xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/PartialInlining.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/BlockFrequency.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include "llvm/Transforms/Utils/CodeExtractor.h"
55 #include "llvm/Transforms/Utils/ValueMapper.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <functional>
60 #include <iterator>
61 #include <memory>
62 #include <tuple>
63 #include <vector>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "partial-inlining"
68 
69 STATISTIC(NumPartialInlined,
70           "Number of callsites functions partially inlined into.");
71 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
72                                         "cold outlined regions were partially "
73                                         "inlined into its caller(s).");
74 STATISTIC(NumColdRegionsFound,
75            "Number of cold single entry/exit regions found.");
76 STATISTIC(NumColdRegionsOutlined,
77            "Number of cold single entry/exit regions outlined.");
78 
79 // Command line option to disable partial-inlining. The default is false:
80 static cl::opt<bool>
81     DisablePartialInlining("disable-partial-inlining", cl::init(false),
82                            cl::Hidden, cl::desc("Disable partial inlining"));
83 // Command line option to disable multi-region partial-inlining. The default is
84 // false:
85 static cl::opt<bool> DisableMultiRegionPartialInline(
86     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
87     cl::desc("Disable multi-region partial inlining"));
88 
89 // Command line option to force outlining in regions with live exit variables.
90 // The default is false:
91 static cl::opt<bool>
92     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
93                cl::desc("Force outline regions with live exits"));
94 
95 // Command line option to enable marking outline functions with Cold Calling
96 // Convention. The default is false:
97 static cl::opt<bool>
98     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
99                        cl::desc("Mark outline function calls with ColdCC"));
100 
101 #ifndef NDEBUG
102 // Command line option to debug partial-inlining. The default is none:
103 static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
104                                           cl::init(false), cl::Hidden,
105                                           cl::desc("Trace partial inlining."));
106 #endif
107 
108 // This is an option used by testing:
109 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
110                                       cl::init(false), cl::ZeroOrMore,
111                                       cl::ReallyHidden,
112                                       cl::desc("Skip Cost Analysis"));
113 // Used to determine if a cold region is worth outlining based on
114 // its inlining cost compared to the original function.  Default is set at 10%.
115 // ie. if the cold region reduces the inlining cost of the original function by
116 // at least 10%.
117 static cl::opt<float> MinRegionSizeRatio(
118     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
119     cl::desc("Minimum ratio comparing relative sizes of each "
120              "outline candidate and original function"));
121 // Used to tune the minimum number of execution counts needed in the predecessor
122 // block to the cold edge. ie. confidence interval.
123 static cl::opt<unsigned>
124     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
125                              cl::desc("Minimum block executions to consider "
126                                       "its BranchProbabilityInfo valid"));
127 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
128 // if the branch probability is 10% or less, then it is deemed as 'cold'.
129 static cl::opt<float> ColdBranchRatio(
130     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
131     cl::desc("Minimum BranchProbability to consider a region cold."));
132 
133 static cl::opt<unsigned> MaxNumInlineBlocks(
134     "max-num-inline-blocks", cl::init(5), cl::Hidden,
135     cl::desc("Max number of blocks to be partially inlined"));
136 
137 // Command line option to set the maximum number of partial inlining allowed
138 // for the module. The default value of -1 means no limit.
139 static cl::opt<int> MaxNumPartialInlining(
140     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
141     cl::desc("Max number of partial inlining. The default is unlimited"));
142 
143 // Used only when PGO or user annotated branch data is absent. It is
144 // the least value that is used to weigh the outline region. If BFI
145 // produces larger value, the BFI value will be used.
146 static cl::opt<int>
147     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
148                              cl::Hidden, cl::ZeroOrMore,
149                              cl::desc("Relative frequency of outline region to "
150                                       "the entry block"));
151 
152 static cl::opt<unsigned> ExtraOutliningPenalty(
153     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
154     cl::desc("A debug option to add additional penalty to the computed one."));
155 
156 namespace {
157 
158 struct FunctionOutliningInfo {
159   FunctionOutliningInfo() = default;
160 
161   // Returns the number of blocks to be inlined including all blocks
162   // in Entries and one return block.
163   unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
164 
165   // A set of blocks including the function entry that guard
166   // the region to be outlined.
167   SmallVector<BasicBlock *, 4> Entries;
168 
169   // The return block that is not included in the outlined region.
170   BasicBlock *ReturnBlock = nullptr;
171 
172   // The dominating block of the region to be outlined.
173   BasicBlock *NonReturnBlock = nullptr;
174 
175   // The set of blocks in Entries that that are predecessors to ReturnBlock
176   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
177 };
178 
179 struct FunctionOutliningMultiRegionInfo {
180   FunctionOutliningMultiRegionInfo()
181       : ORI() {}
182 
183   // Container for outline regions
184   struct OutlineRegionInfo {
185     OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
186                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
187                       BasicBlock *ReturnBlock)
188         : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
189           ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
190     SmallVector<BasicBlock *, 8> Region;
191     BasicBlock *EntryBlock;
192     BasicBlock *ExitBlock;
193     BasicBlock *ReturnBlock;
194   };
195 
196   SmallVector<OutlineRegionInfo, 4> ORI;
197 };
198 
199 struct PartialInlinerImpl {
200 
201   PartialInlinerImpl(
202       std::function<AssumptionCache &(Function &)> *GetAC,
203       function_ref<AssumptionCache *(Function &)> LookupAC,
204       std::function<TargetTransformInfo &(Function &)> *GTTI,
205       Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
206       ProfileSummaryInfo *ProfSI)
207       : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
208         GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
209 
210   bool run(Module &M);
211   // Main part of the transformation that calls helper functions to find
212   // outlining candidates, clone & outline the function, and attempt to
213   // partially inline the resulting function. Returns true if
214   // inlining was successful, false otherwise.  Also returns the outline
215   // function (only if we partially inlined early returns) as there is a
216   // possibility to further "peel" early return statements that were left in the
217   // outline function due to code size.
218   std::pair<bool, Function *> unswitchFunction(Function *F);
219 
220   // This class speculatively clones the function to be partial inlined.
