xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21 
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/Analysis/CallGraph.h"
29 #include "llvm/Analysis/CallGraphSCCPass.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Frontend/OpenMP/OMPConstants.h"
34 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
35 #include "llvm/IR/Assumptions.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/IntrinsicsAMDGPU.h"
45 #include "llvm/IR/IntrinsicsNVPTX.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Transforms/IPO/Attributor.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
53 
54 #include <algorithm>
55 #include <optional>
56 #include <string>
57 
58 using namespace llvm;
59 using namespace omp;
60 
61 #define DEBUG_TYPE "openmp-opt"
62 
63 static cl::opt<bool> DisableOpenMPOptimizations(
64     "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
65     cl::Hidden, cl::init(false));
66 
67 static cl::opt<bool> EnableParallelRegionMerging(
68     "openmp-opt-enable-merging",
69     cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
70     cl::init(false));
71 
72 static cl::opt<bool>
73     DisableInternalization("openmp-opt-disable-internalization",
74                            cl::desc("Disable function internalization."),
75                            cl::Hidden, cl::init(false));
76 
77 static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values",
78                                      cl::init(false), cl::Hidden);
79 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
80                                     cl::Hidden);
81 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
82                                         cl::init(false), cl::Hidden);
83 
84 static cl::opt<bool> HideMemoryTransferLatency(
85     "openmp-hide-memory-transfer-latency",
86     cl::desc("[WIP] Tries to hide the latency of host to device memory"
87              " transfers"),
88     cl::Hidden, cl::init(false));
89 
90 static cl::opt<bool> DisableOpenMPOptDeglobalization(
91     "openmp-opt-disable-deglobalization",
92     cl::desc("Disable OpenMP optimizations involving deglobalization."),
93     cl::Hidden, cl::init(false));
94 
95 static cl::opt<bool> DisableOpenMPOptSPMDization(
96     "openmp-opt-disable-spmdization",
97     cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
98     cl::Hidden, cl::init(false));
99 
100 static cl::opt<bool> DisableOpenMPOptFolding(
101     "openmp-opt-disable-folding",
102     cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
103     cl::init(false));
104 
105 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
106     "openmp-opt-disable-state-machine-rewrite",
107     cl::desc("Disable OpenMP optimizations that replace the state machine."),
108     cl::Hidden, cl::init(false));
109 
110 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
111     "openmp-opt-disable-barrier-elimination",
112     cl::desc("Disable OpenMP optimizations that eliminate barriers."),
113     cl::Hidden, cl::init(false));
114 
115 static cl::opt<bool> PrintModuleAfterOptimizations(
116     "openmp-opt-print-module-after",
117     cl::desc("Print the current module after OpenMP optimizations."),
118     cl::Hidden, cl::init(false));
119 
120 static cl::opt<bool> PrintModuleBeforeOptimizations(
121     "openmp-opt-print-module-before",
122     cl::desc("Print the current module before OpenMP optimizations."),
123     cl::Hidden, cl::init(false));
124 
125 static cl::opt<bool> AlwaysInlineDeviceFunctions(
126     "openmp-opt-inline-device",
127     cl::desc("Inline all applicible functions on the device."), cl::Hidden,
128     cl::init(false));
129 
130 static cl::opt<bool>
131     EnableVerboseRemarks("openmp-opt-verbose-remarks",
132                          cl::desc("Enables more verbose remarks."), cl::Hidden,
133                          cl::init(false));
134 
135 static cl::opt<unsigned>
136     SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
137                           cl::desc("Maximal number of attributor iterations."),
138                           cl::init(256));
139 
140 static cl::opt<unsigned>
141     SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
142                       cl::desc("Maximum amount of shared memory to use."),
143                       cl::init(std::numeric_limits<unsigned>::max()));
144 
145 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
146           "Number of OpenMP runtime calls deduplicated");
147 STATISTIC(NumOpenMPParallelRegionsDeleted,
148           "Number of OpenMP parallel regions deleted");
149 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
150           "Number of OpenMP runtime functions identified");
151 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
152           "Number of OpenMP runtime function uses identified");
153 STATISTIC(NumOpenMPTargetRegionKernels,
154           "Number of OpenMP target region entry points (=kernels) identified");
155 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
156           "Number of OpenMP target region entry points (=kernels) executed in "
157           "SPMD-mode instead of generic-mode");
158 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
159           "Number of OpenMP target region entry points (=kernels) executed in "
160           "generic-mode without a state machines");
161 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
162           "Number of OpenMP target region entry points (=kernels) executed in "
163           "generic-mode with customized state machines with fallback");
164 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
165           "Number of OpenMP target region entry points (=kernels) executed in "
166           "generic-mode with customized state machines without fallback");
167 STATISTIC(
168     NumOpenMPParallelRegionsReplacedInGPUStateMachine,
169     "Number of OpenMP parallel regions replaced with ID in GPU state machines");
170 STATISTIC(NumOpenMPParallelRegionsMerged,
171           "Number of OpenMP parallel regions merged");
172 STATISTIC(NumBytesMovedToSharedMemory,
173           "Amount of memory pushed to shared memory");
174 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
175 
176 #if !defined(NDEBUG)
177 static constexpr auto TAG = "[" DEBUG_TYPE "]";
178 #endif
179 
180 namespace {
181 
182 struct AAHeapToShared;
183 
184 struct AAICVTracker;
185 
186 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
187 /// Attributor runs.
188 struct OMPInformationCache : public InformationCache {
189   OMPInformationCache(Module &M, AnalysisGetter &AG,
190                       BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
191                       KernelSet &Kernels, bool OpenMPPostLink)
192       : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M),
193         Kernels(Kernels), OpenMPPostLink(OpenMPPostLink) {
194 
195     OMPBuilder.initialize();
196     initializeRuntimeFunctions(M);
197     initializeInternalControlVars();
198   }
199 
200   /// Generic information that describes an internal control variable.
201   struct InternalControlVarInfo {
202     /// The kind, as described by InternalControlVar enum.
203     InternalControlVar Kind;
204 
205     /// The name of the ICV.
206     StringRef Name;
207 
208     /// Environment variable associated with this ICV.
209     StringRef EnvVarName;
210 
211     /// Initial value kind.
212     ICVInitValue InitKind;
213 
214     /// Initial value.
215     ConstantInt *InitValue;
216 
217     /// Setter RTL function associated with this ICV.
218     RuntimeFunction Setter;
219 
220     /// Getter RTL function associated with this ICV.
221     RuntimeFunction Getter;
222 
223     /// RTL Function corresponding to the override clause of this ICV
224     RuntimeFunction Clause;
225   };
226 
227   /// Generic information that describes a runtime function
228   struct RuntimeFunctionInfo {
229 
230     /// The kind, as described by the RuntimeFunction enum.
231     RuntimeFunction Kind;
232 
233     /// The name of the function.
234     StringRef Name;
235 
236     /// Flag to indicate a variadic function.
237     bool IsVarArg;
238 
239     /// The return type of the function.
240     Type *ReturnType;
241 
242     /// The argument types of the function.
243     SmallVector<Type *, 8> ArgumentTypes;
244 
245     /// The declaration if available.
246     Function *Declaration = nullptr;
247 
248     /// Uses of this runtime function per function containing the use.
249     using UseVector = SmallVector<Use *, 16>;
250 
251     /// Clear UsesMap for runtime function.
252     void clearUsesMap() { UsesMap.clear(); }
253 
254     /// Boolean conversion that is true if the runtime function was found.
255     operator bool() const { return Declaration; }
256 
257     /// Return the vector of uses in function \p F.
258     UseVector &getOrCreateUseVector(Function *F) {
259       std::shared_ptr<UseVector> &UV = UsesMap[F];
260       if (!UV)
261         UV = std::make_shared<UseVector>();
262       return *UV;
263     }
264 
265     /// Return the vector of uses in function \p F or `nullptr` if there are
266     /// none.
267     const UseVector *getUseVector(Function &F) const {
268       auto I = UsesMap.find(&F);
269       if (I != UsesMap.end())
270         return I->second.get();
271       return nullptr;
272     }
273 
274     /// Return how many functions contain uses of this runtime function.
275     size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
276 
277     /// Return the number of arguments (or the minimal number for variadic
278     /// functions).
279     size_t getNumArgs() const { return ArgumentTypes.size(); }
280 
281     /// Run the callback \p CB on each use and forget the use if the result is
282     /// true. The callback will be fed the function in which the use was
283     /// encountered as second argument.
284     void foreachUse(SmallVectorImpl<Function *> &SCC,
285                     function_ref<bool(Use &, Function &)> CB) {
286       for (Function *F : SCC)
287         foreachUse(CB, F);
288     }
289 
290     /// Run the callback \p CB on each use within the function \p F and forget
291     /// the use if the result is true.
292     void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
293       SmallVector<unsigned, 8> ToBeDeleted;
294       ToBeDeleted.clear();
295 
296       unsigned Idx = 0;
297       UseVector &UV = getOrCreateUseVector(F);
298 
299       for (Use *U : UV) {
300         if (CB(*U, *F))
301           ToBeDeleted.push_back(Idx);
302         ++Idx;
303       }
304 
305       // Remove the to-be-deleted indices in reverse order as prior
306       // modifications will not modify the smaller indices.
307       while (!ToBeDeleted.empty()) {
308         unsigned Idx = ToBeDeleted.pop_back_val();
309         UV[Idx] = UV.back();
310         UV.pop_back();
311       }
312     }
313 
314   private:
315     /// Map from functions to all uses of this runtime function contained in
316     /// them.
317     DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
318 
319   public:
320     /// Iterators for the uses of this runtime function.
321     decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
322     decltype(UsesMap)::iterator end() { return UsesMap.end(); }
323   };
324 
325   /// An OpenMP-IR-Builder instance
326   OpenMPIRBuilder OMPBuilder;
327 
328   /// Map from runtime function kind to the runtime function description.
329   EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
330                   RuntimeFunction::OMPRTL___last>
331       RFIs;
332 
333   /// Map from function declarations/definitions to their runtime enum type.
334   DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
335 
336   /// Map from ICV kind to the ICV description.
337   EnumeratedArray<InternalControlVarInfo, InternalControlVar,
338                   InternalControlVar::ICV___last>
339       ICVs;
340 
341   /// Helper to initialize all internal control variable information for those
342   /// defined in OMPKinds.def.
