1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 #include "llvm/Transforms/Utils/CodeExtractor.h" 53 54 #include <algorithm> 55 56 using namespace llvm; 57 using namespace omp; 58 59 #define DEBUG_TYPE "openmp-opt" 60 61 static cl::opt<bool> DisableOpenMPOptimizations( 62 "openmp-opt-disable", cl::ZeroOrMore, 63 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 64 cl::init(false)); 65 66 static cl::opt<bool> EnableParallelRegionMerging( 67 "openmp-opt-enable-merging", cl::ZeroOrMore, 68 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 69 cl::init(false)); 70 71 static cl::opt<bool> 72 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 73 cl::desc("Disable function internalization."), 74 cl::Hidden, cl::init(false)); 75 76 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 77 cl::Hidden); 78 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 79 cl::init(false), cl::Hidden); 80 81 static cl::opt<bool> HideMemoryTransferLatency( 82 "openmp-hide-memory-transfer-latency", 83 cl::desc("[WIP] Tries to hide the latency of host to device memory" 84 " transfers"), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptDeglobalization( 88 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving deglobalization."), 90 cl::Hidden, cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptSPMDization( 93 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> DisableOpenMPOptFolding( 98 "openmp-opt-disable-folding", cl::ZeroOrMore, 99 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 100 cl::init(false)); 101 102 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 103 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 104 cl::desc("Disable OpenMP optimizations that replace the state machine."), 105 cl::Hidden, cl::init(false)); 106 107 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 108 "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore, 109 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 110 cl::Hidden, cl::init(false)); 111 112 static cl::opt<bool> PrintModuleAfterOptimizations( 113 "openmp-opt-print-module", cl::ZeroOrMore, 114 cl::desc("Print the current module after OpenMP optimizations."), 115 cl::Hidden, cl::init(false)); 116 117 static cl::opt<bool> AlwaysInlineDeviceFunctions( 118 "openmp-opt-inline-device", cl::ZeroOrMore, 119 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 120 cl::init(false)); 121 122 static cl::opt<bool> 123 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 124 cl::desc("Enables more verbose remarks."), cl::Hidden, 125 cl::init(false)); 126 127 static cl::opt<unsigned> 128 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 129 cl::desc("Maximal number of attributor iterations."), 130 cl::init(256)); 131 132 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 133 "Number of OpenMP runtime calls deduplicated"); 134 STATISTIC(NumOpenMPParallelRegionsDeleted, 135 "Number of OpenMP parallel regions deleted"); 136 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 137 "Number of OpenMP runtime functions identified"); 138 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 139 "Number of OpenMP runtime function uses identified"); 140 STATISTIC(NumOpenMPTargetRegionKernels, 141 "Number of OpenMP target region entry points (=kernels) identified"); 142 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 143 "Number of OpenMP target region entry points (=kernels) executed in " 144 "SPMD-mode instead of generic-mode"); 145 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 146 "Number of OpenMP target region entry points (=kernels) executed in " 147 "generic-mode without a state machines"); 148 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 149 "Number of OpenMP target region entry points (=kernels) executed in " 150 "generic-mode with customized state machines with fallback"); 151 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 152 "Number of OpenMP target region entry points (=kernels) executed in " 153 "generic-mode with customized state machines without fallback"); 154 STATISTIC( 155 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 156 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 157 STATISTIC(NumOpenMPParallelRegionsMerged, 158 "Number of OpenMP parallel regions merged"); 159 STATISTIC(NumBytesMovedToSharedMemory, 160 "Amount of memory pushed to shared memory"); 161 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 162 163 #if !defined(NDEBUG) 164 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 165 #endif 166 167 namespace { 168 169 struct AAHeapToShared; 170 171 struct AAICVTracker; 172 173 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 174 /// Attributor runs. 175 struct OMPInformationCache : public InformationCache { 176 OMPInformationCache(Module &M, AnalysisGetter &AG, 177 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 178 KernelSet &Kernels) 179 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 180 Kernels(Kernels) { 181 182 OMPBuilder.initialize(); 183 initializeRuntimeFunctions(); 184 initializeInternalControlVars(); 185 } 186 187 /// Generic information that describes an internal control variable. 188 struct InternalControlVarInfo { 189 /// The kind, as described by InternalControlVar enum. 190 InternalControlVar Kind; 191 192 /// The name of the ICV. 193 StringRef Name; 194 195 /// Environment variable associated with this ICV. 196 StringRef EnvVarName; 197 198 /// Initial value kind. 199 ICVInitValue InitKind; 200 201 /// Initial value. 202 ConstantInt *InitValue; 203 204 /// Setter RTL function associated with this ICV. 205 RuntimeFunction Setter; 206 207 /// Getter RTL function associated with this ICV. 208 RuntimeFunction Getter; 209 210 /// RTL Function corresponding to the override clause of this ICV 211 RuntimeFunction Clause; 212 }; 213 214 /// Generic information that describes a runtime function 215 struct RuntimeFunctionInfo { 216 217 /// The kind, as described by the RuntimeFunction enum. 218 RuntimeFunction Kind; 219 220 /// The name of the function. 221 StringRef Name; 222 223 /// Flag to indicate a variadic function. 224 bool IsVarArg; 225 226 /// The return type of the function. 227 Type *ReturnType; 228 229 /// The argument types of the function. 230 SmallVector<Type *, 8> ArgumentTypes; 231 232 /// The declaration if available. 233 Function *Declaration = nullptr; 234 235 /// Uses of this runtime function per function containing the use. 236 using UseVector = SmallVector<Use *, 16>; 237 238 /// Clear UsesMap for runtime function. 239 void clearUsesMap() { UsesMap.clear(); } 240 241 /// Boolean conversion that is true if the runtime function was found. 242 operator bool() const { return Declaration; } 243 244 /// Return the vector of uses in function \p F. 245 UseVector &getOrCreateUseVector(Function *F) { 246 std::shared_ptr<UseVector> &UV = UsesMap[F]; 247 if (!UV) 248 UV = std::make_shared<UseVector>(); 249 return *UV; 250 } 251 252 /// Return the vector of uses in function \p F or `nullptr` if there are 253 /// none. 254 const UseVector *getUseVector(Function &F) const { 255 auto I = UsesMap.find(&F); 256 if (I != UsesMap.end()) 257 return I->second.get(); 258 return nullptr; 259 } 260 261 /// Return how many functions contain uses of this runtime function. 262 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 263 264 /// Return the number of arguments (or the minimal number for variadic 265 /// functions). 266 size_t getNumArgs() const { return ArgumentTypes.size(); } 267 268 /// Run the callback \p CB on each use and forget the use if the result is 269 /// true. The callback will be fed the function in which the use was 270 /// encountered as second argument. 271 void foreachUse(SmallVectorImpl<Function *> &SCC, 272 function_ref<bool(Use &, Function &)> CB) { 273 for (Function *F : SCC) 274 foreachUse(CB, F); 275 } 276 277 /// Run the callback \p CB on each use within the function \p F and forget 278 /// the use if the result is true. 279 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 280 SmallVector<unsigned, 8> ToBeDeleted; 281 ToBeDeleted.clear(); 282 283 unsigned Idx = 0; 284 UseVector &UV = getOrCreateUseVector(F); 285 286 for (Use *U : UV) { 287 if (CB(*U, *F)) 288 ToBeDeleted.push_back(Idx); 289 ++Idx; 290 } 291 292 // Remove the to-be-deleted indices in reverse order as prior 293 // modifications will not modify the smaller indices. 294 while (!ToBeDeleted.empty()) { 295 unsigned Idx = ToBeDeleted.pop_back_val(); 296 UV[Idx] = UV.back(); 297 UV.pop_back(); 298 } 299 } 300 301 private: 302 /// Map from functions to all uses of this runtime function contained in 303 /// them. 304 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 305 306 public: 307 /// Iterators for the uses of this runtime function. 308 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 309 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 310 }; 311 312 /// An OpenMP-IR-Builder instance 313 OpenMPIRBuilder OMPBuilder; 314 315 /// Map from runtime function kind to the runtime function description. 316 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 317 RuntimeFunction::OMPRTL___last> 318 RFIs; 319 320 /// Map from function declarations/definitions to their runtime enum type. 321 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 322 323 /// Map from ICV kind to the ICV description. 324 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 325 InternalControlVar::ICV___last> 326 ICVs; 327 328 /// Helper to initialize all internal control variable information for those 329 /// defined in OMPKinds.def. 330 void initializeInternalControlVars() { 331 #define ICV_RT_SET(_Name, RTL) \ 332 { \ 333 auto &ICV = ICVs[_Name]; \ 334 ICV.Setter = RTL; \ 335 } 336 #define ICV_RT_GET(Name, RTL) \ 337 { \ 338 auto &ICV = ICVs[Name]; \ 339 ICV.Getter = RTL; \ 340 } 341 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 342 { \ 343 auto &ICV = ICVs[Enum]; \ 344 ICV.Name = _Name; \ 345 ICV.Kind = Enum; \ 346 ICV.InitKind = Init; \ 347 ICV.EnvVarName = _EnvVarName; \ 348 switch (ICV.InitKind) { \ 349 case ICV_IMPLEMENTATION_DEFINED: \ 350 ICV.InitValue = nullptr; \ 351 break; \ 352 case ICV_ZERO: \ 353 ICV.InitValue = ConstantInt::get( \ 354 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 355 break; \ 356 case ICV_FALSE: \ 357 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 358 break; \ 359 case ICV_LAST: \ 360 break; \ 361 } \ 362 } 363 #include "llvm/Frontend/OpenMP/OMPKinds.def" 364 } 365 366 /// Returns true if the function declaration \p F matches the runtime 367 /// function types, that is, return type \p RTFRetType, and argument types 368 /// \p RTFArgTypes. 369 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 370 SmallVector<Type *, 8> &RTFArgTypes) { 371 // TODO: We should output information to the user (under debug output 372 // and via remarks). 373 374 if (!F) 375 return false; 376 if (F->getReturnType() != RTFRetType) 377 return false; 378 if (F->arg_size() != RTFArgTypes.size()) 379 return false; 380 381 auto *RTFTyIt = RTFArgTypes.begin(); 382 for (Argument &Arg : F->args()) { 383 if (Arg.getType() != *RTFTyIt) 384 return false; 385 386 ++RTFTyIt; 387 } 388 389 return true; 390 } 391 392 // Helper to collect all uses of the declaration in the UsesMap. 393 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 394 unsigned NumUses = 0; 395 if (!RFI.Declaration) 396 return NumUses; 397 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 398 399 if (CollectStats) { 400 NumOpenMPRuntimeFunctionsIdentified += 1; 401 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 402 } 403 404 // TODO: We directly convert uses into proper calls and unknown uses. 405 for (Use &U : RFI.Declaration->uses()) { 406 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 407 if (ModuleSlice.count(UserI->getFunction())) { 408 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 409 ++NumUses; 410 } 411 } else { 412 RFI.getOrCreateUseVector(nullptr).push_back(&U); 413 ++NumUses; 414 } 415 } 416 return NumUses; 417 } 418 419 // Helper function to recollect uses of a runtime function. 420 void recollectUsesForFunction(RuntimeFunction RTF) { 421 auto &RFI = RFIs[RTF]; 422 RFI.clearUsesMap(); 423 collectUses(RFI, /*CollectStats*/ false); 424 } 425 426 // Helper function to recollect uses of all runtime functions. 427 void recollectUses() { 428 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 429 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 430 } 431 432 // Helper function to inherit the calling convention of the function callee. 433 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 434 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 435 CI->setCallingConv(Fn->getCallingConv()); 436 } 437 438 /// Helper to initialize all runtime function information for those defined 439 /// in OpenMPKinds.def. 440 void initializeRuntimeFunctions() { 441 Module &M = *((*ModuleSlice.begin())->getParent()); 442 443 // Helper macros for handling __VA_ARGS__ in OMP_RTL 444 #define OMP_TYPE(VarName, ...) \ 445 Type *VarName = OMPBuilder.VarName; \ 446 (void)VarName; 447 448 #define OMP_ARRAY_TYPE(VarName, ...) \ 449 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 450 (void)VarName##Ty; \ 451 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 452 (void)VarName##PtrTy; 453 454 #define OMP_FUNCTION_TYPE(VarName, ...) \ 455 FunctionType *VarName = OMPBuilder.VarName; \ 456 (void)VarName; \ 457 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 458 (void)VarName##Ptr; 459 460 #define OMP_STRUCT_TYPE(VarName, ...) \ 461 StructType *VarName = OMPBuilder.VarName; \ 462 (void)VarName; \ 463 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 464 (void)VarName##Ptr; 465 466 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 467 { \ 468 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 469 Function *F = M.getFunction(_Name); \ 470 RTLFunctions.insert(F); \ 471 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 472 RuntimeFunctionIDMap[F] = _Enum; \ 473 auto &RFI = RFIs[_Enum]; \ 474 RFI.Kind = _Enum; \ 475 RFI.Name = _Name; \ 476 RFI.IsVarArg = _IsVarArg; \ 477 RFI.ReturnType = OMPBuilder._ReturnType; \ 478 RFI.ArgumentTypes = std::move(ArgsTypes); \ 479 RFI.Declaration = F; \ 480 unsigned NumUses = collectUses(RFI); \ 481 (void)NumUses; \ 482 LLVM_DEBUG({ \ 483 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 484 << " found\n"; \ 485 if (RFI.Declaration) \ 486 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 487 << RFI.getNumFunctionsWithUses() \ 488 << " different functions.\n"; \ 489 }); \ 490 } \ 491 } 492 #include "llvm/Frontend/OpenMP/OMPKinds.def" 493 494 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 495 // functions, except if `optnone` is present. 496 for (Function &F : M) { 497 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 498 if (F.getName().startswith(Prefix) && 499 !F.hasFnAttribute(Attribute::OptimizeNone)) 500 F.removeFnAttr(Attribute::NoInline); 501 } 502 503 // TODO: We should attach the attributes defined in OMPKinds.def. 504 } 505 506 /// Collection of known kernels (\see Kernel) in the module. 507 KernelSet &Kernels; 508 509 /// Collection of known OpenMP runtime functions.. 510 DenseSet<const Function *> RTLFunctions; 511 }; 512 513 template <typename Ty, bool InsertInvalidates = true> 514 struct BooleanStateWithSetVector : public BooleanState { 515 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 516 bool insert(const Ty &Elem) { 517 if (InsertInvalidates) 518 BooleanState::indicatePessimisticFixpoint(); 519 return Set.insert(Elem); 520 } 521 522 const Ty &operator[](int Idx) const { return Set[Idx]; } 523 bool operator==(const BooleanStateWithSetVector &RHS) const { 524 return BooleanState::operator==(RHS) && Set == RHS.Set; 525 } 526 bool operator!=(const BooleanStateWithSetVector &RHS) const { 527 return !(*this == RHS); 528 } 529 530 bool empty() const { return Set.empty(); } 531 size_t size() const { return Set.size(); } 532 533 /// "Clamp" this state with \p RHS. 534 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 535 BooleanState::operator^=(RHS); 536 Set.insert(RHS.Set.begin(), RHS.Set.end()); 537 return *this; 538 } 539 540 private: 541 /// A set to keep track of elements. 542 SetVector<Ty> Set; 543 544 public: 545 typename decltype(Set)::iterator begin() { return Set.begin(); } 546 typename decltype(Set)::iterator end() { return Set.end(); } 547 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 548 typename decltype(Set)::const_iterator end() const { return Set.end(); } 549 }; 550 551 template <typename Ty, bool InsertInvalidates = true> 552 using BooleanStateWithPtrSetVector = 553 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 554 555 struct KernelInfoState : AbstractState { 556 /// Flag to track if we reached a fixpoint. 557 bool IsAtFixpoint = false; 558 559 /// The parallel regions (identified by the outlined parallel functions) that 560 /// can be reached from the associated function. 561 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 562 ReachedKnownParallelRegions; 563 564 /// State to track what parallel region we might reach. 565 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 566 567 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 568 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 569 /// false. 570 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 571 572 /// The __kmpc_target_init call in this kernel, if any. If we find more than 573 /// one we abort as the kernel is malformed. 574 CallBase *KernelInitCB = nullptr; 575 576 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 577 /// one we abort as the kernel is malformed. 578 CallBase *KernelDeinitCB = nullptr; 579 580 /// Flag to indicate if the associated function is a kernel entry. 581 bool IsKernelEntry = false; 582 583 /// State to track what kernel entries can reach the associated function. 584 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 585 586 /// State to indicate if we can track parallel level of the associated 587 /// function. We will give up tracking if we encounter unknown caller or the 588 /// caller is __kmpc_parallel_51. 589 BooleanStateWithSetVector<uint8_t> ParallelLevels; 590 591 /// Abstract State interface 592 ///{ 593 594 KernelInfoState() {} 595 KernelInfoState(bool BestState) { 596 if (!BestState) 597 indicatePessimisticFixpoint(); 598 } 599 600 /// See AbstractState::isValidState(...) 601 bool isValidState() const override { return true; } 602 603 /// See AbstractState::isAtFixpoint(...) 604 bool isAtFixpoint() const override { return IsAtFixpoint; } 605 606 /// See AbstractState::indicatePessimisticFixpoint(...) 607 ChangeStatus indicatePessimisticFixpoint() override { 608 IsAtFixpoint = true; 609 ReachingKernelEntries.indicatePessimisticFixpoint(); 610 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 611 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 612 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 613 return ChangeStatus::CHANGED; 614 } 615 616 /// See AbstractState::indicateOptimisticFixpoint(...) 617 ChangeStatus indicateOptimisticFixpoint() override { 618 IsAtFixpoint = true; 619 ReachingKernelEntries.indicateOptimisticFixpoint(); 620 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 621 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 622 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 623 return ChangeStatus::UNCHANGED; 624 } 625 626 /// Return the assumed state 627 KernelInfoState &getAssumed() { return *this; } 628 const KernelInfoState &getAssumed() const { return *this; } 629 630 bool operator==(const KernelInfoState &RHS) const { 631 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 632 return false; 633 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 634 return false; 635 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 636 return false; 637 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 638 return false; 639 return true; 640 } 641 642 /// Returns true if this kernel contains any OpenMP parallel regions. 643 bool mayContainParallelRegion() { 644 return !ReachedKnownParallelRegions.empty() || 645 !ReachedUnknownParallelRegions.empty(); 646 } 647 648 /// Return empty set as the best state of potential values. 649 static KernelInfoState getBestState() { return KernelInfoState(true); } 650 651 static KernelInfoState getBestState(KernelInfoState &KIS) { 652 return getBestState(); 653 } 654 655 /// Return full set as the worst state of potential values. 656 static KernelInfoState getWorstState() { return KernelInfoState(false); } 657 658 /// "Clamp" this state with \p KIS. 659 KernelInfoState operator^=(const KernelInfoState &KIS) { 660 // Do not merge two different _init and _deinit call sites. 661 if (KIS.KernelInitCB) { 662 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 663 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 664 "assumptions."); 665 KernelInitCB = KIS.KernelInitCB; 666 } 667 if (KIS.KernelDeinitCB) { 668 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 669 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 670 "assumptions."); 671 KernelDeinitCB = KIS.KernelDeinitCB; 672 } 673 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 674 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 675 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 676 return *this; 677 } 678 679 KernelInfoState operator&=(const KernelInfoState &KIS) { 680 return (*this ^= KIS); 681 } 682 683 ///} 684 }; 685 686 /// Used to map the values physically (in the IR) stored in an offload 687 /// array, to a vector in memory. 688 struct OffloadArray { 689 /// Physical array (in the IR). 690 AllocaInst *Array = nullptr; 691 /// Mapped values. 692 SmallVector<Value *, 8> StoredValues; 693 /// Last stores made in the offload array. 694 SmallVector<StoreInst *, 8> LastAccesses; 695 696 OffloadArray() = default; 697 698 /// Initializes the OffloadArray with the values stored in \p Array before 699 /// instruction \p Before is reached. Returns false if the initialization 700 /// fails. 701 /// This MUST be used immediately after the construction of the object. 