221   // At the end of partial inlining, the remaining callsites to the cloned
222   // function that are not partially inlined will be fixed up to reference
223   // the original function, and the cloned function will be erased.
224   struct FunctionCloner {
225     // Two constructors, one for single region outlining, the other for
226     // multi-region outlining.
227     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
228                    OptimizationRemarkEmitter &ORE,
229                    function_ref<AssumptionCache *(Function &)> LookupAC);
230     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
231                    OptimizationRemarkEmitter &ORE,
232                    function_ref<AssumptionCache *(Function &)> LookupAC);
233     ~FunctionCloner();
234 
235     // Prepare for function outlining: making sure there is only
236     // one incoming edge from the extracted/outlined region to
237     // the return block.
238     void NormalizeReturnBlock();
239 
240     // Do function outlining for cold regions.
241     bool doMultiRegionFunctionOutlining();
242     // Do function outlining for region after early return block(s).
243     // NOTE: For vararg functions that do the vararg handling in the outlined
244     //       function, we temporarily generate IR that does not properly
245     //       forward varargs to the outlined function. Calling InlineFunction
246     //       will update calls to the outlined functions to properly forward
247     //       the varargs.
248     Function *doSingleRegionFunctionOutlining();
249 
250     Function *OrigFunc = nullptr;
251     Function *ClonedFunc = nullptr;
252 
253     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
254     // Keep track of Outlined Functions and the basic block they're called from.
255     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
256 
257     // ClonedFunc is inlined in one of its callers after function
258     // outlining.
259     bool IsFunctionInlined = false;
260     // The cost of the region to be outlined.
261     int OutlinedRegionCost = 0;
262     // ClonedOI is specific to outlining non-early return blocks.
263     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
264     // ClonedOMRI is specific to outlining cold regions.
265     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
266     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
267     OptimizationRemarkEmitter &ORE;
268     function_ref<AssumptionCache *(Function &)> LookupAC;
269   };
270 
271 private:
272   int NumPartialInlining = 0;
273   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
274   function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
275   std::function<TargetTransformInfo &(Function &)> *GetTTI;
276   Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
277   ProfileSummaryInfo *PSI;
278 
279   // Return the frequency of the OutlininingBB relative to F's entry point.
280   // The result is no larger than 1 and is represented using BP.
281   // (Note that the outlined region's 'head' block can only have incoming
282   // edges from the guarding entry blocks).
283   BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);
284 
285   // Return true if the callee of CS should be partially inlined with
286   // profit.
287   bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner,
288                            BlockFrequency WeightedOutliningRcost,
289                            OptimizationRemarkEmitter &ORE);
290 
291   // Try to inline DuplicateFunction (cloned from F with call to
292   // the OutlinedFunction into its callers. Return true
293   // if there is any successful inlining.
294   bool tryPartialInline(FunctionCloner &Cloner);
295 
296   // Compute the mapping from use site of DuplicationFunction to the enclosing
297   // BB's profile count.
298   void computeCallsiteToProfCountMap(Function *DuplicateFunction,
299                                      DenseMap<User *, uint64_t> &SiteCountMap);
300 
301   bool IsLimitReached() {
302     return (MaxNumPartialInlining != -1 &&
303             NumPartialInlining >= MaxNumPartialInlining);
304   }
305 
306   static CallSite getCallSite(User *U) {
307     CallSite CS;
308     if (CallInst *CI = dyn_cast<CallInst>(U))
309       CS = CallSite(CI);
310     else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
311       CS = CallSite(II);
312     else
313       llvm_unreachable("All uses must be calls");
314     return CS;
315   }
316 
317   static CallSite getOneCallSiteTo(Function *F) {
318     User *User = *F->user_begin();
319     return getCallSite(User);
320   }
321 
322   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
323     CallSite CS = getOneCallSiteTo(F);
324     DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
325     BasicBlock *Block = CS.getParent();
326     return std::make_tuple(DLoc, Block);
327   }
328 
329   // Returns the costs associated with function outlining:
330   // - The first value is the non-weighted runtime cost for making the call
331   //   to the outlined function, including the addtional  setup cost in the
332   //    outlined function itself;
333   // - The second value is the estimated size of the new call sequence in
334   //   basic block Cloner.OutliningCallBB;
335   std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);
336 
337   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
338   // approximate both the size and runtime cost (Note that in the current
339   // inline cost analysis, there is no clear distinction there either).
340   static int computeBBInlineCost(BasicBlock *BB);
341 
342   std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
343   std::unique_ptr<FunctionOutliningMultiRegionInfo>
344   computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
345 };
346 
347 struct PartialInlinerLegacyPass : public ModulePass {
348   static char ID; // Pass identification, replacement for typeid
349 
350   PartialInlinerLegacyPass() : ModulePass(ID) {
351     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
352   }
353 
354   void getAnalysisUsage(AnalysisUsage &AU) const override {
355     AU.addRequired<AssumptionCacheTracker>();
356     AU.addRequired<ProfileSummaryInfoWrapperPass>();
357     AU.addRequired<TargetTransformInfoWrapperPass>();
358   }
359 
360   bool runOnModule(Module &M) override {
361     if (skipModule(M))
362       return false;
363 
364     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
365     TargetTransformInfoWrapperPass *TTIWP =
366         &getAnalysis<TargetTransformInfoWrapperPass>();
367     ProfileSummaryInfo *PSI =
368         &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
369 
370     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
371         [&ACT](Function &F) -> AssumptionCache & {
372       return ACT->getAssumptionCache(F);
373     };
374 
375     auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
376       return ACT->lookupAssumptionCache(F);
377     };
378 
379     std::function<TargetTransformInfo &(Function &)> GetTTI =
380         [&TTIWP](Function &F) -> TargetTransformInfo & {
381       return TTIWP->getTTI(F);
382     };
383 
384     return PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache,
385                               &GetTTI, NoneType::None, PSI)
386         .run(M);
387   }
388 };
389 
390 } // end anonymous namespace
391 
392 std::unique_ptr<FunctionOutliningMultiRegionInfo>
393 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
394                                                     OptimizationRemarkEmitter &ORE) {
395   BasicBlock *EntryBlock = &F->front();
396 
397   DominatorTree DT(*F);
398   LoopInfo LI(DT);
399   BranchProbabilityInfo BPI(*F, LI);
400   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
401   BlockFrequencyInfo *BFI;
402   if (!GetBFI) {
403     ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
404     BFI = ScopedBFI.get();
405   } else
406     BFI = &(*GetBFI)(*F);
407 
408   // Return if we don't have profiling information.
