1 //===- PartialInlining.cpp - Inline parts of functions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs partial inlining, typically by inlining an if statement 10 // that surrounds the body of the function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PartialInlining.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/CodeExtractor.h" 54 #include "llvm/Transforms/Utils/ValueMapper.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <functional> 59 #include <iterator> 60 #include <memory> 61 #include <tuple> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "partial-inlining" 67 68 STATISTIC(NumPartialInlined, 69 "Number of callsites functions partially inlined into."); 70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " 71 "cold outlined regions were partially " 72 "inlined into its caller(s)."); 73 STATISTIC(NumColdRegionsFound, 74 "Number of cold single entry/exit regions found."); 75 STATISTIC(NumColdRegionsOutlined, 76 "Number of cold single entry/exit regions outlined."); 77 78 // Command line option to disable partial-inlining. The default is false: 79 static cl::opt<bool> 80 DisablePartialInlining("disable-partial-inlining", cl::init(false), 81 cl::Hidden, cl::desc("Disable partial inlining")); 82 // Command line option to disable multi-region partial-inlining. The default is 83 // false: 84 static cl::opt<bool> DisableMultiRegionPartialInline( 85 "disable-mr-partial-inlining", cl::init(false), cl::Hidden, 86 cl::desc("Disable multi-region partial inlining")); 87 88 // Command line option to force outlining in regions with live exit variables. 89 // The default is false: 90 static cl::opt<bool> 91 ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden, 92 cl::desc("Force outline regions with live exits")); 93 94 // Command line option to enable marking outline functions with Cold Calling 95 // Convention. The default is false: 96 static cl::opt<bool> 97 MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden, 98 cl::desc("Mark outline function calls with ColdCC")); 99 100 #ifndef NDEBUG 101 // Command line option to debug partial-inlining. The default is none: 102 static cl::opt<bool> TracePartialInlining("trace-partial-inlining", 103 cl::init(false), cl::Hidden, 104 cl::desc("Trace partial inlining.")); 105 #endif 106 107 // This is an option used by testing: 108 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", 109 cl::init(false), cl::ZeroOrMore, 110 cl::ReallyHidden, 111 cl::desc("Skip Cost Analysis")); 112 // Used to determine if a cold region is worth outlining based on 113 // its inlining cost compared to the original function. Default is set at 10%. 114 // ie. if the cold region reduces the inlining cost of the original function by 115 // at least 10%. 116 static cl::opt<float> MinRegionSizeRatio( 117 "min-region-size-ratio", cl::init(0.1), cl::Hidden, 118 cl::desc("Minimum ratio comparing relative sizes of each " 119 "outline candidate and original function")); 120 // Used to tune the minimum number of execution counts needed in the predecessor 121 // block to the cold edge. ie. confidence interval. 122 static cl::opt<unsigned> 123 MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden, 124 cl::desc("Minimum block executions to consider " 125 "its BranchProbabilityInfo valid")); 126 // Used to determine when an edge is considered cold. Default is set to 10%. ie. 127 // if the branch probability is 10% or less, then it is deemed as 'cold'. 128 static cl::opt<float> ColdBranchRatio( 129 "cold-branch-ratio", cl::init(0.1), cl::Hidden, 130 cl::desc("Minimum BranchProbability to consider a region cold.")); 131 132 static cl::opt<unsigned> MaxNumInlineBlocks( 133 "max-num-inline-blocks", cl::init(5), cl::Hidden, 134 cl::desc("Max number of blocks to be partially inlined")); 135 136 // Command line option to set the maximum number of partial inlining allowed 137 // for the module. The default value of -1 means no limit. 138 static cl::opt<int> MaxNumPartialInlining( 139 "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, 140 cl::desc("Max number of partial inlining. The default is unlimited")); 141 142 // Used only when PGO or user annotated branch data is absent. It is 143 // the least value that is used to weigh the outline region. If BFI 144 // produces larger value, the BFI value will be used. 145 static cl::opt<int> 146 OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), 147 cl::Hidden, cl::ZeroOrMore, 148 cl::desc("Relative frequency of outline region to " 149 "the entry block")); 150 151 static cl::opt<unsigned> ExtraOutliningPenalty( 152 "partial-inlining-extra-penalty", cl::init(0), cl::Hidden, 153 cl::desc("A debug option to add additional penalty to the computed one.")); 154 155 namespace { 156 157 struct FunctionOutliningInfo { 158 FunctionOutliningInfo() = default; 159 160 // Returns the number of blocks to be inlined including all blocks 161 // in Entries and one return block. 162 unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; } 163 164 // A set of blocks including the function entry that guard 165 // the region to be outlined. 166 SmallVector<BasicBlock *, 4> Entries; 167 168 // The return block that is not included in the outlined region. 169 BasicBlock *ReturnBlock = nullptr; 170 171 // The dominating block of the region to be outlined. 172 BasicBlock *NonReturnBlock = nullptr; 173 174 // The set of blocks in Entries that that are predecessors to ReturnBlock 175 SmallVector<BasicBlock *, 4> ReturnBlockPreds; 176 }; 177 178 struct FunctionOutliningMultiRegionInfo { 179 FunctionOutliningMultiRegionInfo() 180 : ORI() {} 181 182 // Container for outline regions 183 struct OutlineRegionInfo { 184 OutlineRegionInfo(ArrayRef<BasicBlock *> Region, 185 BasicBlock *EntryBlock, BasicBlock *ExitBlock, 186 BasicBlock *ReturnBlock) 187 : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock), 188 ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {} 189 SmallVector<BasicBlock *, 8> Region; 190 BasicBlock *EntryBlock; 191 BasicBlock *ExitBlock; 192 BasicBlock *ReturnBlock; 193 }; 194 195 SmallVector<OutlineRegionInfo, 4> ORI; 196 }; 197 198 struct PartialInlinerImpl { 199 200 PartialInlinerImpl( 201 function_ref<AssumptionCache &(Function &)> GetAC, 202 function_ref<AssumptionCache *(Function &)> LookupAC, 203 function_ref<TargetTransformInfo &(Function &)> GTTI, 204 function_ref<const TargetLibraryInfo &(Function &)> GTLI, 205 ProfileSummaryInfo &ProfSI, 206 function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) 207 : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), 208 GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} 209 210 bool run(Module &M); 211 // Main part of the transformation that calls helper functions to find 212 // outlining candidates, clone & outline the function, and attempt to 213 // partially inline the resulting function. Returns true if 214 // inlining was successful, false otherwise. Also returns the outline 215 // function (only if we partially inlined early returns) as there is a 216 // possibility to further "peel" early return statements that were left in the 217 // outline function due to code size. 218 std::pair<bool, Function *> unswitchFunction(Function *F); 219 220 // This class speculatively clones the function to be partial inlined. 