702 bool initialize(AllocaInst &Array, Instruction &Before) { 703 if (!Array.getAllocatedType()->isArrayTy()) 704 return false; 705 706 if (!getValues(Array, Before)) 707 return false; 708 709 this->Array = &Array; 710 return true; 711 } 712 713 static const unsigned DeviceIDArgNum = 1; 714 static const unsigned BasePtrsArgNum = 3; 715 static const unsigned PtrsArgNum = 4; 716 static const unsigned SizesArgNum = 5; 717 718 private: 719 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 720 /// \p Array, leaving StoredValues with the values stored before the 721 /// instruction \p Before is reached. 722 bool getValues(AllocaInst &Array, Instruction &Before) { 723 // Initialize container. 724 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 725 StoredValues.assign(NumValues, nullptr); 726 LastAccesses.assign(NumValues, nullptr); 727 728 // TODO: This assumes the instruction \p Before is in the same 729 // BasicBlock as Array. Make it general, for any control flow graph. 730 BasicBlock *BB = Array.getParent(); 731 if (BB != Before.getParent()) 732 return false; 733 734 const DataLayout &DL = Array.getModule()->getDataLayout(); 735 const unsigned int PointerSize = DL.getPointerSize(); 736 737 for (Instruction &I : *BB) { 738 if (&I == &Before) 739 break; 740 741 if (!isa<StoreInst>(&I)) 742 continue; 743 744 auto *S = cast<StoreInst>(&I); 745 int64_t Offset = -1; 746 auto *Dst = 747 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 748 if (Dst == &Array) { 749 int64_t Idx = Offset / PointerSize; 750 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 751 LastAccesses[Idx] = S; 752 } 753 } 754 755 return isFilled(); 756 } 757 758 /// Returns true if all values in StoredValues and 759 /// LastAccesses are not nullptrs. 760 bool isFilled() { 761 const unsigned NumValues = StoredValues.size(); 762 for (unsigned I = 0; I < NumValues; ++I) { 763 if (!StoredValues[I] || !LastAccesses[I]) 764 return false; 765 } 766 767 return true; 768 } 769 }; 770 771 struct OpenMPOpt { 772 773 using OptimizationRemarkGetter = 774 function_ref<OptimizationRemarkEmitter &(Function *)>; 775 776 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 777 OptimizationRemarkGetter OREGetter, 778 OMPInformationCache &OMPInfoCache, Attributor &A) 779 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 780 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 781 782 /// Check if any remarks are enabled for openmp-opt 783 bool remarksEnabled() { 784 auto &Ctx = M.getContext(); 785 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 786 } 787 788 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 789 bool run(bool IsModulePass) { 790 if (SCC.empty()) 791 return false; 792 793 bool Changed = false; 794 795 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 796 << " functions in a slice with " 797 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 798 799 if (IsModulePass) { 800 Changed |= runAttributor(IsModulePass); 801 802 // Recollect uses, in case Attributor deleted any. 803 OMPInfoCache.recollectUses(); 804 805 // TODO: This should be folded into buildCustomStateMachine. 806 Changed |= rewriteDeviceCodeStateMachine(); 807 808 if (remarksEnabled()) 809 analysisGlobalization(); 810 811 Changed |= eliminateBarriers(); 812 } else { 813 if (PrintICVValues) 814 printICVs(); 815 if (PrintOpenMPKernels) 816 printKernels(); 817 818 Changed |= runAttributor(IsModulePass); 819 820 // Recollect uses, in case Attributor deleted any. 821 OMPInfoCache.recollectUses(); 822 823 Changed |= deleteParallelRegions(); 824 825 if (HideMemoryTransferLatency) 826 Changed |= hideMemTransfersLatency(); 827 Changed |= deduplicateRuntimeCalls(); 828 if (EnableParallelRegionMerging) { 829 if (mergeParallelRegions()) { 830 deduplicateRuntimeCalls(); 831 Changed = true; 832 } 833 } 834 835 Changed |= eliminateBarriers(); 836 } 837 838 return Changed; 839 } 840 841 /// Print initial ICV values for testing. 842 /// FIXME: This should be done from the Attributor once it is added. 843 void printICVs() const { 844 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 845 ICV_proc_bind}; 846 847 for (Function *F : OMPInfoCache.ModuleSlice) { 848 for (auto ICV : ICVs) { 849 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 850 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 851 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 852 << " Value: " 853 << (ICVInfo.InitValue 854 ? toString(ICVInfo.InitValue->getValue(), 10, true) 855 : "IMPLEMENTATION_DEFINED"); 856 }; 857 858 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 859 } 860 } 861 } 862 863 /// Print OpenMP GPU kernels for testing. 864 void printKernels() const { 865 for (Function *F : SCC) { 866 if (!OMPInfoCache.Kernels.count(F)) 867 continue; 868 869 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 870 return ORA << "OpenMP GPU kernel " 871 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 872 }; 873 874 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 875 } 876 } 877 878 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 879 /// given it has to be the callee or a nullptr is returned. 880 static CallInst *getCallIfRegularCall( 881 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 882 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 883 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 884 (!RFI || 885 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 886 return CI; 887 return nullptr; 888 } 889 890 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 891 /// the callee or a nullptr is returned. 892 static CallInst *getCallIfRegularCall( 893 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 894 CallInst *CI = dyn_cast<CallInst>(&V); 895 if (CI && !CI->hasOperandBundles() && 896 (!RFI || 897 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 898 return CI; 899 return nullptr; 900 } 901 902 private: 903 /// Merge parallel regions when it is safe. 904 bool mergeParallelRegions() { 905 const unsigned CallbackCalleeOperand = 2; 906 const unsigned CallbackFirstArgOperand = 3; 907 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 908 909 // Check if there are any __kmpc_fork_call calls to merge. 910 OMPInformationCache::RuntimeFunctionInfo &RFI = 911 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 912 913 if (!RFI.Declaration) 914 return false; 915 916 // Unmergable calls that prevent merging a parallel region. 917 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 918 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 919 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 920 }; 921 922 bool Changed = false; 923 LoopInfo *LI = nullptr; 924 DominatorTree *DT = nullptr; 925 926 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 927 928 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 929 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 930 BasicBlock &ContinuationIP) { 931 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 932 BasicBlock *CGEndBB = 933 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 934 assert(StartBB != nullptr && "StartBB should not be null"); 935 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 936 assert(EndBB != nullptr && "EndBB should not be null"); 937 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 938 }; 939 940 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 941 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 942 ReplacementValue = &Inner; 943 return CodeGenIP; 944 }; 945 946 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 947 948 /// Create a sequential execution region within a merged parallel region, 949 /// encapsulated in a master construct with a barrier for synchronization. 950 auto CreateSequentialRegion = [&](Function *OuterFn, 951 BasicBlock *OuterPredBB, 952 Instruction *SeqStartI, 953 Instruction *SeqEndI) { 954 // Isolate the instructions of the sequential region to a separate 955 // block. 956 BasicBlock *ParentBB = SeqStartI->getParent(); 957 BasicBlock *SeqEndBB = 958 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 959 BasicBlock *SeqAfterBB = 960 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 961 BasicBlock *SeqStartBB = 962 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 963 964 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 965 "Expected a different CFG"); 966 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 967 ParentBB->getTerminator()->eraseFromParent(); 968 969 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 970 BasicBlock &ContinuationIP) { 971 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 972 BasicBlock *CGEndBB = 973 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 974 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 975 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 976 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 977 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 978 }; 979 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 980 981 // Find outputs from the sequential region to outside users and 982 // broadcast their values to them. 983 for (Instruction &I : *SeqStartBB) { 984 SmallPtrSet<Instruction *, 4> OutsideUsers; 985 for (User *Usr : I.users()) { 986 Instruction &UsrI = *cast<Instruction>(Usr); 987 // Ignore outputs to LT intrinsics, code extraction for the merged 988 // parallel region will fix them. 989 if (UsrI.isLifetimeStartOrEnd()) 990 continue; 991 992 if (UsrI.getParent() != SeqStartBB) 993 OutsideUsers.insert(&UsrI); 994 } 995 996 if (OutsideUsers.empty()) 997 continue; 998 999 // Emit an alloca in the outer region to store the broadcasted 1000 // value. 1001 const DataLayout &DL = M.getDataLayout(); 1002 AllocaInst *AllocaI = new AllocaInst( 1003 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1004 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1005 1006 // Emit a store instruction in the sequential BB to update the 1007 // value. 1008 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1009 1010 // Emit a load instruction and replace the use of the output value 1011 // with it. 1012 for (Instruction *UsrI : OutsideUsers) { 1013 LoadInst *LoadI = new LoadInst( 1014 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1015 UsrI->replaceUsesOfWith(&I, LoadI); 1016 } 1017 } 1018 1019 OpenMPIRBuilder::LocationDescription Loc( 1020 InsertPointTy(ParentBB, ParentBB->end()), DL); 1021 InsertPointTy SeqAfterIP = 1022 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1023 1024 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1025 1026 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1027 1028 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1029 << "\n"); 1030 }; 1031 1032 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1033 // contained in BB and only separated by instructions that can be 1034 // redundantly executed in parallel. The block BB is split before the first 1035 // call (in MergableCIs) and after the last so the entire region we merge 1036 // into a single parallel region is contained in a single basic block 1037 // without any other instructions. We use the OpenMPIRBuilder to outline 1038 // that block and call the resulting function via __kmpc_fork_call. 1039 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1040 BasicBlock *BB) { 1041 // TODO: Change the interface to allow single CIs expanded, e.g, to 1042 // include an outer loop. 1043 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1044 1045 auto Remark = [&](OptimizationRemark OR) { 1046 OR << "Parallel region merged with parallel region" 1047 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1048 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1049 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1050 if (CI != MergableCIs.back()) 1051 OR << ", "; 1052 } 1053 return OR << "."; 1054 }; 1055 1056 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1057 1058 Function *OriginalFn = BB->getParent(); 1059 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1060 << " parallel regions in " << OriginalFn->getName() 1061 << "\n"); 1062 1063 // Isolate the calls to merge in a separate block. 1064 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1065 BasicBlock *AfterBB = 1066 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1067 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1068 "omp.par.merged"); 1069 1070 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1071 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1072 BB->getTerminator()->eraseFromParent(); 1073 1074 // Create sequential regions for sequential instructions that are 1075 // in-between mergable parallel regions. 1076 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1077 It != End; ++It) { 1078 Instruction *ForkCI = *It; 1079 Instruction *NextForkCI = *(It + 1); 1080 1081 // Continue if there are not in-between instructions. 1082 if (ForkCI->getNextNode() == NextForkCI) 1083 continue; 1084 1085 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1086 NextForkCI->getPrevNode()); 1087 } 1088 1089 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1090 DL); 1091 IRBuilder<>::InsertPoint AllocaIP( 1092 &OriginalFn->getEntryBlock(), 1093 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1094 // Create the merged parallel region with default proc binding, to 1095 // avoid overriding binding settings, and without explicit cancellation. 1096 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1097 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1098 OMP_PROC_BIND_default, /* IsCancellable */ false); 1099 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1100 1101 // Perform the actual outlining. 1102 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1103 1104 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1105 1106 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1107 // callbacks. 1108 SmallVector<Value *, 8> Args; 1109 for (auto *CI : MergableCIs) { 1110 Value *Callee = 1111 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1112 FunctionType *FT = 1113 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1114 Args.clear(); 1115 Args.push_back(OutlinedFn->getArg(0)); 1116 Args.push_back(OutlinedFn->getArg(1)); 1117 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1118 ++U) 1119 Args.push_back(CI->getArgOperand(U)); 1120 1121 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1122 if (CI->getDebugLoc()) 1123 NewCI->setDebugLoc(CI->getDebugLoc()); 1124 1125 // Forward parameter attributes from the callback to the callee. 1126 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1127 ++U) 1128 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1129 NewCI->addParamAttr( 1130 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1131 1132 // Emit an explicit barrier to replace the implicit fork-join barrier. 1133 if (CI != MergableCIs.back()) { 1134 // TODO: Remove barrier if the merged parallel region includes the 1135 // 'nowait' clause. 1136 OMPInfoCache.OMPBuilder.createBarrier( 1137 InsertPointTy(NewCI->getParent(), 1138 NewCI->getNextNode()->getIterator()), 1139 OMPD_parallel); 1140 } 1141 1142 CI->eraseFromParent(); 1143 } 1144 1145 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1146 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1147 CGUpdater.reanalyzeFunction(*OriginalFn); 1148 1149 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1150 1151 return true; 1152 }; 1153 1154 // Helper function that identifes sequences of 1155 // __kmpc_fork_call uses in a basic block. 1156 auto DetectPRsCB = [&](Use &U, Function &F) { 1157 CallInst *CI = getCallIfRegularCall(U, &RFI); 1158 BB2PRMap[CI->getParent()].insert(CI); 1159 1160 return false; 1161 }; 1162 1163 BB2PRMap.clear(); 1164 RFI.foreachUse(SCC, DetectPRsCB); 1165 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1166 // Find mergable parallel regions within a basic block that are 1167 // safe to merge, that is any in-between instructions can safely 1168 // execute in parallel after merging. 1169 // TODO: support merging across basic-blocks. 1170 for (auto &It : BB2PRMap) { 1171 auto &CIs = It.getSecond(); 1172 if (CIs.size() < 2) 1173 continue; 1174 1175 BasicBlock *BB = It.getFirst(); 1176 SmallVector<CallInst *, 4> MergableCIs; 1177 1178 /// Returns true if the instruction is mergable, false otherwise. 1179 /// A terminator instruction is unmergable by definition since merging 1180 /// works within a BB. Instructions before the mergable region are 1181 /// mergable if they are not calls to OpenMP runtime functions that may 1182 /// set different execution parameters for subsequent parallel regions. 1183 /// Instructions in-between parallel regions are mergable if they are not 1184 /// calls to any non-intrinsic function since that may call a non-mergable 1185 /// OpenMP runtime function. 1186 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1187 // We do not merge across BBs, hence return false (unmergable) if the 1188 // instruction is a terminator. 1189 if (I.isTerminator()) 1190 return false; 1191 1192 if (!isa<CallInst>(&I)) 1193 return true; 1194 1195 CallInst *CI = cast<CallInst>(&I); 1196 if (IsBeforeMergableRegion) { 1197 Function *CalledFunction = CI->getCalledFunction(); 1198 if (!CalledFunction) 1199 return false; 1200 // Return false (unmergable) if the call before the parallel 1201 // region calls an explicit affinity (proc_bind) or number of 1202 // threads (num_threads) compiler-generated function. Those settings 1203 // may be incompatible with following parallel regions. 1204 // TODO: ICV tracking to detect compatibility. 1205 for (const auto &RFI : UnmergableCallsInfo) { 1206 if (CalledFunction == RFI.Declaration) 1207 return false; 1208 } 1209 } else { 1210 // Return false (unmergable) if there is a call instruction 1211 // in-between parallel regions when it is not an intrinsic. It 1212 // may call an unmergable OpenMP runtime function in its callpath. 1213 // TODO: Keep track of possible OpenMP calls in the callpath. 1214 if (!isa<IntrinsicInst>(CI)) 1215 return false; 1216 } 1217 1218 return true; 1219 }; 1220 // Find maximal number of parallel region CIs that are safe to merge. 1221 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1222 Instruction &I = *It; 1223 ++It; 1224 1225 if (CIs.count(&I)) { 1226 MergableCIs.push_back(cast<CallInst>(&I)); 1227 continue; 1228 } 1229 1230 // Continue expanding if the instruction is mergable. 1231 if (IsMergable(I, MergableCIs.empty())) 1232 continue; 1233 1234 // Forward the instruction iterator to skip the next parallel region 1235 // since there is an unmergable instruction which can affect it. 1236 for (; It != End; ++It) { 1237 Instruction &SkipI = *It; 1238 if (CIs.count(&SkipI)) { 1239 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1240 << " due to " << I << "\n"); 1241 ++It; 1242 break; 1243 } 1244 } 1245 1246 // Store mergable regions found. 1247 if (MergableCIs.size() > 1) { 1248 MergableCIsVector.push_back(MergableCIs); 1249 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1250 << " parallel regions in block " << BB->getName() 1251 << " of function " << BB->getParent()->getName() 1252 << "\n";); 1253 } 1254 1255 MergableCIs.clear(); 1256 } 1257 1258 if (!MergableCIsVector.empty()) { 1259 Changed = true; 1260 1261 for (auto &MergableCIs : MergableCIsVector) 1262 Merge(MergableCIs, BB); 1263 MergableCIsVector.clear(); 1264 } 1265 } 1266 1267 if (Changed) { 1268 /// Re-collect use for fork calls, emitted barrier calls, and 1269 /// any emitted master/end_master calls. 1270 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1271 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1272 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1273 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1274 } 1275 1276 return Changed; 1277 } 1278 1279 /// Try to delete parallel regions if possible. 1280 bool deleteParallelRegions() { 1281 const unsigned CallbackCalleeOperand = 2; 1282 1283 OMPInformationCache::RuntimeFunctionInfo &RFI = 1284 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1285 1286 if (!RFI.Declaration) 1287 return false; 1288 1289 bool Changed = false; 1290 auto DeleteCallCB = [&](Use &U, Function &) { 1291 CallInst *CI = getCallIfRegularCall(U); 1292 if (!CI) 1293 return false; 1294 auto *Fn = dyn_cast<Function>( 1295 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1296 if (!Fn) 1297 return false; 1298 if (!Fn->onlyReadsMemory()) 1299 return false; 1300 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1301 return false; 1302 1303 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1304 << CI->getCaller()->getName() << "\n"); 1305 1306 auto Remark = [&](OptimizationRemark OR) { 1307 return OR << "Removing parallel region with no side-effects."; 1308 }; 1309 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1310 1311 CGUpdater.removeCallSite(*CI); 1312 CI->eraseFromParent(); 1313 Changed = true; 1314 ++NumOpenMPParallelRegionsDeleted; 1315 return true; 1316 }; 1317 1318 RFI.foreachUse(SCC, DeleteCallCB); 1319 1320 return Changed; 1321 } 1322 1323 /// Try to eliminate runtime calls by reusing existing ones. 1324 bool deduplicateRuntimeCalls() { 1325 bool Changed = false; 1326 1327 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1328 OMPRTL_omp_get_num_threads, 1329 OMPRTL_omp_in_parallel, 1330 OMPRTL_omp_get_cancellation, 1331 OMPRTL_omp_get_thread_limit, 1332 OMPRTL_omp_get_supported_active_levels, 1333 OMPRTL_omp_get_level, 1334 OMPRTL_omp_get_ancestor_thread_num, 1335 OMPRTL_omp_get_team_size, 1336 OMPRTL_omp_get_active_level, 1337 OMPRTL_omp_in_final, 1338 OMPRTL_omp_get_proc_bind, 1339 OMPRTL_omp_get_num_places, 1340 OMPRTL_omp_get_num_procs, 1341 OMPRTL_omp_get_place_num, 1342 OMPRTL_omp_get_partition_num_places, 1343 OMPRTL_omp_get_partition_place_nums}; 1344 1345 // Global-tid is handled separately. 1346 SmallSetVector<Value *, 16> GTIdArgs; 1347 collectGlobalThreadIdArguments(GTIdArgs); 1348 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1349 << " global thread ID arguments\n"); 1350 1351 for (Function *F : SCC) { 1352 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1353 Changed |= deduplicateRuntimeCalls( 1354 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1355 1356 // __kmpc_global_thread_num is special as we can replace it with an 1357 // argument in enough cases to make it worth trying. 