409   if (!PSI->hasInstrumentationProfile())
410     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
411 
412   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
413       std::make_unique<FunctionOutliningMultiRegionInfo>();
414 
415   auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
416     BasicBlock *Dom = BlockList.front();
417     return BlockList.size() > 1 && Dom->hasNPredecessors(1);
418   };
419 
420   auto IsSingleExit =
421       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
422     BasicBlock *ExitBlock = nullptr;
423     for (auto *Block : BlockList) {
424       for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
425         if (!is_contained(BlockList, *SI)) {
426           if (ExitBlock) {
427             ORE.emit([&]() {
428               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
429                                               &SI->front())
430                      << "Region dominated by "
431                      << ore::NV("Block", BlockList.front()->getName())
432                      << " has more than one region exit edge.";
433             });
434             return nullptr;
435           } else
436             ExitBlock = Block;
437         }
438       }
439     }
440     return ExitBlock;
441   };
442 
443   auto BBProfileCount = [BFI](BasicBlock *BB) {
444     return BFI->getBlockProfileCount(BB)
445                ? BFI->getBlockProfileCount(BB).getValue()
446                : 0;
447   };
448 
449   // Use the same computeBBInlineCost function to compute the cost savings of
450   // the outlining the candidate region.
451   int OverallFunctionCost = 0;
452   for (auto &BB : *F)
453     OverallFunctionCost += computeBBInlineCost(&BB);
454 
455 #ifndef NDEBUG
456   if (TracePartialInlining)
457     dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
458 #endif
459   int MinOutlineRegionCost =
460       static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
461   BranchProbability MinBranchProbability(
462       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
463       MinBlockCounterExecution);
464   bool ColdCandidateFound = false;
465   BasicBlock *CurrEntry = EntryBlock;
466   std::vector<BasicBlock *> DFS;
467   DenseMap<BasicBlock *, bool> VisitedMap;
468   DFS.push_back(CurrEntry);
469   VisitedMap[CurrEntry] = true;
470   // Use Depth First Search on the basic blocks to find CFG edges that are
471   // considered cold.
472   // Cold regions considered must also have its inline cost compared to the
473   // overall inline cost of the original function.  The region is outlined only
474   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
475   // more.
476   while (!DFS.empty()) {
477     auto *thisBB = DFS.back();
478     DFS.pop_back();
479     // Only consider regions with predecessor blocks that are considered
480     // not-cold (default: part of the top 99.99% of all block counters)
481     // AND greater than our minimum block execution count (default: 100).
482     if (PSI->isColdBlock(thisBB, BFI) ||
483         BBProfileCount(thisBB) < MinBlockCounterExecution)
484       continue;
485     for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
486       if (VisitedMap[*SI])
487         continue;
488       VisitedMap[*SI] = true;
489       DFS.push_back(*SI);
490       // If branch isn't cold, we skip to the next one.
491       BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
492       if (SuccProb > MinBranchProbability)
493         continue;
494 #ifndef NDEBUG
495       if (TracePartialInlining) {
496         dbgs() << "Found cold edge: " << thisBB->getName() << "->"
497                << (*SI)->getName() << "\nBranch Probability = " << SuccProb
498                << "\n";
499       }
500 #endif
501       SmallVector<BasicBlock *, 8> DominateVector;
502       DT.getDescendants(*SI, DominateVector);
503       // We can only outline single entry regions (for now).
504       if (!IsSingleEntry(DominateVector))
505         continue;
506       BasicBlock *ExitBlock = nullptr;
507       // We can only outline single exit regions (for now).
508       if (!(ExitBlock = IsSingleExit(DominateVector)))
509         continue;
510       int OutlineRegionCost = 0;
511       for (auto *BB : DominateVector)
512         OutlineRegionCost += computeBBInlineCost(BB);
513 
514 #ifndef NDEBUG
515       if (TracePartialInlining)
516         dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
517 #endif
518 
519       if (OutlineRegionCost < MinOutlineRegionCost) {
520         ORE.emit([&]() {
521           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
522                                             &SI->front())
523                  << ore::NV("Callee", F) << " inline cost-savings smaller than "
524                  << ore::NV("Cost", MinOutlineRegionCost);
525         });
526         continue;
527       }
528       // For now, ignore blocks that belong to a SISE region that is a
529       // candidate for outlining.  In the future, we may want to look
530       // at inner regions because the outer region may have live-exit
531       // variables.
532       for (auto *BB : DominateVector)
533         VisitedMap[BB] = true;
534       // ReturnBlock here means the block after the outline call
535       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
536       // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
537       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
538           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
539       OutliningInfo->ORI.push_back(RegInfo);
540 #ifndef NDEBUG
541       if (TracePartialInlining) {
542         dbgs() << "Found Cold Candidate starting at block: "
543                << DominateVector.front()->getName() << "\n";
544       }
545 #endif
546       ColdCandidateFound = true;
547       NumColdRegionsFound++;
548     }
549   }
550   if (ColdCandidateFound)
551     return OutliningInfo;
552   else
553     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
554 }
555 
556 std::unique_ptr<FunctionOutliningInfo>
557 PartialInlinerImpl::computeOutliningInfo(Function *F) {
558   BasicBlock *EntryBlock = &F->front();
559   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
560   if (!BR || BR->isUnconditional())
561     return std::unique_ptr<FunctionOutliningInfo>();
562 
563   // Returns true if Succ is BB's successor
564   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
565     return is_contained(successors(BB), Succ);
566   };
567 
568   auto IsReturnBlock = [](BasicBlock *BB) {
569     Instruction *TI = BB->getTerminator();
570     return isa<ReturnInst>(TI);
571   };
572 
573   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
574     if (IsReturnBlock(Succ1))
575       return std::make_tuple(Succ1, Succ2);
576     if (IsReturnBlock(Succ2))
577       return std::make_tuple(Succ2, Succ1);
578 
579     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
580   };
581 
582   // Detect a triangular shape:
583   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
584     if (IsSuccessor(Succ1, Succ2))
585       return std::make_tuple(Succ1, Succ2);
586     if (IsSuccessor(Succ2, Succ1))
587       return std::make_tuple(Succ2, Succ1);
588 
589     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
590   };
591 
592   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
593       std::make_unique<FunctionOutliningInfo>();
594 
595   BasicBlock *CurrEntry = EntryBlock;
596   bool CandidateFound = false;
597   do {
598     // The number of blocks to be inlined has already reached
599     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
600     // disables partial inlining for the function.