221 // At the end of partial inlining, the remaining callsites to the cloned 222 // function that are not partially inlined will be fixed up to reference 223 // the original function, and the cloned function will be erased. 224 struct FunctionCloner { 225 // Two constructors, one for single region outlining, the other for 226 // multi-region outlining. 227 FunctionCloner(Function *F, FunctionOutliningInfo *OI, 228 OptimizationRemarkEmitter &ORE, 229 function_ref<AssumptionCache *(Function &)> LookupAC); 230 FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, 231 OptimizationRemarkEmitter &ORE, 232 function_ref<AssumptionCache *(Function &)> LookupAC); 233 ~FunctionCloner(); 234 235 // Prepare for function outlining: making sure there is only 236 // one incoming edge from the extracted/outlined region to 237 // the return block. 238 void NormalizeReturnBlock(); 239 240 // Do function outlining for cold regions. 241 bool doMultiRegionFunctionOutlining(); 242 // Do function outlining for region after early return block(s). 243 // NOTE: For vararg functions that do the vararg handling in the outlined 244 // function, we temporarily generate IR that does not properly 245 // forward varargs to the outlined function. Calling InlineFunction 246 // will update calls to the outlined functions to properly forward 247 // the varargs. 248 Function *doSingleRegionFunctionOutlining(); 249 250 Function *OrigFunc = nullptr; 251 Function *ClonedFunc = nullptr; 252 253 typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; 254 // Keep track of Outlined Functions and the basic block they're called from. 255 SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; 256 257 // ClonedFunc is inlined in one of its callers after function 258 // outlining. 259 bool IsFunctionInlined = false; 260 // The cost of the region to be outlined. 261 int OutlinedRegionCost = 0; 262 // ClonedOI is specific to outlining non-early return blocks. 263 std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; 264 // ClonedOMRI is specific to outlining cold regions. 265 std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; 266 std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; 267 OptimizationRemarkEmitter &ORE; 268 function_ref<AssumptionCache *(Function &)> LookupAC; 269 }; 270 271 private: 272 int NumPartialInlining = 0; 273 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 274 function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; 275 function_ref<TargetTransformInfo &(Function &)> GetTTI; 276 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 277 function_ref<const TargetLibraryInfo &(Function &)> GetTLI; 278 ProfileSummaryInfo &PSI; 279 280 // Return the frequency of the OutlininingBB relative to F's entry point. 281 // The result is no larger than 1 and is represented using BP. 282 // (Note that the outlined region's 'head' block can only have incoming 283 // edges from the guarding entry blocks). 284 BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner); 285 286 // Return true if the callee of CB should be partially inlined with 287 // profit. 288 bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, 289 BlockFrequency WeightedOutliningRcost, 290 OptimizationRemarkEmitter &ORE); 291 292 // Try to inline DuplicateFunction (cloned from F with call to 293 // the OutlinedFunction into its callers. Return true 294 // if there is any successful inlining. 295 bool tryPartialInline(FunctionCloner &Cloner); 296 297 // Compute the mapping from use site of DuplicationFunction to the enclosing 298 // BB's profile count. 299 void computeCallsiteToProfCountMap(Function *DuplicateFunction, 300 DenseMap<User *, uint64_t> &SiteCountMap); 301 302 bool IsLimitReached() { 303 return (MaxNumPartialInlining != -1 && 304 NumPartialInlining >= MaxNumPartialInlining); 305 } 306 307 static CallBase *getSupportedCallBase(User *U) { 308 if (isa<CallInst>(U) || isa<InvokeInst>(U)) 309 return cast<CallBase>(U); 310 llvm_unreachable("All uses must be calls"); 311 return nullptr; 312 } 313 314 static CallBase *getOneCallSiteTo(Function *F) { 315 User *User = *F->user_begin(); 316 return getSupportedCallBase(User); 317 } 318 319 std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) { 320 CallBase *CB = getOneCallSiteTo(F); 321 DebugLoc DLoc = CB->getDebugLoc(); 322 BasicBlock *Block = CB->getParent(); 323 return std::make_tuple(DLoc, Block); 324 } 325 326 // Returns the costs associated with function outlining: 327 // - The first value is the non-weighted runtime cost for making the call 328 // to the outlined function, including the addtional setup cost in the 329 // outlined function itself; 330 // - The second value is the estimated size of the new call sequence in 331 // basic block Cloner.OutliningCallBB; 332 std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner); 333 334 // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to 335 // approximate both the size and runtime cost (Note that in the current 336 // inline cost analysis, there is no clear distinction there either). 337 static int computeBBInlineCost(BasicBlock *BB); 338 339 std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F); 340 std::unique_ptr<FunctionOutliningMultiRegionInfo> 341 computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE); 342 }; 343 344 struct PartialInlinerLegacyPass : public ModulePass { 345 static char ID; // Pass identification, replacement for typeid 346 347 PartialInlinerLegacyPass() : ModulePass(ID) { 348 initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 349 } 350 351 void getAnalysisUsage(AnalysisUsage &AU) const override { 352 AU.addRequired<AssumptionCacheTracker>(); 353 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 354 AU.addRequired<TargetTransformInfoWrapperPass>(); 355 AU.addRequired<TargetLibraryInfoWrapperPass>(); 356 } 357 358 bool runOnModule(Module &M) override { 359 if (skipModule(M)) 360 return false; 361 362 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 363 TargetTransformInfoWrapperPass *TTIWP = 364 &getAnalysis<TargetTransformInfoWrapperPass>(); 365 ProfileSummaryInfo &PSI = 366 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 367 368 auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & { 369 return ACT->getAssumptionCache(F); 370 }; 371 372 auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * { 373 return ACT->lookupAssumptionCache(F); 374 }; 375 376 auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & { 377 return TTIWP->getTTI(F); 378 }; 379 380 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 381 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 382 }; 383 384 return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 385 GetTLI, PSI) 386 .run(M); 387 } 388 }; 389 390 } // end anonymous namespace 391 392 std::unique_ptr<FunctionOutliningMultiRegionInfo> 393 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F, 394 OptimizationRemarkEmitter &ORE) { 395 BasicBlock *EntryBlock = &F->front(); 396 397 DominatorTree DT(*F); 398 LoopInfo LI(DT); 399 BranchProbabilityInfo BPI(*F, LI); 400 std::unique_ptr<BlockFrequencyInfo> ScopedBFI; 401 BlockFrequencyInfo *BFI; 402 if (!GetBFI) { 403 ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI)); 404 BFI = ScopedBFI.get(); 405 } else 406 BFI = &(GetBFI(*F)); 407 408 // Return if we don't have profiling information. 409 if (!PSI.hasInstrumentationProfile()) 410 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 411 412 std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = 413 std::make_unique<FunctionOutliningMultiRegionInfo>(); 414 415 auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) { 416 BasicBlock *Dom = BlockList.front(); 417 return BlockList.size() > 1 && Dom->hasNPredecessors(1); 418 }; 419 420 auto IsSingleExit = 421 [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { 422 BasicBlock *ExitBlock = nullptr; 423 for (auto *Block : BlockList) { 424 for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) { 425 if (!is_contained(BlockList, *SI)) { 426 if (ExitBlock) { 427 ORE.emit([&]() { 428 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion", 429 &SI->front()) 430 << "Region dominated by " 431 << ore::NV("Block", BlockList.front()->getName()) 432 << " has more than one region exit edge."; 433 }); 434 return nullptr; 435 } else 436 ExitBlock = Block; 437 } 438 } 439 } 440 return ExitBlock; 441 }; 442 443 auto BBProfileCount = [BFI](BasicBlock *BB) { 444 return BFI->getBlockProfileCount(BB) 445 ? BFI->getBlockProfileCount(BB).getValue() 446 : 0; 447 }; 448 449 // Use the same computeBBInlineCost function to compute the cost savings of 450 // the outlining the candidate region. 451 int OverallFunctionCost = 0; 452 for (auto &BB : *F) 453 OverallFunctionCost += computeBBInlineCost(&BB); 454 455 #ifndef NDEBUG 456 if (TracePartialInlining) 457 dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n"; 458 #endif 459 int MinOutlineRegionCost = 460 static_cast<int>(OverallFunctionCost * MinRegionSizeRatio); 461 BranchProbability MinBranchProbability( 462 static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), 463 MinBlockCounterExecution); 464 bool ColdCandidateFound = false; 465 BasicBlock *CurrEntry = EntryBlock; 466 std::vector<BasicBlock *> DFS; 467 DenseMap<BasicBlock *, bool> VisitedMap; 468 DFS.push_back(CurrEntry); 469 VisitedMap[CurrEntry] = true; 470 // Use Depth First Search on the basic blocks to find CFG edges that are 471 // considered cold. 472 // Cold regions considered must also have its inline cost compared to the 473 // overall inline cost of the original function. The region is outlined only 474 // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or 475 // more. 476 while (!DFS.empty()) { 477 auto *thisBB = DFS.back(); 478 DFS.pop_back(); 479 // Only consider regions with predecessor blocks that are considered 480 // not-cold (default: part of the top 99.99% of all block counters) 481 // AND greater than our minimum block execution count (default: 100). 482 if (PSI.isColdBlock(thisBB, BFI) || 483 BBProfileCount(thisBB) < MinBlockCounterExecution) 484 continue; 485 for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) { 486 if (VisitedMap[*SI]) 487 continue; 488 VisitedMap[*SI] = true; 489 DFS.push_back(*SI); 490 // If branch isn't cold, we skip to the next one. 491 BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI); 492 if (SuccProb > MinBranchProbability) 493 continue; 494 #ifndef NDEBUG 495 if (TracePartialInlining) { 496 dbgs() << "Found cold edge: " << thisBB->getName() << "->" 497 << (*SI)->getName() << "\nBranch Probability = " << SuccProb 498 << "\n"; 499 } 500 #endif 501 SmallVector<BasicBlock *, 8> DominateVector; 502 DT.getDescendants(*SI, DominateVector); 503 // We can only outline single entry regions (for now). 504 if (!IsSingleEntry(DominateVector)) 505 continue; 506 BasicBlock *ExitBlock = nullptr; 507 // We can only outline single exit regions (for now). 508 if (!(ExitBlock = IsSingleExit(DominateVector))) 509 continue; 510 int OutlineRegionCost = 0; 511 for (auto *BB : DominateVector) 512 OutlineRegionCost += computeBBInlineCost(BB); 513 514 #ifndef NDEBUG 515 if (TracePartialInlining) 516 dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n"; 517 #endif 518 519 if (OutlineRegionCost < MinOutlineRegionCost) { 520 ORE.emit([&]() { 521 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", 522 &SI->front()) 523 << ore::NV("Callee", F) << " inline cost-savings smaller than " 524 << ore::NV("Cost", MinOutlineRegionCost); 525 }); 526 continue; 527 } 528 // For now, ignore blocks that belong to a SISE region that is a 529 // candidate for outlining. In the future, we may want to look 530 // at inner regions because the outer region may have live-exit 531 // variables. 532 for (auto *BB : DominateVector) 533 VisitedMap[BB] = true; 534 // ReturnBlock here means the block after the outline call 535 BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); 536 // assert(ReturnBlock && "ReturnBlock is NULL somehow!"); 537 FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( 538 DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); 539 OutliningInfo->ORI.push_back(RegInfo); 540 #ifndef NDEBUG 541 if (TracePartialInlining) { 542 dbgs() << "Found Cold Candidate starting at block: " 543 << DominateVector.front()->getName() << "\n"; 544 } 545 #endif 546 ColdCandidateFound = true; 547 NumColdRegionsFound++; 548 } 549 } 550 if (ColdCandidateFound) 551 return OutliningInfo; 552 else 553 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 554 } 555 556 std::unique_ptr<FunctionOutliningInfo> 557 PartialInlinerImpl::computeOutliningInfo(Function *F) { 558 BasicBlock *EntryBlock = &F->front(); 559 BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); 560 if (!BR || BR->isUnconditional()) 561 return