1358 Value *GTIdArg = nullptr; 1359 for (Argument &Arg : F->args()) 1360 if (GTIdArgs.count(&Arg)) { 1361 GTIdArg = &Arg; 1362 break; 1363 } 1364 Changed |= deduplicateRuntimeCalls( 1365 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1366 } 1367 1368 return Changed; 1369 } 1370 1371 /// Tries to hide the latency of runtime calls that involve host to 1372 /// device memory transfers by splitting them into their "issue" and "wait" 1373 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1374 /// moved downards as much as possible. The "issue" issues the memory transfer 1375 /// asynchronously, returning a handle. The "wait" waits in the returned 1376 /// handle for the memory transfer to finish. 1377 bool hideMemTransfersLatency() { 1378 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1379 bool Changed = false; 1380 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1381 auto *RTCall = getCallIfRegularCall(U, &RFI); 1382 if (!RTCall) 1383 return false; 1384 1385 OffloadArray OffloadArrays[3]; 1386 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1387 return false; 1388 1389 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1390 1391 // TODO: Check if can be moved upwards. 1392 bool WasSplit = false; 1393 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1394 if (WaitMovementPoint) 1395 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1396 1397 Changed |= WasSplit; 1398 return WasSplit; 1399 }; 1400 RFI.foreachUse(SCC, SplitMemTransfers); 1401 1402 return Changed; 1403 } 1404 1405 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1406 /// TODO: Make this an AA and expand it to work across blocks and functions. 1407 bool eliminateBarriers() { 1408 bool Changed = false; 1409 1410 if (DisableOpenMPOptBarrierElimination) 1411 return /*Changed=*/false; 1412 1413 if (OMPInfoCache.Kernels.empty()) 1414 return /*Changed=*/false; 1415 1416 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1417 1418 class BarrierInfo { 1419 Instruction *I; 1420 enum ImplicitBarrierType Type; 1421 1422 public: 1423 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1424 BarrierInfo(Instruction &I) : I(&I) {} 1425 1426 bool isImplicit() { return !I; } 1427 1428 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1429 1430 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1431 1432 Instruction *getInstruction() { return I; } 1433 }; 1434 1435 for (Function *Kernel : OMPInfoCache.Kernels) { 1436 for (BasicBlock &BB : *Kernel) { 1437 SmallVector<BarrierInfo, 8> BarriersInBlock; 1438 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1439 1440 // Add the kernel entry implicit barrier. 1441 if (&Kernel->getEntryBlock() == &BB) 1442 BarriersInBlock.push_back(IBT_ENTRY); 1443 1444 // Find implicit and explicit aligned barriers in the same basic block. 1445 for (Instruction &I : BB) { 1446 if (isa<ReturnInst>(I)) { 1447 // Add the implicit barrier when exiting the kernel. 1448 BarriersInBlock.push_back(IBT_EXIT); 1449 continue; 1450 } 1451 CallBase *CB = dyn_cast<CallBase>(&I); 1452 if (!CB) 1453 continue; 1454 1455 auto IsAlignBarrierCB = [&](CallBase &CB) { 1456 switch (CB.getIntrinsicID()) { 1457 case Intrinsic::nvvm_barrier0: 1458 case Intrinsic::nvvm_barrier0_and: 1459 case Intrinsic::nvvm_barrier0_or: 1460 case Intrinsic::nvvm_barrier0_popc: 1461 return true; 1462 default: 1463 break; 1464 } 1465 return hasAssumption(CB, 1466 KnownAssumptionString("ompx_aligned_barrier")); 1467 }; 1468 1469 if (IsAlignBarrierCB(*CB)) { 1470 // Add an explicit aligned barrier. 1471 BarriersInBlock.push_back(I); 1472 } 1473 } 1474 1475 if (BarriersInBlock.size() <= 1) 1476 continue; 1477 1478 // A barrier in a barrier pair is removeable if all instructions 1479 // between the barriers in the pair are side-effect free modulo the 1480 // barrier operation. 1481 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1482 BarrierInfo *EndBI) { 1483 assert( 1484 !StartBI->isImplicitExit() && 1485 "Expected start barrier to be other than a kernel exit barrier"); 1486 assert( 1487 !EndBI->isImplicitEntry() && 1488 "Expected end barrier to be other than a kernel entry barrier"); 1489 // If StarBI instructions is null then this the implicit 1490 // kernel entry barrier, so iterate from the first instruction in the 1491 // entry block. 1492 Instruction *I = (StartBI->isImplicitEntry()) 1493 ? &Kernel->getEntryBlock().front() 1494 : StartBI->getInstruction()->getNextNode(); 1495 assert(I && "Expected non-null start instruction"); 1496 Instruction *E = (EndBI->isImplicitExit()) 1497 ? I->getParent()->getTerminator() 1498 : EndBI->getInstruction(); 1499 assert(E && "Expected non-null end instruction"); 1500 1501 for (; I != E; I = I->getNextNode()) { 1502 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1503 continue; 1504 1505 auto IsPotentiallyAffectedByBarrier = 1506 [](Optional<MemoryLocation> Loc) { 1507 const Value *Obj = (Loc && Loc->Ptr) 1508 ? getUnderlyingObject(Loc->Ptr) 1509 : nullptr; 1510 if (!Obj) { 1511 LLVM_DEBUG( 1512 dbgs() 1513 << "Access to unknown location requires barriers\n"); 1514 return true; 1515 } 1516 if (isa<UndefValue>(Obj)) 1517 return false; 1518 if (isa<AllocaInst>(Obj)) 1519 return false; 1520 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1521 if (GV->isConstant()) 1522 return false; 1523 if (GV->isThreadLocal()) 1524 return false; 1525 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1526 return false; 1527 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1528 return false; 1529 } 1530 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1531 << "' requires barriers\n"); 1532 return true; 1533 }; 1534 1535 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1536 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1537 if (IsPotentiallyAffectedByBarrier(Loc)) 1538 return false; 1539 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1540 Optional<MemoryLocation> Loc = 1541 MemoryLocation::getForSource(MTI); 1542 if (IsPotentiallyAffectedByBarrier(Loc)) 1543 return false; 1544 } 1545 continue; 1546 } 1547 1548 if (auto *LI = dyn_cast<LoadInst>(I)) 1549 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1550 continue; 1551 1552 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1553 if (IsPotentiallyAffectedByBarrier(Loc)) 1554 return false; 1555 } 1556 1557 return true; 1558 }; 1559 1560 // Iterate barrier pairs and remove an explicit barrier if analysis 1561 // deems it removeable. 1562 for (auto *It = BarriersInBlock.begin(), 1563 *End = BarriersInBlock.end() - 1; 1564 It != End; ++It) { 1565 1566 BarrierInfo *StartBI = It; 1567 BarrierInfo *EndBI = (It + 1); 1568 1569 // Cannot remove when both are implicit barriers, continue. 1570 if (StartBI->isImplicit() && EndBI->isImplicit()) 1571 continue; 1572 1573 if (!IsBarrierRemoveable(StartBI, EndBI)) 1574 continue; 1575 1576 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1577 "Expected at least one explicit barrier to remove."); 1578 1579 // Remove an explicit barrier, check first, then second. 1580 if (!StartBI->isImplicit()) { 1581 LLVM_DEBUG(dbgs() << "Remove start barrier " 1582 << *StartBI->getInstruction() << "\n"); 1583 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1584 } else { 1585 LLVM_DEBUG(dbgs() << "Remove end barrier " 1586 << *EndBI->getInstruction() << "\n"); 1587 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1588 } 1589 } 1590 1591 if (BarriersToBeDeleted.empty()) 1592 continue; 1593 1594 Changed = true; 1595 for (Instruction *I : BarriersToBeDeleted) { 1596 ++NumBarriersEliminated; 1597 auto Remark = [&](OptimizationRemark OR) { 1598 return OR << "Redundant barrier eliminated."; 1599 }; 1600 1601 if (EnableVerboseRemarks) 1602 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1603 I->eraseFromParent(); 1604 } 1605 } 1606 } 1607 1608 return Changed; 1609 } 1610 1611 void analysisGlobalization() { 1612 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1613 1614 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1615 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1616 auto Remark = [&](OptimizationRemarkMissed ORM) { 1617 return ORM 1618 << "Found thread data sharing on the GPU. " 1619 << "Expect degraded performance due to data globalization."; 1620 }; 1621 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1622 } 1623 1624 return false; 1625 }; 1626 1627 RFI.foreachUse(SCC, CheckGlobalization); 1628 } 1629 1630 /// Maps the values stored in the offload arrays passed as arguments to 1631 /// \p RuntimeCall into the offload arrays in \p OAs. 1632 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1633 MutableArrayRef<OffloadArray> OAs) { 1634 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1635 1636 // A runtime call that involves memory offloading looks something like: 1637 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1638 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1639 // ...) 1640 // So, the idea is to access the allocas that allocate space for these 1641 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1642 // Therefore: 1643 // i8** %offload_baseptrs. 1644 Value *BasePtrsArg = 1645 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1646 // i8** %offload_ptrs. 1647 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1648 // i8** %offload_sizes. 1649 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1650 1651 // Get values stored in **offload_baseptrs. 1652 auto *V = getUnderlyingObject(BasePtrsArg); 1653 if (!isa<AllocaInst>(V)) 1654 return false; 1655 auto *BasePtrsArray = cast<AllocaInst>(V); 1656 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1657 return false; 1658 1659 // Get values stored in **offload_baseptrs. 1660 V = getUnderlyingObject(PtrsArg); 1661 if (!isa<AllocaInst>(V)) 1662 return false; 1663 auto *PtrsArray = cast<AllocaInst>(V); 1664 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1665 return false; 1666 1667 // Get values stored in **offload_sizes. 1668 V = getUnderlyingObject(SizesArg); 1669 // If it's a [constant] global array don't analyze it. 1670 if (isa<GlobalValue>(V)) 1671 return isa<Constant>(V); 1672 if (!isa<AllocaInst>(V)) 1673 return false; 1674 1675 auto *SizesArray = cast<AllocaInst>(V); 1676 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1677 return false; 1678 1679 return true; 1680 } 1681 1682 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1683 /// For now this is a way to test that the function getValuesInOffloadArrays 1684 /// is working properly. 1685 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1686 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1687 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1688 1689 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1690 std::string ValuesStr; 1691 raw_string_ostream Printer(ValuesStr); 1692 std::string Separator = " --- "; 1693 1694 for (auto *BP : OAs[0].StoredValues) { 1695 BP->print(Printer); 1696 Printer << Separator; 1697 } 1698 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1699 ValuesStr.clear(); 1700 1701 for (auto *P : OAs[1].StoredValues) { 1702 P->print(Printer); 1703 Printer << Separator; 1704 } 1705 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1706 ValuesStr.clear(); 1707 1708 for (auto *S : OAs[2].StoredValues) { 1709 S->print(Printer); 1710 Printer << Separator; 1711 } 1712 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1713 } 1714 1715 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1716 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1717 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1718 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1719 // Make it traverse the CFG. 1720 1721 Instruction *CurrentI = &RuntimeCall; 1722 bool IsWorthIt = false; 1723 while ((CurrentI = CurrentI->getNextNode())) { 1724 1725 // TODO: Once we detect the regions to be offloaded we should use the 1726 // alias analysis manager to check if CurrentI may modify one of 1727 // the offloaded regions. 1728 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1729 if (IsWorthIt) 1730 return CurrentI; 1731 1732 return nullptr; 1733 } 1734 1735 // FIXME: For now if we move it over anything without side effect 1736 // is worth it. 1737 IsWorthIt = true; 1738 } 1739 1740 // Return end of BasicBlock. 1741 return RuntimeCall.getParent()->getTerminator(); 1742 } 1743 1744 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1745 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1746 Instruction &WaitMovementPoint) { 1747 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1748 // function. Used for storing information of the async transfer, allowing to 1749 // wait on it later. 1750 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1751 auto *F = RuntimeCall.getCaller(); 1752 Instruction *FirstInst = &(F->getEntryBlock().front()); 1753 AllocaInst *Handle = new AllocaInst( 1754 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1755 1756 // Add "issue" runtime call declaration: 1757 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1758 // i8**, i8**, i64*, i64*) 1759 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1760 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1761 1762 // Change RuntimeCall call site for its asynchronous version. 1763 SmallVector<Value *, 16> Args; 1764 for (auto &Arg : RuntimeCall.args()) 1765 Args.push_back(Arg.get()); 1766 Args.push_back(Handle); 1767 1768 CallInst *IssueCallsite = 1769 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1770 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1771 RuntimeCall.eraseFromParent(); 1772 1773 // Add "wait" runtime call declaration: 1774 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1775 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1776 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1777 1778 Value *WaitParams[2] = { 1779 IssueCallsite->getArgOperand( 1780 OffloadArray::DeviceIDArgNum), // device_id. 1781 Handle // handle to wait on. 1782 }; 1783 CallInst *WaitCallsite = CallInst::Create( 1784 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1785 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1786 1787 return true; 1788 } 1789 1790 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1791 bool GlobalOnly, bool &SingleChoice) { 1792 if (CurrentIdent == NextIdent) 1793 return CurrentIdent; 1794 1795 // TODO: Figure out how to actually combine multiple debug locations. For 1796 // now we just keep an existing one if there is a single choice. 1797 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1798 SingleChoice = !CurrentIdent; 1799 return NextIdent; 1800 } 1801 return nullptr; 1802 } 1803 1804 /// Return an `struct ident_t*` value that represents the ones used in the 1805 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1806 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1807 /// return value we create one from scratch. We also do not yet combine 1808 /// information, e.g., the source locations, see combinedIdentStruct. 1809 Value * 1810 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1811 Function &F, bool GlobalOnly) { 1812 bool SingleChoice = true; 1813 Value *Ident = nullptr; 1814 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1815 CallInst *CI = getCallIfRegularCall(U, &RFI); 1816 if (!CI || &F != &Caller) 1817 return false; 1818 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1819 /* GlobalOnly */ true, SingleChoice); 1820 return false; 1821 }; 1822 RFI.foreachUse(SCC, CombineIdentStruct); 1823 1824 if (!Ident || !SingleChoice) { 1825 // The IRBuilder uses the insertion block to get to the module, this is 1826 // unfortunate but we work around it for now. 1827 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1828 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1829 &F.getEntryBlock(), F.getEntryBlock().begin())); 1830 // Create a fallback location if non was found. 1831 // TODO: Use the debug locations of the calls instead. 1832 uint32_t SrcLocStrSize; 1833 Constant *Loc = 1834 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1835 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1836 } 1837 return Ident; 1838 } 1839 1840 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1841 /// \p ReplVal if given. 1842 bool deduplicateRuntimeCalls(Function &F, 1843 OMPInformationCache::RuntimeFunctionInfo &RFI, 1844 Value *ReplVal = nullptr) { 1845 auto *UV = RFI.getUseVector(F); 1846 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1847 return false; 1848 1849 LLVM_DEBUG( 1850 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1851 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1852 1853 assert((!ReplVal || (isa<Argument>(ReplVal) && 1854 cast<Argument>(ReplVal)->getParent() == &F)) && 1855 "Unexpected replacement value!"); 1856 1857 // TODO: Use dominance to find a good position instead. 1858 auto CanBeMoved = [this](CallBase &CB) { 1859 unsigned NumArgs = CB.arg_size(); 1860 if (NumArgs == 0) 1861 return true; 1862 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1863 return false; 1864 for (unsigned U = 1; U < NumArgs; ++U) 1865 if (isa<Instruction>(CB.getArgOperand(U))) 1866 return false; 1867 return true; 1868 }; 1869 1870 if (!ReplVal) { 1871 for (Use *U : *UV) 1872 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1873 if (!CanBeMoved(*CI)) 1874 continue; 1875 1876 // If the function is a kernel, dedup will move 1877 // the runtime call right after the kernel init callsite. Otherwise, 1878 // it will move it to the beginning of the caller function. 1879 if (isKernel(F)) { 1880 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1881 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1882 1883 if (KernelInitUV->empty()) 1884 continue; 1885 1886 assert(KernelInitUV->size() == 1 && 1887 "Expected a single __kmpc_target_init in kernel\n"); 1888 1889 CallInst *KernelInitCI = 1890 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1891 assert(KernelInitCI && 1892 "Expected a call to __kmpc_target_init in kernel\n"); 1893 1894 CI->moveAfter(KernelInitCI); 1895 } else 1896 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1897 ReplVal = CI; 1898 break; 1899 } 1900 if (!ReplVal) 1901 return false; 1902 } 1903 1904 // If we use a call as a replacement value we need to make sure the ident is 1905 // valid at the new location. For now we just pick a global one, either 1906 // existing and used by one of the calls, or created from scratch. 1907 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1908 if (!CI->arg_empty() && 1909 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1910 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1911 /* GlobalOnly */ true); 1912 CI->setArgOperand(0, Ident); 1913 } 1914 } 1915 1916 bool Changed = false; 1917 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1918 CallInst *CI = getCallIfRegularCall(U, &RFI); 1919 if (!CI || CI == ReplVal || &F != &Caller) 1920 return false; 1921 assert(CI->getCaller() == &F && "Unexpected call!"); 1922 1923 auto Remark = [&](OptimizationRemark OR) { 1924 return OR << "OpenMP runtime call " 1925 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1926 }; 1927 if (CI->getDebugLoc()) 1928 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1929 else 1930 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1931 1932 CGUpdater.removeCallSite(*CI); 1933 CI->replaceAllUsesWith(ReplVal); 1934 CI->eraseFromParent(); 1935 ++NumOpenMPRuntimeCallsDeduplicated; 1936 Changed = true; 1937 return true; 1938 }; 1939 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1940 1941 return Changed; 1942 } 1943 1944 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1945 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1946 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1947 // initialization. We could define an AbstractAttribute instead and 1948 // run the Attributor here once it can be run as an SCC pass. 1949 1950 // Helper to check the argument \p ArgNo at all call sites of \p F for 1951 // a GTId. 1952 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1953 if (!F.hasLocalLinkage()) 1954 return false; 1955 for (Use &U : F.uses()) { 1956 if (CallInst *CI = getCallIfRegularCall(U)) { 1957 Value *ArgOp = CI->getArgOperand(ArgNo); 1958 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1959 getCallIfRegularCall( 1960 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1961 continue; 1962 } 1963 return false; 1964 } 1965 return true; 1966 }; 1967 1968 // Helper to identify uses of a GTId as GTId arguments. 1969 auto AddUserArgs = [&](Value >Id) { 1970 for (Use &U : GTId.uses()) 1971 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1972 if (CI->isArgOperand(&U)) 1973 if (Function *Callee = CI->getCalledFunction()) 1974 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1975 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1976 }; 1977 1978 // The argument users of __kmpc_global_thread_num calls are GTIds. 1979 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1980 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1981 1982 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1983 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1984 AddUserArgs(*CI); 1985 return false; 1986 }); 1987 1988 // Transitively search for more arguments by looking at the users of the 1989 // ones we know already. During the search the GTIdArgs vector is extended 1990 // so we cannot cache the size nor can we use a range based for. 1991 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1992 AddUserArgs(*GTIdArgs[U]); 1993 } 1994 1995 /// Kernel (=GPU) optimizations and utility functions 1996 /// 1997 ///{{ 1998 1999 /// Check if \p F is a kernel, hence entry point for target offloading. 2000 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2001 2002 /// Cache to remember the unique kernel for a function. 2003 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2004 2005 /// Find the unique kernel that will execute \p F, if any. 2006 Kernel getUniqueKernelFor(Function &F); 2007 2008 /// Find the unique kernel that will execute \p I, if any. 2009 Kernel getUniqueKernelFor(Instruction &I) { 2010 return getUniqueKernelFor(*I.getFunction()); 2011 } 2012 2013 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2014 /// the cases we can avoid taking the address of a function. 2015 bool rewriteDeviceCodeStateMachine(); 2016 2017 /// 2018 ///}} 2019 2020 /// Emit a remark generically 2021 /// 2022 /// This template function can be used to generically emit a remark. The 2023 /// RemarkKind should be one of the following: 2024 /// - OptimizationRemark to indicate a successful optimization attempt 2025 /// - OptimizationRemarkMissed to report a failed optimization attempt 2026 /// - OptimizationRemarkAnalysis to provide additional information about an 2027 /// optimization attempt 2028 /// 2029 /// The remark is built using a callback function provided by the caller that 2030 /// takes a RemarkKind as input and returns a RemarkKind. 