601     if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
602       break;
603 
604     if (succ_size(CurrEntry) != 2)
605       break;
606 
607     BasicBlock *Succ1 = *succ_begin(CurrEntry);
608     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
609 
610     BasicBlock *ReturnBlock, *NonReturnBlock;
611     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
612 
613     if (ReturnBlock) {
614       OutliningInfo->Entries.push_back(CurrEntry);
615       OutliningInfo->ReturnBlock = ReturnBlock;
616       OutliningInfo->NonReturnBlock = NonReturnBlock;
617       CandidateFound = true;
618       break;
619     }
620 
621     BasicBlock *CommSucc;
622     BasicBlock *OtherSucc;
623     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
624 
625     if (!CommSucc)
626       break;
627 
628     OutliningInfo->Entries.push_back(CurrEntry);
629     CurrEntry = OtherSucc;
630   } while (true);
631 
632   if (!CandidateFound)
633     return std::unique_ptr<FunctionOutliningInfo>();
634 
635   // Do sanity check of the entries: threre should not
636   // be any successors (not in the entry set) other than
637   // {ReturnBlock, NonReturnBlock}
638   assert(OutliningInfo->Entries[0] == &F->front() &&
639          "Function Entry must be the first in Entries vector");
640   DenseSet<BasicBlock *> Entries;
641   for (BasicBlock *E : OutliningInfo->Entries)
642     Entries.insert(E);
643 
644   // Returns true of BB has Predecessor which is not
645   // in Entries set.
646   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
647     for (auto Pred : predecessors(BB)) {
648       if (!Entries.count(Pred))
649         return true;
650     }
651     return false;
652   };
653   auto CheckAndNormalizeCandidate =
654       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
655         for (BasicBlock *E : OutliningInfo->Entries) {
656           for (auto Succ : successors(E)) {
657             if (Entries.count(Succ))
658               continue;
659             if (Succ == OutliningInfo->ReturnBlock)
660               OutliningInfo->ReturnBlockPreds.push_back(E);
661             else if (Succ != OutliningInfo->NonReturnBlock)
662               return false;
663           }
664           // There should not be any outside incoming edges either:
665           if (HasNonEntryPred(E))
666             return false;
667         }
668         return true;
669       };
670 
671   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
672     return std::unique_ptr<FunctionOutliningInfo>();
673 
674   // Now further growing the candidate's inlining region by
675   // peeling off dominating blocks from the outlining region:
676   while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
677     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
678     if (succ_size(Cand) != 2)
679       break;
680 
681     if (HasNonEntryPred(Cand))
682       break;
683 
684     BasicBlock *Succ1 = *succ_begin(Cand);
685     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
686 
687     BasicBlock *ReturnBlock, *NonReturnBlock;
688     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
689     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
690       break;
691 
692     if (NonReturnBlock->getSinglePredecessor() != Cand)
693       break;
694 
695     // Now grow and update OutlininigInfo:
696     OutliningInfo->Entries.push_back(Cand);
697     OutliningInfo->NonReturnBlock = NonReturnBlock;
698     OutliningInfo->ReturnBlockPreds.push_back(Cand);
699     Entries.insert(Cand);
700   }
701 
702   return OutliningInfo;
703 }
704 
705 // Check if there is PGO data or user annotated branch data:
706 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
707   if (F->hasProfileData())
708     return true;
709   // Now check if any of the entry block has MD_prof data:
710   for (auto *E : OI->Entries) {
711     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
712     if (!BR || BR->isUnconditional())
713       continue;
714     uint64_t T, F;
715     if (BR->extractProfMetadata(T, F))
716       return true;
717   }
718   return false;
719 }
720 
721 BranchProbability
722 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
723   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
724   auto EntryFreq =
725       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
726   auto OutliningCallFreq =
727       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
728   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
729   // we outlined any regions, so we may encounter situations where the
730   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
731   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
732     OutliningCallFreq = EntryFreq;
733   }
734   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
735       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
736 
737   if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
738     return OutlineRegionRelFreq;
739 
740   // When profile data is not available, we need to be conservative in
741   // estimating the overall savings. Static branch prediction can usually
742   // guess the branch direction right (taken/non-taken), but the guessed
743   // branch probability is usually not biased enough. In case when the
744   // outlined region is predicted to be likely, its probability needs
745   // to be made higher (more biased) to not under-estimate the cost of
746   // function outlining. On the other hand, if the outlined region
747   // is predicted to be less likely, the predicted probablity is usually
748   // higher than the actual. For instance, the actual probability of the
749   // less likely target is only 5%, but the guessed probablity can be
750   // 40%. In the latter case, there is no need for further adjustement.
751   // FIXME: add an option for this.