std::unique_ptr<FunctionOutliningInfo>(); 562 563 // Returns true if Succ is BB's successor 564 auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { 565 return is_contained(successors(BB), Succ); 566 }; 567 568 auto IsReturnBlock = [](BasicBlock *BB) { 569 Instruction *TI = BB->getTerminator(); 570 return isa<ReturnInst>(TI); 571 }; 572 573 auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 574 if (IsReturnBlock(Succ1)) 575 return std::make_tuple(Succ1, Succ2); 576 if (IsReturnBlock(Succ2)) 577 return std::make_tuple(Succ2, Succ1); 578 579 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 580 }; 581 582 // Detect a triangular shape: 583 auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 584 if (IsSuccessor(Succ1, Succ2)) 585 return std::make_tuple(Succ1, Succ2); 586 if (IsSuccessor(Succ2, Succ1)) 587 return std::make_tuple(Succ2, Succ1); 588 589 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 590 }; 591 592 std::unique_ptr<FunctionOutliningInfo> OutliningInfo = 593 std::make_unique<FunctionOutliningInfo>(); 594 595 BasicBlock *CurrEntry = EntryBlock; 596 bool CandidateFound = false; 597 do { 598 // The number of blocks to be inlined has already reached 599 // the limit. When MaxNumInlineBlocks is set to 0 or 1, this 600 // disables partial inlining for the function. 601 if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks) 602 break; 603 604 if (succ_size(CurrEntry) != 2) 605 break; 606 607 BasicBlock *Succ1 = *succ_begin(CurrEntry); 608 BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); 609 610 BasicBlock *ReturnBlock, *NonReturnBlock; 611 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 612 613 if (ReturnBlock) { 614 OutliningInfo->Entries.push_back(CurrEntry); 615 OutliningInfo->ReturnBlock = ReturnBlock; 616 OutliningInfo->NonReturnBlock = NonReturnBlock; 617 CandidateFound = true; 618 break; 619 } 620 621 BasicBlock *CommSucc; 622 BasicBlock *OtherSucc; 623 std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); 624 625 if (!CommSucc) 626 break; 627 628 OutliningInfo->Entries.push_back(CurrEntry); 629 CurrEntry = OtherSucc; 630 } while (true); 631 632 if (!CandidateFound) 633 return std::unique_ptr<FunctionOutliningInfo>(); 634 635 // Do sanity check of the entries: threre should not 636 // be any successors (not in the entry set) other than 637 // {ReturnBlock, NonReturnBlock} 638 assert(OutliningInfo->Entries[0] == &F->front() && 639 "Function Entry must be the first in Entries vector"); 640 DenseSet<BasicBlock *> Entries; 641 for (BasicBlock *E : OutliningInfo->Entries) 642 Entries.insert(E); 643 644 // Returns true of BB has Predecessor which is not 645 // in Entries set. 646 auto HasNonEntryPred = [Entries](BasicBlock *BB) { 647 for (auto Pred : predecessors(BB)) { 648 if (!Entries.count(Pred)) 649 return true; 650 } 651 return false; 652 }; 653 auto CheckAndNormalizeCandidate = 654 [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { 655 for (BasicBlock *E : OutliningInfo->Entries) { 656 for (auto Succ : successors(E)) { 657 if (Entries.count(Succ)) 658 continue; 659 if (Succ == OutliningInfo->ReturnBlock) 660 OutliningInfo->ReturnBlockPreds.push_back(E); 661 else if (Succ != OutliningInfo->NonReturnBlock) 662 return false; 663 } 664 // There should not be any outside incoming edges either: 665 if (HasNonEntryPred(E)) 666 return false; 667 } 668 return true; 669 }; 670 671 if (!CheckAndNormalizeCandidate(OutliningInfo.get())) 672 return std::unique_ptr<FunctionOutliningInfo>(); 673 674 // Now further growing the candidate's inlining region by 675 // peeling off dominating blocks from the outlining region: 676 while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) { 677 BasicBlock *Cand = OutliningInfo->NonReturnBlock; 678 if (succ_size(Cand) != 2) 679 break; 680 681 if (HasNonEntryPred(Cand)) 682 break; 683 684 BasicBlock *Succ1 = *succ_begin(Cand); 685 BasicBlock *Succ2 = *(succ_begin(Cand) + 1); 686 687 BasicBlock *ReturnBlock, *NonReturnBlock; 688 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 689 if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) 690 break; 691 692 if (NonReturnBlock->getSinglePredecessor() != Cand) 693 break; 694 695 // Now grow and update OutlininigInfo: 696 OutliningInfo->Entries.push_back(Cand); 697 OutliningInfo->NonReturnBlock = NonReturnBlock; 698 OutliningInfo->ReturnBlockPreds.push_back(Cand); 699 Entries.insert(Cand); 700 } 701 702 return OutliningInfo; 703 } 704 705 // Check if there is PGO data or user annotated branch data: 706 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) { 707 if (F->hasProfileData()) 708 return true; 709 // Now check if any of the entry block has MD_prof data: 710 for (auto *E : OI->Entries) { 711 BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); 712 if (!BR || BR->isUnconditional()) 713 continue; 714 uint64_t T, F; 715 if (BR->extractProfMetadata(T, F)) 716 return true; 717 } 718 return false; 719 } 720 721 BranchProbability 722 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) { 723 BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; 724 auto EntryFreq = 725 Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock()); 726 auto OutliningCallFreq = 727 Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB); 728 // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE 729 // we outlined any regions, so we may encounter situations where the 730 // OutliningCallFreq is *slightly* bigger than the EntryFreq. 731 if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) { 732 OutliningCallFreq = EntryFreq; 733 } 734 auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( 735 OutliningCallFreq.getFrequency(), EntryFreq.getFrequency()); 736 737 if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get())) 738 return OutlineRegionRelFreq; 739 740 // When profile data is not available, we need to be conservative in 741 // estimating the overall savings. Static branch prediction can usually 742 // guess the branch direction right (taken/non-taken), but the guessed 743 // branch probability is usually not biased enough. In case when the 744 // outlined region is predicted to be likely, its probability needs 745 // to be made higher (more biased) to not under-estimate the cost of 746 // function outlining. On the other hand, if the outlined region 747 // is predicted to be less likely, the predicted probablity is usually 748 // higher than the actual. For instance, the actual probability of the 749 // less likely target is only 5%, but the guessed probablity can be 750 // 40%. In the latter case, there is no need for further adjustement. 