1 //===- PartialInlining.cpp - Inline parts of functions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs partial inlining, typically by inlining an if statement 10 // that surrounds the body of the function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PartialInlining.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/CodeExtractor.h" 54 #include "llvm/Transforms/Utils/ValueMapper.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <functional> 59 #include <iterator> 60 #include <memory> 61 #include <tuple> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "partial-inlining" 67 68 STATISTIC(NumPartialInlined, 69 "Number of callsites functions partially inlined into."); 70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " 71 "cold outlined regions were partially " 72 "inlined into its caller(s)."); 73 STATISTIC(NumColdRegionsFound, 74 "Number of cold single entry/exit regions found."); 75 STATISTIC(NumColdRegionsOutlined, 76 "Number of cold single entry/exit regions outlined."); 77 78 // Command line option to disable partial-inlining. The default is false: 79 static cl::opt<bool> 80 DisablePartialInlining("disable-partial-inlining", cl::init(false), 81 cl::Hidden, cl::desc("Disable partial inlining")); 82 // Command line option to disable multi-region partial-inlining. The default is 83 // false: 84 static cl::opt<bool> DisableMultiRegionPartialInline( 85 "disable-mr-partial-inlining", cl::init(false), cl::Hidden, 86 cl::desc("Disable multi-region partial inlining")); 87 88 // Command line option to force outlining in regions with live exit variables. 89 // The default is false: 90 static cl::opt<bool> 91 ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden, 92 cl::desc("Force outline regions with live exits")); 93 94 // Command line option to enable marking outline functions with Cold Calling 95 // Convention. The default is false: 96 static cl::opt<bool> 97 MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden, 98 cl::desc("Mark outline function calls with ColdCC")); 99 100 // This is an option used by testing: 101 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", 102 cl::init(false), cl::ZeroOrMore, 103 cl::ReallyHidden, 104 cl::desc("Skip Cost Analysis")); 105 // Used to determine if a cold region is worth outlining based on 106 // its inlining cost compared to the original function. Default is set at 10%. 107 // ie. if the cold region reduces the inlining cost of the original function by 108 // at least 10%. 109 static cl::opt<float> MinRegionSizeRatio( 110 "min-region-size-ratio", cl::init(0.1), cl::Hidden, 111 cl::desc("Minimum ratio comparing relative sizes of each " 112 "outline candidate and original function")); 113 // Used to tune the minimum number of execution counts needed in the predecessor 114 // block to the cold edge. ie. confidence interval. 115 static cl::opt<unsigned> 116 MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden, 117 cl::desc("Minimum block executions to consider " 118 "its BranchProbabilityInfo valid")); 119 // Used to determine when an edge is considered cold. Default is set to 10%. ie. 120 // if the branch probability is 10% or less, then it is deemed as 'cold'. 121 static cl::opt<float> ColdBranchRatio( 122 "cold-branch-ratio", cl::init(0.1), cl::Hidden, 123 cl::desc("Minimum BranchProbability to consider a region cold.")); 124 125 static cl::opt<unsigned> MaxNumInlineBlocks( 126 "max-num-inline-blocks", cl::init(5), cl::Hidden, 127 cl::desc("Max number of blocks to be partially inlined")); 128 129 // Command line option to set the maximum number of partial inlining allowed 130 // for the module. The default value of -1 means no limit. 131 static cl::opt<int> MaxNumPartialInlining( 132 "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, 133 cl::desc("Max number of partial inlining. The default is unlimited")); 134 135 // Used only when PGO or user annotated branch data is absent. It is 136 // the least value that is used to weigh the outline region. If BFI 137 // produces larger value, the BFI value will be used. 138 static cl::opt<int> 139 OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), 140 cl::Hidden, cl::ZeroOrMore, 141 cl::desc("Relative frequency of outline region to " 142 "the entry block")); 143 144 static cl::opt<unsigned> ExtraOutliningPenalty( 145 "partial-inlining-extra-penalty", cl::init(0), cl::Hidden, 146 cl::desc("A debug option to add additional penalty to the computed one.")); 147 148 namespace { 149 150 struct FunctionOutliningInfo { 151 FunctionOutliningInfo() = default; 152 153 // Returns the number of blocks to be inlined including all blocks 154 // in Entries and one return block. 155 unsigned getNumInlinedBlocks() const { return Entries.size() + 1; } 156 157 // A set of blocks including the function entry that guard 158 // the region to be outlined. 159 SmallVector<BasicBlock *, 4> Entries; 160 161 // The return block that is not included in the outlined region. 162 BasicBlock *ReturnBlock = nullptr; 163 164 // The dominating block of the region to be outlined. 165 BasicBlock *NonReturnBlock = nullptr; 166 167 // The set of blocks in Entries that that are predecessors to ReturnBlock 168 SmallVector<BasicBlock *, 4> ReturnBlockPreds; 169 }; 170 171 struct FunctionOutliningMultiRegionInfo { 172 FunctionOutliningMultiRegionInfo() 173 : ORI() {} 174 175 // Container for outline regions 176 struct OutlineRegionInfo { 177 OutlineRegionInfo(ArrayRef<BasicBlock *> Region, 178 BasicBlock *EntryBlock, BasicBlock *ExitBlock, 179 BasicBlock *ReturnBlock) 180 : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock), 181 ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {} 182 SmallVector<BasicBlock *, 8> Region; 183 BasicBlock *EntryBlock; 184 BasicBlock *ExitBlock; 185 BasicBlock *ReturnBlock; 186 }; 187 188 SmallVector<OutlineRegionInfo, 4> ORI; 189 }; 190 191 struct PartialInlinerImpl { 192 193 PartialInlinerImpl( 194 function_ref<AssumptionCache &(Function &)> GetAC, 195 function_ref<AssumptionCache *(Function &)> LookupAC, 196 function_ref<TargetTransformInfo &(Function &)> GTTI, 197 function_ref<const TargetLibraryInfo &(Function &)> GTLI, 198 ProfileSummaryInfo &ProfSI, 199 function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) 200 : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), 201 GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} 202 203 bool run(Module &M); 204 // Main part of the transformation that calls helper functions to find 205 // outlining candidates, clone & outline the function, and attempt to 206 // partially inline the resulting function. Returns true if 207 // inlining was successful, false otherwise. Also returns the outline 208 // function (only if we partially inlined early returns) as there is a 209 // possibility to further "peel" early return statements that were left in the 210 // outline function due to code size. 211 std::pair<bool, Function *> unswitchFunction(Function &F); 212 213 // This class speculatively clones the function to be partial inlined. 