752   if (OutlineRegionRelFreq < BranchProbability(45, 100))
753     return OutlineRegionRelFreq;
754 
755   OutlineRegionRelFreq = std::max(
756       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
757 
758   return OutlineRegionRelFreq;
759 }
760 
761 bool PartialInlinerImpl::shouldPartialInline(
762     CallSite CS, FunctionCloner &Cloner,
763     BlockFrequency WeightedOutliningRcost,
764     OptimizationRemarkEmitter &ORE) {
765   using namespace ore;
766 
767   Instruction *Call = CS.getInstruction();
768   Function *Callee = CS.getCalledFunction();
769   assert(Callee == Cloner.ClonedFunc);
770 
771   if (SkipCostAnalysis)
772     return isInlineViable(*Callee);
773 
774   Function *Caller = CS.getCaller();
775   auto &CalleeTTI = (*GetTTI)(*Callee);
776   bool RemarksEnabled =
777       Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
778           DEBUG_TYPE);
779   assert(Call && "invalid callsite for partial inline");
780   InlineCost IC = getInlineCost(cast<CallBase>(*Call), getInlineParams(),
781                                 CalleeTTI, *GetAssumptionCache, GetBFI, PSI,
782                                 RemarksEnabled ? &ORE : nullptr);
783 
784   if (IC.isAlways()) {
785     ORE.emit([&]() {
786       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
787              << NV("Callee", Cloner.OrigFunc)
788              << " should always be fully inlined, not partially";
789     });
790     return false;
791   }
792 
793   if (IC.isNever()) {
794     ORE.emit([&]() {
795       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
796              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
797              << NV("Caller", Caller)
798              << " because it should never be inlined (cost=never)";
799     });
800     return false;
801   }
802 
803   if (!IC) {
804     ORE.emit([&]() {
805       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
806              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
807              << NV("Caller", Caller) << " because too costly to inline (cost="
808              << NV("Cost", IC.getCost()) << ", threshold="
809              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
810     });
811     return false;
812   }
813   const DataLayout &DL = Caller->getParent()->getDataLayout();
814 
815   // The savings of eliminating the call:
816   int NonWeightedSavings = getCallsiteCost(cast<CallBase>(*Call), DL);
817   BlockFrequency NormWeightedSavings(NonWeightedSavings);
818 
819   // Weighted saving is smaller than weighted cost, return false
820   if (NormWeightedSavings < WeightedOutliningRcost) {
821     ORE.emit([&]() {
822       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
823                                         Call)
824              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
825              << NV("Caller", Caller) << " runtime overhead (overhead="
826              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
827              << ", savings="
828              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
829              << ")"
830              << " of making the outlined call is too high";
831     });
832 
833     return false;
834   }
835 
836   ORE.emit([&]() {
837     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
838            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
839            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
840            << " (threshold="
841            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
842   });
843   return true;
844 }
845 
846 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
847 // For now use a simplified version. The returned 'InlineCost' will be used
848 // to esimate the size cost as well as runtime cost of the BB.
849 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
850   int InlineCost = 0;
851   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
852   for (Instruction &I : BB->instructionsWithoutDebug()) {
853     // Skip free instructions.
854     switch (I.getOpcode()) {
855     case Instruction::BitCast:
856     case Instruction::PtrToInt:
857     case Instruction::IntToPtr:
858     case Instruction::Alloca:
859     case Instruction::PHI:
860       continue;
861     case Instruction::GetElementPtr:
862       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
863         continue;
864       break;
865     default:
866       break;
867     }
868 
869     if (I.isLifetimeStartOrEnd())
870       continue;
871 
872     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
873       InlineCost += getCallsiteCost(*CI, DL);
874       continue;
875     }
876 
877     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
878       InlineCost += getCallsiteCost(*II, DL);
879       continue;
880     }
881 
882     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
883       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
884       continue;
885     }
886     InlineCost += InlineConstants::InstrCost;
887   }
888   return InlineCost;
889 }
890 
891 std::tuple<int, int>
892 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
893   int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
894   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
895     Function *OutlinedFunc = FuncBBPair.first;
896     BasicBlock* OutliningCallBB = FuncBBPair.second;
897     // Now compute the cost of the call sequence to the outlined function
898     // 'OutlinedFunction' in BB 'OutliningCallBB':
899     OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB);
900 
901     // Now compute the cost of the extracted/outlined function itself:
902     for (BasicBlock &BB : *OutlinedFunc)
903       OutlinedFunctionCost += computeBBInlineCost(&BB);
904   }
905   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
906          "Outlined function cost should be no less than the outlined region");
907 
908   // The code extractor introduces a new root and exit stub blocks with
909   // additional unconditional branches. Those branches will be eliminated
910   // later with bb layout. The cost should be adjusted accordingly:
911   OutlinedFunctionCost -=
912       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
913 
914   int OutliningRuntimeOverhead =
915       OutliningFuncCallCost +
916       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
917       ExtraOutliningPenalty;
918 
919   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
920 }
921 
922 // Create the callsite to profile count map which is
923 // used to update the original function's entry count,
924 // after the function is partially inlined into the callsite.
925 void PartialInlinerImpl::computeCallsiteToProfCountMap(
926     Function *DuplicateFunction,
927     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
928   std::vector<User *> Users(DuplicateFunction->user_begin(),
929                             DuplicateFunction->user_end());
930   Function *CurrentCaller = nullptr;
931   std::unique_ptr<BlockFrequencyInfo> TempBFI;
932   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
933 
934   auto ComputeCurrBFI = [&,this](Function *Caller) {
935       // For the old pass manager:
936       if (!GetBFI) {
937         DominatorTree DT(*Caller);
938         LoopInfo LI(DT);
939         BranchProbabilityInfo BPI(*Caller, LI);
940         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
941         CurrentCallerBFI = TempBFI.get();
942       } else {
943         // New pass manager:
944         CurrentCallerBFI = &(*GetBFI)(*Caller);
945       }
946   };
947 
948   for (User *User : Users) {
949     CallSite CS = getCallSite(User);
950     Function *Caller = CS.getCaller();
951     if (CurrentCaller != Caller) {
952       CurrentCaller = Caller;
953       ComputeCurrBFI(Caller);
954     } else {
955       assert(CurrentCallerBFI && "CallerBFI is not set");
956     }
957     BasicBlock *CallBB = CS.getInstruction()->getParent();
958     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
959     if (Count)
960       CallSiteToProfCountMap[User] = *Count;
961     else
962       CallSiteToProfCountMap[User] = 0;
963   }
964 }
965 
966 PartialInlinerImpl::FunctionCloner::FunctionCloner(
967     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
968     function_ref<AssumptionCache *(Function &)> LookupAC)
969     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
970   ClonedOI = std::make_unique<FunctionOutliningInfo>();
971 
972   // Clone the function, so that we can hack away on it.