343   void initializeInternalControlVars() {
344 #define ICV_RT_SET(_Name, RTL)                                                 \
345   {                                                                            \
346     auto &ICV = ICVs[_Name];                                                   \
347     ICV.Setter = RTL;                                                          \
348   }
349 #define ICV_RT_GET(Name, RTL)                                                  \
350   {                                                                            \
351     auto &ICV = ICVs[Name];                                                    \
352     ICV.Getter = RTL;                                                          \
353   }
354 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
355   {                                                                            \
356     auto &ICV = ICVs[Enum];                                                    \
357     ICV.Name = _Name;                                                          \
358     ICV.Kind = Enum;                                                           \
359     ICV.InitKind = Init;                                                       \
360     ICV.EnvVarName = _EnvVarName;                                              \
361     switch (ICV.InitKind) {                                                    \
362     case ICV_IMPLEMENTATION_DEFINED:                                           \
363       ICV.InitValue = nullptr;                                                 \
364       break;                                                                   \
365     case ICV_ZERO:                                                             \
366       ICV.InitValue = ConstantInt::get(                                        \
367           Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
368       break;                                                                   \
369     case ICV_FALSE:                                                            \
370       ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
371       break;                                                                   \
372     case ICV_LAST:                                                             \
373       break;                                                                   \
374     }                                                                          \
375   }
376 #include "llvm/Frontend/OpenMP/OMPKinds.def"
377   }
378 
379   /// Returns true if the function declaration \p F matches the runtime
380   /// function types, that is, return type \p RTFRetType, and argument types
381   /// \p RTFArgTypes.
382   static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
383                                   SmallVector<Type *, 8> &RTFArgTypes) {
384     // TODO: We should output information to the user (under debug output
385     //       and via remarks).
386 
387     if (!F)
388       return false;
389     if (F->getReturnType() != RTFRetType)
390       return false;
391     if (F->arg_size() != RTFArgTypes.size())
392       return false;
393 
394     auto *RTFTyIt = RTFArgTypes.begin();
395     for (Argument &Arg : F->args()) {
396       if (Arg.getType() != *RTFTyIt)
397         return false;
398 
399       ++RTFTyIt;
400     }
401 
402     return true;
403   }
404 
405   // Helper to collect all uses of the declaration in the UsesMap.
406   unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
407     unsigned NumUses = 0;
408     if (!RFI.Declaration)
409       return NumUses;
410     OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
411 
412     if (CollectStats) {
413       NumOpenMPRuntimeFunctionsIdentified += 1;
414       NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
415     }
416 
417     // TODO: We directly convert uses into proper calls and unknown uses.
418     for (Use &U : RFI.Declaration->uses()) {
419       if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
420         if (ModuleSlice.empty() || ModuleSlice.count(UserI->getFunction())) {
421           RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
422           ++NumUses;
423         }
424       } else {
425         RFI.getOrCreateUseVector(nullptr).push_back(&U);
426         ++NumUses;
427       }
428     }
429     return NumUses;
430   }
431 
432   // Helper function to recollect uses of a runtime function.
433   void recollectUsesForFunction(RuntimeFunction RTF) {
434     auto &RFI = RFIs[RTF];
435     RFI.clearUsesMap();
436     collectUses(RFI, /*CollectStats*/ false);
437   }
438 
439   // Helper function to recollect uses of all runtime functions.
440   void recollectUses() {
441     for (int Idx = 0; Idx < RFIs.size(); ++Idx)
442       recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
443   }
444 
445   // Helper function to inherit the calling convention of the function callee.
446   void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
447     if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
448       CI->setCallingConv(Fn->getCallingConv());
449   }
450 
451   // Helper function to determine if it's legal to create a call to the runtime
452   // functions.
453   bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) {
454     // We can always emit calls if we haven't yet linked in the runtime.
455     if (!OpenMPPostLink)
456       return true;
457 
458     // Once the runtime has been already been linked in we cannot emit calls to
459     // any undefined functions.
460     for (RuntimeFunction Fn : Fns) {
461       RuntimeFunctionInfo &RFI = RFIs[Fn];
462 
463       if (RFI.Declaration && RFI.Declaration->isDeclaration())
464         return false;
465     }
466     return true;
467   }
468 
469   /// Helper to initialize all runtime function information for those defined
470   /// in OpenMPKinds.def.
471   void initializeRuntimeFunctions(Module &M) {
472 
473     // Helper macros for handling __VA_ARGS__ in OMP_RTL
474 #define OMP_TYPE(VarName, ...)                                                 \
475   Type *VarName = OMPBuilder.VarName;                                          \
476   (void)VarName;
477 
478 #define OMP_ARRAY_TYPE(VarName, ...)                                           \
479   ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
480   (void)VarName##Ty;                                                           \
481   PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
482   (void)VarName##PtrTy;
483 
484 #define OMP_FUNCTION_TYPE(VarName, ...)                                        \
485   FunctionType *VarName = OMPBuilder.VarName;                                  \
486   (void)VarName;                                                               \
487   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
488   (void)VarName##Ptr;
489 
490 #define OMP_STRUCT_TYPE(VarName, ...)                                          \
491   StructType *VarName = OMPBuilder.VarName;                                    \
492   (void)VarName;                                                               \
493   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
494   (void)VarName##Ptr;
495 
496 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
497   {                                                                            \
498     SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
499     Function *F = M.getFunction(_Name);                                        \
500     RTLFunctions.insert(F);                                                    \
501     if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
502       RuntimeFunctionIDMap[F] = _Enum;                                         \
503       auto &RFI = RFIs[_Enum];                                                 \
504       RFI.Kind = _Enum;                                                        \
505       RFI.Name = _Name;                                                        \
506       RFI.IsVarArg = _IsVarArg;                                                \
507       RFI.ReturnType = OMPBuilder._ReturnType;                                 \
508       RFI.ArgumentTypes = std::move(ArgsTypes);                                \
509       RFI.Declaration = F;                                                     \
510       unsigned NumUses = collectUses(RFI);                                     \
511       (void)NumUses;                                                           \
512       LLVM_DEBUG({                                                             \
513         dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
514                << " found\n";                                                  \
515         if (RFI.Declaration)                                                   \
516           dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
517                  << RFI.getNumFunctionsWithUses()                              \
518                  << " different functions.\n";                                 \
519       });                                                                      \
520     }                                                                          \
521   }
522 #include "llvm/Frontend/OpenMP/OMPKinds.def"
523 
524     // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_`
525     // functions, except if `optnone` is present.
526     if (isOpenMPDevice(M)) {
527       for (Function &F : M) {
528         for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"})
529           if (F.hasFnAttribute(Attribute::NoInline) &&
530               F.getName().startswith(Prefix) &&
531               !F.hasFnAttribute(Attribute::OptimizeNone))
532             F.removeFnAttr(Attribute::NoInline);
533       }
534     }
535 
536     // TODO: We should attach the attributes defined in OMPKinds.def.
537   }
538 
539   /// Collection of known kernels (\see Kernel) in the module.
540   KernelSet &Kernels;
541 
542   /// Collection of known OpenMP runtime functions..
543   DenseSet<const Function *> RTLFunctions;
544 
545   /// Indicates if we have already linked in the OpenMP device library.
546   bool OpenMPPostLink = false;
547 };
548 
549 template <typename Ty, bool InsertInvalidates = true>
550 struct BooleanStateWithSetVector : public BooleanState {
551   bool contains(const Ty &Elem) const { return Set.contains(Elem); }
552   bool insert(const Ty &Elem) {
553     if (InsertInvalidates)
554       BooleanState::indicatePessimisticFixpoint();
555     return Set.insert(Elem);
556   }
557 
558   const Ty &operator[](int Idx) const { return Set[Idx]; }
559   bool operator==(const BooleanStateWithSetVector &RHS) const {
560     return BooleanState::operator==(RHS) && Set == RHS.Set;
561   }
562   bool operator!=(const BooleanStateWithSetVector &RHS) const {
563     return !(*this == RHS);
564   }
565 
566   bool empty() const { return Set.empty(); }
567   size_t size() const { return Set.size(); }
568 
569   /// "Clamp" this state with \p RHS.
570   BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
571     BooleanState::operator^=(RHS);
572     Set.insert(RHS.Set.begin(), RHS.Set.end());
573     return *this;
574   }
575 
576 private:
577   /// A set to keep track of elements.
578   SetVector<Ty> Set;
579 
580 public:
581   typename decltype(Set)::iterator begin() { return Set.begin(); }
582   typename decltype(Set)::iterator end() { return Set.end(); }
583   typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
584   typename decltype(Set)::const_iterator end() const { return Set.end(); }
585 };
586 
587 template <typename Ty, bool InsertInvalidates = true>
588 using BooleanStateWithPtrSetVector =
589     BooleanStateWithSetVector<Ty *, InsertInvalidates>;
590 
591 struct KernelInfoState : AbstractState {
592   /// Flag to track if we reached a fixpoint.
593   bool IsAtFixpoint = false;
594 
595   /// The parallel regions (identified by the outlined parallel functions) that
596   /// can be reached from the associated function.
597   BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
598       ReachedKnownParallelRegions;
599 
600   /// State to track what parallel region we might reach.
601   BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
602 
603   /// State to track if we are in SPMD-mode, assumed or know, and why we decided
604   /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
605   /// false.
606   BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
607 
608   /// The __kmpc_target_init call in this kernel, if any. If we find more than
609   /// one we abort as the kernel is malformed.
610   CallBase *KernelInitCB = nullptr;
611 
612   /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
613   /// one we abort as the kernel is malformed.
614   CallBase *KernelDeinitCB = nullptr;
615 
616   /// Flag to indicate if the associated function is a kernel entry.
617   bool IsKernelEntry = false;
618 
619   /// State to track what kernel entries can reach the associated function.
620   BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
621 
622   /// State to indicate if we can track parallel level of the associated
623   /// function. We will give up tracking if we encounter unknown caller or the
624   /// caller is __kmpc_parallel_51.
625   BooleanStateWithSetVector<uint8_t> ParallelLevels;
626 
627   /// Flag that indicates if the kernel has nested Parallelism
628   bool NestedParallelism = false;
629 
630   /// Abstract State interface
631   ///{
632 
633   KernelInfoState() = default;
634   KernelInfoState(bool BestState) {
635     if (!BestState)
636       indicatePessimisticFixpoint();
637   }
638 
639   /// See AbstractState::isValidState(...)