2031 template <typename RemarkKind, typename RemarkCallBack> 2032 void emitRemark(Instruction *I, StringRef RemarkName, 2033 RemarkCallBack &&RemarkCB) const { 2034 Function *F = I->getParent()->getParent(); 2035 auto &ORE = OREGetter(F); 2036 2037 if (RemarkName.startswith("OMP")) 2038 ORE.emit([&]() { 2039 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2040 << " [" << RemarkName << "]"; 2041 }); 2042 else 2043 ORE.emit( 2044 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2045 } 2046 2047 /// Emit a remark on a function. 2048 template <typename RemarkKind, typename RemarkCallBack> 2049 void emitRemark(Function *F, StringRef RemarkName, 2050 RemarkCallBack &&RemarkCB) const { 2051 auto &ORE = OREGetter(F); 2052 2053 if (RemarkName.startswith("OMP")) 2054 ORE.emit([&]() { 2055 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2056 << " [" << RemarkName << "]"; 2057 }); 2058 else 2059 ORE.emit( 2060 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2061 } 2062 2063 /// RAII struct to temporarily change an RTL function's linkage to external. 2064 /// This prevents it from being mistakenly removed by other optimizations. 2065 struct ExternalizationRAII { 2066 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2067 RuntimeFunction RFKind) 2068 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2069 if (!Declaration) 2070 return; 2071 2072 LinkageType = Declaration->getLinkage(); 2073 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2074 } 2075 2076 ~ExternalizationRAII() { 2077 if (!Declaration) 2078 return; 2079 2080 Declaration->setLinkage(LinkageType); 2081 } 2082 2083 Function *Declaration; 2084 GlobalValue::LinkageTypes LinkageType; 2085 }; 2086 2087 /// The underlying module. 2088 Module &M; 2089 2090 /// The SCC we are operating on. 2091 SmallVectorImpl<Function *> &SCC; 2092 2093 /// Callback to update the call graph, the first argument is a removed call, 2094 /// the second an optional replacement call. 2095 CallGraphUpdater &CGUpdater; 2096 2097 /// Callback to get an OptimizationRemarkEmitter from a Function * 2098 OptimizationRemarkGetter OREGetter; 2099 2100 /// OpenMP-specific information cache. Also Used for Attributor runs. 2101 OMPInformationCache &OMPInfoCache; 2102 2103 /// Attributor instance. 2104 Attributor &A; 2105 2106 /// Helper function to run Attributor on SCC. 2107 bool runAttributor(bool IsModulePass) { 2108 if (SCC.empty()) 2109 return false; 2110 2111 // Temporarily make these function have external linkage so the Attributor 2112 // doesn't remove them when we try to look them up later. 2113 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2114 ExternalizationRAII EndParallel(OMPInfoCache, 2115 OMPRTL___kmpc_kernel_end_parallel); 2116 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2117 OMPRTL___kmpc_barrier_simple_spmd); 2118 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2119 OMPRTL___kmpc_barrier_simple_generic); 2120 ExternalizationRAII ThreadId(OMPInfoCache, 2121 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2122 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2123 2124 registerAAs(IsModulePass); 2125 2126 ChangeStatus Changed = A.run(); 2127 2128 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2129 << " functions, result: " << Changed << ".\n"); 2130 2131 return Changed == ChangeStatus::CHANGED; 2132 } 2133 2134 void registerFoldRuntimeCall(RuntimeFunction RF); 2135 2136 /// Populate the Attributor with abstract attribute opportunities in the 2137 /// function. 2138 void registerAAs(bool IsModulePass); 2139 }; 2140 2141 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2142 if (!OMPInfoCache.ModuleSlice.count(&F)) 2143 return nullptr; 2144 2145 // Use a scope to keep the lifetime of the CachedKernel short. 2146 { 2147 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2148 if (CachedKernel) 2149 return *CachedKernel; 2150 2151 // TODO: We should use an AA to create an (optimistic and callback 2152 // call-aware) call graph. For now we stick to simple patterns that 2153 // are less powerful, basically the worst fixpoint. 2154 if (isKernel(F)) { 2155 CachedKernel = Kernel(&F); 2156 return *CachedKernel; 2157 } 2158 2159 CachedKernel = nullptr; 2160 if (!F.hasLocalLinkage()) { 2161 2162 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2163 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2164 return ORA << "Potentially unknown OpenMP target region caller."; 2165 }; 2166 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2167 2168 return nullptr; 2169 } 2170 } 2171 2172 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2173 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2174 // Allow use in equality comparisons. 2175 if (Cmp->isEquality()) 2176 return getUniqueKernelFor(*Cmp); 2177 return nullptr; 2178 } 2179 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2180 // Allow direct calls. 2181 if (CB->isCallee(&U)) 2182 return getUniqueKernelFor(*CB); 2183 2184 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2185 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2186 // Allow the use in __kmpc_parallel_51 calls. 2187 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2188 return getUniqueKernelFor(*CB); 2189 return nullptr; 2190 } 2191 // Disallow every other use. 2192 return nullptr; 2193 }; 2194 2195 // TODO: In the future we want to track more than just a unique kernel. 2196 SmallPtrSet<Kernel, 2> PotentialKernels; 2197 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2198 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2199 }); 2200 2201 Kernel K = nullptr; 2202 if (PotentialKernels.size() == 1) 2203 K = *PotentialKernels.begin(); 2204 2205 // Cache the result. 2206 UniqueKernelMap[&F] = K; 2207 2208 return K; 2209 } 2210 2211 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2212 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2213 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2214 2215 bool Changed = false; 2216 if (!KernelParallelRFI) 2217 return Changed; 2218 2219 // If we have disabled state machine changes, exit 2220 if (DisableOpenMPOptStateMachineRewrite) 2221 return Changed; 2222 2223 for (Function *F : SCC) { 2224 2225 // Check if the function is a use in a __kmpc_parallel_51 call at 2226 // all. 2227 bool UnknownUse = false; 2228 bool KernelParallelUse = false; 2229 unsigned NumDirectCalls = 0; 2230 2231 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2232 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2233 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2234 if (CB->isCallee(&U)) { 2235 ++NumDirectCalls; 2236 return; 2237 } 2238 2239 if (isa<ICmpInst>(U.getUser())) { 2240 ToBeReplacedStateMachineUses.push_back(&U); 2241 return; 2242 } 2243 2244 // Find wrapper functions that represent parallel kernels. 2245 CallInst *CI = 2246 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2247 const unsigned int WrapperFunctionArgNo = 6; 2248 if (!KernelParallelUse && CI && 2249 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2250 KernelParallelUse = true; 2251 ToBeReplacedStateMachineUses.push_back(&U); 2252 return; 2253 } 2254 UnknownUse = true; 2255 }); 2256 2257 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2258 // use. 2259 if (!KernelParallelUse) 2260 continue; 2261 2262 // If this ever hits, we should investigate. 2263 // TODO: Checking the number of uses is not a necessary restriction and 2264 // should be lifted. 2265 if (UnknownUse || NumDirectCalls != 1 || 2266 ToBeReplacedStateMachineUses.size() > 2) { 2267 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2268 return ORA << "Parallel region is used in " 2269 << (UnknownUse ? "unknown" : "unexpected") 2270 << " ways. Will not attempt to rewrite the state machine."; 2271 }; 2272 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2273 continue; 2274 } 2275 2276 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2277 // up if the function is not called from a unique kernel. 2278 Kernel K = getUniqueKernelFor(*F); 2279 if (!K) { 2280 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2281 return ORA << "Parallel region is not called from a unique kernel. " 2282 "Will not attempt to rewrite the state machine."; 2283 }; 2284 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2285 continue; 2286 } 2287 2288 // We now know F is a parallel body function called only from the kernel K. 2289 // We also identified the state machine uses in which we replace the 2290 // function pointer by a new global symbol for identification purposes. This 2291 // ensures only direct calls to the function are left. 2292 2293 Module &M = *F->getParent(); 2294 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2295 2296 auto *ID = new GlobalVariable( 2297 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2298 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2299 2300 for (Use *U : ToBeReplacedStateMachineUses) 2301 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2302 ID, U->get()->getType())); 2303 2304 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2305 2306 Changed = true; 2307 } 2308 2309 return Changed; 2310 } 2311 2312 /// Abstract Attribute for tracking ICV values. 2313 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2314 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2315 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2316 2317 void initialize(Attributor &A) override { 2318 Function *F = getAnchorScope(); 2319 if (!F || !A.isFunctionIPOAmendable(*F)) 2320 indicatePessimisticFixpoint(); 2321 } 2322 2323 /// Returns true if value is assumed to be tracked. 2324 bool isAssumedTracked() const { return getAssumed(); } 2325 2326 /// Returns true if value is known to be tracked. 2327 bool isKnownTracked() const { return getAssumed(); } 2328 2329 /// Create an abstract attribute biew for the position \p IRP. 2330 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2331 2332 /// Return the value with which \p I can be replaced for specific \p ICV. 2333 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2334 const Instruction *I, 2335 Attributor &A) const { 2336 return None; 2337 } 2338 2339 /// Return an assumed unique ICV value if a single candidate is found. If 2340 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2341 /// Optional::NoneType. 2342 virtual Optional<Value *> 2343 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2344 2345 // Currently only nthreads is being tracked. 2346 // this array will only grow with time. 2347 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2348 2349 /// See AbstractAttribute::getName() 2350 const std::string getName() const override { return "AAICVTracker"; } 2351 2352 /// See AbstractAttribute::getIdAddr() 2353 const char *getIdAddr() const override { return &ID; } 2354 2355 /// This function should return true if the type of the \p AA is AAICVTracker 2356 static bool classof(const AbstractAttribute *AA) { 2357 return (AA->getIdAddr() == &ID); 2358 } 2359 2360 static const char ID; 2361 }; 2362 2363 struct AAICVTrackerFunction : public AAICVTracker { 2364 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2365 : AAICVTracker(IRP, A) {} 2366 2367 // FIXME: come up with better string. 2368 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2369 2370 // FIXME: come up with some stats. 2371 void trackStatistics() const override {} 2372 2373 /// We don't manifest anything for this AA. 2374 ChangeStatus manifest(Attributor &A) override { 2375 return ChangeStatus::UNCHANGED; 2376 } 2377 2378 // Map of ICV to their values at specific program point. 2379 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2380 InternalControlVar::ICV___last> 2381 ICVReplacementValuesMap; 2382 2383 ChangeStatus updateImpl(Attributor &A) override { 2384 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2385 2386 Function *F = getAnchorScope(); 2387 2388 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2389 2390 for (InternalControlVar ICV : TrackableICVs) { 2391 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2392 2393 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2394 auto TrackValues = [&](Use &U, Function &) { 2395 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2396 if (!CI) 2397 return false; 2398 2399 // FIXME: handle setters with more that 1 arguments. 2400 /// Track new value. 2401 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2402 HasChanged = ChangeStatus::CHANGED; 2403 2404 return false; 2405 }; 2406 2407 auto CallCheck = [&](Instruction &I) { 2408 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2409 if (ReplVal.hasValue() && 2410 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2411 HasChanged = ChangeStatus::CHANGED; 2412 2413 return true; 2414 }; 2415 2416 // Track all changes of an ICV. 2417 SetterRFI.foreachUse(TrackValues, F); 2418 2419 bool UsedAssumedInformation = false; 2420 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2421 UsedAssumedInformation, 2422 /* CheckBBLivenessOnly */ true); 2423 2424 /// TODO: Figure out a way to avoid adding entry in 2425 /// ICVReplacementValuesMap 2426 Instruction *Entry = &F->getEntryBlock().front(); 2427 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2428 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2429 } 2430 2431 return HasChanged; 2432 } 2433 2434 /// Helper to check if \p I is a call and get the value for it if it is 2435 /// unique. 2436 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2437 InternalControlVar &ICV) const { 2438 2439 const auto *CB = dyn_cast<CallBase>(&I); 2440 if (!CB || CB->hasFnAttr("no_openmp") || 2441 CB->hasFnAttr("no_openmp_routines")) 2442 return None; 2443 2444 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2445 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2446 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2447 Function *CalledFunction = CB->getCalledFunction(); 2448 2449 // Indirect call, assume ICV changes. 2450 if (CalledFunction == nullptr) 2451 return nullptr; 2452 if (CalledFunction == GetterRFI.Declaration) 2453 return None; 2454 if (CalledFunction == SetterRFI.Declaration) { 2455 if (ICVReplacementValuesMap[ICV].count(&I)) 2456 return ICVReplacementValuesMap[ICV].lookup(&I); 2457 2458 return nullptr; 2459 } 2460 2461 // Since we don't know, assume it changes the ICV. 2462 if (CalledFunction->isDeclaration()) 2463 return nullptr; 2464 2465 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2466 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2467 2468 if (ICVTrackingAA.isAssumedTracked()) { 2469 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2470 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2471 return URV; 2472 } 2473 2474 // If we don't know, assume it changes. 2475 return nullptr; 2476 } 2477 2478 // We don't check unique value for a function, so return None. 2479 Optional<Value *> 2480 getUniqueReplacementValue(InternalControlVar ICV) const override { 2481 return None; 2482 } 2483 2484 /// Return the value with which \p I can be replaced for specific \p ICV. 2485 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2486 const Instruction *I, 2487 Attributor &A) const override { 2488 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2489 if (ValuesMap.count(I)) 2490 return ValuesMap.lookup(I); 2491 2492 SmallVector<const Instruction *, 16> Worklist; 2493 SmallPtrSet<const Instruction *, 16> Visited; 2494 Worklist.push_back(I); 2495 2496 Optional<Value *> ReplVal; 2497 2498 while (!Worklist.empty()) { 2499 const Instruction *CurrInst = Worklist.pop_back_val(); 2500 if (!Visited.insert(CurrInst).second) 2501 continue; 2502 2503 const BasicBlock *CurrBB = CurrInst->getParent(); 2504 2505 // Go up and look for all potential setters/calls that might change the 2506 // ICV. 2507 while ((CurrInst = CurrInst->getPrevNode())) { 2508 if (ValuesMap.count(CurrInst)) { 2509 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2510 // Unknown value, track new. 2511 if (!ReplVal.hasValue()) { 2512 ReplVal = NewReplVal; 2513 break; 2514 } 2515 2516 // If we found a new value, we can't know the icv value anymore. 2517 if (NewReplVal.hasValue()) 2518 if (ReplVal != NewReplVal) 2519 return nullptr; 2520 2521 break; 2522 } 2523 2524 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2525 if (!NewReplVal.hasValue()) 2526 continue; 2527 2528 // Unknown value, track new. 2529 if (!ReplVal.hasValue()) { 2530 ReplVal = NewReplVal; 2531 break; 2532 } 2533 2534 // if (NewReplVal.hasValue()) 2535 // We found a new value, we can't know the icv value anymore. 2536 if (ReplVal != NewReplVal) 2537 return nullptr; 2538 } 2539 2540 // If we are in the same BB and we have a value, we are done. 2541 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2542 return ReplVal; 2543 2544 // Go through all predecessors and add terminators for analysis. 2545 for (const BasicBlock *Pred : predecessors(CurrBB)) 2546 if (const Instruction *Terminator = Pred->getTerminator()) 2547 Worklist.push_back(Terminator); 2548 } 2549 2550 return ReplVal; 2551 } 2552 }; 2553 2554 struct AAICVTrackerFunctionReturned : AAICVTracker { 2555 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2556 : AAICVTracker(IRP, A) {} 2557 2558 // FIXME: come up with better string. 2559 const std::string getAsStr() const override { 2560 return "ICVTrackerFunctionReturned"; 2561 } 2562 2563 // FIXME: come up with some stats. 2564 void trackStatistics() const override {} 2565 2566 /// We don't manifest anything for this AA. 2567 ChangeStatus manifest(Attributor &A) override { 2568 return ChangeStatus::UNCHANGED; 2569 } 2570 2571 // Map of ICV to their values at specific program point. 2572 EnumeratedArray<Optional<Value *>, InternalControlVar, 2573 InternalControlVar::ICV___last> 2574 ICVReplacementValuesMap; 2575 2576 /// Return the value with which \p I can be replaced for specific \p ICV. 2577 Optional<Value *> 2578 getUniqueReplacementValue(InternalControlVar ICV) const override { 2579 return ICVReplacementValuesMap[ICV]; 2580 } 2581 2582 ChangeStatus updateImpl(Attributor &A) override { 2583 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2584 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2585 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2586 2587 if (!ICVTrackingAA.isAssumedTracked()) 2588 return indicatePessimisticFixpoint(); 2589 2590 for (InternalControlVar ICV : TrackableICVs) { 2591 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2592 Optional<Value *> UniqueICVValue; 2593 2594 auto CheckReturnInst = [&](Instruction &I) { 2595 Optional<Value *> NewReplVal = 2596 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2597 2598 // If we found a second ICV value there is no unique returned value. 2599 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2600 return false; 2601 2602 UniqueICVValue = NewReplVal; 2603 2604 return true; 2605 }; 2606 2607 bool UsedAssumedInformation = false; 2608 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2609 UsedAssumedInformation, 2610 /* CheckBBLivenessOnly */ true)) 2611 UniqueICVValue = nullptr; 2612 2613 if (UniqueICVValue == ReplVal) 2614 continue; 2615 2616 ReplVal = UniqueICVValue; 2617 Changed = ChangeStatus::CHANGED; 2618 } 2619 2620 return Changed; 2621 } 2622 }; 2623 2624 struct AAICVTrackerCallSite : AAICVTracker { 2625 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2626 : AAICVTracker(IRP, A) {} 2627 2628 void initialize(Attributor &A) override { 2629 Function *F = getAnchorScope(); 2630 if (!F || !A.isFunctionIPOAmendable(*F)) 2631 indicatePessimisticFixpoint(); 2632 2633 // We only initialize this AA for getters, so we need to know which ICV it 2634 // gets. 2635 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2636 for (InternalControlVar ICV : TrackableICVs) { 2637 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2638 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2639 if (Getter.Declaration == getAssociatedFunction()) { 2640 AssociatedICV = ICVInfo.Kind; 2641 return; 2642 } 2643 } 2644 2645 /// Unknown ICV. 2646 indicatePessimisticFixpoint(); 2647 } 2648 2649 ChangeStatus manifest(Attributor &A) override { 2650 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2651 return ChangeStatus::UNCHANGED; 2652 2653 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2654 A.deleteAfterManifest(*getCtxI()); 2655 2656 return ChangeStatus::CHANGED; 2657 } 2658 2659 // FIXME: come up with better string. 2660 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2661 2662 // FIXME: come up with some stats. 2663 void trackStatistics() const override {} 2664 2665 InternalControlVar AssociatedICV; 2666 Optional<Value *> ReplVal; 2667 2668 ChangeStatus updateImpl(Attributor &A) override { 2669 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2670 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2671 2672 // We don't have any information, so we assume it changes the ICV. 2673 if (!ICVTrackingAA.isAssumedTracked()) 2674 return indicatePessimisticFixpoint(); 2675 2676 Optional<Value *> NewReplVal = 2677 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2678 2679 if (ReplVal == NewReplVal) 2680 return ChangeStatus::UNCHANGED; 2681 2682 ReplVal = NewReplVal; 2683 return ChangeStatus::CHANGED; 2684 } 2685 2686 // Return the value with which associated value can be replaced for specific 2687 // \p ICV. 2688 Optional<Value *> 2689 getUniqueReplacementValue(InternalControlVar ICV) const override { 2690 return ReplVal; 2691 } 2692 }; 2693 2694 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2695 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2696 : AAICVTracker(IRP, A) {} 2697 2698 // FIXME: come up with better string. 2699 const std::string getAsStr() const override { 2700 return "ICVTrackerCallSiteReturned"; 2701 } 2702 2703 // FIXME: come up with some stats. 2704 void trackStatistics() const override {} 2705 2706 /// We don't manifest anything for this AA. 2707 ChangeStatus manifest(Attributor &A) override { 2708 return ChangeStatus::UNCHANGED; 2709 } 2710 2711 // Map of ICV to their values at specific program point. 