973   ValueToValueMapTy VMap;
974   ClonedFunc = CloneFunction(F, VMap);
975 
976   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
977   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
978   for (BasicBlock *BB : OI->Entries) {
979     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
980   }
981   for (BasicBlock *E : OI->ReturnBlockPreds) {
982     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
983     ClonedOI->ReturnBlockPreds.push_back(NewE);
984   }
985   // Go ahead and update all uses to the duplicate, so that we can just
986   // use the inliner functionality when we're done hacking.
987   F->replaceAllUsesWith(ClonedFunc);
988 }
989 
990 PartialInlinerImpl::FunctionCloner::FunctionCloner(
991     Function *F, FunctionOutliningMultiRegionInfo *OI,
992     OptimizationRemarkEmitter &ORE,
993     function_ref<AssumptionCache *(Function &)> LookupAC)
994     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
995   ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>();
996 
997   // Clone the function, so that we can hack away on it.
998   ValueToValueMapTy VMap;
999   ClonedFunc = CloneFunction(F, VMap);
1000 
1001   // Go through all Outline Candidate Regions and update all BasicBlock
1002   // information.
1003   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1004        OI->ORI) {
1005     SmallVector<BasicBlock *, 8> Region;
1006     for (BasicBlock *BB : RegionInfo.Region) {
1007       Region.push_back(cast<BasicBlock>(VMap[BB]));
1008     }
1009     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1010     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1011     BasicBlock *NewReturnBlock = nullptr;
1012     if (RegionInfo.ReturnBlock)
1013       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1014     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1015         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1016     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1017   }
1018   // Go ahead and update all uses to the duplicate, so that we can just
1019   // use the inliner functionality when we're done hacking.
1020   F->replaceAllUsesWith(ClonedFunc);
1021 }
1022 
1023 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
1024   auto getFirstPHI = [](BasicBlock *BB) {
1025     BasicBlock::iterator I = BB->begin();
1026     PHINode *FirstPhi = nullptr;
1027     while (I != BB->end()) {
1028       PHINode *Phi = dyn_cast<PHINode>(I);
1029       if (!Phi)
1030         break;
1031       if (!FirstPhi) {
1032         FirstPhi = Phi;
1033         break;
1034       }
1035     }
1036     return FirstPhi;
1037   };
1038 
1039   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1040   // blocks.
1041   if (!ClonedOI)
1042     return;
1043 
1044   // Special hackery is needed with PHI nodes that have inputs from more than
1045   // one extracted block.  For simplicity, just split the PHIs into a two-level
1046   // sequence of PHIs, some of which will go in the extracted region, and some
1047   // of which will go outside.
1048   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1049   // only split block when necessary:
1050   PHINode *FirstPhi = getFirstPHI(PreReturn);
1051   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1052 
1053   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1054     return;
1055 
1056   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1057     Value *CommonValue = PN->getIncomingValue(0);
1058     if (all_of(PN->incoming_values(),
1059                [&](Value *V) { return V == CommonValue; }))
1060       return CommonValue;
1061     return nullptr;
1062   };
1063 
1064   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1065       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1066   BasicBlock::iterator I = PreReturn->begin();
1067   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1068   SmallVector<Instruction *, 4> DeadPhis;
1069   while (I != PreReturn->end()) {
1070     PHINode *OldPhi = dyn_cast<PHINode>(I);
1071     if (!OldPhi)
1072       break;
1073 
1074     PHINode *RetPhi =
1075         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1076     OldPhi->replaceAllUsesWith(RetPhi);
1077     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1078 
1079     RetPhi->addIncoming(&*I, PreReturn);
1080     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1081       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1082       OldPhi->removeIncomingValue(E);
1083     }
1084 
1085     // After incoming values splitting, the old phi may become trivial.
1086     // Keeping the trivial phi can introduce definition inside the outline
1087     // region which is live-out, causing necessary overhead (load, store
1088     // arg passing etc).
1089     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1090       OldPhi->replaceAllUsesWith(OldPhiVal);
1091       DeadPhis.push_back(OldPhi);
1092     }
1093     ++I;
1094   }
1095   for (auto *DP : DeadPhis)
1096     DP->eraseFromParent();
1097 
1098   for (auto E : ClonedOI->ReturnBlockPreds) {
1099     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1100   }
1101 }
1102 
1103 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1104 
1105   auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) {
1106     int Cost = 0;
1107     for (BasicBlock* BB : Region)
1108       Cost += computeBBInlineCost(BB);
1109     return Cost;
1110   };
1111 
1112   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1113 
1114   if (ClonedOMRI->ORI.empty())
1115     return false;
1116 
1117   // The CodeExtractor needs a dominator tree.
1118   DominatorTree DT;
1119   DT.recalculate(*ClonedFunc);
1120 
1121   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1122   LoopInfo LI(DT);
1123   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1124   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1125 
1126   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
1127   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1128 
1129   SetVector<Value *> Inputs, Outputs, Sinks;
1130   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1131        ClonedOMRI->ORI) {
1132     int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);
1133 
1134     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1135                      ClonedFuncBFI.get(), &BPI,
1136                      LookupAC(*RegionInfo.EntryBlock->getParent()),
1137                      /* AllowVarargs */ false);
1138 
1139     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1140 
1141 #ifndef NDEBUG
1142     if (TracePartialInlining) {
1143       dbgs() << "inputs: " << Inputs.size() << "\n";
1144       dbgs() << "outputs: " << Outputs.size() << "\n";
1145       for (Value *value : Inputs)
1146         dbgs() << "value used in func: " << *value << "\n";
1147       for (Value *output : Outputs)
1148         dbgs() << "instr used in func: " << *output << "\n";
1149     }
1150 #endif
1151     // Do not extract regions that have live exit variables.