640   bool isValidState() const override { return true; }
641 
642   /// See AbstractState::isAtFixpoint(...)
643   bool isAtFixpoint() const override { return IsAtFixpoint; }
644 
645   /// See AbstractState::indicatePessimisticFixpoint(...)
646   ChangeStatus indicatePessimisticFixpoint() override {
647     IsAtFixpoint = true;
648     ParallelLevels.indicatePessimisticFixpoint();
649     ReachingKernelEntries.indicatePessimisticFixpoint();
650     SPMDCompatibilityTracker.indicatePessimisticFixpoint();
651     ReachedKnownParallelRegions.indicatePessimisticFixpoint();
652     ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
653     return ChangeStatus::CHANGED;
654   }
655 
656   /// See AbstractState::indicateOptimisticFixpoint(...)
657   ChangeStatus indicateOptimisticFixpoint() override {
658     IsAtFixpoint = true;
659     ParallelLevels.indicateOptimisticFixpoint();
660     ReachingKernelEntries.indicateOptimisticFixpoint();
661     SPMDCompatibilityTracker.indicateOptimisticFixpoint();
662     ReachedKnownParallelRegions.indicateOptimisticFixpoint();
663     ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
664     return ChangeStatus::UNCHANGED;
665   }
666 
667   /// Return the assumed state
668   KernelInfoState &getAssumed() { return *this; }
669   const KernelInfoState &getAssumed() const { return *this; }
670 
671   bool operator==(const KernelInfoState &RHS) const {
672     if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
673       return false;
674     if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
675       return false;
676     if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
677       return false;
678     if (ReachingKernelEntries != RHS.ReachingKernelEntries)
679       return false;
680     if (ParallelLevels != RHS.ParallelLevels)
681       return false;
682     return true;
683   }
684 
685   /// Returns true if this kernel contains any OpenMP parallel regions.
686   bool mayContainParallelRegion() {
687     return !ReachedKnownParallelRegions.empty() ||
688            !ReachedUnknownParallelRegions.empty();
689   }
690 
691   /// Return empty set as the best state of potential values.
692   static KernelInfoState getBestState() { return KernelInfoState(true); }
693 
694   static KernelInfoState getBestState(KernelInfoState &KIS) {
695     return getBestState();
696   }
697 
698   /// Return full set as the worst state of potential values.
699   static KernelInfoState getWorstState() { return KernelInfoState(false); }
700 
701   /// "Clamp" this state with \p KIS.
702   KernelInfoState operator^=(const KernelInfoState &KIS) {
703     // Do not merge two different _init and _deinit call sites.
704     if (KIS.KernelInitCB) {
705       if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
706         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
707                          "assumptions.");
708       KernelInitCB = KIS.KernelInitCB;
709     }
710     if (KIS.KernelDeinitCB) {
711       if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
712         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
713                          "assumptions.");
714       KernelDeinitCB = KIS.KernelDeinitCB;
715     }
716     SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
717     ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
718     ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
719     NestedParallelism |= KIS.NestedParallelism;
720     return *this;
721   }
722 
723   KernelInfoState operator&=(const KernelInfoState &KIS) {
724     return (*this ^= KIS);
725   }
726 
727   ///}
728 };
729 
730 /// Used to map the values physically (in the IR) stored in an offload
731 /// array, to a vector in memory.
732 struct OffloadArray {
733   /// Physical array (in the IR).
734   AllocaInst *Array = nullptr;
735   /// Mapped values.
736   SmallVector<Value *, 8> StoredValues;
737   /// Last stores made in the offload array.
738   SmallVector<StoreInst *, 8> LastAccesses;
739 
740   OffloadArray() = default;
741 
742   /// Initializes the OffloadArray with the values stored in \p Array before
743   /// instruction \p Before is reached. Returns false if the initialization
744   /// fails.
745   /// This MUST be used immediately after the construction of the object.
746   bool initialize(AllocaInst &Array, Instruction &Before) {
747     if (!Array.getAllocatedType()->isArrayTy())
748       return false;
749 
750     if (!getValues(Array, Before))
751       return false;
752 
753     this->Array = &Array;
754     return true;
755   }
756 
757   static const unsigned DeviceIDArgNum = 1;
758   static const unsigned BasePtrsArgNum = 3;
759   static const unsigned PtrsArgNum = 4;
760   static const unsigned SizesArgNum = 5;
761 
762 private:
763   /// Traverses the BasicBlock where \p Array is, collecting the stores made to
764   /// \p Array, leaving StoredValues with the values stored before the
765   /// instruction \p Before is reached.
766   bool getValues(AllocaInst &Array, Instruction &Before) {
767     // Initialize container.
768     const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
769     StoredValues.assign(NumValues, nullptr);
770     LastAccesses.assign(NumValues, nullptr);
771 
772     // TODO: This assumes the instruction \p Before is in the same
773     //  BasicBlock as Array. Make it general, for any control flow graph.
774     BasicBlock *BB = Array.getParent();
775     if (BB != Before.getParent())
776       return false;
777 
778     const DataLayout &DL = Array.getModule()->getDataLayout();
779     const unsigned int PointerSize = DL.getPointerSize();
780 
781     for (Instruction &I : *BB) {
782       if (&I == &Before)
783         break;
784 
785       if (!isa<StoreInst>(&I))
786         continue;
787 
788       auto *S = cast<StoreInst>(&I);
789       int64_t Offset = -1;
790       auto *Dst =
791           GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
792       if (Dst == &Array) {
793         int64_t Idx = Offset / PointerSize;
794         StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
795         LastAccesses[Idx] = S;
796       }
797     }
798 
799     return isFilled();
800   }
801 
802   /// Returns true if all values in StoredValues and
803   /// LastAccesses are not nullptrs.
804   bool isFilled() {
805     const unsigned NumValues = StoredValues.size();
806     for (unsigned I = 0; I < NumValues; ++I) {
807       if (!StoredValues[I] || !LastAccesses[I])
808         return false;
809     }
810 
811     return true;
812   }
813 };
814 
815 struct OpenMPOpt {
816 
817   using OptimizationRemarkGetter =
818       function_ref<OptimizationRemarkEmitter &(Function *)>;
819 
820   OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
821             OptimizationRemarkGetter OREGetter,
822             OMPInformationCache &OMPInfoCache, Attributor &A)
823       : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
824         OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
825 
826   /// Check if any remarks are enabled for openmp-opt
827   bool remarksEnabled() {
828     auto &Ctx = M.getContext();
829     return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
830   }
831 
832   /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
833   bool run(bool IsModulePass) {
834     if (SCC.empty())
835       return false;
836 
837     bool Changed = false;
838 
839     LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
840                       << " functions in a slice with "
841                       << OMPInfoCache.ModuleSlice.size() << " functions\n");
842 
843     if (IsModulePass) {
844       Changed |= runAttributor(IsModulePass);
845 
846       // Recollect uses, in case Attributor deleted any.
847       OMPInfoCache.recollectUses();
848 
849       // TODO: This should be folded into buildCustomStateMachine.
850       Changed |= rewriteDeviceCodeStateMachine();
851 
852       if (remarksEnabled())
853         analysisGlobalization();
854     } else {
855       if (PrintICVValues)
856         printICVs();
857       if (PrintOpenMPKernels)
858         printKernels();
859 
860       Changed |= runAttributor(IsModulePass);
861 
862       // Recollect uses, in case Attributor deleted any.
863       OMPInfoCache.recollectUses();
864 
865       Changed |= deleteParallelRegions();
866 
867       if (HideMemoryTransferLatency)
868         Changed |= hideMemTransfersLatency();
869       Changed |= deduplicateRuntimeCalls();
870       if (EnableParallelRegionMerging) {
871         if (mergeParallelRegions()) {
872           deduplicateRuntimeCalls();
873           Changed = true;
874         }
875       }
876     }
877 
878     return Changed;
879   }
880 
881   /// Print initial ICV values for testing.
882   /// FIXME: This should be done from the Attributor once it is added.
883   void printICVs() const {
884     InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
885                                  ICV_proc_bind};
886 
887     for (Function *F : SCC) {
888       for (auto ICV : ICVs) {
889         auto ICVInfo = OMPInfoCache.ICVs[ICV];
890         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
891           return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
892                      << " Value: "
893                      << (ICVInfo.InitValue
894                              ? toString(ICVInfo.InitValue->getValue(), 10, true)
895                              : "IMPLEMENTATION_DEFINED");
896         };
897 
898         emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
899       }
900     }
901   }
902 
903   /// Print OpenMP GPU kernels for testing.
904   void printKernels() const {
905     for (Function *F : SCC) {
906       if (!OMPInfoCache.Kernels.count(F))
907         continue;
908 
909       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
910         return ORA << "OpenMP GPU kernel "
911                    << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
912       };
913 
914       emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
915     }
916   }
917 
918   /// Return the call if \p U is a callee use in a regular call. If \p RFI is
919   /// given it has to be the callee or a nullptr is returned.
920   static CallInst *getCallIfRegularCall(
921       Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
922     CallInst *CI = dyn_cast<CallInst>(U.getUser());
923     if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
924         (!RFI ||
925          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
926       return CI;
927     return nullptr;
928   }
929 
930   /// Return the call if \p V is a regular call. If \p RFI is given it has to be
931   /// the callee or a nullptr is returned.
932   static CallInst *getCallIfRegularCall(
933       Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
934     CallInst *CI = dyn_cast<CallInst>(&V);
935     if (CI && !CI->hasOperandBundles() &&
936         (!RFI ||
937          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
938       return CI;
939     return nullptr;
940   }
941 
942 private:
943   /// Merge parallel regions when it is safe.
944   bool mergeParallelRegions() {
945     const unsigned CallbackCalleeOperand = 2;
946     const unsigned CallbackFirstArgOperand = 3;
947     using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
948 
949     // Check if there are any __kmpc_fork_call calls to merge.
950     OMPInformationCache::RuntimeFunctionInfo &RFI =
951         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
952 
953     if (!RFI.Declaration)
954       return false;
955 
956     // Unmergable calls that prevent merging a parallel region.