2712 EnumeratedArray<Optional<Value *>, InternalControlVar, 2713 InternalControlVar::ICV___last> 2714 ICVReplacementValuesMap; 2715 2716 /// Return the value with which associated value can be replaced for specific 2717 /// \p ICV. 2718 Optional<Value *> 2719 getUniqueReplacementValue(InternalControlVar ICV) const override { 2720 return ICVReplacementValuesMap[ICV]; 2721 } 2722 2723 ChangeStatus updateImpl(Attributor &A) override { 2724 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2725 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2726 *this, IRPosition::returned(*getAssociatedFunction()), 2727 DepClassTy::REQUIRED); 2728 2729 // We don't have any information, so we assume it changes the ICV. 2730 if (!ICVTrackingAA.isAssumedTracked()) 2731 return indicatePessimisticFixpoint(); 2732 2733 for (InternalControlVar ICV : TrackableICVs) { 2734 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2735 Optional<Value *> NewReplVal = 2736 ICVTrackingAA.getUniqueReplacementValue(ICV); 2737 2738 if (ReplVal == NewReplVal) 2739 continue; 2740 2741 ReplVal = NewReplVal; 2742 Changed = ChangeStatus::CHANGED; 2743 } 2744 return Changed; 2745 } 2746 }; 2747 2748 struct AAExecutionDomainFunction : public AAExecutionDomain { 2749 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2750 : AAExecutionDomain(IRP, A) {} 2751 2752 const std::string getAsStr() const override { 2753 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2754 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2755 } 2756 2757 /// See AbstractAttribute::trackStatistics(). 2758 void trackStatistics() const override {} 2759 2760 void initialize(Attributor &A) override { 2761 Function *F = getAnchorScope(); 2762 for (const auto &BB : *F) 2763 SingleThreadedBBs.insert(&BB); 2764 NumBBs = SingleThreadedBBs.size(); 2765 } 2766 2767 ChangeStatus manifest(Attributor &A) override { 2768 LLVM_DEBUG({ 2769 for (const BasicBlock *BB : SingleThreadedBBs) 2770 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2771 << BB->getName() << " is executed by a single thread.\n"; 2772 }); 2773 return ChangeStatus::UNCHANGED; 2774 } 2775 2776 ChangeStatus updateImpl(Attributor &A) override; 2777 2778 /// Check if an instruction is executed by a single thread. 2779 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2780 return isExecutedByInitialThreadOnly(*I.getParent()); 2781 } 2782 2783 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2784 return isValidState() && SingleThreadedBBs.contains(&BB); 2785 } 2786 2787 /// Set of basic blocks that are executed by a single thread. 2788 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2789 2790 /// Total number of basic blocks in this function. 2791 long unsigned NumBBs; 2792 }; 2793 2794 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2795 Function *F = getAnchorScope(); 2796 ReversePostOrderTraversal<Function *> RPOT(F); 2797 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2798 2799 bool AllCallSitesKnown; 2800 auto PredForCallSite = [&](AbstractCallSite ACS) { 2801 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2802 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2803 DepClassTy::REQUIRED); 2804 return ACS.isDirectCall() && 2805 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2806 *ACS.getInstruction()); 2807 }; 2808 2809 if (!A.checkForAllCallSites(PredForCallSite, *this, 2810 /* RequiresAllCallSites */ true, 2811 AllCallSitesKnown)) 2812 SingleThreadedBBs.remove(&F->getEntryBlock()); 2813 2814 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2815 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2816 2817 // Check if the edge into the successor block contains a condition that only 2818 // lets the main thread execute it. 2819 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2820 if (!Edge || !Edge->isConditional()) 2821 return false; 2822 if (Edge->getSuccessor(0) != SuccessorBB) 2823 return false; 2824 2825 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2826 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2827 return false; 2828 2829 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2830 if (!C) 2831 return false; 2832 2833 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2834 if (C->isAllOnesValue()) { 2835 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2836 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2837 if (!CB) 2838 return false; 2839 const int InitModeArgNo = 1; 2840 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2841 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2842 } 2843 2844 if (C->isZero()) { 2845 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2846 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2847 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2848 return true; 2849 2850 // Match: 0 == llvm.amdgcn.workitem.id.x() 2851 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2852 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2853 return true; 2854 } 2855 2856 return false; 2857 }; 2858 2859 // Merge all the predecessor states into the current basic block. A basic 2860 // block is executed by a single thread if all of its predecessors are. 2861 auto MergePredecessorStates = [&](BasicBlock *BB) { 2862 if (pred_empty(BB)) 2863 return SingleThreadedBBs.contains(BB); 2864 2865 bool IsInitialThread = true; 2866 for (BasicBlock *PredBB : predecessors(BB)) { 2867 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2868 BB)) 2869 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2870 } 2871 2872 return IsInitialThread; 2873 }; 2874 2875 for (auto *BB : RPOT) { 2876 if (!MergePredecessorStates(BB)) 2877 SingleThreadedBBs.remove(BB); 2878 } 2879 2880 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2881 ? ChangeStatus::UNCHANGED 2882 : ChangeStatus::CHANGED; 2883 } 2884 2885 /// Try to replace memory allocation calls called by a single thread with a 2886 /// static buffer of shared memory. 2887 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2888 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2889 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2890 2891 /// Create an abstract attribute view for the position \p IRP. 2892 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2893 Attributor &A); 2894 2895 /// Returns true if HeapToShared conversion is assumed to be possible. 2896 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2897 2898 /// Returns true if HeapToShared conversion is assumed and the CB is a 2899 /// callsite to a free operation to be removed. 2900 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2901 2902 /// See AbstractAttribute::getName(). 2903 const std::string getName() const override { return "AAHeapToShared"; } 2904 2905 /// See AbstractAttribute::getIdAddr(). 2906 const char *getIdAddr() const override { return &ID; } 2907 2908 /// This function should return true if the type of the \p AA is 2909 /// AAHeapToShared. 2910 static bool classof(const AbstractAttribute *AA) { 2911 return (AA->getIdAddr() == &ID); 2912 } 2913 2914 /// Unique ID (due to the unique address) 2915 static const char ID; 2916 }; 2917 2918 struct AAHeapToSharedFunction : public AAHeapToShared { 2919 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2920 : AAHeapToShared(IRP, A) {} 2921 2922 const std::string getAsStr() const override { 2923 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2924 " malloc calls eligible."; 2925 } 2926 2927 /// See AbstractAttribute::trackStatistics(). 2928 void trackStatistics() const override {} 2929 2930 /// This functions finds free calls that will be removed by the 2931 /// HeapToShared transformation. 2932 void findPotentialRemovedFreeCalls(Attributor &A) { 2933 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2934 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2935 2936 PotentialRemovedFreeCalls.clear(); 2937 // Update free call users of found malloc calls. 2938 for (CallBase *CB : MallocCalls) { 2939 SmallVector<CallBase *, 4> FreeCalls; 2940 for (auto *U : CB->users()) { 2941 CallBase *C = dyn_cast<CallBase>(U); 2942 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2943 FreeCalls.push_back(C); 2944 } 2945 2946 if (FreeCalls.size() != 1) 2947 continue; 2948 2949 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2950 } 2951 } 2952 2953 void initialize(Attributor &A) override { 2954 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2955 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2956 2957 for (User *U : RFI.Declaration->users()) 2958 if (CallBase *CB = dyn_cast<CallBase>(U)) 2959 MallocCalls.insert(CB); 2960 2961 findPotentialRemovedFreeCalls(A); 2962 } 2963 2964 bool isAssumedHeapToShared(CallBase &CB) const override { 2965 return isValidState() && MallocCalls.count(&CB); 2966 } 2967 2968 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2969 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2970 } 2971 2972 ChangeStatus manifest(Attributor &A) override { 2973 if (MallocCalls.empty()) 2974 return ChangeStatus::UNCHANGED; 2975 2976 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2977 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2978 2979 Function *F = getAnchorScope(); 2980 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2981 DepClassTy::OPTIONAL); 2982 2983 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2984 for (CallBase *CB : MallocCalls) { 2985 // Skip replacing this if HeapToStack has already claimed it. 2986 if (HS && HS->isAssumedHeapToStack(*CB)) 2987 continue; 2988 2989 // Find the unique free call to remove it. 2990 SmallVector<CallBase *, 4> FreeCalls; 2991 for (auto *U : CB->users()) { 2992 CallBase *C = dyn_cast<CallBase>(U); 2993 if (C && C->getCalledFunction() == FreeCall.Declaration) 2994 FreeCalls.push_back(C); 2995 } 2996 if (FreeCalls.size() != 1) 2997 continue; 2998 2999 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3000 3001 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3002 << " with " << AllocSize->getZExtValue() 3003 << " bytes of shared memory\n"); 3004 3005 // Create a new shared memory buffer of the same size as the allocation 3006 // and replace all the uses of the original allocation with it. 3007 Module *M = CB->getModule(); 3008 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3009 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3010 auto *SharedMem = new GlobalVariable( 3011 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3012 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3013 GlobalValue::NotThreadLocal, 3014 static_cast<unsigned>(AddressSpace::Shared)); 3015 auto *NewBuffer = 3016 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3017 3018 auto Remark = [&](OptimizationRemark OR) { 3019 return OR << "Replaced globalized variable with " 3020 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3021 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3022 << "of shared memory."; 3023 }; 3024 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3025 3026 MaybeAlign Alignment = CB->getRetAlign(); 3027 assert(Alignment && 3028 "HeapToShared on allocation without alignment attribute"); 3029 SharedMem->setAlignment(MaybeAlign(Alignment)); 3030 3031 A.changeValueAfterManifest(*CB, *NewBuffer); 3032 A.deleteAfterManifest(*CB); 3033 A.deleteAfterManifest(*FreeCalls.front()); 3034 3035 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 3036 Changed = ChangeStatus::CHANGED; 3037 } 3038 3039 return Changed; 3040 } 3041 3042 ChangeStatus updateImpl(Attributor &A) override { 3043 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3044 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3045 Function *F = getAnchorScope(); 3046 3047 auto NumMallocCalls = MallocCalls.size(); 3048 3049 // Only consider malloc calls executed by a single thread with a constant. 3050 for (User *U : RFI.Declaration->users()) { 3051 const auto &ED = A.getAAFor<AAExecutionDomain>( 3052 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3053 if (CallBase *CB = dyn_cast<CallBase>(U)) 3054 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3055 !ED.isExecutedByInitialThreadOnly(*CB)) 3056 MallocCalls.remove(CB); 3057 } 3058 3059 findPotentialRemovedFreeCalls(A); 3060 3061 if (NumMallocCalls != MallocCalls.size()) 3062 return ChangeStatus::CHANGED; 3063 3064 return ChangeStatus::UNCHANGED; 3065 } 3066 3067 /// Collection of all malloc calls in a function. 3068 SmallSetVector<CallBase *, 4> MallocCalls; 3069 /// Collection of potentially removed free calls in a function. 3070 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3071 }; 3072 3073 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3074 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3075 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3076 3077 /// Statistics are tracked as part of manifest for now. 3078 void trackStatistics() const override {} 3079 3080 /// See AbstractAttribute::getAsStr() 3081 const std::string getAsStr() const override { 3082 if (!isValidState()) 3083 return "<invalid>"; 3084 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3085 : "generic") + 3086 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3087 : "") + 3088 std::string(" #PRs: ") + 3089 (ReachedKnownParallelRegions.isValidState() 3090 ? std::to_string(ReachedKnownParallelRegions.size()) 3091 : "<invalid>") + 3092 ", #Unknown PRs: " + 3093 (ReachedUnknownParallelRegions.isValidState() 3094 ? std::to_string(ReachedUnknownParallelRegions.size()) 3095 : "<invalid>") + 3096 ", #Reaching Kernels: " + 3097 (ReachingKernelEntries.isValidState() 3098 ? std::to_string(ReachingKernelEntries.size()) 3099 : "<invalid>"); 3100 } 3101 3102 /// Create an abstract attribute biew for the position \p IRP. 3103 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3104 3105 /// See AbstractAttribute::getName() 3106 const std::string getName() const override { return "AAKernelInfo"; } 3107 3108 /// See AbstractAttribute::getIdAddr() 3109 const char *getIdAddr() const override { return &ID; } 3110 3111 /// This function should return true if the type of the \p AA is AAKernelInfo 3112 static bool classof(const AbstractAttribute *AA) { 3113 return (AA->getIdAddr() == &ID); 3114 } 3115 3116 static const char ID; 3117 }; 3118 3119 /// The function kernel info abstract attribute, basically, what can we say 3120 /// about a function with regards to the KernelInfoState. 3121 struct AAKernelInfoFunction : AAKernelInfo { 3122 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3123 : AAKernelInfo(IRP, A) {} 3124 3125 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3126 3127 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3128 return GuardedInstructions; 3129 } 3130 3131 /// See AbstractAttribute::initialize(...). 3132 void initialize(Attributor &A) override { 3133 // This is a high-level transform that might change the constant arguments 3134 // of the init and dinit calls. We need to tell the Attributor about this 3135 // to avoid other parts using the current constant value for simpliication. 3136 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3137 3138 Function *Fn = getAnchorScope(); 3139 if (!OMPInfoCache.Kernels.count(Fn)) 3140 return; 3141 3142 // Add itself to the reaching kernel and set IsKernelEntry. 3143 ReachingKernelEntries.insert(Fn); 3144 IsKernelEntry = true; 3145 3146 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3147 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3148 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3149 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3150 3151 // For kernels we perform more initialization work, first we find the init 3152 // and deinit calls. 3153 auto StoreCallBase = [](Use &U, 3154 OMPInformationCache::RuntimeFunctionInfo &RFI, 3155 CallBase *&Storage) { 3156 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3157 assert(CB && 3158 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3159 assert(!Storage && 3160 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3161 Storage = CB; 3162 return false; 3163 }; 3164 InitRFI.foreachUse( 3165 [&](Use &U, Function &) { 3166 StoreCallBase(U, InitRFI, KernelInitCB); 3167 return false; 3168 }, 3169 Fn); 3170 DeinitRFI.foreachUse( 3171 [&](Use &U, Function &) { 3172 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3173 return false; 3174 }, 3175 Fn); 3176 3177 // Ignore kernels without initializers such as global constructors. 3178 if (!KernelInitCB || !KernelDeinitCB) { 3179 indicateOptimisticFixpoint(); 3180 return; 3181 } 3182 3183 // For kernels we might need to initialize/finalize the IsSPMD state and 3184 // we need to register a simplification callback so that the Attributor 3185 // knows the constant arguments to __kmpc_target_init and 3186 // __kmpc_target_deinit might actually change. 3187 3188 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3189 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3190 bool &UsedAssumedInformation) -> Optional<Value *> { 3191 // IRP represents the "use generic state machine" argument of an 3192 // __kmpc_target_init call. We will answer this one with the internal 3193 // state. As long as we are not in an invalid state, we will create a 3194 // custom state machine so the value should be a `i1 false`. If we are 3195 // in an invalid state, we won't change the value that is in the IR. 3196 if (!ReachedKnownParallelRegions.isValidState()) 3197 return nullptr; 3198 // If we have disabled state machine rewrites, don't make a custom one. 3199 if (DisableOpenMPOptStateMachineRewrite) 3200 return nullptr; 3201 if (AA) 3202 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3203 UsedAssumedInformation = !isAtFixpoint(); 3204 auto *FalseVal = 3205 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3206 return FalseVal; 3207 }; 3208 3209 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3210 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3211 bool &UsedAssumedInformation) -> Optional<Value *> { 3212 // IRP represents the "SPMDCompatibilityTracker" argument of an 3213 // __kmpc_target_init or 3214 // __kmpc_target_deinit call. We will answer this one with the internal 3215 // state. 3216 if (!SPMDCompatibilityTracker.isValidState()) 3217 return nullptr; 3218 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3219 if (AA) 3220 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3221 UsedAssumedInformation = true; 3222 } else { 3223 UsedAssumedInformation = false; 3224 } 3225 auto *Val = ConstantInt::getSigned( 3226 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3227 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3228 : OMP_TGT_EXEC_MODE_GENERIC); 3229 return Val; 3230 }; 3231 3232 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3233 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3234 bool &UsedAssumedInformation) -> Optional<Value *> { 3235 // IRP represents the "RequiresFullRuntime" argument of an 3236 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3237 // one with the internal state of the SPMDCompatibilityTracker, so if 3238 // generic then true, if SPMD then false. 3239 if (!SPMDCompatibilityTracker.isValidState()) 3240 return nullptr; 3241 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3242 if (AA) 3243 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3244 UsedAssumedInformation = true; 3245 } else { 3246 UsedAssumedInformation = false; 3247 } 3248 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3249 !SPMDCompatibilityTracker.isAssumed()); 3250 return Val; 3251 }; 3252 3253 constexpr const int InitModeArgNo = 1; 3254 constexpr const int DeinitModeArgNo = 1; 3255 constexpr const int InitUseStateMachineArgNo = 2; 3256 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3257 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3258 A.registerSimplificationCallback( 3259 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3260 StateMachineSimplifyCB); 3261 A.registerSimplificationCallback( 3262 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3263 ModeSimplifyCB); 3264 A.registerSimplificationCallback( 3265 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3266 ModeSimplifyCB); 3267 A.registerSimplificationCallback( 3268 IRPosition::callsite_argument(*KernelInitCB, 3269 InitRequiresFullRuntimeArgNo), 3270 IsGenericModeSimplifyCB); 3271 A.registerSimplificationCallback( 3272 IRPosition::callsite_argument(*KernelDeinitCB, 3273 DeinitRequiresFullRuntimeArgNo), 3274 IsGenericModeSimplifyCB); 3275 3276 // Check if we know we are in SPMD-mode already. 3277 ConstantInt *ModeArg = 3278 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3279 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3280 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3281 // This is a generic region but SPMDization is disabled so stop tracking. 3282 else if (DisableOpenMPOptSPMDization) 3283 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3284 } 3285 3286 /// Sanitize the string \p S such that it is a suitable global symbol name. 3287 static std::string sanitizeForGlobalName(std::string S) { 3288 std::replace_if( 3289 S.begin(), S.end(), 3290 [](const char C) { 3291 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3292 (C >= '0' && C <= '9') || C == '_'); 3293 }, 3294 '.'); 3295 return S; 3296 } 3297 3298 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3299 /// finished now. 3300 ChangeStatus manifest(Attributor &A) override { 3301 // If we are not looking at a kernel with __kmpc_target_init and 3302 // __kmpc_target_deinit call we cannot actually manifest the information. 3303 if (!KernelInitCB || !KernelDeinitCB) 3304 return ChangeStatus::UNCHANGED; 3305 3306 // If we can we change the execution mode to SPMD-mode otherwise we build a 3307 // custom state machine. 