751 // FIXME: add an option for this. 752 if (OutlineRegionRelFreq < BranchProbability(45, 100)) 753 return OutlineRegionRelFreq; 754 755 OutlineRegionRelFreq = std::max( 756 OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); 757 758 return OutlineRegionRelFreq; 759 } 760 761 bool PartialInlinerImpl::shouldPartialInline( 762 CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, 763 OptimizationRemarkEmitter &ORE) { 764 using namespace ore; 765 766 Function *Callee = CB.getCalledFunction(); 767 assert(Callee == Cloner.ClonedFunc); 768 769 if (SkipCostAnalysis) 770 return isInlineViable(*Callee).isSuccess(); 771 772 Function *Caller = CB.getCaller(); 773 auto &CalleeTTI = GetTTI(*Callee); 774 bool RemarksEnabled = 775 Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 776 DEBUG_TYPE); 777 InlineCost IC = 778 getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache, 779 GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr); 780 781 if (IC.isAlways()) { 782 ORE.emit([&]() { 783 return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB) 784 << NV("Callee", Cloner.OrigFunc) 785 << " should always be fully inlined, not partially"; 786 }); 787 return false; 788 } 789 790 if (IC.isNever()) { 791 ORE.emit([&]() { 792 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB) 793 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 794 << NV("Caller", Caller) 795 << " because it should never be inlined (cost=never)"; 796 }); 797 return false; 798 } 799 800 if (!IC) { 801 ORE.emit([&]() { 802 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB) 803 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 804 << NV("Caller", Caller) << " because too costly to inline (cost=" 805 << NV("Cost", IC.getCost()) << ", threshold=" 806 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 807 }); 808 return false; 809 } 810 const DataLayout &DL = Caller->getParent()->getDataLayout(); 811 812 // The savings of eliminating the call: 813 int NonWeightedSavings = getCallsiteCost(CB, DL); 814 BlockFrequency NormWeightedSavings(NonWeightedSavings); 815 816 // Weighted saving is smaller than weighted cost, return false 817 if (NormWeightedSavings < WeightedOutliningRcost) { 818 ORE.emit([&]() { 819 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", 820 &CB) 821 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 822 << NV("Caller", Caller) << " runtime overhead (overhead=" 823 << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) 824 << ", savings=" 825 << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) 826 << ")" 827 << " of making the outlined call is too high"; 828 }); 829 830 return false; 831 } 832 833 ORE.emit([&]() { 834 return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB) 835 << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " 836 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 837 << " (threshold=" 838 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 839 }); 840 return true; 841 } 842 843 // TODO: Ideally we should share Inliner's InlineCost Analysis code. 844 // For now use a simplified version. The returned 'InlineCost' will be used 845 // to esimate the size cost as well as runtime cost of the BB. 846 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) { 847 int InlineCost = 0; 848 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); 849 for (Instruction &I : BB->instructionsWithoutDebug()) { 850 // Skip free instructions. 851 switch (I.getOpcode()) { 852 case Instruction::BitCast: 853 case Instruction::PtrToInt: 854 case Instruction::IntToPtr: 855 case Instruction::Alloca: 856 case Instruction::PHI: 857 continue; 858 case Instruction::GetElementPtr: 859 if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices()) 860 continue; 861 break; 862 default: 863 break; 864 } 865 866 if (I.isLifetimeStartOrEnd()) 867 continue; 868 869 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 870 InlineCost += getCallsiteCost(*CI, DL); 871 continue; 872 } 873 874 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 875 InlineCost += getCallsiteCost(*II, DL); 876 continue; 877 } 878 879 if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 880 InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost; 881 continue; 882 } 883 InlineCost += InlineConstants::InstrCost; 884 } 885 return InlineCost; 886 } 887 888 std::tuple<int, int> 889 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) { 890 int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; 891 for (auto FuncBBPair : Cloner.OutlinedFunctions) { 892 Function *OutlinedFunc = FuncBBPair.first; 893 BasicBlock* OutliningCallBB = FuncBBPair.second; 894 // Now compute the cost of the call sequence to the outlined function 895 // 'OutlinedFunction' in BB 'OutliningCallBB': 896 OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB); 897 898 // Now compute the cost of the extracted/outlined function itself: 899 for (BasicBlock &BB : *OutlinedFunc) 900 OutlinedFunctionCost += computeBBInlineCost(&BB); 901 } 902 assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && 903 "Outlined function cost should be no less than the outlined region"); 904 905 // The code extractor introduces a new root and exit stub blocks with 906 // additional unconditional branches. Those branches will be eliminated 907 // later with bb layout. The cost should be adjusted accordingly: 908 OutlinedFunctionCost -= 909 2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size(); 910 911 int OutliningRuntimeOverhead = 912 OutliningFuncCallCost + 913 (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + 914 ExtraOutliningPenalty; 915 916 return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead); 917 } 918 919 // Create the callsite to profile count map which is 920 // used to update the original function's entry count, 921 // after the function is partially inlined into the callsite. 