957     OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
958         OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
959         OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
960     };
961 
962     bool Changed = false;
963     LoopInfo *LI = nullptr;
964     DominatorTree *DT = nullptr;
965 
966     SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
967 
968     BasicBlock *StartBB = nullptr, *EndBB = nullptr;
969     auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
970       BasicBlock *CGStartBB = CodeGenIP.getBlock();
971       BasicBlock *CGEndBB =
972           SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
973       assert(StartBB != nullptr && "StartBB should not be null");
974       CGStartBB->getTerminator()->setSuccessor(0, StartBB);
975       assert(EndBB != nullptr && "EndBB should not be null");
976       EndBB->getTerminator()->setSuccessor(0, CGEndBB);
977     };
978 
979     auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
980                       Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
981       ReplacementValue = &Inner;
982       return CodeGenIP;
983     };
984 
985     auto FiniCB = [&](InsertPointTy CodeGenIP) {};
986 
987     /// Create a sequential execution region within a merged parallel region,
988     /// encapsulated in a master construct with a barrier for synchronization.
989     auto CreateSequentialRegion = [&](Function *OuterFn,
990                                       BasicBlock *OuterPredBB,
991                                       Instruction *SeqStartI,
992                                       Instruction *SeqEndI) {
993       // Isolate the instructions of the sequential region to a separate
994       // block.
995       BasicBlock *ParentBB = SeqStartI->getParent();
996       BasicBlock *SeqEndBB =
997           SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
998       BasicBlock *SeqAfterBB =
999           SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
1000       BasicBlock *SeqStartBB =
1001           SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
1002 
1003       assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
1004              "Expected a different CFG");
1005       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
1006       ParentBB->getTerminator()->eraseFromParent();
1007 
1008       auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
1009         BasicBlock *CGStartBB = CodeGenIP.getBlock();
1010         BasicBlock *CGEndBB =
1011             SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
1012         assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
1013         CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
1014         assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
1015         SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
1016       };
1017       auto FiniCB = [&](InsertPointTy CodeGenIP) {};
1018 
1019       // Find outputs from the sequential region to outside users and
1020       // broadcast their values to them.
1021       for (Instruction &I : *SeqStartBB) {
1022         SmallPtrSet<Instruction *, 4> OutsideUsers;
1023         for (User *Usr : I.users()) {
1024           Instruction &UsrI = *cast<Instruction>(Usr);
1025           // Ignore outputs to LT intrinsics, code extraction for the merged
1026           // parallel region will fix them.
1027           if (UsrI.isLifetimeStartOrEnd())
1028             continue;
1029 
1030           if (UsrI.getParent() != SeqStartBB)
1031             OutsideUsers.insert(&UsrI);
1032         }
1033 
1034         if (OutsideUsers.empty())
1035           continue;
1036 
1037         // Emit an alloca in the outer region to store the broadcasted
1038         // value.
1039         const DataLayout &DL = M.getDataLayout();
1040         AllocaInst *AllocaI = new AllocaInst(
1041             I.getType(), DL.getAllocaAddrSpace(), nullptr,
1042             I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1043 
1044         // Emit a store instruction in the sequential BB to update the
1045         // value.
1046         new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1047 
1048         // Emit a load instruction and replace the use of the output value
1049         // with it.
1050         for (Instruction *UsrI : OutsideUsers) {
1051           LoadInst *LoadI = new LoadInst(
1052               I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1053           UsrI->replaceUsesOfWith(&I, LoadI);
1054         }
1055       }
1056 
1057       OpenMPIRBuilder::LocationDescription Loc(
1058           InsertPointTy(ParentBB, ParentBB->end()), DL);
1059       InsertPointTy SeqAfterIP =
1060           OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1061 
1062       OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1063 
1064       BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1065 
1066       LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1067                         << "\n");
1068     };
1069 
1070     // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1071     // contained in BB and only separated by instructions that can be
1072     // redundantly executed in parallel. The block BB is split before the first
1073     // call (in MergableCIs) and after the last so the entire region we merge
1074     // into a single parallel region is contained in a single basic block
1075     // without any other instructions. We use the OpenMPIRBuilder to outline
1076     // that block and call the resulting function via __kmpc_fork_call.
1077     auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1078                      BasicBlock *BB) {
1079       // TODO: Change the interface to allow single CIs expanded, e.g, to
1080       // include an outer loop.
1081       assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1082 
1083       auto Remark = [&](OptimizationRemark OR) {
1084         OR << "Parallel region merged with parallel region"
1085            << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1086         for (auto *CI : llvm::drop_begin(MergableCIs)) {
1087           OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1088           if (CI != MergableCIs.back())
1089             OR << ", ";
1090         }
1091         return OR << ".";
1092       };
1093 
1094       emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1095 
1096       Function *OriginalFn = BB->getParent();
1097       LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1098                         << " parallel regions in " << OriginalFn->getName()
1099                         << "\n");
1100 
1101       // Isolate the calls to merge in a separate block.
1102       EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1103       BasicBlock *AfterBB =
1104           SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1105       StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1106                            "omp.par.merged");
1107 
1108       assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1109       const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1110       BB->getTerminator()->eraseFromParent();
1111 
1112       // Create sequential regions for sequential instructions that are
1113       // in-between mergable parallel regions.
1114       for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1115            It != End; ++It) {
1116         Instruction *ForkCI = *It;
1117         Instruction *NextForkCI = *(It + 1);
1118 
1119         // Continue if there are not in-between instructions.
1120         if (ForkCI->getNextNode() == NextForkCI)
1121           continue;
1122 
1123         CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1124                                NextForkCI->getPrevNode());
1125       }
1126 
1127       OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1128                                                DL);
1129       IRBuilder<>::InsertPoint AllocaIP(
1130           &OriginalFn->getEntryBlock(),
1131           OriginalFn->getEntryBlock().getFirstInsertionPt());
1132       // Create the merged parallel region with default proc binding, to
1133       // avoid overriding binding settings, and without explicit cancellation.
1134       InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1135           Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1136           OMP_PROC_BIND_default, /* IsCancellable */ false);
1137       BranchInst::Create(AfterBB, AfterIP.getBlock());
1138 
1139       // Perform the actual outlining.
1140       OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1141 
1142       Function *OutlinedFn = MergableCIs.front()->getCaller();
1143 
1144       // Replace the __kmpc_fork_call calls with direct calls to the outlined
1145       // callbacks.
1146       SmallVector<Value *, 8> Args;
1147       for (auto *CI : MergableCIs) {
1148         Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1149         FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1150         Args.clear();
1151         Args.push_back(OutlinedFn->getArg(0));
1152         Args.push_back(OutlinedFn->getArg(1));
1153         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1154              ++U)
1155           Args.push_back(CI->getArgOperand(U));
1156 
1157         CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1158         if (CI->getDebugLoc())
1159           NewCI->setDebugLoc(CI->getDebugLoc());
1160 
1161         // Forward parameter attributes from the callback to the callee.
1162         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1163              ++U)
1164           for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1165             NewCI->addParamAttr(
1166                 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1167 
1168         // Emit an explicit barrier to replace the implicit fork-join barrier.
1169         if (CI != MergableCIs.back()) {
1170           // TODO: Remove barrier if the merged parallel region includes the
1171           // 'nowait' clause.
1172           OMPInfoCache.OMPBuilder.createBarrier(
1173               InsertPointTy(NewCI->getParent(),
1174                             NewCI->getNextNode()->getIterator()),
1175               OMPD_parallel);
1176         }
1177 
1178         CI->eraseFromParent();
1179       }
1180 
1181       assert(OutlinedFn != OriginalFn && "Outlining failed");
1182       CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1183       CGUpdater.reanalyzeFunction(*OriginalFn);
1184 
1185       NumOpenMPParallelRegionsMerged += MergableCIs.size();
1186 
1187       return true;
1188     };
1189 
1190     // Helper function that identifes sequences of
1191     // __kmpc_fork_call uses in a basic block.
1192     auto DetectPRsCB = [&](Use &U, Function &F) {
1193       CallInst *CI = getCallIfRegularCall(U, &RFI);
1194       BB2PRMap[CI->getParent()].insert(CI);
1195 
1196       return false;
1197     };
1198 
1199     BB2PRMap.clear();
1200     RFI.foreachUse(SCC, DetectPRsCB);
1201     SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1202     // Find mergable parallel regions within a basic block that are
1203     // safe to merge, that is any in-between instructions can safely
1204     // execute in parallel after merging.
1205     // TODO: support merging across basic-blocks.
1206     for (auto &It : BB2PRMap) {
1207       auto &CIs = It.getSecond();
1208       if (CIs.size() < 2)
1209         continue;
1210 
1211       BasicBlock *BB = It.getFirst();
1212       SmallVector<CallInst *, 4> MergableCIs;
1213 
1214       /// Returns true if the instruction is mergable, false otherwise.
1215       /// A terminator instruction is unmergable by definition since merging
1216       /// works within a BB. Instructions before the mergable region are
1217       /// mergable if they are not calls to OpenMP runtime functions that may
1218       /// set different execution parameters for subsequent parallel regions.
1219       /// Instructions in-between parallel regions are mergable if they are not
1220       /// calls to any non-intrinsic function since that may call a non-mergable
1221       /// OpenMP runtime function.
1222       auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1223         // We do not merge across BBs, hence return false (unmergable) if the
1224         // instruction is a terminator.
1225         if (I.isTerminator())
1226           return false;
1227 
1228         if (!isa<CallInst>(&I))
1229           return true;
1230 
1231         CallInst *CI = cast<CallInst>(&I);
1232         if (IsBeforeMergableRegion) {
1233           Function *CalledFunction = CI->getCalledFunction();
1234           if (!CalledFunction)
1235             return false;
1236           // Return false (unmergable) if the call before the parallel
1237           // region calls an explicit affinity (proc_bind) or number of
1238           // threads (num_threads) compiler-generated function. Those settings
1239           // may be incompatible with following parallel regions.
1240           // TODO: ICV tracking to detect compatibility.
1241           for (const auto &RFI : UnmergableCallsInfo) {
1242             if (CalledFunction == RFI.Declaration)
1243               return false;
1244           }
1245         } else {
1246           // Return false (unmergable) if there is a call instruction
1247           // in-between parallel regions when it is not an intrinsic. It
1248           // may call an unmergable OpenMP runtime function in its callpath.
1249           // TODO: Keep track of possible OpenMP calls in the callpath.
1250           if (!isa<IntrinsicInst>(CI))
1251             return false;
1252         }
1253 
1254         return true;
1255       };
1256       // Find maximal number of parallel region CIs that are safe to merge.