3308 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3309 if (!changeToSPMDMode(A, Changed)) 3310 return buildCustomStateMachine(A); 3311 3312 return Changed; 3313 } 3314 3315 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3316 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3317 3318 if (!SPMDCompatibilityTracker.isAssumed()) { 3319 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3320 if (!NonCompatibleI) 3321 continue; 3322 3323 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3324 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3325 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3326 continue; 3327 3328 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3329 ORA << "Value has potential side effects preventing SPMD-mode " 3330 "execution"; 3331 if (isa<CallBase>(NonCompatibleI)) { 3332 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3333 "the called function to override"; 3334 } 3335 return ORA << "."; 3336 }; 3337 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3338 Remark); 3339 3340 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3341 << *NonCompatibleI << "\n"); 3342 } 3343 3344 return false; 3345 } 3346 3347 // Check if the kernel is already in SPMD mode, if so, return success. 3348 Function *Kernel = getAnchorScope(); 3349 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3350 (Kernel->getName() + "_exec_mode").str()); 3351 assert(ExecMode && "Kernel without exec mode?"); 3352 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3353 3354 // Set the global exec mode flag to indicate SPMD-Generic mode. 3355 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3356 "ExecMode is not an integer!"); 3357 const int8_t ExecModeVal = 3358 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3359 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3360 return true; 3361 3362 // We will now unconditionally modify the IR, indicate a change. 3363 Changed = ChangeStatus::CHANGED; 3364 3365 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3366 Instruction *RegionEndI) { 3367 LoopInfo *LI = nullptr; 3368 DominatorTree *DT = nullptr; 3369 MemorySSAUpdater *MSU = nullptr; 3370 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3371 3372 BasicBlock *ParentBB = RegionStartI->getParent(); 3373 Function *Fn = ParentBB->getParent(); 3374 Module &M = *Fn->getParent(); 3375 3376 // Create all the blocks and logic. 3377 // ParentBB: 3378 // goto RegionCheckTidBB 3379 // RegionCheckTidBB: 3380 // Tid = __kmpc_hardware_thread_id() 3381 // if (Tid != 0) 3382 // goto RegionBarrierBB 3383 // RegionStartBB: 3384 // <execute instructions guarded> 3385 // goto RegionEndBB 3386 // RegionEndBB: 3387 // <store escaping values to shared mem> 3388 // goto RegionBarrierBB 3389 // RegionBarrierBB: 3390 // __kmpc_simple_barrier_spmd() 3391 // // second barrier is omitted if lacking escaping values. 3392 // <load escaping values from shared mem> 3393 // __kmpc_simple_barrier_spmd() 3394 // goto RegionExitBB 3395 // RegionExitBB: 3396 // <execute rest of instructions> 3397 3398 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3399 DT, LI, MSU, "region.guarded.end"); 3400 BasicBlock *RegionBarrierBB = 3401 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3402 MSU, "region.barrier"); 3403 BasicBlock *RegionExitBB = 3404 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3405 DT, LI, MSU, "region.exit"); 3406 BasicBlock *RegionStartBB = 3407 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3408 3409 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3410 "Expected a different CFG"); 3411 3412 BasicBlock *RegionCheckTidBB = SplitBlock( 3413 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3414 3415 // Register basic blocks with the Attributor. 3416 A.registerManifestAddedBasicBlock(*RegionEndBB); 3417 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3418 A.registerManifestAddedBasicBlock(*RegionExitBB); 3419 A.registerManifestAddedBasicBlock(*RegionStartBB); 3420 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3421 3422 bool HasBroadcastValues = false; 3423 // Find escaping outputs from the guarded region to outside users and 3424 // broadcast their values to them. 3425 for (Instruction &I : *RegionStartBB) { 3426 SmallPtrSet<Instruction *, 4> OutsideUsers; 3427 for (User *Usr : I.users()) { 3428 Instruction &UsrI = *cast<Instruction>(Usr); 3429 if (UsrI.getParent() != RegionStartBB) 3430 OutsideUsers.insert(&UsrI); 3431 } 3432 3433 if (OutsideUsers.empty()) 3434 continue; 3435 3436 HasBroadcastValues = true; 3437 3438 // Emit a global variable in shared memory to store the broadcasted 3439 // value. 3440 auto *SharedMem = new GlobalVariable( 3441 M, I.getType(), /* IsConstant */ false, 3442 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3443 sanitizeForGlobalName( 3444 (I.getName() + ".guarded.output.alloc").str()), 3445 nullptr, GlobalValue::NotThreadLocal, 3446 static_cast<unsigned>(AddressSpace::Shared)); 3447 3448 // Emit a store instruction to update the value. 3449 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3450 3451 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3452 I.getName() + ".guarded.output.load", 3453 RegionBarrierBB->getTerminator()); 3454 3455 // Emit a load instruction and replace uses of the output value. 3456 for (Instruction *UsrI : OutsideUsers) 3457 UsrI->replaceUsesOfWith(&I, LoadI); 3458 } 3459 3460 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3461 3462 // Go to tid check BB in ParentBB. 3463 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3464 ParentBB->getTerminator()->eraseFromParent(); 3465 OpenMPIRBuilder::LocationDescription Loc( 3466 InsertPointTy(ParentBB, ParentBB->end()), DL); 3467 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3468 uint32_t SrcLocStrSize; 3469 auto *SrcLocStr = 3470 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3471 Value *Ident = 3472 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3473 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3474 3475 // Add check for Tid in RegionCheckTidBB 3476 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3477 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3478 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3479 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3480 FunctionCallee HardwareTidFn = 3481 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3482 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3483 CallInst *Tid = 3484 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3485 Tid->setDebugLoc(DL); 3486 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3487 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3488 OMPInfoCache.OMPBuilder.Builder 3489 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3490 ->setDebugLoc(DL); 3491 3492 // First barrier for synchronization, ensures main thread has updated 3493 // values. 3494 FunctionCallee BarrierFn = 3495 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3496 M, OMPRTL___kmpc_barrier_simple_spmd); 3497 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3498 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3499 CallInst *Barrier = 3500 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3501 Barrier->setDebugLoc(DL); 3502 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3503 3504 // Second barrier ensures workers have read broadcast values. 3505 if (HasBroadcastValues) { 3506 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3507 RegionBarrierBB->getTerminator()); 3508 Barrier->setDebugLoc(DL); 3509 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3510 } 3511 }; 3512 3513 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3514 SmallPtrSet<BasicBlock *, 8> Visited; 3515 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3516 BasicBlock *BB = GuardedI->getParent(); 3517 if (!Visited.insert(BB).second) 3518 continue; 3519 3520 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3521 Instruction *LastEffect = nullptr; 3522 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3523 while (++IP != IPEnd) { 3524 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3525 continue; 3526 Instruction *I = &*IP; 3527 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3528 continue; 3529 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3530 LastEffect = nullptr; 3531 continue; 3532 } 3533 if (LastEffect) 3534 Reorders.push_back({I, LastEffect}); 3535 LastEffect = &*IP; 3536 } 3537 for (auto &Reorder : Reorders) 3538 Reorder.first->moveBefore(Reorder.second); 3539 } 3540 3541 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3542 3543 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3544 BasicBlock *BB = GuardedI->getParent(); 3545 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3546 IRPosition::function(*GuardedI->getFunction()), nullptr, 3547 DepClassTy::NONE); 3548 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3549 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3550 // Continue if instruction is already guarded. 3551 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3552 continue; 3553 3554 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3555 for (Instruction &I : *BB) { 3556 // If instruction I needs to be guarded update the guarded region 3557 // bounds. 3558 if (SPMDCompatibilityTracker.contains(&I)) { 3559 CalleeAAFunction.getGuardedInstructions().insert(&I); 3560 if (GuardedRegionStart) 3561 GuardedRegionEnd = &I; 3562 else 3563 GuardedRegionStart = GuardedRegionEnd = &I; 3564 3565 continue; 3566 } 3567 3568 // Instruction I does not need guarding, store 3569 // any region found and reset bounds. 3570 if (GuardedRegionStart) { 3571 GuardedRegions.push_back( 3572 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3573 GuardedRegionStart = nullptr; 3574 GuardedRegionEnd = nullptr; 3575 } 3576 } 3577 } 3578 3579 for (auto &GR : GuardedRegions) 3580 CreateGuardedRegion(GR.first, GR.second); 3581 3582 // Adjust the global exec mode flag that tells the runtime what mode this 3583 // kernel is executed in. 3584 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3585 "Initially non-SPMD kernel has SPMD exec mode!"); 3586 ExecMode->setInitializer( 3587 ConstantInt::get(ExecMode->getInitializer()->getType(), 3588 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3589 3590 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3591 const int InitModeArgNo = 1; 3592 const int DeinitModeArgNo = 1; 3593 const int InitUseStateMachineArgNo = 2; 3594 const int InitRequiresFullRuntimeArgNo = 3; 3595 const int DeinitRequiresFullRuntimeArgNo = 2; 3596 3597 auto &Ctx = getAnchorValue().getContext(); 3598 A.changeUseAfterManifest( 3599 KernelInitCB->getArgOperandUse(InitModeArgNo), 3600 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3601 OMP_TGT_EXEC_MODE_SPMD)); 3602 A.changeUseAfterManifest( 3603 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3604 *ConstantInt::getBool(Ctx, false)); 3605 A.changeUseAfterManifest( 3606 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3607 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3608 OMP_TGT_EXEC_MODE_SPMD)); 3609 A.changeUseAfterManifest( 3610 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3611 *ConstantInt::getBool(Ctx, false)); 3612 A.changeUseAfterManifest( 3613 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3614 *ConstantInt::getBool(Ctx, false)); 3615 3616 ++NumOpenMPTargetRegionKernelsSPMD; 3617 3618 auto Remark = [&](OptimizationRemark OR) { 3619 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3620 }; 3621 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3622 return true; 3623 }; 3624 3625 ChangeStatus buildCustomStateMachine(Attributor &A) { 3626 // If we have disabled state machine rewrites, don't make a custom one 3627 if (DisableOpenMPOptStateMachineRewrite) 3628 return ChangeStatus::UNCHANGED; 3629 3630 // Don't rewrite the state machine if we are not in a valid state. 3631 if (!ReachedKnownParallelRegions.isValidState()) 3632 return ChangeStatus::UNCHANGED; 3633 3634 const int InitModeArgNo = 1; 3635 const int InitUseStateMachineArgNo = 2; 3636 3637 // Check if the current configuration is non-SPMD and generic state machine. 3638 // If we already have SPMD mode or a custom state machine we do not need to 3639 // go any further. If it is anything but a constant something is weird and 3640 // we give up. 3641 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3642 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3643 ConstantInt *Mode = 3644 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3645 3646 // If we are stuck with generic mode, try to create a custom device (=GPU) 3647 // state machine which is specialized for the parallel regions that are 3648 // reachable by the kernel. 3649 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3650 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3651 return ChangeStatus::UNCHANGED; 3652 3653 // If not SPMD mode, indicate we use a custom state machine now. 3654 auto &Ctx = getAnchorValue().getContext(); 3655 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3656 A.changeUseAfterManifest( 3657 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3658 3659 // If we don't actually need a state machine we are done here. This can 3660 // happen if there simply are no parallel regions. In the resulting kernel 3661 // all worker threads will simply exit right away, leaving the main thread 3662 // to do the work alone. 3663 if (!mayContainParallelRegion()) { 3664 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3665 3666 auto Remark = [&](OptimizationRemark OR) { 3667 return OR << "Removing unused state machine from generic-mode kernel."; 3668 }; 3669 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3670 3671 return ChangeStatus::CHANGED; 3672 } 3673 3674 // Keep track in the statistics of our new shiny custom state machine. 3675 if (ReachedUnknownParallelRegions.empty()) { 3676 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3677 3678 auto Remark = [&](OptimizationRemark OR) { 3679 return OR << "Rewriting generic-mode kernel with a customized state " 3680 "machine."; 3681 }; 3682 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3683 } else { 3684 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3685 3686 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3687 return OR << "Generic-mode kernel is executed with a customized state " 3688 "machine that requires a fallback."; 3689 }; 3690 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3691 3692 // Tell the user why we ended up with a fallback. 3693 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3694 if (!UnknownParallelRegionCB) 3695 continue; 3696 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3697 return ORA << "Call may contain unknown parallel regions. Use " 3698 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3699 "override."; 3700 }; 3701 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3702 "OMP133", Remark); 3703 } 3704 } 3705 3706 // Create all the blocks: 3707 // 3708 // InitCB = __kmpc_target_init(...) 3709 // BlockHwSize = 3710 // __kmpc_get_hardware_num_threads_in_block(); 3711 // WarpSize = __kmpc_get_warp_size(); 3712 // BlockSize = BlockHwSize - WarpSize; 3713 // if (InitCB >= BlockSize) return; 3714 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3715 // if (IsWorker) { 3716 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3717 // void *WorkFn; 3718 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3719 // if (!WorkFn) return; 3720 // SMIsActiveCheckBB: if (Active) { 3721 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3722 // ParFn0(...); 3723 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3724 // ParFn1(...); 3725 // ... 3726 // SMIfCascadeCurrentBB: else 3727 // ((WorkFnTy*)WorkFn)(...); 3728 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3729 // } 3730 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3731 // goto SMBeginBB; 3732 // } 3733 // UserCodeEntryBB: // user code 3734 // __kmpc_target_deinit(...) 3735 // 3736 Function *Kernel = getAssociatedFunction(); 3737 assert(Kernel && "Expected an associated function!"); 3738 3739 BasicBlock *InitBB = KernelInitCB->getParent(); 3740 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3741 KernelInitCB->getNextNode(), "thread.user_code.check"); 3742 BasicBlock *IsWorkerCheckBB = 3743 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3744 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3745 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3746 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3747 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3748 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3749 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3750 BasicBlock *StateMachineIfCascadeCurrentBB = 3751 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3752 Kernel, UserCodeEntryBB); 3753 BasicBlock *StateMachineEndParallelBB = 3754 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3755 Kernel, UserCodeEntryBB); 3756 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3757 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3758 A.registerManifestAddedBasicBlock(*InitBB); 3759 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3760 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3761 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3762 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3763 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3764 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3765 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3766 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3767 3768 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3769 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3770 InitBB->getTerminator()->eraseFromParent(); 3771 3772 Module &M = *Kernel->getParent(); 3773 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3774 FunctionCallee BlockHwSizeFn = 3775 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3776 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3777 FunctionCallee WarpSizeFn = 3778 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3779 M, OMPRTL___kmpc_get_warp_size); 3780 CallInst *BlockHwSize = 3781 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3782 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3783 BlockHwSize->setDebugLoc(DLoc); 3784 CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3785 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3786 WarpSize->setDebugLoc(DLoc); 3787 Instruction *BlockSize = 3788 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3789 BlockSize->setDebugLoc(DLoc); 3790 Instruction *IsMainOrWorker = 3791 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3792 BlockSize, "thread.is_main_or_worker", InitBB); 3793 IsMainOrWorker->setDebugLoc(DLoc); 3794 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3795 InitBB); 3796 3797 Instruction *IsWorker = 3798 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3799 ConstantInt::get(KernelInitCB->getType(), -1), 3800 "thread.is_worker", IsWorkerCheckBB); 3801 IsWorker->setDebugLoc(DLoc); 3802 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3803 IsWorkerCheckBB); 3804 3805 // Create local storage for the work function pointer. 3806 const DataLayout &DL = M.getDataLayout(); 3807 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3808 Instruction *WorkFnAI = 3809 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3810 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3811 WorkFnAI->setDebugLoc(DLoc); 3812 3813 OMPInfoCache.OMPBuilder.updateToLocation( 3814 OpenMPIRBuilder::LocationDescription( 3815 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3816 StateMachineBeginBB->end()), 3817 DLoc)); 3818 3819 Value *Ident = KernelInitCB->getArgOperand(0); 3820 Value *GTid = KernelInitCB; 3821 3822 FunctionCallee BarrierFn = 3823 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3824 M, OMPRTL___kmpc_barrier_simple_generic); 3825 CallInst *Barrier = 3826 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3827 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3828 Barrier->setDebugLoc(DLoc); 3829 3830 if (WorkFnAI->getType()->getPointerAddressSpace() != 3831 (unsigned int)AddressSpace::Generic) { 3832 WorkFnAI = new AddrSpaceCastInst( 3833 WorkFnAI, 3834 PointerType::getWithSamePointeeType( 3835 cast<PointerType>(WorkFnAI->getType()), 3836 (unsigned int)AddressSpace::Generic), 3837 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3838 WorkFnAI->setDebugLoc(DLoc); 3839 } 3840 3841 FunctionCallee KernelParallelFn = 3842 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3843 M, OMPRTL___kmpc_kernel_parallel); 3844 CallInst *IsActiveWorker = CallInst::Create( 3845 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3846 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3847 IsActiveWorker->setDebugLoc(DLoc); 3848 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3849 StateMachineBeginBB); 3850 WorkFn->setDebugLoc(DLoc); 3851 3852 FunctionType *ParallelRegionFnTy = FunctionType::get( 3853 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3854 false); 3855 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3856 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3857 StateMachineBeginBB); 3858 3859 Instruction *IsDone = 3860 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3861 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3862 StateMachineBeginBB); 3863 IsDone->setDebugLoc(DLoc); 3864 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3865 IsDone, StateMachineBeginBB) 3866 ->setDebugLoc(DLoc); 3867 3868 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3869 StateMachineDoneBarrierBB, IsActiveWorker, 3870 StateMachineIsActiveCheckBB) 3871 ->setDebugLoc(DLoc); 3872 3873 Value *ZeroArg = 3874 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3875 3876 // Now that we have most of the CFG skeleton it is time for the if-cascade 3877 // that checks the function pointer we got from the runtime against the 3878 // parallel regions we expect, if there are any. 3879 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3880 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3881 BasicBlock *PRExecuteBB = BasicBlock::Create( 3882 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3883 StateMachineEndParallelBB); 3884 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3885 ->setDebugLoc(DLoc); 3886 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3887 ->setDebugLoc(DLoc); 3888 3889 BasicBlock *PRNextBB = 3890 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3891 Kernel, StateMachineEndParallelBB); 3892 3893 // Check if we need to compare the pointer at all or if we can just 3894 // call the parallel region function. 