214 // At the end of partial inlining, the remaining callsites to the cloned 215 // function that are not partially inlined will be fixed up to reference 216 // the original function, and the cloned function will be erased. 217 struct FunctionCloner { 218 // Two constructors, one for single region outlining, the other for 219 // multi-region outlining. 220 FunctionCloner(Function *F, FunctionOutliningInfo *OI, 221 OptimizationRemarkEmitter &ORE, 222 function_ref<AssumptionCache *(Function &)> LookupAC, 223 function_ref<TargetTransformInfo &(Function &)> GetTTI); 224 FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, 225 OptimizationRemarkEmitter &ORE, 226 function_ref<AssumptionCache *(Function &)> LookupAC, 227 function_ref<TargetTransformInfo &(Function &)> GetTTI); 228 229 ~FunctionCloner(); 230 231 // Prepare for function outlining: making sure there is only 232 // one incoming edge from the extracted/outlined region to 233 // the return block. 234 void normalizeReturnBlock() const; 235 236 // Do function outlining for cold regions. 237 bool doMultiRegionFunctionOutlining(); 238 // Do function outlining for region after early return block(s). 239 // NOTE: For vararg functions that do the vararg handling in the outlined 240 // function, we temporarily generate IR that does not properly 241 // forward varargs to the outlined function. Calling InlineFunction 242 // will update calls to the outlined functions to properly forward 243 // the varargs. 244 Function *doSingleRegionFunctionOutlining(); 245 246 Function *OrigFunc = nullptr; 247 Function *ClonedFunc = nullptr; 248 249 typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; 250 // Keep track of Outlined Functions and the basic block they're called from. 251 SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; 252 253 // ClonedFunc is inlined in one of its callers after function 254 // outlining. 255 bool IsFunctionInlined = false; 256 // The cost of the region to be outlined. 257 int OutlinedRegionCost = 0; 258 // ClonedOI is specific to outlining non-early return blocks. 259 std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; 260 // ClonedOMRI is specific to outlining cold regions. 261 std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; 262 std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; 263 OptimizationRemarkEmitter &ORE; 264 function_ref<AssumptionCache *(Function &)> LookupAC; 265 function_ref<TargetTransformInfo &(Function &)> GetTTI; 266 }; 267 268 private: 269 int NumPartialInlining = 0; 270 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 271 function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; 272 function_ref<TargetTransformInfo &(Function &)> GetTTI; 273 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 274 function_ref<const TargetLibraryInfo &(Function &)> GetTLI; 275 ProfileSummaryInfo &PSI; 276 277 // Return the frequency of the OutlininingBB relative to F's entry point. 278 // The result is no larger than 1 and is represented using BP. 279 // (Note that the outlined region's 'head' block can only have incoming 280 // edges from the guarding entry blocks). 281 BranchProbability 282 getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const; 283 284 // Return true if the callee of CB should be partially inlined with 285 // profit. 286 bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, 287 BlockFrequency WeightedOutliningRcost, 288 OptimizationRemarkEmitter &ORE) const; 289 290 // Try to inline DuplicateFunction (cloned from F with call to 291 // the OutlinedFunction into its callers. Return true 292 // if there is any successful inlining. 293 bool tryPartialInline(FunctionCloner &Cloner); 294 295 // Compute the mapping from use site of DuplicationFunction to the enclosing 296 // BB's profile count. 297 void 298 computeCallsiteToProfCountMap(Function *DuplicateFunction, 299 DenseMap<User *, uint64_t> &SiteCountMap) const; 300 301 bool isLimitReached() const { 302 return (MaxNumPartialInlining != -1 && 303 NumPartialInlining >= MaxNumPartialInlining); 304 } 305 306 static CallBase *getSupportedCallBase(User *U) { 307 if (isa<CallInst>(U) || isa<InvokeInst>(U)) 308 return cast<CallBase>(U); 309 llvm_unreachable("All uses must be calls"); 310 return nullptr; 311 } 312 313 static CallBase *getOneCallSiteTo(Function &F) { 314 User *User = *F.user_begin(); 315 return getSupportedCallBase(User); 316 } 317 318 std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const { 319 CallBase *CB = getOneCallSiteTo(F); 320 DebugLoc DLoc = CB->getDebugLoc(); 321 BasicBlock *Block = CB->getParent(); 322 return std::make_tuple(DLoc, Block); 323 } 324 325 // Returns the costs associated with function outlining: 326 // - The first value is the non-weighted runtime cost for making the call 327 // to the outlined function, including the addtional setup cost in the 328 // outlined function itself; 329 // - The second value is the estimated size of the new call sequence in 330 // basic block Cloner.OutliningCallBB; 331 std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner) const; 332 333 // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to 334 // approximate both the size and runtime cost (Note that in the current 335 // inline cost analysis, there is no clear distinction there either). 336 static int computeBBInlineCost(BasicBlock *BB, TargetTransformInfo *TTI); 337 338 std::unique_ptr<FunctionOutliningInfo> 339 computeOutliningInfo(Function &F) const; 340 341 std::unique_ptr<FunctionOutliningMultiRegionInfo> 342 computeOutliningColdRegionsInfo(Function &F, 343 OptimizationRemarkEmitter &ORE) const; 344 }; 345 346 struct PartialInlinerLegacyPass : public ModulePass { 347 static char ID; // Pass identification, replacement for typeid 348 349 PartialInlinerLegacyPass() : ModulePass(ID) { 350 initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 351 } 352 353 void getAnalysisUsage(AnalysisUsage &AU) const override { 354 AU.addRequired<AssumptionCacheTracker>(); 355 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 356 AU.addRequired<TargetTransformInfoWrapperPass>(); 357 AU.addRequired<TargetLibraryInfoWrapperPass>(); 358 } 359 360 bool runOnModule(Module &M) override { 361 if (skipModule(M)) 362 return false; 363 364 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 365 TargetTransformInfoWrapperPass *TTIWP = 366 &getAnalysis<TargetTransformInfoWrapperPass>(); 367 ProfileSummaryInfo &PSI = 368 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 369 370 auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & { 371 return