1257       for (auto It = BB->begin(), End = BB->end(); It != End;) {
1258         Instruction &I = *It;
1259         ++It;
1260 
1261         if (CIs.count(&I)) {
1262           MergableCIs.push_back(cast<CallInst>(&I));
1263           continue;
1264         }
1265 
1266         // Continue expanding if the instruction is mergable.
1267         if (IsMergable(I, MergableCIs.empty()))
1268           continue;
1269 
1270         // Forward the instruction iterator to skip the next parallel region
1271         // since there is an unmergable instruction which can affect it.
1272         for (; It != End; ++It) {
1273           Instruction &SkipI = *It;
1274           if (CIs.count(&SkipI)) {
1275             LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1276                               << " due to " << I << "\n");
1277             ++It;
1278             break;
1279           }
1280         }
1281 
1282         // Store mergable regions found.
1283         if (MergableCIs.size() > 1) {
1284           MergableCIsVector.push_back(MergableCIs);
1285           LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1286                             << " parallel regions in block " << BB->getName()
1287                             << " of function " << BB->getParent()->getName()
1288                             << "\n";);
1289         }
1290 
1291         MergableCIs.clear();
1292       }
1293 
1294       if (!MergableCIsVector.empty()) {
1295         Changed = true;
1296 
1297         for (auto &MergableCIs : MergableCIsVector)
1298           Merge(MergableCIs, BB);
1299         MergableCIsVector.clear();
1300       }
1301     }
1302 
1303     if (Changed) {
1304       /// Re-collect use for fork calls, emitted barrier calls, and
1305       /// any emitted master/end_master calls.
1306       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1307       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1308       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1309       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1310     }
1311 
1312     return Changed;
1313   }
1314 
1315   /// Try to delete parallel regions if possible.
1316   bool deleteParallelRegions() {
1317     const unsigned CallbackCalleeOperand = 2;
1318 
1319     OMPInformationCache::RuntimeFunctionInfo &RFI =
1320         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1321 
1322     if (!RFI.Declaration)
1323       return false;
1324 
1325     bool Changed = false;
1326     auto DeleteCallCB = [&](Use &U, Function &) {
1327       CallInst *CI = getCallIfRegularCall(U);
1328       if (!CI)
1329         return false;
1330       auto *Fn = dyn_cast<Function>(
1331           CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1332       if (!Fn)
1333         return false;
1334       if (!Fn->onlyReadsMemory())
1335         return false;
1336       if (!Fn->hasFnAttribute(Attribute::WillReturn))
1337         return false;
1338 
1339       LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1340                         << CI->getCaller()->getName() << "\n");
1341 
1342       auto Remark = [&](OptimizationRemark OR) {
1343         return OR << "Removing parallel region with no side-effects.";
1344       };
1345       emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1346 
1347       CGUpdater.removeCallSite(*CI);
1348       CI->eraseFromParent();
1349       Changed = true;
1350       ++NumOpenMPParallelRegionsDeleted;
1351       return true;
1352     };
1353 
1354     RFI.foreachUse(SCC, DeleteCallCB);
1355 
1356     return Changed;
1357   }
1358 
1359   /// Try to eliminate runtime calls by reusing existing ones.
1360   bool deduplicateRuntimeCalls() {
1361     bool Changed = false;
1362 
1363     RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1364         OMPRTL_omp_get_num_threads,
1365         OMPRTL_omp_in_parallel,
1366         OMPRTL_omp_get_cancellation,
1367         OMPRTL_omp_get_thread_limit,
1368         OMPRTL_omp_get_supported_active_levels,
1369         OMPRTL_omp_get_level,
1370         OMPRTL_omp_get_ancestor_thread_num,
1371         OMPRTL_omp_get_team_size,
1372         OMPRTL_omp_get_active_level,
1373         OMPRTL_omp_in_final,
1374         OMPRTL_omp_get_proc_bind,
1375         OMPRTL_omp_get_num_places,
1376         OMPRTL_omp_get_num_procs,
1377         OMPRTL_omp_get_place_num,
1378         OMPRTL_omp_get_partition_num_places,
1379         OMPRTL_omp_get_partition_place_nums};
1380 
1381     // Global-tid is handled separately.
1382     SmallSetVector<Value *, 16> GTIdArgs;
1383     collectGlobalThreadIdArguments(GTIdArgs);
1384     LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1385                       << " global thread ID arguments\n");
1386 
1387     for (Function *F : SCC) {
1388       for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1389         Changed |= deduplicateRuntimeCalls(
1390             *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1391 
1392       // __kmpc_global_thread_num is special as we can replace it with an
1393       // argument in enough cases to make it worth trying.
1394       Value *GTIdArg = nullptr;
1395       for (Argument &Arg : F->args())
1396         if (GTIdArgs.count(&Arg)) {
1397           GTIdArg = &Arg;
1398           break;
1399         }
1400       Changed |= deduplicateRuntimeCalls(
1401           *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1402     }
1403 
1404     return Changed;
1405   }
1406 
1407   /// Tries to hide the latency of runtime calls that involve host to
1408   /// device memory transfers by splitting them into their "issue" and "wait"
1409   /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1410   /// moved downards as much as possible. The "issue" issues the memory transfer
1411   /// asynchronously, returning a handle. The "wait" waits in the returned
1412   /// handle for the memory transfer to finish.
1413   bool hideMemTransfersLatency() {
1414     auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1415     bool Changed = false;
1416     auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1417       auto *RTCall = getCallIfRegularCall(U, &RFI);
1418       if (!RTCall)
1419         return false;
1420 
1421       OffloadArray OffloadArrays[3];
1422       if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1423         return false;
1424 
1425       LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1426 
1427       // TODO: Check if can be moved upwards.
1428       bool WasSplit = false;
1429       Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1430       if (WaitMovementPoint)
1431         WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1432 
1433       Changed |= WasSplit;
1434       return WasSplit;
1435     };
1436     if (OMPInfoCache.runtimeFnsAvailable(
1437             {OMPRTL___tgt_target_data_begin_mapper_issue,
1438              OMPRTL___tgt_target_data_begin_mapper_wait}))
1439       RFI.foreachUse(SCC, SplitMemTransfers);
1440 
1441     return Changed;
1442   }
1443 
1444   void analysisGlobalization() {
1445     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1446 
1447     auto CheckGlobalization = [&](Use &U, Function &Decl) {
1448       if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1449         auto Remark = [&](OptimizationRemarkMissed ORM) {
1450           return ORM
1451                  << "Found thread data sharing on the GPU. "
1452                  << "Expect degraded performance due to data globalization.";
1453         };
1454         emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1455       }
1456 
1457       return false;
1458     };
1459 
1460     RFI.foreachUse(SCC, CheckGlobalization);
1461   }
1462 
1463   /// Maps the values stored in the offload arrays passed as arguments to
1464   /// \p RuntimeCall into the offload arrays in \p OAs.
1465   bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1466                                 MutableArrayRef<OffloadArray> OAs) {
1467     assert(OAs.size() == 3 && "Need space for three offload arrays!");
1468 
1469     // A runtime call that involves memory offloading looks something like:
1470     // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1471     //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1472     // ...)
1473     // So, the idea is to access the allocas that allocate space for these
1474     // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1475     // Therefore:
1476     // i8** %offload_baseptrs.
1477     Value *BasePtrsArg =
1478         RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1479     // i8** %offload_ptrs.
1480     Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1481     // i8** %offload_sizes.
1482     Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1483 
1484     // Get values stored in **offload_baseptrs.
1485     auto *V = getUnderlyingObject(BasePtrsArg);
1486     if (!isa<AllocaInst>(V))
1487       return false;
1488     auto *BasePtrsArray = cast<AllocaInst>(V);
1489     if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1490       return false;
1491 
1492     // Get values stored in **offload_baseptrs.
1493     V = getUnderlyingObject(PtrsArg);
1494     if (!isa<AllocaInst>(V))
1495       return false;
1496     auto *PtrsArray = cast<AllocaInst>(V);
1497     if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1498       return false;
1499 
1500     // Get values stored in **offload_sizes.
1501     V = getUnderlyingObject(SizesArg);
1502     // If it's a [constant] global array don't analyze it.
1503     if (isa<GlobalValue>(V))
1504       return isa<Constant>(V);
1505     if (!isa<AllocaInst>(V))
1506       return false;
1507 
1508     auto *SizesArray = cast<AllocaInst>(V);
1509     if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1510       return false;
1511 
1512     return true;
1513   }
1514 
1515   /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1516   /// For now this is a way to test that the function getValuesInOffloadArrays
1517   /// is working properly.
1518   /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1519   void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1520     assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1521 
1522     LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1523     std::string ValuesStr;
1524     raw_string_ostream Printer(ValuesStr);
1525     std::string Separator = " --- ";
1526 
1527     for (auto *BP : OAs[0].StoredValues) {
1528       BP->print(Printer);
1529       Printer << Separator;
1530     }
1531     LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1532     ValuesStr.clear();
1533 
1534     for (auto *P : OAs[1].StoredValues) {
1535       P->print(Printer);
1536       Printer << Separator;
1537     }
1538     LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1539     ValuesStr.clear();
1540 
1541     for (auto *S : OAs[2].StoredValues) {
1542       S->print(Printer);
1543       Printer << Separator;
1544     }
1545     LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1546   }
1547 
1548   /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1549   /// moved. Returns nullptr if the movement is not possible, or not worth it.
1550   Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1551     // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1552     //  Make it traverse the CFG.
1553 
1554     Instruction *CurrentI = &RuntimeCall;
1555     bool IsWorthIt = false;
1556     while ((CurrentI = CurrentI->getNextNode())) {
1557 
1558       // TODO: Once we detect the regions to be offloaded we should use the
1559       //  alias analysis manager to check if CurrentI may modify one of
1560       //  the offloaded regions.
1561       if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1562         if (IsWorthIt)
1563           return CurrentI;
1564 
1565         return nullptr;
1566       }
1567 
1568       // FIXME: For now if we move it over anything without side effect
1569       //  is worth it.
1570       IsWorthIt = true;
1571     }
1572 
1573     // Return end of BasicBlock.
1574     return RuntimeCall.getParent()->getTerminator();
1575   }
1576 
1577   /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1578   bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1579                                Instruction &WaitMovementPoint) {
1580     // Create stack allocated handle (__tgt_async_info) at the beginning of the
1581     // function. Used for storing information of the async transfer, allowing to
1582     // wait on it later.