3895 Value *IsPR; 3896 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3897 Instruction *CmpI = ICmpInst::Create( 3898 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3899 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3900 CmpI->setDebugLoc(DLoc); 3901 IsPR = CmpI; 3902 } else { 3903 IsPR = ConstantInt::getTrue(Ctx); 3904 } 3905 3906 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3907 StateMachineIfCascadeCurrentBB) 3908 ->setDebugLoc(DLoc); 3909 StateMachineIfCascadeCurrentBB = PRNextBB; 3910 } 3911 3912 // At the end of the if-cascade we place the indirect function pointer call 3913 // in case we might need it, that is if there can be parallel regions we 3914 // have not handled in the if-cascade above. 3915 if (!ReachedUnknownParallelRegions.empty()) { 3916 StateMachineIfCascadeCurrentBB->setName( 3917 "worker_state_machine.parallel_region.fallback.execute"); 3918 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3919 StateMachineIfCascadeCurrentBB) 3920 ->setDebugLoc(DLoc); 3921 } 3922 BranchInst::Create(StateMachineEndParallelBB, 3923 StateMachineIfCascadeCurrentBB) 3924 ->setDebugLoc(DLoc); 3925 3926 FunctionCallee EndParallelFn = 3927 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3928 M, OMPRTL___kmpc_kernel_end_parallel); 3929 CallInst *EndParallel = 3930 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3931 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3932 EndParallel->setDebugLoc(DLoc); 3933 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3934 ->setDebugLoc(DLoc); 3935 3936 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3937 ->setDebugLoc(DLoc); 3938 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3939 ->setDebugLoc(DLoc); 3940 3941 return ChangeStatus::CHANGED; 3942 } 3943 3944 /// Fixpoint iteration update function. Will be called every time a dependence 3945 /// changed its state (and in the beginning). 3946 ChangeStatus updateImpl(Attributor &A) override { 3947 KernelInfoState StateBefore = getState(); 3948 3949 // Callback to check a read/write instruction. 3950 auto CheckRWInst = [&](Instruction &I) { 3951 // We handle calls later. 3952 if (isa<CallBase>(I)) 3953 return true; 3954 // We only care about write effects. 3955 if (!I.mayWriteToMemory()) 3956 return true; 3957 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3958 SmallVector<const Value *> Objects; 3959 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3960 if (llvm::all_of(Objects, 3961 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3962 return true; 3963 // Check for AAHeapToStack moved objects which must not be guarded. 3964 auto &HS = A.getAAFor<AAHeapToStack>( 3965 *this, IRPosition::function(*I.getFunction()), 3966 DepClassTy::OPTIONAL); 3967 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3968 auto *CB = dyn_cast<CallBase>(Obj); 3969 if (!CB) 3970 return false; 3971 return HS.isAssumedHeapToStack(*CB); 3972 })) { 3973 return true; 3974 } 3975 } 3976 3977 // Insert instruction that needs guarding. 3978 SPMDCompatibilityTracker.insert(&I); 3979 return true; 3980 }; 3981 3982 bool UsedAssumedInformationInCheckRWInst = false; 3983 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3984 if (!A.checkForAllReadWriteInstructions( 3985 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3986 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3987 3988 bool UsedAssumedInformationFromReachingKernels = false; 3989 if (!IsKernelEntry) { 3990 updateParallelLevels(A); 3991 3992 bool AllReachingKernelsKnown = true; 3993 updateReachingKernelEntries(A, AllReachingKernelsKnown); 3994 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 3995 3996 if (!ParallelLevels.isValidState()) 3997 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3998 else if (!ReachingKernelEntries.isValidState()) 3999 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4000 else if (!SPMDCompatibilityTracker.empty()) { 4001 // Check if all reaching kernels agree on the mode as we can otherwise 4002 // not guard instructions. We might not be sure about the mode so we 4003 // we cannot fix the internal spmd-zation state either. 4004 int SPMD = 0, Generic = 0; 4005 for (auto *Kernel : ReachingKernelEntries) { 4006 auto &CBAA = A.getAAFor<AAKernelInfo>( 4007 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4008 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4009 CBAA.SPMDCompatibilityTracker.isAssumed()) 4010 ++SPMD; 4011 else 4012 ++Generic; 4013 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4014 UsedAssumedInformationFromReachingKernels = true; 4015 } 4016 if (SPMD != 0 && Generic != 0) 4017 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4018 } 4019 } 4020 4021 // Callback to check a call instruction. 4022 bool AllParallelRegionStatesWereFixed = true; 4023 bool AllSPMDStatesWereFixed = true; 4024 auto CheckCallInst = [&](Instruction &I) { 4025 auto &CB = cast<CallBase>(I); 4026 auto &CBAA = A.getAAFor<AAKernelInfo>( 4027 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4028 getState() ^= CBAA.getState(); 4029 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4030 AllParallelRegionStatesWereFixed &= 4031 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4032 AllParallelRegionStatesWereFixed &= 4033 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4034 return true; 4035 }; 4036 4037 bool UsedAssumedInformationInCheckCallInst = false; 4038 if (!A.checkForAllCallLikeInstructions( 4039 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4040 LLVM_DEBUG(dbgs() << TAG 4041 << "Failed to visit all call-like instructions!\n";); 4042 return indicatePessimisticFixpoint(); 4043 } 4044 4045 // If we haven't used any assumed information for the reached parallel 4046 // region states we can fix it. 4047 if (!UsedAssumedInformationInCheckCallInst && 4048 AllParallelRegionStatesWereFixed) { 4049 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4050 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4051 } 4052 4053 // If we are sure there are no parallel regions in the kernel we do not 4054 // want SPMD mode. 4055 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4056 ReachedKnownParallelRegions.isAtFixpoint() && 4057 ReachedUnknownParallelRegions.isValidState() && 4058 ReachedKnownParallelRegions.isValidState() && 4059 !mayContainParallelRegion()) 4060 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4061 4062 // If we haven't used any assumed information for the SPMD state we can fix 4063 // it. 4064 if (!UsedAssumedInformationInCheckRWInst && 4065 !UsedAssumedInformationInCheckCallInst && 4066 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4067 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4068 4069 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4070 : ChangeStatus::CHANGED; 4071 } 4072 4073 private: 4074 /// Update info regarding reaching kernels. 4075 void updateReachingKernelEntries(Attributor &A, 4076 bool &AllReachingKernelsKnown) { 4077 auto PredCallSite = [&](AbstractCallSite ACS) { 4078 Function *Caller = ACS.getInstruction()->getFunction(); 4079 4080 assert(Caller && "Caller is nullptr"); 4081 4082 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4083 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4084 if (CAA.ReachingKernelEntries.isValidState()) { 4085 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4086 return true; 4087 } 4088 4089 // We lost track of the caller of the associated function, any kernel 4090 // could reach now. 4091 ReachingKernelEntries.indicatePessimisticFixpoint(); 4092 4093 return true; 4094 }; 4095 4096 if (!A.checkForAllCallSites(PredCallSite, *this, 4097 true /* RequireAllCallSites */, 4098 AllReachingKernelsKnown)) 4099 ReachingKernelEntries.indicatePessimisticFixpoint(); 4100 } 4101 4102 /// Update info regarding parallel levels. 4103 void updateParallelLevels(Attributor &A) { 4104 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4105 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4106 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4107 4108 auto PredCallSite = [&](AbstractCallSite ACS) { 4109 Function *Caller = ACS.getInstruction()->getFunction(); 4110 4111 assert(Caller && "Caller is nullptr"); 4112 4113 auto &CAA = 4114 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4115 if (CAA.ParallelLevels.isValidState()) { 4116 // Any function that is called by `__kmpc_parallel_51` will not be 4117 // folded as the parallel level in the function is updated. In order to 4118 // get it right, all the analysis would depend on the implentation. That 4119 // said, if in the future any change to the implementation, the analysis 4120 // could be wrong. As a consequence, we are just conservative here. 4121 if (Caller == Parallel51RFI.Declaration) { 4122 ParallelLevels.indicatePessimisticFixpoint(); 4123 return true; 4124 } 4125 4126 ParallelLevels ^= CAA.ParallelLevels; 4127 4128 return true; 4129 } 4130 4131 // We lost track of the caller of the associated function, any kernel 4132 // could reach now. 4133 ParallelLevels.indicatePessimisticFixpoint(); 4134 4135 return true; 4136 }; 4137 4138 bool AllCallSitesKnown = true; 4139 if (!A.checkForAllCallSites(PredCallSite, *this, 4140 true /* RequireAllCallSites */, 4141 AllCallSitesKnown)) 4142 ParallelLevels.indicatePessimisticFixpoint(); 4143 } 4144 }; 4145 4146 /// The call site kernel info abstract attribute, basically, what can we say 4147 /// about a call site with regards to the KernelInfoState. For now this simply 4148 /// forwards the information from the callee. 4149 struct AAKernelInfoCallSite : AAKernelInfo { 4150 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4151 : AAKernelInfo(IRP, A) {} 4152 4153 /// See AbstractAttribute::initialize(...). 4154 void initialize(Attributor &A) override { 4155 AAKernelInfo::initialize(A); 4156 4157 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4158 Function *Callee = getAssociatedFunction(); 4159 4160 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4161 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4162 4163 // Check for SPMD-mode assumptions. 4164 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4165 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4166 indicateOptimisticFixpoint(); 4167 } 4168 4169 // First weed out calls we do not care about, that is readonly/readnone 4170 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4171 // parallel region or anything else we are looking for. 4172 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4173 indicateOptimisticFixpoint(); 4174 return; 4175 } 4176 4177 // Next we check if we know the callee. If it is a known OpenMP function 4178 // we will handle them explicitly in the switch below. If it is not, we 4179 // will use an AAKernelInfo object on the callee to gather information and 4180 // merge that into the current state. The latter happens in the updateImpl. 4181 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4182 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4183 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4184 // Unknown caller or declarations are not analyzable, we give up. 4185 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4186 4187 // Unknown callees might contain parallel regions, except if they have 4188 // an appropriate assumption attached. 4189 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4190 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4191 ReachedUnknownParallelRegions.insert(&CB); 4192 4193 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4194 // idea we can run something unknown in SPMD-mode. 4195 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4196 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4197 SPMDCompatibilityTracker.insert(&CB); 4198 } 4199 4200 // We have updated the state for this unknown call properly, there won't 4201 // be any change so we indicate a fixpoint. 4202 indicateOptimisticFixpoint(); 4203 } 4204 // If the callee is known and can be used in IPO, we will update the state 4205 // based on the callee state in updateImpl. 4206 return; 4207 } 4208 4209 const unsigned int WrapperFunctionArgNo = 6; 4210 RuntimeFunction RF = It->getSecond(); 4211 switch (RF) { 4212 // All the functions we know are compatible with SPMD mode. 4213 case OMPRTL___kmpc_is_spmd_exec_mode: 4214 case OMPRTL___kmpc_distribute_static_fini: 4215 case OMPRTL___kmpc_for_static_fini: 4216 case OMPRTL___kmpc_global_thread_num: 4217 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4218 case OMPRTL___kmpc_get_hardware_num_blocks: 4219 case OMPRTL___kmpc_single: 4220 case OMPRTL___kmpc_end_single: 4221 case OMPRTL___kmpc_master: 4222 case OMPRTL___kmpc_end_master: 4223 case OMPRTL___kmpc_barrier: 4224 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4225 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4226 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4227 break; 4228 case OMPRTL___kmpc_distribute_static_init_4: 4229 case OMPRTL___kmpc_distribute_static_init_4u: 4230 case OMPRTL___kmpc_distribute_static_init_8: 4231 case OMPRTL___kmpc_distribute_static_init_8u: 4232 case OMPRTL___kmpc_for_static_init_4: 4233 case OMPRTL___kmpc_for_static_init_4u: 4234 case OMPRTL___kmpc_for_static_init_8: 4235 case OMPRTL___kmpc_for_static_init_8u: { 4236 // Check the schedule and allow static schedule in SPMD mode. 4237 unsigned ScheduleArgOpNo = 2; 4238 auto *ScheduleTypeCI = 4239 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4240 unsigned ScheduleTypeVal = 4241 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4242 switch (OMPScheduleType(ScheduleTypeVal)) { 4243 case OMPScheduleType::Static: 4244 case OMPScheduleType::StaticChunked: 4245 case OMPScheduleType::Distribute: 4246 case OMPScheduleType::DistributeChunked: 4247 break; 4248 default: 4249 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4250 SPMDCompatibilityTracker.insert(&CB); 4251 break; 4252 }; 4253 } break; 4254 case OMPRTL___kmpc_target_init: 4255 KernelInitCB = &CB; 4256 break; 4257 case OMPRTL___kmpc_target_deinit: 4258 KernelDeinitCB = &CB; 4259 break; 4260 case OMPRTL___kmpc_parallel_51: 4261 if (auto *ParallelRegion = dyn_cast<Function>( 4262 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4263 ReachedKnownParallelRegions.insert(ParallelRegion); 4264 break; 4265 } 4266 // The condition above should usually get the parallel region function 4267 // pointer and record it. In the off chance it doesn't we assume the 4268 // worst. 4269 ReachedUnknownParallelRegions.insert(&CB); 4270 break; 4271 case OMPRTL___kmpc_omp_task: 4272 // We do not look into tasks right now, just give up. 4273 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4274 SPMDCompatibilityTracker.insert(&CB); 4275 ReachedUnknownParallelRegions.insert(&CB); 4276 break; 4277 case OMPRTL___kmpc_alloc_shared: 4278 case OMPRTL___kmpc_free_shared: 4279 // Return without setting a fixpoint, to be resolved in updateImpl. 4280 return; 4281 default: 4282 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4283 // generally. However, they do not hide parallel regions. 4284 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4285 SPMDCompatibilityTracker.insert(&CB); 4286 break; 4287 } 4288 // All other OpenMP runtime calls will not reach parallel regions so they 4289 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4290 // have now modeled all effects and there is no need for any update. 4291 indicateOptimisticFixpoint(); 4292 } 4293 4294 ChangeStatus updateImpl(Attributor &A) override { 4295 // TODO: Once we have call site specific value information we can provide 4296 // call site specific liveness information and then it makes 4297 // sense to specialize attributes for call sites arguments instead of 4298 // redirecting requests to the callee argument. 4299 Function *F = getAssociatedFunction(); 4300 4301 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4302 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4303 4304 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4305 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4306 const IRPosition &FnPos = IRPosition::function(*F); 4307 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4308 if (getState() == FnAA.getState()) 4309 return ChangeStatus::UNCHANGED; 4310 getState() = FnAA.getState(); 4311 return ChangeStatus::CHANGED; 4312 } 4313 4314 // F is a runtime function that allocates or frees memory, check 4315 // AAHeapToStack and AAHeapToShared. 4316 KernelInfoState StateBefore = getState(); 4317 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4318 It->getSecond() == OMPRTL___kmpc_free_shared) && 4319 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4320 4321 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4322 4323 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4324 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4325 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4326 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4327 4328 RuntimeFunction RF = It->getSecond(); 4329 4330 switch (RF) { 4331 // If neither HeapToStack nor HeapToShared assume the call is removed, 4332 // assume SPMD incompatibility. 4333 case OMPRTL___kmpc_alloc_shared: 4334 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4335 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4336 SPMDCompatibilityTracker.insert(&CB); 4337 break; 4338 case OMPRTL___kmpc_free_shared: 4339 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4340 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4341 SPMDCompatibilityTracker.insert(&CB); 4342 break; 4343 default: 4344 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4345 SPMDCompatibilityTracker.insert(&CB); 4346 } 4347 4348 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4349 : ChangeStatus::CHANGED; 4350 } 4351 }; 4352 4353 struct AAFoldRuntimeCall 4354 : public StateWrapper<BooleanState, AbstractAttribute> { 4355 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4356 4357 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4358 4359 /// Statistics are tracked as part of manifest for now. 4360 void trackStatistics() const override {} 4361 4362 /// Create an abstract attribute biew for the position \p IRP. 4363 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4364 Attributor &A); 4365 4366 /// See AbstractAttribute::getName() 4367 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4368 4369 /// See AbstractAttribute::getIdAddr() 4370 const char *getIdAddr() const override { return &ID; } 4371 4372 /// This function should return true if the type of the \p AA is 4373 /// AAFoldRuntimeCall 4374 static bool classof(const AbstractAttribute *AA) { 4375 return (AA->getIdAddr() == &ID); 4376 } 4377 4378 static const char ID; 4379 }; 4380 4381 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4382 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4383 : AAFoldRuntimeCall(IRP, A) {} 4384 4385 /// See AbstractAttribute::getAsStr() 4386 const std::string getAsStr() const override { 4387 if (!isValidState()) 4388 return "<invalid>"; 4389 4390 std::string Str("simplified value: "); 4391 4392 if (!SimplifiedValue.hasValue()) 4393 return Str + std::string("none"); 4394 4395 if (!SimplifiedValue.getValue()) 4396 return Str + std::string("nullptr"); 4397 4398 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4399 return Str + std::to_string(CI->getSExtValue()); 4400 4401 return Str + std::string("unknown"); 4402 } 4403 4404 void initialize(Attributor &A) override { 4405 if (DisableOpenMPOptFolding) 4406 indicatePessimisticFixpoint(); 4407 4408 Function *Callee = getAssociatedFunction(); 4409 4410 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4411 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4412 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4413 "Expected a known OpenMP runtime function"); 4414 4415 RFKind = It->getSecond(); 4416 4417 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4418 A.registerSimplificationCallback( 4419 IRPosition::callsite_returned(CB), 4420 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4421 bool &UsedAssumedInformation) -> Optional<Value *> { 4422 assert((isValidState() || (SimplifiedValue.hasValue() && 4423 SimplifiedValue.getValue() == nullptr)) && 4424 "Unexpected invalid state!"); 4425 4426 if (!isAtFixpoint()) { 4427 UsedAssumedInformation = true; 4428 if (AA) 4429 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4430 } 4431 return SimplifiedValue; 4432 }); 4433 } 4434 4435 ChangeStatus updateImpl(Attributor &A) override { 4436 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4437 switch (RFKind) { 4438 case OMPRTL___kmpc_is_spmd_exec_mode: 4439 Changed |= foldIsSPMDExecMode(A); 4440 break; 4441 case OMPRTL___kmpc_is_generic_main_thread_id: 4442 Changed |= foldIsGenericMainThread(A); 4443 break; 4444 case OMPRTL___kmpc_parallel_level: 4445 Changed |= foldParallelLevel(A); 4446 break; 4447 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4448 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4449 break; 4450 case OMPRTL___kmpc_get_hardware_num_blocks: 4451 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4452 break; 4453 default: 4454 llvm_unreachable("Unhandled OpenMP runtime function!"); 4455 } 4456 4457 return Changed; 4458 } 4459 4460 ChangeStatus manifest(Attributor &A) override { 4461 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4462 4463 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4464 Instruction &I = *getCtxI(); 4465 A.changeValueAfterManifest(I, **SimplifiedValue); 4466 A.deleteAfterManifest(I); 4467 4468 CallBase *CB = dyn_cast<CallBase>(&I); 4469 auto Remark = [&](OptimizationRemark OR) { 4470 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4471 return OR << "Replacing OpenMP runtime call " 4472 << CB->getCalledFunction()->getName() << " with " 4473 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4474 return OR << "Replacing OpenMP runtime call " 4475 << CB->getCalledFunction()->getName() << "."; 4476 }; 4477 4478 if (CB && EnableVerboseRemarks) 4479 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4480 4481 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4482 << **SimplifiedValue << "\n"); 4483 4484 Changed = ChangeStatus::CHANGED; 4485 } 4486 4487 return Changed; 4488 } 4489 4490 ChangeStatus indicatePessimisticFixpoint() override { 4491 SimplifiedValue = nullptr; 4492 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4493 } 4494 4495 private: 4496 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4497 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4498 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4499 4500 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4501 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4502 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4503 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4504 4505 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4506 return indicatePessimisticFixpoint(); 4507 4508 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4509 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4510 DepClassTy::REQUIRED); 4511 4512 if (!AA.isValidState()) { 4513 SimplifiedValue = nullptr; 4514 return indicatePessimisticFixpoint(); 4515 } 4516 4517 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4518 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4519 ++KnownSPMDCount; 4520 else 4521 ++AssumedSPMDCount; 4522 } else { 4523 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4524 ++KnownNonSPMDCount; 4525 else 4526 ++AssumedNonSPMDCount; 4527 } 4528 } 4529 4530 if ((AssumedSPMDCount + KnownSPMDCount) && 4531 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4532 return indicatePessimisticFixpoint(); 4533 4534 auto &Ctx = getAnchorValue().getContext(); 4535 if (KnownSPMDCount || AssumedSPMDCount) { 4536 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4537 "Expected only SPMD kernels!"); 4538 // All reaching kernels are in SPMD mode. Update all function calls to 4539 // __kmpc_is_spmd_exec_mode to 1. 