1152     if (Outputs.size() > 0 && !ForceLiveExit)
1153       continue;
1154 
1155     Function *OutlinedFunc = CE.extractCodeRegion(CEAC);
1156 
1157     if (OutlinedFunc) {
1158       CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
1159       BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent();
1160       assert(OutliningCallBB->getParent() == ClonedFunc);
1161       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1162       NumColdRegionsOutlined++;
1163       OutlinedRegionCost += CurrentOutlinedRegionCost;
1164 
1165       if (MarkOutlinedColdCC) {
1166         OutlinedFunc->setCallingConv(CallingConv::Cold);
1167         OCS.setCallingConv(CallingConv::Cold);
1168       }
1169     } else
1170       ORE.emit([&]() {
1171         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1172                                         &RegionInfo.Region.front()->front())
1173                << "Failed to extract region at block "
1174                << ore::NV("Block", RegionInfo.Region.front());
1175       });
1176   }
1177 
1178   return !OutlinedFunctions.empty();
1179 }
1180 
1181 Function *
1182 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1183   // Returns true if the block is to be partial inlined into the caller
1184   // (i.e. not to be extracted to the out of line function)
1185   auto ToBeInlined = [&, this](BasicBlock *BB) {
1186     return BB == ClonedOI->ReturnBlock ||
1187            (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) !=
1188             ClonedOI->Entries.end());
1189   };
1190 
1191   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1192   // The CodeExtractor needs a dominator tree.
1193   DominatorTree DT;
1194   DT.recalculate(*ClonedFunc);
1195 
1196   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1197   LoopInfo LI(DT);
1198   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1199   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1200 
1201   // Gather up the blocks that we're going to extract.
1202   std::vector<BasicBlock *> ToExtract;
1203   ToExtract.push_back(ClonedOI->NonReturnBlock);
1204   OutlinedRegionCost +=
1205       PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock);
1206   for (BasicBlock &BB : *ClonedFunc)
1207     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1208       ToExtract.push_back(&BB);
1209       // FIXME: the code extractor may hoist/sink more code
1210       // into the outlined function which may make the outlining
1211       // overhead (the difference of the outlined function cost
1212       // and OutliningRegionCost) look larger.
1213       OutlinedRegionCost += computeBBInlineCost(&BB);
1214     }
1215 
1216   // Extract the body of the if.
1217   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1218   Function *OutlinedFunc =
1219       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1220                     ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1221                     /* AllowVarargs */ true)
1222           .extractCodeRegion(CEAC);
1223 
1224   if (OutlinedFunc) {
1225     BasicBlock *OutliningCallBB =
1226         PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
1227             .getInstruction()
1228             ->getParent();
1229     assert(OutliningCallBB->getParent() == ClonedFunc);
1230     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1231   } else
1232     ORE.emit([&]() {
1233       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1234                                       &ToExtract.front()->front())
1235              << "Failed to extract region at block "
1236              << ore::NV("Block", ToExtract.front());
1237     });
1238 
1239   return OutlinedFunc;
1240 }
1241 
1242 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1243   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1244   // users (function pointers, etc.) back to the original function.
1245   ClonedFunc->replaceAllUsesWith(OrigFunc);
1246   ClonedFunc->eraseFromParent();
1247   if (!IsFunctionInlined) {
1248     // Remove each function that was speculatively created if there is no
1249     // reference.
1250     for (auto FuncBBPair : OutlinedFunctions) {
1251       Function *Func = FuncBBPair.first;
1252       Func->eraseFromParent();
1253     }
1254   }
1255 }
1256 
1257 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {
1258 
1259   if (F->hasAddressTaken())
1260     return {false, nullptr};
1261 
1262   // Let inliner handle it
1263   if (F->hasFnAttribute(Attribute::AlwaysInline))
1264     return {false, nullptr};
1265 
1266   if (F->hasFnAttribute(Attribute::NoInline))
1267     return {false, nullptr};
1268 
1269   if (PSI->isFunctionEntryCold(F))
1270     return {false, nullptr};
1271 
1272   if (F->users().empty())
1273     return {false, nullptr};
1274 
1275   OptimizationRemarkEmitter ORE(F);
1276 
1277   // Only try to outline cold regions if we have a profile summary, which
1278   // implies we have profiling information.
1279   if (PSI->hasProfileSummary() && F->hasProfileData() &&
1280       !DisableMultiRegionPartialInline) {
1281     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1282         computeOutliningColdRegionsInfo(F, ORE);
1283     if (OMRI) {
1284       FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache);
1285 
1286 #ifndef NDEBUG
1287       if (TracePartialInlining) {
1288         dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n";
1289         dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold()
1290                << "\n";
1291       }
1292 #endif
1293       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1294 
1295       if (DidOutline) {
1296 #ifndef NDEBUG
1297         if (TracePartialInlining) {
1298           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1299           Cloner.ClonedFunc->print(dbgs());
1300           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1301         }
1302 #endif
1303 
1304         if (tryPartialInline(Cloner))
1305           return {true, nullptr};
1306       }
1307     }
1308   }
1309 
1310   // Fall-thru to regular partial inlining if we:
1311   //    i) can't find any cold regions to outline, or
1312   //   ii) can't inline the outlined function anywhere.
1313   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1314   if (!OI)
1315     return {false, nullptr};
1316 
1317   FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache);
1318   Cloner.NormalizeReturnBlock();
1319 
1320   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1321 
1322   if (!OutlinedFunction)
1323     return {false, nullptr};
1324 
1325   bool AnyInline = tryPartialInline(Cloner);
1326 
1327   if (AnyInline)
1328     return {true, OutlinedFunction};
1329 
1330   return {false, nullptr};
1331 }
1332 
1333 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1334   if (Cloner.OutlinedFunctions.empty())
1335     return false;
1336 
1337   int SizeCost = 0;
1338   BlockFrequency WeightedRcost;
1339   int NonWeightedRcost;
1340   std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);
1341 
1342   // Only calculate RelativeToEntryFreq when we are doing single region
1343   // outlining.