1583     auto &IRBuilder = OMPInfoCache.OMPBuilder;
1584     Function *F = RuntimeCall.getCaller();
1585     BasicBlock &Entry = F->getEntryBlock();
1586     IRBuilder.Builder.SetInsertPoint(&Entry,
1587                                      Entry.getFirstNonPHIOrDbgOrAlloca());
1588     Value *Handle = IRBuilder.Builder.CreateAlloca(
1589         IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle");
1590     Handle =
1591         IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr);
1592 
1593     // Add "issue" runtime call declaration:
1594     // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1595     //   i8**, i8**, i64*, i64*)
1596     FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1597         M, OMPRTL___tgt_target_data_begin_mapper_issue);
1598 
1599     // Change RuntimeCall call site for its asynchronous version.
1600     SmallVector<Value *, 16> Args;
1601     for (auto &Arg : RuntimeCall.args())
1602       Args.push_back(Arg.get());
1603     Args.push_back(Handle);
1604 
1605     CallInst *IssueCallsite =
1606         CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1607     OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1608     RuntimeCall.eraseFromParent();
1609 
1610     // Add "wait" runtime call declaration:
1611     // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1612     FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1613         M, OMPRTL___tgt_target_data_begin_mapper_wait);
1614 
1615     Value *WaitParams[2] = {
1616         IssueCallsite->getArgOperand(
1617             OffloadArray::DeviceIDArgNum), // device_id.
1618         Handle                             // handle to wait on.
1619     };
1620     CallInst *WaitCallsite = CallInst::Create(
1621         WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1622     OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1623 
1624     return true;
1625   }
1626 
1627   static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1628                                     bool GlobalOnly, bool &SingleChoice) {
1629     if (CurrentIdent == NextIdent)
1630       return CurrentIdent;
1631 
1632     // TODO: Figure out how to actually combine multiple debug locations. For
1633     //       now we just keep an existing one if there is a single choice.
1634     if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1635       SingleChoice = !CurrentIdent;
1636       return NextIdent;
1637     }
1638     return nullptr;
1639   }
1640 
1641   /// Return an `struct ident_t*` value that represents the ones used in the
1642   /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1643   /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1644   /// return value we create one from scratch. We also do not yet combine
1645   /// information, e.g., the source locations, see combinedIdentStruct.
1646   Value *
1647   getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1648                                  Function &F, bool GlobalOnly) {
1649     bool SingleChoice = true;
1650     Value *Ident = nullptr;
1651     auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1652       CallInst *CI = getCallIfRegularCall(U, &RFI);
1653       if (!CI || &F != &Caller)
1654         return false;
1655       Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1656                                   /* GlobalOnly */ true, SingleChoice);
1657       return false;
1658     };
1659     RFI.foreachUse(SCC, CombineIdentStruct);
1660 
1661     if (!Ident || !SingleChoice) {
1662       // The IRBuilder uses the insertion block to get to the module, this is
1663       // unfortunate but we work around it for now.
1664       if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1665         OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1666             &F.getEntryBlock(), F.getEntryBlock().begin()));
1667       // Create a fallback location if non was found.
1668       // TODO: Use the debug locations of the calls instead.
1669       uint32_t SrcLocStrSize;
1670       Constant *Loc =
1671           OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1672       Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1673     }
1674     return Ident;
1675   }
1676 
1677   /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1678   /// \p ReplVal if given.
1679   bool deduplicateRuntimeCalls(Function &F,
1680                                OMPInformationCache::RuntimeFunctionInfo &RFI,
1681                                Value *ReplVal = nullptr) {
1682     auto *UV = RFI.getUseVector(F);
1683     if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1684       return false;
1685 
1686     LLVM_DEBUG(
1687         dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1688                << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1689 
1690     assert((!ReplVal || (isa<Argument>(ReplVal) &&
1691                          cast<Argument>(ReplVal)->getParent() == &F)) &&
1692            "Unexpected replacement value!");
1693 
1694     // TODO: Use dominance to find a good position instead.
1695     auto CanBeMoved = [this](CallBase &CB) {
1696       unsigned NumArgs = CB.arg_size();
1697       if (NumArgs == 0)
1698         return true;
1699       if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1700         return false;
1701       for (unsigned U = 1; U < NumArgs; ++U)
1702         if (isa<Instruction>(CB.getArgOperand(U)))
1703           return false;
1704       return true;
1705     };
1706 
1707     if (!ReplVal) {
1708       for (Use *U : *UV)
1709         if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1710           if (!CanBeMoved(*CI))
1711             continue;
1712 
1713           // If the function is a kernel, dedup will move
1714           // the runtime call right after the kernel init callsite. Otherwise,
1715           // it will move it to the beginning of the caller function.
1716           if (isKernel(F)) {
1717             auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1718             auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1719 
1720             if (KernelInitUV->empty())
1721               continue;
1722 
1723             assert(KernelInitUV->size() == 1 &&
1724                    "Expected a single __kmpc_target_init in kernel\n");
1725 
1726             CallInst *KernelInitCI =
1727                 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1728             assert(KernelInitCI &&
1729                    "Expected a call to __kmpc_target_init in kernel\n");
1730 
1731             CI->moveAfter(KernelInitCI);
1732           } else
1733             CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1734           ReplVal = CI;
1735           break;
1736         }
1737       if (!ReplVal)
1738         return false;
1739     }
1740 
1741     // If we use a call as a replacement value we need to make sure the ident is
1742     // valid at the new location. For now we just pick a global one, either
1743     // existing and used by one of the calls, or created from scratch.
1744     if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1745       if (!CI->arg_empty() &&
1746           CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1747         Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1748                                                       /* GlobalOnly */ true);
1749         CI->setArgOperand(0, Ident);
1750       }
1751     }
1752 
1753     bool Changed = false;
1754     auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1755       CallInst *CI = getCallIfRegularCall(U, &RFI);
1756       if (!CI || CI == ReplVal || &F != &Caller)
1757         return false;
1758       assert(CI->getCaller() == &F && "Unexpected call!");
1759 
1760       auto Remark = [&](OptimizationRemark OR) {
1761         return OR << "OpenMP runtime call "
1762                   << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1763       };
1764       if (CI->getDebugLoc())
1765         emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1766       else
1767         emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1768 
1769       CGUpdater.removeCallSite(*CI);
1770       CI->replaceAllUsesWith(ReplVal);
1771       CI->eraseFromParent();
1772       ++NumOpenMPRuntimeCallsDeduplicated;
1773       Changed = true;
1774       return true;
1775     };
1776     RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1777 
1778     return Changed;
1779   }
1780 
1781   /// Collect arguments that represent the global thread id in \p GTIdArgs.
1782   void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1783     // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1784     //       initialization. We could define an AbstractAttribute instead and
1785     //       run the Attributor here once it can be run as an SCC pass.
1786 
1787     // Helper to check the argument \p ArgNo at all call sites of \p F for
1788     // a GTId.
1789     auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1790       if (!F.hasLocalLinkage())
1791         return false;
1792       for (Use &U : F.uses()) {
1793         if (CallInst *CI = getCallIfRegularCall(U)) {
1794           Value *ArgOp = CI->getArgOperand(ArgNo);
1795           if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1796               getCallIfRegularCall(
1797                   *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1798             continue;
1799         }
1800         return false;
1801       }
1802       return true;
1803     };
1804 
1805     // Helper to identify uses of a GTId as GTId arguments.
1806     auto AddUserArgs = [&](Value &GTId) {
1807       for (Use &U : GTId.uses())
1808         if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1809           if (CI->isArgOperand(&U))
1810             if (Function *Callee = CI->getCalledFunction())
1811               if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1812                 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1813     };
1814 
1815     // The argument users of __kmpc_global_thread_num calls are GTIds.
1816     OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1817         OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1818 
1819     GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1820       if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1821         AddUserArgs(*CI);
1822       return false;
1823     });
1824 
1825     // Transitively search for more arguments by looking at the users of the
1826     // ones we know already. During the search the GTIdArgs vector is extended
1827     // so we cannot cache the size nor can we use a range based for.
1828     for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1829       AddUserArgs(*GTIdArgs[U]);
1830   }
1831 
1832   /// Kernel (=GPU) optimizations and utility functions
1833   ///
1834   ///{{
1835 
1836   /// Check if \p F is a kernel, hence entry point for target offloading.
1837   bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
1838 
1839   /// Cache to remember the unique kernel for a function.
1840   DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap;
1841 
1842   /// Find the unique kernel that will execute \p F, if any.
1843   Kernel getUniqueKernelFor(Function &F);
1844 
1845   /// Find the unique kernel that will execute \p I, if any.
1846   Kernel getUniqueKernelFor(Instruction &I) {
1847     return getUniqueKernelFor(*I.getFunction());
1848   }
1849 
1850   /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
1851   /// the cases we can avoid taking the address of a function.
1852   bool rewriteDeviceCodeStateMachine();
1853 
1854   ///
1855   ///}}
1856 
1857   /// Emit a remark generically
1858   ///
1859   /// This template function can be used to generically emit a remark. The
1860   /// RemarkKind should be one of the following:
1861   ///   - OptimizationRemark to indicate a successful optimization attempt
1862   ///   - OptimizationRemarkMissed to report a failed optimization attempt
1863   ///   - OptimizationRemarkAnalysis to provide additional information about an
1864   ///     optimization attempt
1865   ///
1866   /// The remark is built using a callback function provided by the caller that
1867   /// takes a RemarkKind as input and returns a RemarkKind.
1868   template <typename RemarkKind, typename RemarkCallBack>
1869   void emitRemark(Instruction *I, StringRef RemarkName,
1870                   RemarkCallBack &&RemarkCB) const {
1871     Function *F = I->getParent()->getParent();
1872     auto &ORE = OREGetter(F);
1873 
1874     if (RemarkName.startswith("OMP"))
1875       ORE.emit([&]() {
1876         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
1877                << " [" << RemarkName << "]";
1878       });
1879     else
1880       ORE.emit(
1881           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
1882   }
1883 
1884   /// Emit a remark on a function.
1885   template <typename RemarkKind, typename RemarkCallBack>
1886   void emitRemark(Function *F, StringRef RemarkName,
1887                   RemarkCallBack &&RemarkCB) const {
1888     auto &ORE = OREGetter(F);
1889 
1890     if (RemarkName.startswith("OMP"))
1891       ORE.emit([&]() {
1892         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
1893                << " [" << RemarkName << "]";
1894       });
1895     else
1896       ORE.emit(
1897           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
1898   }
1899 
1900   /// The underlying module.