ACT->getAssumptionCache(F); 372 }; 373 374 auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * { 375 return ACT->lookupAssumptionCache(F); 376 }; 377 378 auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & { 379 return TTIWP->getTTI(F); 380 }; 381 382 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 383 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 384 }; 385 386 return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 387 GetTLI, PSI) 388 .run(M); 389 } 390 }; 391 392 } // end anonymous namespace 393 394 std::unique_ptr<FunctionOutliningMultiRegionInfo> 395 PartialInlinerImpl::computeOutliningColdRegionsInfo( 396 Function &F, OptimizationRemarkEmitter &ORE) const { 397 BasicBlock *EntryBlock = &F.front(); 398 399 DominatorTree DT(F); 400 LoopInfo LI(DT); 401 BranchProbabilityInfo BPI(F, LI); 402 std::unique_ptr<BlockFrequencyInfo> ScopedBFI; 403 BlockFrequencyInfo *BFI; 404 if (!GetBFI) { 405 ScopedBFI.reset(new BlockFrequencyInfo(F, BPI, LI)); 406 BFI = ScopedBFI.get(); 407 } else 408 BFI = &(GetBFI(F)); 409 410 // Return if we don't have profiling information. 411 if (!PSI.hasInstrumentationProfile()) 412 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 413 414 std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = 415 std::make_unique<FunctionOutliningMultiRegionInfo>(); 416 417 auto IsSingleExit = 418 [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { 419 BasicBlock *ExitBlock = nullptr; 420 for (auto *Block : BlockList) { 421 for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) { 422 if (!is_contained(BlockList, *SI)) { 423 if (ExitBlock) { 424 ORE.emit([&]() { 425 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion", 426 &SI->front()) 427 << "Region dominated by " 428 << ore::NV("Block", BlockList.front()->getName()) 429 << " has more than one region exit edge."; 430 }); 431 return nullptr; 432 } 433 434 ExitBlock = Block; 435 } 436 } 437 } 438 return ExitBlock; 439 }; 440 441 auto BBProfileCount = [BFI](BasicBlock *BB) { 442 return BFI->getBlockProfileCount(BB) 443 ? BFI->getBlockProfileCount(BB).getValue() 444 : 0; 445 }; 446 447 // Use the same computeBBInlineCost function to compute the cost savings of 448 // the outlining the candidate region. 449 TargetTransformInfo *FTTI = &GetTTI(F); 450 int OverallFunctionCost = 0; 451 for (auto &BB : F) 452 OverallFunctionCost += computeBBInlineCost(&BB, FTTI); 453 454 LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost 455 << "\n";); 456 457 int MinOutlineRegionCost = 458 static_cast<int>(OverallFunctionCost * MinRegionSizeRatio); 459 BranchProbability MinBranchProbability( 460 static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), 461 MinBlockCounterExecution); 462 bool ColdCandidateFound = false; 463 BasicBlock *CurrEntry = EntryBlock; 464 std::vector<BasicBlock *> DFS; 465 DenseMap<BasicBlock *, bool> VisitedMap; 466 DFS.push_back(CurrEntry); 467 VisitedMap[CurrEntry] = true; 468 469 // Use Depth First Search on the basic blocks to find CFG edges that are 470 // considered cold. 471 // Cold regions considered must also have its inline cost compared to the 472 // overall inline cost of the original function. The region is outlined only 473 // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or 474 // more. 475 while (!DFS.empty()) { 476 auto *ThisBB = DFS.back(); 477 DFS.pop_back(); 478 // Only consider regions with predecessor blocks that are considered 479 // not-cold (default: part of the top 99.99% of all block counters) 480 // AND greater than our minimum block execution count (default: 100). 481 if (PSI.isColdBlock(ThisBB, BFI) || 482 BBProfileCount(ThisBB) < MinBlockCounterExecution) 483 continue; 484 for (auto SI = succ_begin(ThisBB); SI != succ_end(ThisBB); ++SI) { 485 if (VisitedMap[*SI]) 486 continue; 487 VisitedMap[*SI] = true; 488 DFS.push_back(*SI); 489 // If branch isn't cold, we skip to the next one. 490 BranchProbability SuccProb = BPI.getEdgeProbability(ThisBB, *SI); 491 if (SuccProb > MinBranchProbability) 492 continue; 493 494 LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->" 495 << SI->getName() 496 << "\nBranch Probability = " << SuccProb << "\n";); 497 498 SmallVector<BasicBlock *, 8> DominateVector; 499 DT.getDescendants(*SI, DominateVector); 500 assert(!DominateVector.empty() && 501 "SI should be reachable and have at least itself as descendant"); 502 503 // We can only outline single entry regions (for now). 504 if (!DominateVector.front()->hasNPredecessors(1)) { 505 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 506 << " doesn't have a single predecessor in the " 507 "dominator tree\n";); 508 continue; 509 } 510 511 BasicBlock *ExitBlock = nullptr; 512 // We can only outline single exit regions (for now). 513 if (!(ExitBlock = IsSingleExit(DominateVector))) { 514 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 515 << " doesn't have a unique successor\n";); 516 continue; 517 } 518 519 int OutlineRegionCost = 0; 520 for (auto *BB : DominateVector) 521 OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 522 523 LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost 524 << "\n";); 525 526 if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) { 527 ORE.emit([&]() { 528 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", 529 &SI->front()) 530 << ore::NV("Callee", &F) 531 << " inline cost-savings smaller than " 532 << ore::NV("Cost", MinOutlineRegionCost); 533 }); 534 535 LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than " 536 << MinOutlineRegionCost << "\n";); 537 continue; 538 } 539 540 // For now, ignore blocks that belong to a SISE region that is a 541 // candidate for outlining. In the future, we may want to look 542 // at inner regions because the outer region may have live-exit 543 // variables. 544 for (auto *BB : DominateVector) 545 VisitedMap[BB] = true; 546 547 // ReturnBlock here means the block after the outline call 548 BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); 549 FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( 550 DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); 551 OutliningInfo->ORI.push_back(RegInfo); 552 LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: " 553 << DominateVector.front()->getName() << "\n";); 554 ColdCandidateFound = true; 555 NumColdRegionsFound++; 556 } 557 } 558 559 if (ColdCandidateFound) 560 return OutliningInfo; 561 562 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 563 } 564 565 std::unique_ptr<FunctionOutliningInfo> 566 PartialInlinerImpl::computeOutliningInfo(Function &F) const { 567 BasicBlock *EntryBlock = &F.front(); 568 BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); 569 if (!BR || BR->isUnconditional()) 570 return std::unique_ptr<FunctionOutliningInfo>(); 571 572 // Returns true if Succ is BB's successor 573 auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { 574 return is_contained(successors(BB), Succ); 575 }; 576 577 auto IsReturnBlock = [](BasicBlock *BB) { 578 Instruction *TI = BB->getTerminator(); 579 return isa<ReturnInst>(TI); 580 }; 581 582 auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 583 if (IsReturnBlock(Succ1)) 584 return std::make_tuple(Succ1, Succ2); 585 if (IsReturnBlock(Succ2)) 586 return std::make_tuple(Succ2, Succ1); 587 588 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 589 }; 590 591 // Detect a triangular shape: 592 auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 593 if (IsSuccessor(Succ1, Succ2)) 594 return std::make_tuple(Succ1, Succ2); 595 if (IsSuccessor(Succ2, Succ1)) 596 return std::make_tuple(Succ2, Succ1); 597 598 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 599 }; 600 601 std::unique_ptr<FunctionOutliningInfo> OutliningInfo = 602 std::make_unique<FunctionOutliningInfo>(); 603 604 BasicBlock *CurrEntry = EntryBlock; 605 bool CandidateFound = false; 606 do { 607 // The number of blocks to be inlined has already reached 608 // the limit. When MaxNumInlineBlocks is set to 0 or 1, this 609 // disables partial inlining for the function. 610 if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks) 611 break; 612 613 if (succ_size(CurrEntry) != 2) 614 break; 615 616 BasicBlock *Succ1 = *succ_begin(CurrEntry); 617 BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); 618 619 BasicBlock *ReturnBlock, *NonReturnBlock; 620 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 621 622 if (ReturnBlock) { 623 OutliningInfo->Entries.push_back(CurrEntry); 624 OutliningInfo->ReturnBlock = ReturnBlock; 625 OutliningInfo->NonReturnBlock = NonReturnBlock; 626 CandidateFound = true; 627 break; 628 } 629 630 BasicBlock *CommSucc, *OtherSucc; 631 std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); 632 633 if (!CommSucc) 634 break; 635 636 OutliningInfo->Entries.push_back(CurrEntry); 637 CurrEntry = OtherSucc; 638 } while (true); 639 640 if (!CandidateFound) 641 return std::unique_ptr<FunctionOutliningInfo>(); 642 643 // Do sanity check of the entries: threre should not 644 // be any successors (not in the entry set) other than 645 // {ReturnBlock, NonReturnBlock} 646 assert(OutliningInfo->Entries[0] == &F.front() && 647 "Function Entry must be the first in Entries vector"); 648 DenseSet<BasicBlock *> Entries; 649 for (BasicBlock *E : OutliningInfo->Entries) 650 Entries.insert(E); 651 652 // Returns true of BB has Predecessor which is not 653 // in Entries set. 654 auto HasNonEntryPred = [Entries](BasicBlock *BB) { 655 for (auto *Pred : predecessors(BB)) { 656 if (!Entries.count(Pred)) 657 return true; 658 } 659 return false; 660 }; 661 auto CheckAndNormalizeCandidate = 662 [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { 663 for (BasicBlock *E : OutliningInfo->Entries) { 664 for (auto *Succ : successors(E)) { 665 if (Entries.count(Succ)) 666 continue; 667 if (Succ == OutliningInfo->ReturnBlock) 668 OutliningInfo->ReturnBlockPreds.push_back(E); 669 else if (Succ != OutliningInfo->NonReturnBlock) 670 return false; 671 } 672 // There should not be any outside incoming edges either: 673 if (HasNonEntryPred(E)) 674 return false; 675 } 676 return true; 677 }; 678 679 if (!CheckAndNormalizeCandidate(OutliningInfo.get())) 680 return std::unique_ptr<FunctionOutliningInfo>(); 681 682 // Now further growing the candidate's inlining region by 683 // peeling off dominating blocks from the outlining region: 684 while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) { 685 BasicBlock *Cand = OutliningInfo->NonReturnBlock; 686 if (succ_size(Cand) != 2) 687 break; 688 689 if (HasNonEntryPred(Cand)) 690 break; 691 692 BasicBlock *Succ1 = *succ_begin(Cand); 693 BasicBlock *Succ2 = *(succ_begin(Cand) + 1); 694 695 BasicBlock *ReturnBlock, *NonReturnBlock; 696 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 697 if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) 698 break; 699 700 if (NonReturnBlock->getSinglePredecessor() != Cand) 701 break; 702 703 // Now grow and update OutlininigInfo: 704 OutliningInfo->Entries.push_back(Cand); 705 OutliningInfo->NonReturnBlock = NonReturnBlock; 706 OutliningInfo->ReturnBlockPreds.push_back(Cand); 707 Entries.insert(Cand); 708 } 709 710 return OutliningInfo; 711 } 712 713 // Check if there is PGO data or user annotated branch data: 714 static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) { 715 if (F.hasProfileData()) 716 return true; 717 // Now check if any of the entry block has MD_prof data: 718 for (auto *E : OI.Entries) { 719 BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); 720 if (!BR || BR->isUnconditional()) 721 continue; 722 uint64_t T, F; 723 if (BR->extractProfMetadata(T, F)) 724 return true; 725 } 726 return false; 727 } 728 729 BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( 730 FunctionCloner &Cloner) const { 731 BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; 732 auto EntryFreq = 733 Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock()); 734 auto OutliningCallFreq = 735 Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB); 736 // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE 737 // we outlined any regions, so we may encounter situations where the 738 // OutliningCallFreq is *slightly* bigger than the EntryFreq. 739 if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) 740 OutliningCallFreq = EntryFreq; 741 742 auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( 743 OutliningCallFreq.getFrequency(), EntryFreq.getFrequency()); 744 745 if (hasProfileData(*Cloner.OrigFunc, *Cloner.ClonedOI.get())) 746 return OutlineRegionRelFreq; 747 748 // When profile data is not available, we need to be conservative in 749 // estimating the overall savings. Static branch prediction can usually 750 // guess the branch direction right (taken/non-taken), but the guessed 751 // branch probability is usually not biased enough. In case when the 752 // outlined region is predicted to be likely, its probability needs 753 // to be made higher (more biased) to not under-estimate the cost of 754 // function outlining. On the other hand, if the outlined region 755 // is predicted to be less likely, the predicted probablity is usually 756 // higher than the actual. For instance, the actual probability of the 757 // less likely target is only 5%, but the guessed probablity can be 758 // 40%. In the latter case, there is no need for further adjustement. 