1344   BranchProbability RelativeToEntryFreq;
1345   if (Cloner.ClonedOI) {
1346     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1347   } else
1348     // RelativeToEntryFreq doesn't make sense when we have more than one
1349     // outlined call because each call will have a different relative frequency
1350     // to the entry block.  We can consider using the average, but the
1351     // usefulness of that information is questionable. For now, assume we never
1352     // execute the calls to outlined functions.
1353     RelativeToEntryFreq = BranchProbability(0, 1);
1354 
1355   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1356 
1357   // The call sequence(s) to the outlined function(s) are larger than the sum of
1358   // the original outlined region size(s), it does not increase the chances of
1359   // inlining the function with outlining (The inliner uses the size increase to
1360   // model the cost of inlining a callee).
1361   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1362     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1363     DebugLoc DLoc;
1364     BasicBlock *Block;
1365     std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
1366     OrigFuncORE.emit([&]() {
1367       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1368                                         DLoc, Block)
1369              << ore::NV("Function", Cloner.OrigFunc)
1370              << " not partially inlined into callers (Original Size = "
1371              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1372              << ", Size of call sequence to outlined function = "
1373              << ore::NV("NewSize", SizeCost) << ")";
1374     });
1375     return false;
1376   }
1377 
1378   assert(Cloner.OrigFunc->users().empty() &&
1379          "F's users should all be replaced!");
1380 
1381   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1382                             Cloner.ClonedFunc->user_end());
1383 
1384   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1385   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1386   if (CalleeEntryCount)
1387     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1388 
1389   uint64_t CalleeEntryCountV =
1390       (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1391 
1392   bool AnyInline = false;
1393   for (User *User : Users) {
1394     CallSite CS = getCallSite(User);
1395 
1396     if (IsLimitReached())
1397       continue;
1398 
1399     OptimizationRemarkEmitter CallerORE(CS.getCaller());
1400     if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE))
1401       continue;
1402 
1403     // Construct remark before doing the inlining, as after successful inlining
1404     // the callsite is removed.
1405     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction());
1406     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1407        << ore::NV("Caller", CS.getCaller());
1408 
1409     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
1410     // We can only forward varargs when we outlined a single region, else we
1411     // bail on vararg functions.
1412     if (!InlineFunction(CS, IFI, nullptr, true,
1413                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1414                                          : nullptr)))
1415       continue;
1416 
1417     CallerORE.emit(OR);
1418 
1419     // Now update the entry count:
1420     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1421       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1422       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1423     }
1424 
1425     AnyInline = true;
1426     NumPartialInlining++;
1427     // Update the stats
1428     if (Cloner.ClonedOI)
1429       NumPartialInlined++;
1430     else
1431       NumColdOutlinePartialInlined++;
1432 
1433   }
1434 
1435   if (AnyInline) {
1436     Cloner.IsFunctionInlined = true;
1437     if (CalleeEntryCount)
1438       Cloner.OrigFunc->setEntryCount(
1439           CalleeEntryCount.setCount(CalleeEntryCountV));
1440     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1441     OrigFuncORE.emit([&]() {
1442       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1443              << "Partially inlined into at least one caller";
1444     });
1445 
1446   }
1447 
1448   return AnyInline;
1449 }
1450 
1451 bool PartialInlinerImpl::run(Module &M) {
1452   if (DisablePartialInlining)
1453     return false;
1454 
1455   std::vector<Function *> Worklist;
1456   Worklist.reserve(M.size());
1457   for (Function &F : M)
1458     if (!F.use_empty() && !F.isDeclaration())
1459       Worklist.push_back(&F);
1460 
1461   bool Changed = false;
1462   while (!Worklist.empty()) {
1463     Function *CurrFunc = Worklist.back();
1464     Worklist.pop_back();
1465 
1466     if (CurrFunc->use_empty())
1467       continue;
1468 
1469     bool Recursive = false;
1470     for (User *U : CurrFunc->users())
1471       if (Instruction *I = dyn_cast<Instruction>(U))
1472         if (I->getParent()->getParent() == CurrFunc) {
1473           Recursive = true;
1474           break;
1475         }
1476     if (Recursive)
1477       continue;
1478 
1479     std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
1480     if (Result.second)
1481       Worklist.push_back(Result.second);
1482     Changed |= Result.first;
1483   }
1484 
1485   return Changed;
1486 }
1487 
1488 char PartialInlinerLegacyPass::ID = 0;
1489 
1490 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1491                       "Partial Inliner", false, false)
1492 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1493 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1494 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1495 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1496                     "Partial Inliner", false, false)
1497 
1498 ModulePass *llvm::createPartialInliningPass() {
1499   return new PartialInlinerLegacyPass();
1500 }
1501 
1502 PreservedAnalyses PartialInlinerPass::run(Module &M,
1503                                           ModuleAnalysisManager &AM) {
1504   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1505 
1506   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1507       [&FAM](Function &F) -> AssumptionCache & {
1508     return FAM.getResult<AssumptionAnalysis>(F);
1509   };
1510 
1511   auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1512     return FAM.getCachedResult<AssumptionAnalysis>(F);
1513   };
1514 
1515   std::function<BlockFrequencyInfo &(Function &)> GetBFI =
1516       [&FAM](Function &F) -> BlockFrequencyInfo & {
1517     return FAM.getResult<BlockFrequencyAnalysis>(F);
1518   };
1519 
1520   std::function<TargetTransformInfo &(Function &)> GetTTI =
1521       [&FAM](Function &F) -> TargetTransformInfo & {
1522     return FAM.getResult<TargetIRAnalysis>(F);
1523   };
1524 
1525   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1526 
1527   if (PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache, &GetTTI,
1528                          {GetBFI}, PSI)
1529           .run(M))
1530     return PreservedAnalyses::none();
1531   return PreservedAnalyses::all();
1532 }
1533