1901   Module &M;
1902 
1903   /// The SCC we are operating on.
1904   SmallVectorImpl<Function *> &SCC;
1905 
1906   /// Callback to update the call graph, the first argument is a removed call,
1907   /// the second an optional replacement call.
1908   CallGraphUpdater &CGUpdater;
1909 
1910   /// Callback to get an OptimizationRemarkEmitter from a Function *
1911   OptimizationRemarkGetter OREGetter;
1912 
1913   /// OpenMP-specific information cache. Also Used for Attributor runs.
1914   OMPInformationCache &OMPInfoCache;
1915 
1916   /// Attributor instance.
1917   Attributor &A;
1918 
1919   /// Helper function to run Attributor on SCC.
1920   bool runAttributor(bool IsModulePass) {
1921     if (SCC.empty())
1922       return false;
1923 
1924     registerAAs(IsModulePass);
1925 
1926     ChangeStatus Changed = A.run();
1927 
1928     LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
1929                       << " functions, result: " << Changed << ".\n");
1930 
1931     return Changed == ChangeStatus::CHANGED;
1932   }
1933 
1934   void registerFoldRuntimeCall(RuntimeFunction RF);
1935 
1936   /// Populate the Attributor with abstract attribute opportunities in the
1937   /// functions.
1938   void registerAAs(bool IsModulePass);
1939 
1940 public:
1941   /// Callback to register AAs for live functions, including internal functions
1942   /// marked live during the traversal.
1943   static void registerAAsForFunction(Attributor &A, const Function &F);
1944 };
1945 
1946 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
1947   if (!OMPInfoCache.ModuleSlice.empty() && !OMPInfoCache.ModuleSlice.count(&F))
1948     return nullptr;
1949 
1950   // Use a scope to keep the lifetime of the CachedKernel short.
1951   {
1952     std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
1953     if (CachedKernel)
1954       return *CachedKernel;
1955 
1956     // TODO: We should use an AA to create an (optimistic and callback
1957     //       call-aware) call graph. For now we stick to simple patterns that
1958     //       are less powerful, basically the worst fixpoint.
1959     if (isKernel(F)) {
1960       CachedKernel = Kernel(&F);
1961       return *CachedKernel;
1962     }
1963 
1964     CachedKernel = nullptr;
1965     if (!F.hasLocalLinkage()) {
1966 
1967       // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
1968       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1969         return ORA << "Potentially unknown OpenMP target region caller.";
1970       };
1971       emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
1972 
1973       return nullptr;
1974     }
1975   }
1976 
1977   auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
1978     if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
1979       // Allow use in equality comparisons.
1980       if (Cmp->isEquality())
1981         return getUniqueKernelFor(*Cmp);
1982       return nullptr;
1983     }
1984     if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
1985       // Allow direct calls.
1986       if (CB->isCallee(&U))
1987         return getUniqueKernelFor(*CB);
1988 
1989       OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
1990           OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
1991       // Allow the use in __kmpc_parallel_51 calls.
1992       if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
1993         return getUniqueKernelFor(*CB);
1994       return nullptr;
1995     }
1996     // Disallow every other use.
1997     return nullptr;
1998   };
1999 
2000   // TODO: In the future we want to track more than just a unique kernel.
2001   SmallPtrSet<Kernel, 2> PotentialKernels;
2002   OMPInformationCache::foreachUse(F, [&](const Use &U) {
2003     PotentialKernels.insert(GetUniqueKernelForUse(U));
2004   });
2005 
2006   Kernel K = nullptr;
2007   if (PotentialKernels.size() == 1)
2008     K = *PotentialKernels.begin();
2009 
2010   // Cache the result.
2011   UniqueKernelMap[&F] = K;
2012 
2013   return K;
2014 }
2015 
2016 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2017   OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2018       OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2019 
2020   bool Changed = false;
2021   if (!KernelParallelRFI)
2022     return Changed;
2023 
2024   // If we have disabled state machine changes, exit
2025   if (DisableOpenMPOptStateMachineRewrite)
2026     return Changed;
2027 
2028   for (Function *F : SCC) {
2029 
2030     // Check if the function is a use in a __kmpc_parallel_51 call at
2031     // all.
2032     bool UnknownUse = false;
2033     bool KernelParallelUse = false;
2034     unsigned NumDirectCalls = 0;
2035 
2036     SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2037     OMPInformationCache::foreachUse(*F, [&](Use &U) {
2038       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2039         if (CB->isCallee(&U)) {
2040           ++NumDirectCalls;
2041           return;
2042         }
2043 
2044       if (isa<ICmpInst>(U.getUser())) {
2045         ToBeReplacedStateMachineUses.push_back(&U);
2046         return;
2047       }
2048 
2049       // Find wrapper functions that represent parallel kernels.
2050       CallInst *CI =
2051           OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2052       const unsigned int WrapperFunctionArgNo = 6;
2053       if (!KernelParallelUse && CI &&
2054           CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2055         KernelParallelUse = true;
2056         ToBeReplacedStateMachineUses.push_back(&U);
2057         return;
2058       }
2059       UnknownUse = true;
2060     });
2061 
2062     // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2063     // use.
2064     if (!KernelParallelUse)
2065       continue;
2066 
2067     // If this ever hits, we should investigate.
2068     // TODO: Checking the number of uses is not a necessary restriction and
2069     // should be lifted.
2070     if (UnknownUse || NumDirectCalls != 1 ||
2071         ToBeReplacedStateMachineUses.size() > 2) {
2072       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2073         return ORA << "Parallel region is used in "
2074                    << (UnknownUse ? "unknown" : "unexpected")
2075                    << " ways. Will not attempt to rewrite the state machine.";
2076       };
2077       emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2078       continue;
2079     }
2080 
2081     // Even if we have __kmpc_parallel_51 calls, we (for now) give
2082     // up if the function is not called from a unique kernel.
2083     Kernel K = getUniqueKernelFor(*F);
2084     if (!K) {
2085       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2086         return ORA << "Parallel region is not called from a unique kernel. "
2087                       "Will not attempt to rewrite the state machine.";
2088       };
2089       emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2090       continue;
2091     }
2092 
2093     // We now know F is a parallel body function called only from the kernel K.
2094     // We also identified the state machine uses in which we replace the
2095     // function pointer by a new global symbol for identification purposes. This
2096     // ensures only direct calls to the function are left.
2097 
2098     Module &M = *F->getParent();
2099     Type *Int8Ty = Type::getInt8Ty(M.getContext());
2100 
2101     auto *ID = new GlobalVariable(
2102         M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2103         UndefValue::get(Int8Ty), F->getName() + ".ID");
2104 
2105     for (Use *U : ToBeReplacedStateMachineUses)
2106       U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2107           ID, U->get()->getType()));
2108 
2109     ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2110 
2111     Changed = true;
2112   }
2113 
2114   return Changed;
2115 }
2116 
2117 /// Abstract Attribute for tracking ICV values.
2118 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2119   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2120   AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2121 
2122   void initialize(Attributor &A) override {
2123     Function *F = getAnchorScope();
2124     if (!F || !A.isFunctionIPOAmendable(*F))
2125       indicatePessimisticFixpoint();
2126   }
2127 
2128   /// Returns true if value is assumed to be tracked.
2129   bool isAssumedTracked() const { return getAssumed(); }
2130 
2131   /// Returns true if value is known to be tracked.
2132   bool isKnownTracked() const { return getAssumed(); }
2133 
2134   /// Create an abstract attribute biew for the position \p IRP.
2135   static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2136 
2137   /// Return the value with which \p I can be replaced for specific \p ICV.
2138   virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2139                                                      const Instruction *I,
2140                                                      Attributor &A) const {
2141     return std::nullopt;
2142   }
2143 
2144   /// Return an assumed unique ICV value if a single candidate is found. If
2145   /// there cannot be one, return a nullptr. If it is not clear yet, return
2146   /// std::nullopt.
2147   virtual std::optional<Value *>
2148   getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2149 
2150   // Currently only nthreads is being tracked.
2151   // this array will only grow with time.
2152   InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2153 
2154   /// See AbstractAttribute::getName()
2155   const std::string getName() const override { return "AAICVTracker"; }
2156 
2157   /// See AbstractAttribute::getIdAddr()
2158   const char *getIdAddr() const override { return &ID; }
2159 
2160   /// This function should return true if the type of the \p AA is AAICVTracker
2161   static bool classof(const AbstractAttribute *AA) {
2162     return (AA->getIdAddr() == &ID);
2163   }
2164 
2165   static const char ID;
2166 };
2167 
2168 struct AAICVTrackerFunction : public AAICVTracker {
2169   AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2170       : AAICVTracker(IRP, A) {}
2171 
2172   // FIXME: come up with better string.
2173   const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2174 
2175   // FIXME: come up with some stats.
2176   void trackStatistics() const override {}
2177 
2178   /// We don't manifest anything for this AA.
2179   ChangeStatus manifest(Attributor &A) override {
2180     return ChangeStatus::UNCHANGED;
2181   }
2182 
2183   // Map of ICV to their values at specific program point.
2184   EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2185                   InternalControlVar::ICV___last>
2186       ICVReplacementValuesMap;
2187 
2188   ChangeStatus updateImpl(Attributor &A) override {
2189     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2190 
2191     Function *F = getAnchorScope();
2192 
2193     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2194 
2195     for (InternalControlVar ICV : TrackableICVs) {
2196       auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2197 
2198       auto &ValuesMap = ICVReplacementValuesMap[ICV];
2199       auto TrackValues = [&](Use &U, Function &) {
2200         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2201         if (!CI)
2202           return false;
2203 
2204         // FIXME: handle setters with more that 1 arguments.
2205         /// Track new value.
2206         if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2207           HasChanged = ChangeStatus::CHANGED;
2208 
2209         return false;
2210       };
2211 
2212       auto CallCheck = [&](Instruction &I) {
2213         std::optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2214         if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2215           HasChanged = ChangeStatus::CHANGED;
2216 
2217         return true;
2218       };
2219 
2220       // Track all changes of an ICV.