922 void PartialInlinerImpl::computeCallsiteToProfCountMap( 923 Function *DuplicateFunction, 924 DenseMap<User *, uint64_t> &CallSiteToProfCountMap) { 925 std::vector<User *> Users(DuplicateFunction->user_begin(), 926 DuplicateFunction->user_end()); 927 Function *CurrentCaller = nullptr; 928 std::unique_ptr<BlockFrequencyInfo> TempBFI; 929 BlockFrequencyInfo *CurrentCallerBFI = nullptr; 930 931 auto ComputeCurrBFI = [&,this](Function *Caller) { 932 // For the old pass manager: 933 if (!GetBFI) { 934 DominatorTree DT(*Caller); 935 LoopInfo LI(DT); 936 BranchProbabilityInfo BPI(*Caller, LI); 937 TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI)); 938 CurrentCallerBFI = TempBFI.get(); 939 } else { 940 // New pass manager: 941 CurrentCallerBFI = &(GetBFI(*Caller)); 942 } 943 }; 944 945 for (User *User : Users) { 946 CallBase *CB = getSupportedCallBase(User); 947 Function *Caller = CB->getCaller(); 948 if (CurrentCaller != Caller) { 949 CurrentCaller = Caller; 950 ComputeCurrBFI(Caller); 951 } else { 952 assert(CurrentCallerBFI && "CallerBFI is not set"); 953 } 954 BasicBlock *CallBB = CB->getParent(); 955 auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); 956 if (Count) 957 CallSiteToProfCountMap[User] = *Count; 958 else 959 CallSiteToProfCountMap[User] = 0; 960 } 961 } 962 963 PartialInlinerImpl::FunctionCloner::FunctionCloner( 964 Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, 965 function_ref<AssumptionCache *(Function &)> LookupAC) 966 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) { 967 ClonedOI = std::make_unique<FunctionOutliningInfo>(); 968 969 // Clone the function, so that we can hack away on it. 970 ValueToValueMapTy VMap; 971 ClonedFunc = CloneFunction(F, VMap); 972 973 ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); 974 ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); 975 for (BasicBlock *BB : OI->Entries) { 976 ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB])); 977 } 978 for (BasicBlock *E : OI->ReturnBlockPreds) { 979 BasicBlock *NewE = cast<BasicBlock>(VMap[E]); 980 ClonedOI->ReturnBlockPreds.push_back(NewE); 981 } 982 // Go ahead and update all uses to the duplicate, so that we can just 983 // use the inliner functionality when we're done hacking. 984 F->replaceAllUsesWith(ClonedFunc); 985 } 986 987 PartialInlinerImpl::FunctionCloner::FunctionCloner( 988 Function *F, FunctionOutliningMultiRegionInfo *OI, 989 OptimizationRemarkEmitter &ORE, 990 function_ref<AssumptionCache *(Function &)> LookupAC) 991 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) { 992 ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); 993 994 // Clone the function, so that we can hack away on it. 995 ValueToValueMapTy VMap; 996 ClonedFunc = CloneFunction(F, VMap); 997 998 // Go through all Outline Candidate Regions and update all BasicBlock 999 // information. 1000 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1001 OI->ORI) { 1002 SmallVector<BasicBlock *, 8> Region; 1003 for (BasicBlock *BB : RegionInfo.Region) { 1004 Region.push_back(cast<BasicBlock>(VMap[BB])); 1005 } 1006 BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]); 1007 BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]); 1008 BasicBlock *NewReturnBlock = nullptr; 1009 if (RegionInfo.ReturnBlock) 1010 NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]); 1011 FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( 1012 Region, NewEntryBlock, NewExitBlock, NewReturnBlock); 1013 ClonedOMRI->ORI.push_back(MappedRegionInfo); 1014 } 1015 // Go ahead and update all uses to the duplicate, so that we can just 1016 // use the inliner functionality when we're done hacking. 1017 F->replaceAllUsesWith(ClonedFunc); 1018 } 1019 1020 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() { 1021 auto getFirstPHI = [](BasicBlock *BB) { 1022 BasicBlock::iterator I = BB->begin(); 1023 PHINode *FirstPhi = nullptr; 1024 while (I != BB->end()) { 1025 PHINode *Phi = dyn_cast<PHINode>(I); 1026 if (!Phi) 1027 break; 1028 if (!FirstPhi) { 1029 FirstPhi = Phi; 1030 break; 1031 } 1032 } 1033 return FirstPhi; 1034 }; 1035 1036 // Shouldn't need to normalize PHIs if we're not outlining non-early return 1037 // blocks. 1038 if (!ClonedOI) 1039 return; 1040 1041 // Special hackery is needed with PHI nodes that have inputs from more than 1042 // one extracted block. For simplicity, just split the PHIs into a two-level 1043 // sequence of PHIs, some of which will go in the extracted region, and some 1044 // of which will go outside. 1045 BasicBlock *PreReturn = ClonedOI->ReturnBlock; 1046 // only split block when necessary: 1047 PHINode *FirstPhi = getFirstPHI(PreReturn); 1048 unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); 1049 1050 if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) 1051 return; 1052 1053 auto IsTrivialPhi = [](PHINode *PN) -> Value * { 1054 Value *CommonValue = PN->getIncomingValue(0); 1055 if (all_of(PN->incoming_values(), 1056 [&](Value *V) { return V == CommonValue; })) 1057 return CommonValue; 1058 return nullptr; 1059 }; 1060 1061 ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( 1062 ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator()); 1063 BasicBlock::iterator I = PreReturn->begin(); 1064 Instruction *Ins = &ClonedOI->ReturnBlock->front(); 1065 SmallVector<Instruction *, 4> DeadPhis; 1066 while (I != PreReturn->end()) { 1067 PHINode *OldPhi = dyn_cast<PHINode>(I); 1068 if (!OldPhi) 1069 break; 1070 1071 PHINode *RetPhi = 1072 PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins); 1073 OldPhi->replaceAllUsesWith(RetPhi); 1074 Ins = ClonedOI->ReturnBlock->getFirstNonPHI(); 1075 1076 RetPhi->addIncoming(&*I, PreReturn); 1077 for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { 1078 RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E); 1079 OldPhi->removeIncomingValue(E); 1080 } 1081 1082 // After incoming values splitting, the old phi may become trivial. 1083 // Keeping the trivial phi can introduce definition inside the outline 1084 // region which is live-out, causing necessary overhead (load, store 1085 // arg passing etc). 1086 if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { 1087 OldPhi->replaceAllUsesWith(OldPhiVal); 1088 DeadPhis.push_back(OldPhi); 1089 } 1090 ++I; 1091 } 1092 for (auto *DP : DeadPhis) 1093 DP->eraseFromParent(); 1094 1095 for (auto E : ClonedOI->ReturnBlockPreds) { 1096 E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock); 1097 } 1098 } 1099 1100 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { 1101 1102 auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) { 1103 int Cost = 0; 1104 for (BasicBlock* BB : Region) 1105 Cost += computeBBInlineCost(BB); 1106 return Cost; 1107 }; 1108 1109 assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline"); 1110 1111 if (ClonedOMRI->ORI.empty()) 1112 return false; 1113 1114 // The CodeExtractor needs a dominator tree. 1115 DominatorTree DT; 1116 DT.recalculate(*ClonedFunc); 1117 1118 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1119 LoopInfo LI(DT); 1120 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1121 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1122 1123 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 1124 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1125 1126 SetVector<Value *> Inputs, Outputs, Sinks; 1127 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1128 ClonedOMRI->ORI) { 1129 int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region); 1130 1131 CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, 1132 ClonedFuncBFI.get(), &BPI, 1133 LookupAC(*RegionInfo.EntryBlock->getParent()), 1134 /* AllowVarargs */ false); 1135 1136 CE.findInputsOutputs(Inputs, Outputs, Sinks); 1137 1138 #ifndef NDEBUG 1139 if (TracePartialInlining) { 1140 dbgs() << "inputs: " << Inputs.size() << "\n"; 1141 dbgs() << "outputs: " << Outputs.size() << "\n"; 1142 for (Value *value : Inputs) 1143 dbgs() << "value used in func: " << *value << "\n"; 1144 for (Value *output : Outputs) 1145 dbgs() << "instr used in func: " << *output << "\n"; 1146 } 1147 #endif 1148 // Do not extract regions that have live exit variables. 