759 // FIXME: add an option for this. 760 if (OutlineRegionRelFreq < BranchProbability(45, 100)) 761 return OutlineRegionRelFreq; 762 763 OutlineRegionRelFreq = std::max( 764 OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); 765 766 return OutlineRegionRelFreq; 767 } 768 769 bool PartialInlinerImpl::shouldPartialInline( 770 CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, 771 OptimizationRemarkEmitter &ORE) const { 772 using namespace ore; 773 774 Function *Callee = CB.getCalledFunction(); 775 assert(Callee == Cloner.ClonedFunc); 776 777 if (SkipCostAnalysis) 778 return isInlineViable(*Callee).isSuccess(); 779 780 Function *Caller = CB.getCaller(); 781 auto &CalleeTTI = GetTTI(*Callee); 782 bool RemarksEnabled = 783 Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 784 DEBUG_TYPE); 785 InlineCost IC = 786 getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache, 787 GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr); 788 789 if (IC.isAlways()) { 790 ORE.emit([&]() { 791 return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB) 792 << NV("Callee", Cloner.OrigFunc) 793 << " should always be fully inlined, not partially"; 794 }); 795 return false; 796 } 797 798 if (IC.isNever()) { 799 ORE.emit([&]() { 800 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB) 801 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 802 << NV("Caller", Caller) 803 << " because it should never be inlined (cost=never)"; 804 }); 805 return false; 806 } 807 808 if (!IC) { 809 ORE.emit([&]() { 810 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB) 811 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 812 << NV("Caller", Caller) << " because too costly to inline (cost=" 813 << NV("Cost", IC.getCost()) << ", threshold=" 814 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 815 }); 816 return false; 817 } 818 const DataLayout &DL = Caller->getParent()->getDataLayout(); 819 820 // The savings of eliminating the call: 821 int NonWeightedSavings = getCallsiteCost(CB, DL); 822 BlockFrequency NormWeightedSavings(NonWeightedSavings); 823 824 // Weighted saving is smaller than weighted cost, return false 825 if (NormWeightedSavings < WeightedOutliningRcost) { 826 ORE.emit([&]() { 827 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", 828 &CB) 829 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 830 << NV("Caller", Caller) << " runtime overhead (overhead=" 831 << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) 832 << ", savings=" 833 << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) 834 << ")" 835 << " of making the outlined call is too high"; 836 }); 837 838 return false; 839 } 840 841 ORE.emit([&]() { 842 return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB) 843 << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " 844 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 845 << " (threshold=" 846 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 847 }); 848 return true; 849 } 850 851 // TODO: Ideally we should share Inliner's InlineCost Analysis code. 852 // For now use a simplified version. The returned 'InlineCost' will be used 853 // to esimate the size cost as well as runtime cost of the BB. 854 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB, 855 TargetTransformInfo *TTI) { 856 int InlineCost = 0; 857 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); 858 for (Instruction &I : BB->instructionsWithoutDebug()) { 859 // Skip free instructions. 860 switch (I.getOpcode()) { 861 case Instruction::BitCast: 862 case Instruction::PtrToInt: 863 case Instruction::IntToPtr: 864 case Instruction::Alloca: 865 case Instruction::PHI: 866 continue; 867 case Instruction::GetElementPtr: 868 if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices()) 869 continue; 870 break; 871 default: 872 break; 873 } 874 875 if (I.isLifetimeStartOrEnd()) 876 continue; 877 878 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 879 Intrinsic::ID IID = II->getIntrinsicID(); 880 SmallVector<Type *, 4> Tys; 881 FastMathFlags FMF; 882 for (Value *Val : II->args()) 883 Tys.push_back(Val->getType()); 884 885 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 886 FMF = FPMO->getFastMathFlags(); 887 888 IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF); 889 InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency); 890 continue; 891 } 892 893 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 894 InlineCost += getCallsiteCost(*CI, DL); 895 continue; 896 } 897 898 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 899 InlineCost += getCallsiteCost(*II, DL); 900 continue; 901 } 902 903 if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 904 InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost; 905 continue; 906 } 907 InlineCost += InlineConstants::InstrCost; 908 } 909 return InlineCost; 910 } 911 912 std::tuple<int, int> 913 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const { 914 int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; 915 for (auto FuncBBPair : Cloner.OutlinedFunctions) { 916 Function *OutlinedFunc = FuncBBPair.first; 917 BasicBlock* OutliningCallBB = FuncBBPair.second; 918 // Now compute the cost of the call sequence to the outlined function 919 // 'OutlinedFunction' in BB 'OutliningCallBB': 920 auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc); 921 OutliningFuncCallCost += 922 computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI); 923 924 // Now compute the cost of the extracted/outlined function itself: 925 for (BasicBlock &BB : *OutlinedFunc) 926 OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI); 927 } 928 assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && 929 "Outlined function cost should be no less than the outlined region"); 930 931 // The code extractor introduces a new root and exit stub blocks with 932 // additional unconditional branches. Those branches will be eliminated 933 // later with bb layout. The cost should be adjusted accordingly: 934 OutlinedFunctionCost -= 935 2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size(); 936 937 int OutliningRuntimeOverhead = 938 OutliningFuncCallCost + 939 (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + 940 ExtraOutliningPenalty; 941 942 return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead); 943 } 944 945 // Create the callsite to profile count map which is 946 // used to update the original function's entry count, 947 // after the function is partially inlined into the callsite. 