1379     RelativeToEntryFreq = BranchProbability(0, 1);
1380 
1381   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1382 
1383   // The call sequence(s) to the outlined function(s) are larger than the sum of
1384   // the original outlined region size(s), it does not increase the chances of
1385   // inlining the function with outlining (The inliner uses the size increase to
1386   // model the cost of inlining a callee).
1387   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1388     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1389     DebugLoc DLoc;
1390     BasicBlock *Block;
1391     std::tie(DLoc, Block) = getOneDebugLoc(*Cloner.ClonedFunc);
1392     OrigFuncORE.emit([&]() {
1393       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1394                                         DLoc, Block)
1395              << ore::NV("Function", Cloner.OrigFunc)
1396              << " not partially inlined into callers (Original Size = "
1397              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1398              << ", Size of call sequence to outlined function = "
1399              << ore::NV("NewSize", SizeCost) << ")";
1400     });
1401     return false;
1402   }
1403 
1404   assert(Cloner.OrigFunc->users().empty() &&
1405          "F's users should all be replaced!");
1406 
1407   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1408                             Cloner.ClonedFunc->user_end());
1409 
1410   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1411   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1412   if (CalleeEntryCount)
1413     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1414 
1415   uint64_t CalleeEntryCountV =
1416       (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1417 
1418   bool AnyInline = false;
1419   for (User *User : Users) {
1420     CallBase *CB = getSupportedCallBase(User);
1421 
1422     if (isLimitReached())
1423       continue;
1424 
1425     OptimizationRemarkEmitter CallerORE(CB->getCaller());
1426     if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE))
1427       continue;
1428 
1429     // Construct remark before doing the inlining, as after successful inlining
1430     // the callsite is removed.
1431     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB);
1432     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1433        << ore::NV("Caller", CB->getCaller());
1434 
1435     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI);
1436     // We can only forward varargs when we outlined a single region, else we
1437     // bail on vararg functions.
1438     if (!InlineFunction(*CB, IFI, nullptr, true,
1439                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1440                                          : nullptr))
1441              .isSuccess())
1442       continue;
1443 
1444     CallerORE.emit(OR);
1445 
1446     // Now update the entry count:
1447     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1448       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1449       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1450     }
1451 
1452     AnyInline = true;
1453     NumPartialInlining++;
1454     // Update the stats
1455     if (Cloner.ClonedOI)
1456       NumPartialInlined++;
1457     else
1458       NumColdOutlinePartialInlined++;
1459   }
1460 
1461   if (AnyInline) {
1462     Cloner.IsFunctionInlined = true;
1463     if (CalleeEntryCount)
1464       Cloner.OrigFunc->setEntryCount(
1465           CalleeEntryCount.setCount(CalleeEntryCountV));
1466     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1467     OrigFuncORE.emit([&]() {
1468       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1469              << "Partially inlined into at least one caller";
1470     });
1471   }
1472 
1473   return AnyInline;
1474 }
1475 
1476 bool PartialInlinerImpl::run(Module &M) {
1477   if (DisablePartialInlining)
1478     return false;
1479 
1480   std::vector<Function *> Worklist;
1481   Worklist.reserve(M.size());
1482   for (Function &F : M)
1483     if (!F.use_empty() && !F.isDeclaration())
1484       Worklist.push_back(&F);
1485 
1486   bool Changed = false;
1487   while (!Worklist.empty()) {
1488     Function *CurrFunc = Worklist.back();
1489     Worklist.pop_back();
1490 
1491     if (CurrFunc->use_empty())
1492       continue;
1493 
1494     bool Recursive = false;
1495     for (User *U : CurrFunc->users())
1496       if (Instruction *I = dyn_cast<Instruction>(U))
1497         if (I->getParent()->getParent() == CurrFunc) {
1498           Recursive = true;
1499           break;
1500         }
1501     if (Recursive)
1502       continue;
1503 
1504     std::pair<bool, Function *> Result = unswitchFunction(*CurrFunc);
1505     if (Result.second)
1506       Worklist.push_back(Result.second);
1507     Changed |= Result.first;
1508   }
1509 
1510   return Changed;
1511 }
1512 
1513 char PartialInlinerLegacyPass::ID = 0;
1514 
1515 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1516                       "Partial Inliner", false, false)
1517 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1518 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1519 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1520 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1521 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1522                     "Partial Inliner", false, false)
1523 
1524 ModulePass *llvm::createPartialInliningPass() {
1525   return new PartialInlinerLegacyPass();
1526 }
1527 
1528 PreservedAnalyses PartialInlinerPass::run(Module &M,
1529                                           ModuleAnalysisManager &AM) {
1530   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1531 
1532   auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & {
1533     return FAM.getResult<AssumptionAnalysis>(F);
1534   };
1535 
1536   auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1537     return FAM.getCachedResult<AssumptionAnalysis>(F);
1538   };
1539 
1540   auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
1541     return FAM.getResult<BlockFrequencyAnalysis>(F);
1542   };
1543 
1544   auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
1545     return FAM.getResult<TargetIRAnalysis>(F);
1546   };
1547 
1548   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1549     return FAM.getResult<TargetLibraryAnalysis>(F);
1550   };
1551 
1552   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1553 
1554   if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
1555                          GetTLI, PSI, GetBFI)
1556           .run(M))
1557     return PreservedAnalyses::none();
1558   return PreservedAnalyses::all();
1559 }
1560