1149 if (Outputs.size() > 0 && !ForceLiveExit) 1150 continue; 1151 1152 Function *OutlinedFunc = CE.extractCodeRegion(CEAC); 1153 1154 if (OutlinedFunc) { 1155 CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc); 1156 BasicBlock *OutliningCallBB = OCS->getParent(); 1157 assert(OutliningCallBB->getParent() == ClonedFunc); 1158 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB)); 1159 NumColdRegionsOutlined++; 1160 OutlinedRegionCost += CurrentOutlinedRegionCost; 1161 1162 if (MarkOutlinedColdCC) { 1163 OutlinedFunc->setCallingConv(CallingConv::Cold); 1164 OCS->setCallingConv(CallingConv::Cold); 1165 } 1166 } else 1167 ORE.emit([&]() { 1168 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1169 &RegionInfo.Region.front()->front()) 1170 << "Failed to extract region at block " 1171 << ore::NV("Block", RegionInfo.Region.front()); 1172 }); 1173 } 1174 1175 return !OutlinedFunctions.empty(); 1176 } 1177 1178 Function * 1179 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { 1180 // Returns true if the block is to be partial inlined into the caller 1181 // (i.e. not to be extracted to the out of line function) 1182 auto ToBeInlined = [&, this](BasicBlock *BB) { 1183 return BB == ClonedOI->ReturnBlock || 1184 (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) != 1185 ClonedOI->Entries.end()); 1186 }; 1187 1188 assert(ClonedOI && "Expecting OutlineInfo for single region outline"); 1189 // The CodeExtractor needs a dominator tree. 1190 DominatorTree DT; 1191 DT.recalculate(*ClonedFunc); 1192 1193 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1194 LoopInfo LI(DT); 1195 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1196 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1197 1198 // Gather up the blocks that we're going to extract. 1199 std::vector<BasicBlock *> ToExtract; 1200 ToExtract.push_back(ClonedOI->NonReturnBlock); 1201 OutlinedRegionCost += 1202 PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock); 1203 for (BasicBlock &BB : *ClonedFunc) 1204 if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) { 1205 ToExtract.push_back(&BB); 1206 // FIXME: the code extractor may hoist/sink more code 1207 // into the outlined function which may make the outlining 1208 // overhead (the difference of the outlined function cost 1209 // and OutliningRegionCost) look larger. 1210 OutlinedRegionCost += computeBBInlineCost(&BB); 1211 } 1212 1213 // Extract the body of the if. 1214 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1215 Function *OutlinedFunc = 1216 CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, 1217 ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), 1218 /* AllowVarargs */ true) 1219 .extractCodeRegion(CEAC); 1220 1221 if (OutlinedFunc) { 1222 BasicBlock *OutliningCallBB = 1223 PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc) 1224 ->getParent(); 1225 assert(OutliningCallBB->getParent() == ClonedFunc); 1226 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB)); 1227 } else 1228 ORE.emit([&]() { 1229 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1230 &ToExtract.front()->front()) 1231 << "Failed to extract region at block " 1232 << ore::NV("Block", ToExtract.front()); 1233 }); 1234 1235 return OutlinedFunc; 1236 } 1237 1238 PartialInlinerImpl::FunctionCloner::~FunctionCloner() { 1239 // Ditch the duplicate, since we're done with it, and rewrite all remaining 1240 // users (function pointers, etc.) back to the original function. 1241 ClonedFunc->replaceAllUsesWith(OrigFunc); 1242 ClonedFunc->eraseFromParent(); 1243 if (!IsFunctionInlined) { 1244 // Remove each function that was speculatively created if there is no 1245 // reference. 1246 for (auto FuncBBPair : OutlinedFunctions) { 1247 Function *Func = FuncBBPair.first; 1248 Func->eraseFromParent(); 1249 } 1250 } 1251 } 1252 1253 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) { 1254 1255 if (F->hasAddressTaken()) 1256 return {false, nullptr}; 1257 1258 // Let inliner handle it 1259 if (F->hasFnAttribute(Attribute::AlwaysInline)) 1260 return {false, nullptr}; 1261 1262 if (F->hasFnAttribute(Attribute::NoInline)) 1263 return {false, nullptr}; 1264 1265 if (PSI.isFunctionEntryCold(F)) 1266 return {false, nullptr}; 1267 1268 if (F->users().empty()) 1269 return {false, nullptr}; 1270 1271 OptimizationRemarkEmitter ORE(F); 1272 1273 // Only try to outline cold regions if we have a profile summary, which 1274 // implies we have profiling information. 1275 if (PSI.hasProfileSummary() && F->hasProfileData() && 1276 !DisableMultiRegionPartialInline) { 1277 std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = 1278 computeOutliningColdRegionsInfo(F, ORE); 1279 if (OMRI) { 1280 FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache); 1281 1282 #ifndef NDEBUG 1283 if (TracePartialInlining) { 1284 dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n"; 1285 dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() 1286 << "\n"; 1287 } 1288 #endif 1289 bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); 1290 1291 if (DidOutline) { 1292 #ifndef NDEBUG 1293 if (TracePartialInlining) { 1294 dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n"; 1295 Cloner.ClonedFunc->print(dbgs()); 1296 dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n"; 1297 } 1298 #endif 1299 1300 if (tryPartialInline(Cloner)) 1301 return {true, nullptr}; 1302 } 1303 } 1304 } 1305 1306 // Fall-thru to regular partial inlining if we: 1307 // i) can't find any cold regions to outline, or 1308 // ii) can't inline the outlined function anywhere. 1309 std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); 1310 if (!OI) 1311 return {false, nullptr}; 1312 1313 FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache); 1314 Cloner.NormalizeReturnBlock(); 1315 1316 Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); 1317 1318 if (!OutlinedFunction) 1319 return {false, nullptr}; 1320 1321 bool AnyInline = tryPartialInline(Cloner); 1322 1323 if (AnyInline) 1324 return {true, OutlinedFunction}; 1325 1326 return {false, nullptr}; 1327 } 1328 1329 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { 1330 if (Cloner.OutlinedFunctions.empty()) 1331 return false; 1332 1333 int SizeCost = 0; 1334 BlockFrequency WeightedRcost; 1335 int NonWeightedRcost; 1336 std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner); 1337 1338 // Only calculate RelativeToEntryFreq when we are doing single region 1339 // outlining. 