948 void PartialInlinerImpl::computeCallsiteToProfCountMap( 949 Function *DuplicateFunction, 950 DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const { 951 std::vector<User *> Users(DuplicateFunction->user_begin(), 952 DuplicateFunction->user_end()); 953 Function *CurrentCaller = nullptr; 954 std::unique_ptr<BlockFrequencyInfo> TempBFI; 955 BlockFrequencyInfo *CurrentCallerBFI = nullptr; 956 957 auto ComputeCurrBFI = [&,this](Function *Caller) { 958 // For the old pass manager: 959 if (!GetBFI) { 960 DominatorTree DT(*Caller); 961 LoopInfo LI(DT); 962 BranchProbabilityInfo BPI(*Caller, LI); 963 TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI)); 964 CurrentCallerBFI = TempBFI.get(); 965 } else { 966 // New pass manager: 967 CurrentCallerBFI = &(GetBFI(*Caller)); 968 } 969 }; 970 971 for (User *User : Users) { 972 CallBase *CB = getSupportedCallBase(User); 973 Function *Caller = CB->getCaller(); 974 if (CurrentCaller != Caller) { 975 CurrentCaller = Caller; 976 ComputeCurrBFI(Caller); 977 } else { 978 assert(CurrentCallerBFI && "CallerBFI is not set"); 979 } 980 BasicBlock *CallBB = CB->getParent(); 981 auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); 982 if (Count) 983 CallSiteToProfCountMap[User] = *Count; 984 else 985 CallSiteToProfCountMap[User] = 0; 986 } 987 } 988 989 PartialInlinerImpl::FunctionCloner::FunctionCloner( 990 Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, 991 function_ref<AssumptionCache *(Function &)> LookupAC, 992 function_ref<TargetTransformInfo &(Function &)> GetTTI) 993 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 994 ClonedOI = std::make_unique<FunctionOutliningInfo>(); 995 996 // Clone the function, so that we can hack away on it. 997 ValueToValueMapTy VMap; 998 ClonedFunc = CloneFunction(F, VMap); 999 1000 ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); 1001 ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); 1002 for (BasicBlock *BB : OI->Entries) 1003 ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB])); 1004 1005 for (BasicBlock *E : OI->ReturnBlockPreds) { 1006 BasicBlock *NewE = cast<BasicBlock>(VMap[E]); 1007 ClonedOI->ReturnBlockPreds.push_back(NewE); 1008 } 1009 // Go ahead and update all uses to the duplicate, so that we can just 1010 // use the inliner functionality when we're done hacking. 1011 F->replaceAllUsesWith(ClonedFunc); 1012 } 1013 1014 PartialInlinerImpl::FunctionCloner::FunctionCloner( 1015 Function *F, FunctionOutliningMultiRegionInfo *OI, 1016 OptimizationRemarkEmitter &ORE, 1017 function_ref<AssumptionCache *(Function &)> LookupAC, 1018 function_ref<TargetTransformInfo &(Function &)> GetTTI) 1019 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 1020 ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); 1021 1022 // Clone the function, so that we can hack away on it. 1023 ValueToValueMapTy VMap; 1024 ClonedFunc = CloneFunction(F, VMap); 1025 1026 // Go through all Outline Candidate Regions and update all BasicBlock 1027 // information. 1028 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1029 OI->ORI) { 1030 SmallVector<BasicBlock *, 8> Region; 1031 for (BasicBlock *BB : RegionInfo.Region) 1032 Region.push_back(cast<BasicBlock>(VMap[BB])); 1033 1034 BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]); 1035 BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]); 1036 BasicBlock *NewReturnBlock = nullptr; 1037 if (RegionInfo.ReturnBlock) 1038 NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]); 1039 FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( 1040 Region, NewEntryBlock, NewExitBlock, NewReturnBlock); 1041 ClonedOMRI->ORI.push_back(MappedRegionInfo); 1042 } 1043 // Go ahead and update all uses to the duplicate, so that we can just 1044 // use the inliner functionality when we're done hacking. 1045 F->replaceAllUsesWith(ClonedFunc); 1046 } 1047 1048 void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const { 1049 auto GetFirstPHI = [](BasicBlock *BB) { 1050 BasicBlock::iterator I = BB->begin(); 1051 PHINode *FirstPhi = nullptr; 1052 while (I != BB->end()) { 1053 PHINode *Phi = dyn_cast<PHINode>(I); 1054 if (!Phi) 1055 break; 1056 if (!FirstPhi) { 1057 FirstPhi = Phi; 1058 break; 1059 } 1060 } 1061 return FirstPhi; 1062 }; 1063 1064 // Shouldn't need to normalize PHIs if we're not outlining non-early return 1065 // blocks. 1066 if (!ClonedOI) 1067 return; 1068 1069 // Special hackery is needed with PHI nodes that have inputs from more than 1070 // one extracted block. For simplicity, just split the PHIs into a two-level 1071 // sequence of PHIs, some of which will go in the extracted region, and some 1072 // of which will go outside. 1073 BasicBlock *PreReturn = ClonedOI->ReturnBlock; 1074 // only split block when necessary: 1075 PHINode *FirstPhi = GetFirstPHI(PreReturn); 1076 unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); 1077 1078 if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) 1079 return; 1080 1081 auto IsTrivialPhi = [](PHINode *PN) -> Value * { 1082 Value *CommonValue = PN->getIncomingValue(0); 1083 if (all_of(PN->incoming_values(), 1084 [&](Value *V) { return V == CommonValue; })) 1085 return CommonValue; 1086 return nullptr; 1087 }; 1088 1089 ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( 1090 ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator()); 1091 BasicBlock::iterator I = PreReturn->begin(); 1092 Instruction *Ins = &ClonedOI->ReturnBlock->front(); 1093 SmallVector<Instruction *, 4> DeadPhis; 1094 while (I != PreReturn->end()) { 1095 PHINode *OldPhi = dyn_cast<PHINode>(I); 1096 if (!OldPhi) 1097 break; 1098 1099 PHINode *RetPhi = 1100 PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins); 1101 OldPhi->replaceAllUsesWith(RetPhi); 1102 Ins = ClonedOI->ReturnBlock->getFirstNonPHI(); 1103 1104 RetPhi->addIncoming(&*I, PreReturn); 1105 for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { 1106 RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E); 1107 OldPhi->removeIncomingValue(E); 1108 } 1109 1110 // After incoming values splitting, the old phi may become trivial. 1111 // Keeping the trivial phi can introduce definition inside the outline 1112 // region which is live-out, causing necessary overhead (load, store 1113 // arg passing etc). 1114 if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { 1115 OldPhi->replaceAllUsesWith(OldPhiVal); 1116 DeadPhis.push_back(OldPhi); 1117 } 1118 ++I; 1119 } 1120 for (auto *DP : DeadPhis) 1121 DP->eraseFromParent(); 1122 1123 for (auto *E : ClonedOI->ReturnBlockPreds) 1124 E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock); 1125 } 1126 1127 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { 1128 1129 auto ComputeRegionCost = [&](SmallVectorImpl<BasicBlock *> &Region) { 1130 int Cost = 0; 1131 for (BasicBlock* BB : Region) 1132 Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 1133 return Cost; 1134 }; 1135 1136 assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline"); 1137 1138 if (ClonedOMRI->ORI.empty()) 1139 return false; 1140 1141 // The CodeExtractor needs a dominator tree. 1142 DominatorTree DT; 1143 DT.recalculate(*ClonedFunc); 1144 1145 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1146 LoopInfo LI(DT); 1147 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1148 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1149 1150 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 1151 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1152 1153 SetVector<Value *> Inputs, Outputs, Sinks; 1154 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1155 ClonedOMRI->ORI) { 1156 int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region); 1157 1158 CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, 1159 ClonedFuncBFI.get(), &BPI, 1160 LookupAC(*RegionInfo.EntryBlock->getParent()), 1161 /* AllowVarargs */ false); 1162 1163 CE.findInputsOutputs(Inputs, Outputs, Sinks); 1164 1165 LLVM_DEBUG({ 1166 dbgs() << "inputs: " << Inputs.size() << "\n"; 1167 dbgs() << "outputs: " << Outputs.size() << "\n"; 1168 for (Value *value : Inputs) 1169 dbgs() << "value used in func: " << *value << "\n"; 1170 for (Value *output : Outputs) 1171 dbgs() << "instr used in func: " << *output << "\n"; 1172 }); 1173 1174 // Do not extract regions that have live exit variables. 