4540 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4541 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4542 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4543 "Expected only non-SPMD kernels!"); 4544 // All reaching kernels are in non-SPMD mode. Update all function 4545 // calls to __kmpc_is_spmd_exec_mode to 0. 4546 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4547 } else { 4548 // We have empty reaching kernels, therefore we cannot tell if the 4549 // associated call site can be folded. At this moment, SimplifiedValue 4550 // must be none. 4551 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4552 } 4553 4554 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4555 : ChangeStatus::CHANGED; 4556 } 4557 4558 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4559 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4560 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4561 4562 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4563 Function *F = CB.getFunction(); 4564 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4565 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4566 4567 if (!ExecutionDomainAA.isValidState()) 4568 return indicatePessimisticFixpoint(); 4569 4570 auto &Ctx = getAnchorValue().getContext(); 4571 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4572 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4573 else 4574 return indicatePessimisticFixpoint(); 4575 4576 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4577 : ChangeStatus::CHANGED; 4578 } 4579 4580 /// Fold __kmpc_parallel_level into a constant if possible. 4581 ChangeStatus foldParallelLevel(Attributor &A) { 4582 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4583 4584 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4585 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4586 4587 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4588 return indicatePessimisticFixpoint(); 4589 4590 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4591 return indicatePessimisticFixpoint(); 4592 4593 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4594 assert(!SimplifiedValue.hasValue() && 4595 "SimplifiedValue should keep none at this point"); 4596 return ChangeStatus::UNCHANGED; 4597 } 4598 4599 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4600 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4601 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4602 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4603 DepClassTy::REQUIRED); 4604 if (!AA.SPMDCompatibilityTracker.isValidState()) 4605 return indicatePessimisticFixpoint(); 4606 4607 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4608 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4609 ++KnownSPMDCount; 4610 else 4611 ++AssumedSPMDCount; 4612 } else { 4613 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4614 ++KnownNonSPMDCount; 4615 else 4616 ++AssumedNonSPMDCount; 4617 } 4618 } 4619 4620 if ((AssumedSPMDCount + KnownSPMDCount) && 4621 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4622 return indicatePessimisticFixpoint(); 4623 4624 auto &Ctx = getAnchorValue().getContext(); 4625 // If the caller can only be reached by SPMD kernel entries, the parallel 4626 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4627 // kernel entries, it is 0. 4628 if (AssumedSPMDCount || KnownSPMDCount) { 4629 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4630 "Expected only SPMD kernels!"); 4631 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4632 } else { 4633 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4634 "Expected only non-SPMD kernels!"); 4635 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4636 } 4637 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4638 : ChangeStatus::CHANGED; 4639 } 4640 4641 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4642 // Specialize only if all the calls agree with the attribute constant value 4643 int32_t CurrentAttrValue = -1; 4644 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4645 4646 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4647 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4648 4649 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4650 return indicatePessimisticFixpoint(); 4651 4652 // Iterate over the kernels that reach this function 4653 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4654 int32_t NextAttrVal = -1; 4655 if (K->hasFnAttribute(Attr)) 4656 NextAttrVal = 4657 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4658 4659 if (NextAttrVal == -1 || 4660 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4661 return indicatePessimisticFixpoint(); 4662 CurrentAttrValue = NextAttrVal; 4663 } 4664 4665 if (CurrentAttrValue != -1) { 4666 auto &Ctx = getAnchorValue().getContext(); 4667 SimplifiedValue = 4668 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4669 } 4670 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4671 : ChangeStatus::CHANGED; 4672 } 4673 4674 /// An optional value the associated value is assumed to fold to. That is, we 4675 /// assume the associated value (which is a call) can be replaced by this 4676 /// simplified value. 4677 Optional<Value *> SimplifiedValue; 4678 4679 /// The runtime function kind of the callee of the associated call site. 4680 RuntimeFunction RFKind; 4681 }; 4682 4683 } // namespace 4684 4685 /// Register folding callsite 4686 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4687 auto &RFI = OMPInfoCache.RFIs[RF]; 4688 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4689 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4690 if (!CI) 4691 return false; 4692 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4693 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4694 DepClassTy::NONE, /* ForceUpdate */ false, 4695 /* UpdateAfterInit */ false); 4696 return false; 4697 }); 4698 } 4699 4700 void OpenMPOpt::registerAAs(bool IsModulePass) { 4701 if (SCC.empty()) 4702 4703 return; 4704 if (IsModulePass) { 4705 // Ensure we create the AAKernelInfo AAs first and without triggering an 4706 // update. This will make sure we register all value simplification 4707 // callbacks before any other AA has the chance to create an AAValueSimplify 4708 // or similar. 4709 for (Function *Kernel : OMPInfoCache.Kernels) 4710 A.getOrCreateAAFor<AAKernelInfo>( 4711 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4712 DepClassTy::NONE, /* ForceUpdate */ false, 4713 /* UpdateAfterInit */ false); 4714 4715 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4716 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4717 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4718 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4719 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4720 } 4721 4722 // Create CallSite AA for all Getters. 4723 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4724 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4725 4726 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4727 4728 auto CreateAA = [&](Use &U, Function &Caller) { 4729 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4730 if (!CI) 4731 return false; 4732 4733 auto &CB = cast<CallBase>(*CI); 4734 4735 IRPosition CBPos = IRPosition::callsite_function(CB); 4736 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4737 return false; 4738 }; 4739 4740 GetterRFI.foreachUse(SCC, CreateAA); 4741 } 4742 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4743 auto CreateAA = [&](Use &U, Function &F) { 4744 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4745 return false; 4746 }; 4747 if (!DisableOpenMPOptDeglobalization) 4748 GlobalizationRFI.foreachUse(SCC, CreateAA); 4749 4750 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4751 // every function if there is a device kernel. 4752 if (!isOpenMPDevice(M)) 4753 return; 4754 4755 for (auto *F : SCC) { 4756 if (F->isDeclaration()) 4757 continue; 4758 4759 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4760 if (!DisableOpenMPOptDeglobalization) 4761 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4762 4763 for (auto &I : instructions(*F)) { 4764 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4765 bool UsedAssumedInformation = false; 4766 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4767 UsedAssumedInformation); 4768 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4769 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4770 } 4771 } 4772 } 4773 } 4774 4775 const char AAICVTracker::ID = 0; 4776 const char AAKernelInfo::ID = 0; 4777 const char AAExecutionDomain::ID = 0; 4778 const char AAHeapToShared::ID = 0; 4779 const char AAFoldRuntimeCall::ID = 0; 4780 4781 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4782 Attributor &A) { 4783 AAICVTracker *AA = nullptr; 4784 switch (IRP.getPositionKind()) { 4785 case IRPosition::IRP_INVALID: 4786 case IRPosition::IRP_FLOAT: 4787 case IRPosition::IRP_ARGUMENT: 4788 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4789 llvm_unreachable("ICVTracker can only be created for function position!"); 4790 case IRPosition::IRP_RETURNED: 4791 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4792 break; 4793 case IRPosition::IRP_CALL_SITE_RETURNED: 4794 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4795 break; 4796 case IRPosition::IRP_CALL_SITE: 4797 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4798 break; 4799 case IRPosition::IRP_FUNCTION: 4800 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4801 break; 4802 } 4803 4804 return *AA; 4805 } 4806 4807 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4808 Attributor &A) { 4809 AAExecutionDomainFunction *AA = nullptr; 4810 switch (IRP.getPositionKind()) { 4811 case IRPosition::IRP_INVALID: 4812 case IRPosition::IRP_FLOAT: 4813 case IRPosition::IRP_ARGUMENT: 4814 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4815 case IRPosition::IRP_RETURNED: 4816 case IRPosition::IRP_CALL_SITE_RETURNED: 4817 case IRPosition::IRP_CALL_SITE: 4818 llvm_unreachable( 4819 "AAExecutionDomain can only be created for function position!"); 4820 case IRPosition::IRP_FUNCTION: 4821 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4822 break; 4823 } 4824 4825 return *AA; 4826 } 4827 4828 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4829 Attributor &A) { 4830 AAHeapToSharedFunction *AA = nullptr; 4831 switch (IRP.getPositionKind()) { 4832 case IRPosition::IRP_INVALID: 4833 case IRPosition::IRP_FLOAT: 4834 case IRPosition::IRP_ARGUMENT: 4835 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4836 case IRPosition::IRP_RETURNED: 4837 case IRPosition::IRP_CALL_SITE_RETURNED: 4838 case IRPosition::IRP_CALL_SITE: 4839 llvm_unreachable( 4840 "AAHeapToShared can only be created for function position!"); 4841 case IRPosition::IRP_FUNCTION: 4842 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4843 break; 4844 } 4845 4846 return *AA; 4847 } 4848 4849 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4850 Attributor &A) { 4851 AAKernelInfo *AA = nullptr; 4852 switch (IRP.getPositionKind()) { 4853 case IRPosition::IRP_INVALID: 4854 case IRPosition::IRP_FLOAT: 4855 case IRPosition::IRP_ARGUMENT: 4856 case IRPosition::IRP_RETURNED: 4857 case IRPosition::IRP_CALL_SITE_RETURNED: 4858 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4859 llvm_unreachable("KernelInfo can only be created for function position!"); 4860 case IRPosition::IRP_CALL_SITE: 4861 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4862 break; 4863 case IRPosition::IRP_FUNCTION: 4864 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4865 break; 4866 } 4867 4868 return *AA; 4869 } 4870 4871 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4872 Attributor &A) { 4873 AAFoldRuntimeCall *AA = nullptr; 4874 switch (IRP.getPositionKind()) { 4875 case IRPosition::IRP_INVALID: 4876 case IRPosition::IRP_FLOAT: 4877 case IRPosition::IRP_ARGUMENT: 4878 case IRPosition::IRP_RETURNED: 4879 case IRPosition::IRP_FUNCTION: 4880 case IRPosition::IRP_CALL_SITE: 4881 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4882 llvm_unreachable("KernelInfo can only be created for call site position!"); 4883 case IRPosition::IRP_CALL_SITE_RETURNED: 4884 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4885 break; 4886 } 4887 4888 return *AA; 4889 } 4890 4891 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4892 if (!containsOpenMP(M)) 4893 return PreservedAnalyses::all(); 4894 if (DisableOpenMPOptimizations) 4895 return PreservedAnalyses::all(); 4896 4897 FunctionAnalysisManager &FAM = 4898 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4899 KernelSet Kernels = getDeviceKernels(M); 4900 4901 auto IsCalled = [&](Function &F) { 4902 if (Kernels.contains(&F)) 4903 return true; 4904 for (const User *U : F.users()) 4905 if (!isa<BlockAddress>(U)) 4906 return true; 4907 return false; 4908 }; 4909 4910 auto EmitRemark = [&](Function &F) { 4911 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4912 ORE.emit([&]() { 4913 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4914 return ORA << "Could not internalize function. " 4915 << "Some optimizations may not be possible. [OMP140]"; 4916 }); 4917 }; 4918 4919 // Create internal copies of each function if this is a kernel Module. This 4920 // allows iterprocedural passes to see every call edge. 4921 DenseMap<Function *, Function *> InternalizedMap; 4922 if (isOpenMPDevice(M)) { 4923 SmallPtrSet<Function *, 16> InternalizeFns; 4924 for (Function &F : M) 4925 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4926 !DisableInternalization) { 4927 if (Attributor::isInternalizable(F)) { 4928 InternalizeFns.insert(&F); 4929 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4930 EmitRemark(F); 4931 } 4932 } 4933 4934 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4935 } 4936 4937 // Look at every function in the Module unless it was internalized. 4938 SmallVector<Function *, 16> SCC; 4939 for (Function &F : M) 4940 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4941 SCC.push_back(&F); 4942 4943 if (SCC.empty()) 4944 return PreservedAnalyses::all(); 4945 4946 AnalysisGetter AG(FAM); 4947 4948 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4949 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4950 }; 4951 4952 BumpPtrAllocator Allocator; 4953 CallGraphUpdater CGUpdater; 4954 4955 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4956 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4957 4958 unsigned MaxFixpointIterations = 4959 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4960 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4961 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4962 4963 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4964 bool Changed = OMPOpt.run(true); 4965 4966 // Optionally inline device functions for potentially better performance. 4967 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4968 for (Function &F : M) 4969 if (!F.isDeclaration() && !Kernels.contains(&F) && 4970 !F.hasFnAttribute(Attribute::NoInline)) 4971 F.addFnAttr(Attribute::AlwaysInline); 4972 4973 if (PrintModuleAfterOptimizations) 4974 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4975 4976 if (Changed) 4977 return PreservedAnalyses::none(); 4978 4979 return PreservedAnalyses::all(); 4980 } 4981 4982 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4983 CGSCCAnalysisManager &AM, 4984 LazyCallGraph &CG, 4985 CGSCCUpdateResult &UR) { 4986 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4987 return PreservedAnalyses::all(); 4988 if (DisableOpenMPOptimizations) 4989 return PreservedAnalyses::all(); 4990 4991 SmallVector<Function *, 16> SCC; 4992 // If there are kernels in the module, we have to run on all SCC's. 4993 for (LazyCallGraph::Node &N : C) { 4994 Function *Fn = &N.getFunction(); 4995 SCC.push_back(Fn); 4996 } 4997 4998 if (SCC.empty()) 4999 return PreservedAnalyses::all(); 5000 5001 Module &M = *C.begin()->getFunction().getParent(); 5002 5003 KernelSet Kernels = getDeviceKernels(M); 5004 5005 FunctionAnalysisManager &FAM = 5006 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5007 5008 AnalysisGetter AG(FAM); 5009 5010 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5011 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5012 }; 5013 5014 BumpPtrAllocator Allocator; 5015 CallGraphUpdater CGUpdater; 5016 CGUpdater.initialize(CG, C, AM, UR); 5017 5018 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5019 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5020 /*CGSCC*/ Functions, Kernels); 5021 5022 unsigned MaxFixpointIterations = 5023 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5024 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5025 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5026 5027 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5028 bool Changed = OMPOpt.run(false); 5029 5030 if (PrintModuleAfterOptimizations) 5031 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5032 5033 if (Changed) 5034 return PreservedAnalyses::none(); 5035 5036 return PreservedAnalyses::all(); 5037 } 5038 5039 namespace { 5040 5041 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5042 CallGraphUpdater CGUpdater; 5043 static char ID; 5044 5045 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5046 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5047 } 5048 5049 void getAnalysisUsage(AnalysisUsage &AU) const override { 5050 CallGraphSCCPass::getAnalysisUsage(AU); 5051 } 5052 5053 bool runOnSCC(CallGraphSCC &CGSCC) override { 5054 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5055 return false; 5056 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5057 return false; 5058 5059 SmallVector<Function *, 16> SCC; 5060 // If there are kernels in the module, we have to run on all SCC's. 5061 for (CallGraphNode *CGN : CGSCC) { 5062 Function *Fn = CGN->getFunction(); 5063 if (!Fn || Fn->isDeclaration()) 5064 continue; 5065 SCC.push_back(Fn); 5066 } 5067 5068 if (SCC.empty()) 5069 return false; 5070 5071 Module &M = CGSCC.getCallGraph().getModule(); 5072 KernelSet Kernels = getDeviceKernels(M); 5073 5074 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5075 CGUpdater.initialize(CG, CGSCC); 5076 5077 // Maintain a map of functions to avoid rebuilding the ORE 5078 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5079 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5080 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5081 if (!ORE) 5082 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5083 return *ORE; 5084 }; 5085 5086 AnalysisGetter AG; 5087 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5088 BumpPtrAllocator Allocator; 5089 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5090 Allocator, 5091 /*CGSCC*/ Functions, Kernels); 5092 5093 unsigned MaxFixpointIterations = 5094 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5095 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5096 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5097 5098 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5099 bool Result = OMPOpt.run(false); 5100 5101 if (PrintModuleAfterOptimizations) 5102 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5103 5104 return Result; 5105 } 5106 5107 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5108 }; 5109 5110 } // end anonymous namespace 5111 5112 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5113 // TODO: Create a more cross-platform way of determining device kernels. 5114 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5115 KernelSet Kernels; 5116 5117 if (!MD) 5118 return Kernels; 5119 5120 for (auto *Op : MD->operands()) { 5121 if (Op->getNumOperands() < 2) 5122 continue; 5123 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5124 if (!KindID || KindID->getString() != "kernel") 5125 continue; 5126 5127 Function *KernelFn = 5128 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5129 if (!KernelFn) 5130 continue; 5131 5132 ++NumOpenMPTargetRegionKernels; 5133 5134 Kernels.insert(KernelFn); 5135 } 5136 5137 return Kernels; 5138 } 5139 5140 bool llvm::omp::containsOpenMP(Module &M) { 5141 Metadata *MD = M.getModuleFlag("openmp"); 5142 if (!MD) 5143 return false; 5144 5145 return true; 5146 } 5147 5148 bool llvm::omp::isOpenMPDevice(Module &M) { 5149 Metadata *MD = M.getModuleFlag("openmp-device"); 5150 if (!MD) 5151 return false; 5152 5153 return true; 5154 } 5155 5156 char OpenMPOptCGSCCLegacyPass::ID = 0; 5157 5158 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5159 "OpenMP specific optimizations", false, false) 5160 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5161 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5162 "OpenMP specific optimizations", false, false) 5163 5164 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5165 return new OpenMPOptCGSCCLegacyPass(); 5166 } 5167