1340 BranchProbability RelativeToEntryFreq; 1341 if (Cloner.ClonedOI) { 1342 RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); 1343 } else 1344 // RelativeToEntryFreq doesn't make sense when we have more than one 1345 // outlined call because each call will have a different relative frequency 1346 // to the entry block. We can consider using the average, but the 1347 // usefulness of that information is questionable. For now, assume we never 1348 // execute the calls to outlined functions. 1349 RelativeToEntryFreq = BranchProbability(0, 1); 1350 1351 WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq; 1352 1353 // The call sequence(s) to the outlined function(s) are larger than the sum of 1354 // the original outlined region size(s), it does not increase the chances of 1355 // inlining the function with outlining (The inliner uses the size increase to 1356 // model the cost of inlining a callee). 1357 if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { 1358 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1359 DebugLoc DLoc; 1360 BasicBlock *Block; 1361 std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc); 1362 OrigFuncORE.emit([&]() { 1363 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", 1364 DLoc, Block) 1365 << ore::NV("Function", Cloner.OrigFunc) 1366 << " not partially inlined into callers (Original Size = " 1367 << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost) 1368 << ", Size of call sequence to outlined function = " 1369 << ore::NV("NewSize", SizeCost) << ")"; 1370 }); 1371 return false; 1372 } 1373 1374 assert(Cloner.OrigFunc->users().empty() && 1375 "F's users should all be replaced!"); 1376 1377 std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), 1378 Cloner.ClonedFunc->user_end()); 1379 1380 DenseMap<User *, uint64_t> CallSiteToProfCountMap; 1381 auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); 1382 if (CalleeEntryCount) 1383 computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap); 1384 1385 uint64_t CalleeEntryCountV = 1386 (CalleeEntryCount ? CalleeEntryCount.getCount() : 0); 1387 1388 bool AnyInline = false; 1389 for (User *User : Users) { 1390 CallBase *CB = getSupportedCallBase(User); 1391 1392 if (IsLimitReached()) 1393 continue; 1394 1395 OptimizationRemarkEmitter CallerORE(CB->getCaller()); 1396 if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE)) 1397 continue; 1398 1399 // Construct remark before doing the inlining, as after successful inlining 1400 // the callsite is removed. 1401 OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB); 1402 OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into " 1403 << ore::NV("Caller", CB->getCaller()); 1404 1405 InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI); 1406 // We can only forward varargs when we outlined a single region, else we 1407 // bail on vararg functions. 1408 if (!InlineFunction(*CB, IFI, nullptr, true, 1409 (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first 1410 : nullptr)) 1411 .isSuccess()) 1412 continue; 1413 1414 CallerORE.emit(OR); 1415 1416 // Now update the entry count: 1417 if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { 1418 uint64_t CallSiteCount = CallSiteToProfCountMap[User]; 1419 CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); 1420 } 1421 1422 AnyInline = true; 1423 NumPartialInlining++; 1424 // Update the stats 1425 if (Cloner.ClonedOI) 1426 NumPartialInlined++; 1427 else 1428 NumColdOutlinePartialInlined++; 1429 1430 } 1431 1432 if (AnyInline) { 1433 Cloner.IsFunctionInlined = true; 1434 if (CalleeEntryCount) 1435 Cloner.OrigFunc->setEntryCount( 1436 CalleeEntryCount.setCount(CalleeEntryCountV)); 1437 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1438 OrigFuncORE.emit([&]() { 1439 return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc) 1440 << "Partially inlined into at least one caller"; 1441 }); 1442 1443 } 1444 1445 return AnyInline; 1446 } 1447 1448 bool PartialInlinerImpl::run(Module &M) { 1449 if (DisablePartialInlining) 1450 return false; 1451 1452 std::vector<Function *> Worklist; 1453 Worklist.reserve(M.size()); 1454 for (Function &F : M) 1455 if (!F.use_empty() && !F.isDeclaration()) 1456 Worklist.push_back(&F); 1457 1458 bool Changed = false; 1459 while (!Worklist.empty()) { 1460 Function *CurrFunc = Worklist.back(); 1461 Worklist.pop_back(); 1462 1463 if (CurrFunc->use_empty()) 1464 continue; 1465 1466 bool Recursive = false; 1467 for (User *U : CurrFunc->users()) 1468 if (Instruction *I = dyn_cast<Instruction>(U)) 1469 if (I->getParent()->getParent() == CurrFunc) { 1470 Recursive = true; 1471 break; 1472 } 1473 if (Recursive) 1474 continue; 1475 1476 std::pair<bool, Function * > Result = unswitchFunction(CurrFunc); 1477 if (Result.second) 1478 Worklist.push_back(Result.second); 1479 Changed |= Result.first; 1480 } 1481 1482 return Changed; 1483 } 1484 1485 char PartialInlinerLegacyPass::ID = 0; 1486 1487 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner", 1488 "Partial Inliner", false, false) 1489 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1490 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1491 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1493 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner", 1494 "Partial Inliner", false, false) 1495 1496 ModulePass *llvm::createPartialInliningPass() { 1497 return new PartialInlinerLegacyPass(); 1498 } 1499 1500 PreservedAnalyses PartialInlinerPass::run(Module &M, 1501 ModuleAnalysisManager &AM) { 1502 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1503 1504 auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { 1505 return FAM.getResult<AssumptionAnalysis>(F); 1506 }; 1507 1508 auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { 1509 return FAM.getCachedResult<AssumptionAnalysis>(F); 1510 }; 1511 1512 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 1513 return FAM.getResult<BlockFrequencyAnalysis>(F); 1514 }; 1515 1516 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 1517 return FAM.getResult<TargetIRAnalysis>(F); 1518 }; 1519 1520 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1521 return FAM.getResult<TargetLibraryAnalysis>(F); 1522 }; 1523 1524 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1525 1526 if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 1527 GetTLI, PSI, GetBFI) 1528 .run(M)) 1529 return PreservedAnalyses::none(); 1530 return PreservedAnalyses::all(); 1531 } 1532