1175 if (Outputs.size() > 0 && !ForceLiveExit) 1176 continue; 1177 1178 if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) { 1179 CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc); 1180 BasicBlock *OutliningCallBB = OCS->getParent(); 1181 assert(OutliningCallBB->getParent() == ClonedFunc); 1182 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB)); 1183 NumColdRegionsOutlined++; 1184 OutlinedRegionCost += CurrentOutlinedRegionCost; 1185 1186 if (MarkOutlinedColdCC) { 1187 OutlinedFunc->setCallingConv(CallingConv::Cold); 1188 OCS->setCallingConv(CallingConv::Cold); 1189 } 1190 } else 1191 ORE.emit([&]() { 1192 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1193 &RegionInfo.Region.front()->front()) 1194 << "Failed to extract region at block " 1195 << ore::NV("Block", RegionInfo.Region.front()); 1196 }); 1197 } 1198 1199 return !OutlinedFunctions.empty(); 1200 } 1201 1202 Function * 1203 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { 1204 // Returns true if the block is to be partial inlined into the caller 1205 // (i.e. not to be extracted to the out of line function) 1206 auto ToBeInlined = [&, this](BasicBlock *BB) { 1207 return BB == ClonedOI->ReturnBlock || 1208 llvm::is_contained(ClonedOI->Entries, BB); 1209 }; 1210 1211 assert(ClonedOI && "Expecting OutlineInfo for single region outline"); 1212 // The CodeExtractor needs a dominator tree. 1213 DominatorTree DT; 1214 DT.recalculate(*ClonedFunc); 1215 1216 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1217 LoopInfo LI(DT); 1218 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1219 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1220 1221 // Gather up the blocks that we're going to extract. 1222 std::vector<BasicBlock *> ToExtract; 1223 auto *ClonedFuncTTI = &GetTTI(*ClonedFunc); 1224 ToExtract.push_back(ClonedOI->NonReturnBlock); 1225 OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost( 1226 ClonedOI->NonReturnBlock, ClonedFuncTTI); 1227 for (BasicBlock &BB : *ClonedFunc) 1228 if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) { 1229 ToExtract.push_back(&BB); 1230 // FIXME: the code extractor may hoist/sink more code 1231 // into the outlined function which may make the outlining 1232 // overhead (the difference of the outlined function cost 1233 // and OutliningRegionCost) look larger. 1234 OutlinedRegionCost += computeBBInlineCost(&BB, ClonedFuncTTI); 1235 } 1236 1237 // Extract the body of the if. 1238 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1239 Function *OutlinedFunc = 1240 CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, 1241 ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), 1242 /* AllowVarargs */ true) 1243 .extractCodeRegion(CEAC); 1244 1245 if (OutlinedFunc) { 1246 BasicBlock *OutliningCallBB = 1247 PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc)->getParent(); 1248 assert(OutliningCallBB->getParent() == ClonedFunc); 1249 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB)); 1250 } else 1251 ORE.emit([&]() { 1252 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1253 &ToExtract.front()->front()) 1254 << "Failed to extract region at block " 1255 << ore::NV("Block", ToExtract.front()); 1256 }); 1257 1258 return OutlinedFunc; 1259 } 1260 1261 PartialInlinerImpl::FunctionCloner::~FunctionCloner() { 1262 // Ditch the duplicate, since we're done with it, and rewrite all remaining 1263 // users (function pointers, etc.) back to the original function. 1264 ClonedFunc->replaceAllUsesWith(OrigFunc); 1265 ClonedFunc->eraseFromParent(); 1266 if (!IsFunctionInlined) { 1267 // Remove each function that was speculatively created if there is no 1268 // reference. 1269 for (auto FuncBBPair : OutlinedFunctions) { 1270 Function *Func = FuncBBPair.first; 1271 Func->eraseFromParent(); 1272 } 1273 } 1274 } 1275 1276 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) { 1277 if (F.hasAddressTaken()) 1278 return {false, nullptr}; 1279 1280 // Let inliner handle it 1281 if (F.hasFnAttribute(Attribute::AlwaysInline)) 1282 return {false, nullptr}; 1283 1284 if (F.hasFnAttribute(Attribute::NoInline)) 1285 return {false, nullptr}; 1286 1287 if (PSI.isFunctionEntryCold(&F)) 1288 return {false, nullptr}; 1289 1290 if (F.users().empty()) 1291 return {false, nullptr}; 1292 1293 OptimizationRemarkEmitter ORE(&F); 1294 1295 // Only try to outline cold regions if we have a profile summary, which 1296 // implies we have profiling information. 1297 if (PSI.hasProfileSummary() && F.hasProfileData() && 1298 !DisableMultiRegionPartialInline) { 1299 std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = 1300 computeOutliningColdRegionsInfo(F, ORE); 1301 if (OMRI) { 1302 FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI); 1303 1304 LLVM_DEBUG({ 1305 dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n"; 1306 dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() 1307 << "\n"; 1308 }); 1309 1310 bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); 1311 1312 if (DidOutline) { 1313 LLVM_DEBUG({ 1314 dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n"; 1315 Cloner.ClonedFunc->print(dbgs()); 1316 dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n"; 1317 }); 1318 1319 if (tryPartialInline(Cloner)) 1320 return {true, nullptr}; 1321 } 1322 } 1323 } 1324 1325 // Fall-thru to regular partial inlining if we: 1326 // i) can't find any cold regions to outline, or 1327 // ii) can't inline the outlined function anywhere. 1328 std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); 1329 if (!OI) 1330 return {false, nullptr}; 1331 1332 FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI); 1333 Cloner.normalizeReturnBlock(); 1334 1335 Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); 1336 1337 if (!OutlinedFunction) 1338 return {false, nullptr}; 1339 1340 if (tryPartialInline(Cloner)) 1341 return {true, OutlinedFunction}; 1342 1343 return {false, nullptr}; 1344 } 1345 1346 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { 1347 if (Cloner.OutlinedFunctions.empty()) 1348 return false; 1349 1350 int SizeCost = 0; 1351 BlockFrequency WeightedRcost; 1352 int NonWeightedRcost; 1353 std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner); 1354 1355 // Only calculate RelativeToEntryFreq when we are doing single region 1356 // outlining. 1357 BranchProbability RelativeToEntryFreq; 1358 if (Cloner.ClonedOI) 1359 RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); 1360 else 1361 // RelativeToEntryFreq doesn't make sense when we have more than one 1362 // outlined call because each call will have a different relative frequency 1363 // to the entry block. We can consider using the average, but the 1364 // usefulness of that information is questionable. For now, assume we never 1365 // execute the calls to outlined functions. 1366 RelativeToEntryFreq = BranchProbability(0, 1); 1367 1368 WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq; 1369 1370 // The call sequence(s) to the outlined function(s) are larger than the sum of 1371 // the original outlined region size(s), it does not increase the chances of 1372 // inlining the function with outlining (The inliner uses the size increase to 1373 // model the cost of inlining a callee). 1374 if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { 1375 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1376 DebugLoc DLoc; 1377 BasicBlock *Block; 1378 std::tie(DLoc, Block) = getOneDebugLoc(*Cloner.ClonedFunc); 1379 OrigFuncORE.emit([&]() { 1380 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", 1381 DLoc, Block) 1382 << ore::NV("Function", Cloner.OrigFunc) 1383 << " not partially inlined into callers (Original Size = " 1384 << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost) 1385 << ", Size of call sequence to outlined function = " 1386 << ore::NV("NewSize", SizeCost) << ")"; 1387 }); 1388 return false; 1389 } 1390 1391 assert(Cloner.OrigFunc->users().empty() && 1392 "F's users should all be replaced!"); 1393 1394 std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), 1395 Cloner.ClonedFunc->user_end()); 1396 1397 DenseMap<User *, uint64_t> CallSiteToProfCountMap; 1398 auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); 1399 if (CalleeEntryCount) 1400 computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap); 1401 1402 uint64_t CalleeEntryCountV = 1403 (CalleeEntryCount ? CalleeEntryCount.getCount() : 0); 1404 1405 bool AnyInline = false; 1406 for (User *User : Users) { 1407 CallBase *CB = getSupportedCallBase(User); 1408 1409 if (isLimitReached()) 1410 continue; 1411 1412 OptimizationRemarkEmitter CallerORE(CB->getCaller()); 1413 if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE)) 1414 continue; 1415 1416 // Construct remark before doing the inlining, as after successful inlining 1417 // the callsite is removed. 1418 OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB); 1419 OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into " 1420 << ore::NV("Caller", CB->getCaller()); 1421 1422 InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI); 1423 // We can only forward varargs when we outlined a single region, else we 1424 // bail on vararg functions. 1425 if (!InlineFunction(*CB, IFI, nullptr, true, 1426 (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first 1427 : nullptr)) 1428 .isSuccess()) 1429 continue; 1430 1431 CallerORE.emit(OR); 1432 1433 // Now update the entry count: 1434 if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { 1435 uint64_t CallSiteCount = CallSiteToProfCountMap[User]; 1436 CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); 1437 } 1438 1439 AnyInline = true; 1440 NumPartialInlining++; 1441 // Update the stats 1442 if (Cloner.ClonedOI) 1443 NumPartialInlined++; 1444 else 1445 NumColdOutlinePartialInlined++; 1446 } 1447 1448 if (AnyInline) { 1449 Cloner.IsFunctionInlined = true; 1450 if (CalleeEntryCount) 1451 Cloner.OrigFunc->setEntryCount( 1452 CalleeEntryCount.setCount(CalleeEntryCountV)); 1453 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1454 OrigFuncORE.emit([&]() { 1455 return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc) 1456 << "Partially inlined into at least one caller"; 1457 }); 1458 } 1459 1460 return AnyInline; 1461 } 1462 1463 bool PartialInlinerImpl::run(Module &M) { 1464 if (DisablePartialInlining) 1465 return false; 1466 1467 std::vector<Function *> Worklist; 1468 Worklist.reserve(M.size()); 1469 for (Function &F : M) 1470 if (!F.use_empty() && !F.isDeclaration()) 1471 Worklist.push_back(&F); 1472 1473 bool Changed = false; 1474 while (!Worklist.empty()) { 1475 Function *CurrFunc = Worklist.back(); 1476 Worklist.pop_back(); 1477 1478 if (CurrFunc->use_empty()) 1479 continue; 1480 1481 bool Recursive = false; 1482 for (User *U : CurrFunc->users()) 1483 if (Instruction *I = dyn_cast<Instruction>(U)) 1484 if (I->getParent()->getParent() == CurrFunc) { 1485 Recursive = true; 1486 break; 1487 } 1488 if (Recursive) 1489 continue; 1490 1491 std::pair<bool, Function *> Result = unswitchFunction(*CurrFunc); 1492 if (Result.second) 1493 Worklist.push_back(Result.second); 1494 Changed |= Result.first; 1495 } 1496 1497 return Changed; 1498 } 1499 1500 char PartialInlinerLegacyPass::ID = 0; 1501 1502 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner", 1503 "Partial Inliner", false, false) 1504 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1505 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1506 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1507 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1508 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner", 1509 "Partial Inliner", false, false) 1510 1511 ModulePass *llvm::createPartialInliningPass() { 1512 return new PartialInlinerLegacyPass(); 1513 } 1514 1515 PreservedAnalyses PartialInlinerPass::run(Module &M, 1516 ModuleAnalysisManager &AM) { 1517 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1518 1519 auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { 1520 return FAM.getResult<AssumptionAnalysis>(F); 1521 }; 1522 1523 auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { 1524 return FAM.getCachedResult<AssumptionAnalysis>(F); 1525 }; 1526 1527 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 1528 return FAM.getResult<BlockFrequencyAnalysis>(F); 1529 }; 1530 1531 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 1532 return FAM.getResult<TargetIRAnalysis>(F); 1533 }; 1534 1535 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1536 return FAM.getResult<TargetLibraryAnalysis>(F); 1537 }; 1538 1539 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1540 1541 if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 1542 GetTLI, PSI, GetBFI) 1543 .run(M)) 1544 return PreservedAnalyses::none(); 1545 return PreservedAnalyses::all(); 1546 } 1547