2221       SetterRFI.foreachUse(TrackValues, F);
2222 
2223       bool UsedAssumedInformation = false;
2224       A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2225                                 UsedAssumedInformation,
2226                                 /* CheckBBLivenessOnly */ true);
2227 
2228       /// TODO: Figure out a way to avoid adding entry in
2229       /// ICVReplacementValuesMap
2230       Instruction *Entry = &F->getEntryBlock().front();
2231       if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2232         ValuesMap.insert(std::make_pair(Entry, nullptr));
2233     }
2234 
2235     return HasChanged;
2236   }
2237 
2238   /// Helper to check if \p I is a call and get the value for it if it is
2239   /// unique.
2240   std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2241                                          InternalControlVar &ICV) const {
2242 
2243     const auto *CB = dyn_cast<CallBase>(&I);
2244     if (!CB || CB->hasFnAttr("no_openmp") ||
2245         CB->hasFnAttr("no_openmp_routines"))
2246       return std::nullopt;
2247 
2248     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2249     auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2250     auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2251     Function *CalledFunction = CB->getCalledFunction();
2252 
2253     // Indirect call, assume ICV changes.
2254     if (CalledFunction == nullptr)
2255       return nullptr;
2256     if (CalledFunction == GetterRFI.Declaration)
2257       return std::nullopt;
2258     if (CalledFunction == SetterRFI.Declaration) {
2259       if (ICVReplacementValuesMap[ICV].count(&I))
2260         return ICVReplacementValuesMap[ICV].lookup(&I);
2261 
2262       return nullptr;
2263     }
2264 
2265     // Since we don't know, assume it changes the ICV.
2266     if (CalledFunction->isDeclaration())
2267       return nullptr;
2268 
2269     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2270         *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2271 
2272     if (ICVTrackingAA.isAssumedTracked()) {
2273       std::optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2274       if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2275                                                  OMPInfoCache)))
2276         return URV;
2277     }
2278 
2279     // If we don't know, assume it changes.
2280     return nullptr;
2281   }
2282 
2283   // We don't check unique value for a function, so return std::nullopt.
2284   std::optional<Value *>
2285   getUniqueReplacementValue(InternalControlVar ICV) const override {
2286     return std::nullopt;
2287   }
2288 
2289   /// Return the value with which \p I can be replaced for specific \p ICV.
2290   std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2291                                              const Instruction *I,
2292                                              Attributor &A) const override {
2293     const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2294     if (ValuesMap.count(I))
2295       return ValuesMap.lookup(I);
2296 
2297     SmallVector<const Instruction *, 16> Worklist;
2298     SmallPtrSet<const Instruction *, 16> Visited;
2299     Worklist.push_back(I);
2300 
2301     std::optional<Value *> ReplVal;
2302 
2303     while (!Worklist.empty()) {
2304       const Instruction *CurrInst = Worklist.pop_back_val();
2305       if (!Visited.insert(CurrInst).second)
2306         continue;
2307 
2308       const BasicBlock *CurrBB = CurrInst->getParent();
2309 
2310       // Go up and look for all potential setters/calls that might change the
2311       // ICV.
2312       while ((CurrInst = CurrInst->getPrevNode())) {
2313         if (ValuesMap.count(CurrInst)) {
2314           std::optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2315           // Unknown value, track new.
2316           if (!ReplVal) {
2317             ReplVal = NewReplVal;
2318             break;
2319           }
2320 
2321           // If we found a new value, we can't know the icv value anymore.
2322           if (NewReplVal)
2323             if (ReplVal != NewReplVal)
2324               return nullptr;
2325 
2326           break;
2327         }
2328 
2329         std::optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2330         if (!NewReplVal)
2331           continue;
2332 
2333         // Unknown value, track new.
2334         if (!ReplVal) {
2335           ReplVal = NewReplVal;
2336           break;
2337         }
2338 
2339         // if (NewReplVal.hasValue())
2340         // We found a new value, we can't know the icv value anymore.
2341         if (ReplVal != NewReplVal)
2342           return nullptr;
2343       }
2344 
2345       // If we are in the same BB and we have a value, we are done.
2346       if (CurrBB == I->getParent() && ReplVal)
2347         return ReplVal;
2348 
2349       // Go through all predecessors and add terminators for analysis.
2350       for (const BasicBlock *Pred : predecessors(CurrBB))
2351         if (const Instruction *Terminator = Pred->getTerminator())
2352           Worklist.push_back(Terminator);
2353     }
2354 
2355     return ReplVal;
2356   }
2357 };
2358 
2359 struct AAICVTrackerFunctionReturned : AAICVTracker {
2360   AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2361       : AAICVTracker(IRP, A) {}
2362 
2363   // FIXME: come up with better string.
2364   const std::string getAsStr() const override {
2365     return "ICVTrackerFunctionReturned";
2366   }
2367 
2368   // FIXME: come up with some stats.
2369   void trackStatistics() const override {}
2370 
2371   /// We don't manifest anything for this AA.
2372   ChangeStatus manifest(Attributor &A) override {
2373     return ChangeStatus::UNCHANGED;
2374   }
2375 
2376   // Map of ICV to their values at specific program point.
2377   EnumeratedArray<std::optional<Value *>, InternalControlVar,
2378                   InternalControlVar::ICV___last>
2379       ICVReplacementValuesMap;
2380 
2381   /// Return the value with which \p I can be replaced for specific \p ICV.
2382   std::optional<Value *>
2383   getUniqueReplacementValue(InternalControlVar ICV) const override {
2384     return ICVReplacementValuesMap[ICV];
2385   }
2386 
2387   ChangeStatus updateImpl(Attributor &A) override {
2388     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2389     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2390         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2391 
2392     if (!ICVTrackingAA.isAssumedTracked())
2393       return indicatePessimisticFixpoint();
2394 
2395     for (InternalControlVar ICV : TrackableICVs) {
2396       std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2397       std::optional<Value *> UniqueICVValue;
2398 
2399       auto CheckReturnInst = [&](Instruction &I) {
2400         std::optional<Value *> NewReplVal =
2401             ICVTrackingAA.getReplacementValue(ICV, &I, A);
2402 
2403         // If we found a second ICV value there is no unique returned value.
2404         if (UniqueICVValue && UniqueICVValue != NewReplVal)
2405           return false;
2406 
2407         UniqueICVValue = NewReplVal;
2408 
2409         return true;
2410       };
2411 
2412       bool UsedAssumedInformation = false;
2413       if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2414                                      UsedAssumedInformation,
2415                                      /* CheckBBLivenessOnly */ true))
2416         UniqueICVValue = nullptr;
2417 
2418       if (UniqueICVValue == ReplVal)
2419         continue;
2420 
2421       ReplVal = UniqueICVValue;
2422       Changed = ChangeStatus::CHANGED;
2423     }
2424 
2425     return Changed;
2426   }
2427 };
2428 
2429 struct AAICVTrackerCallSite : AAICVTracker {
2430   AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2431       : AAICVTracker(IRP, A) {}
2432 
2433   void initialize(Attributor &A) override {
2434     Function *F = getAnchorScope();
2435     if (!F || !A.isFunctionIPOAmendable(*F))
2436       indicatePessimisticFixpoint();
2437 
2438     // We only initialize this AA for getters, so we need to know which ICV it
2439     // gets.
2440     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2441     for (InternalControlVar ICV : TrackableICVs) {
2442       auto ICVInfo = OMPInfoCache.ICVs[ICV];
2443       auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2444       if (Getter.Declaration == getAssociatedFunction()) {
2445         AssociatedICV = ICVInfo.Kind;
2446         return;
2447       }
2448     }
2449 
2450     /// Unknown ICV.
2451     indicatePessimisticFixpoint();
2452   }
2453 
2454   ChangeStatus manifest(Attributor &A) override {
2455     if (!ReplVal || !*ReplVal)
2456       return ChangeStatus::UNCHANGED;
2457 
2458     A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2459     A.deleteAfterManifest(*getCtxI());
2460 
2461     return ChangeStatus::CHANGED;
2462   }
2463 
2464   // FIXME: come up with better string.
2465   const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2466 
2467   // FIXME: come up with some stats.
2468   void trackStatistics() const override {}
2469 
2470   InternalControlVar AssociatedICV;
2471   std::optional<Value *> ReplVal;
2472 
2473   ChangeStatus updateImpl(Attributor &A) override {
2474     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2475         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2476 
2477     // We don't have any information, so we assume it changes the ICV.
2478     if (!ICVTrackingAA.isAssumedTracked())
2479       return indicatePessimisticFixpoint();
2480 
2481     std::optional<Value *> NewReplVal =
2482         ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2483 
2484     if (ReplVal == NewReplVal)
2485       return ChangeStatus::UNCHANGED;
2486 
2487     ReplVal = NewReplVal;
2488     return ChangeStatus::CHANGED;
2489   }
2490 
2491   // Return the value with which associated value can be replaced for specific
2492   // \p ICV.
2493   std::optional<Value *>
2494   getUniqueReplacementValue(InternalControlVar ICV) const override {
2495     return ReplVal;
2496   }
2497 };
2498 
2499 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2500   AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2501       : AAICVTracker(IRP, A) {}
2502 
2503   // FIXME: come up with better string.
2504   const std::string getAsStr() const override {
2505     return "ICVTrackerCallSiteReturned";
2506   }
2507 
2508   // FIXME: come up with some stats.
2509   void trackStatistics() const override {}
2510 
2511   /// We don't manifest anything for this AA.
2512   ChangeStatus manifest(Attributor &A) override {
2513     return ChangeStatus::UNCHANGED;
2514   }
2515 
2516   // Map of ICV to their values at specific program point.
2517   EnumeratedArray<std::optional<Value *>, InternalControlVar,
2518                   InternalControlVar::ICV___last>
2519       ICVReplacementValuesMap;
2520 
2521   /// Return the value with which associated value can be replaced for specific
2522   /// \p ICV.
2523   std::optional<Value *>
2524   getUniqueReplacementValue(InternalControlVar ICV) const override {
2525     return ICVReplacementValuesMap[ICV];
2526   }
2527 
2528   ChangeStatus updateImpl(Attributor &A) override {
2529     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2530     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2531         *this, IRPosition::returned(*getAssociatedFunction()),
2532         DepClassTy::REQUIRED);
2533 
2534     // We don't have any information, so we assume it changes the ICV.
2535     if (!ICVTrackingAA.isAssumedTracked())
2536       return indicatePessimisticFixpoint();
2537 
2538     for (InternalControlVar ICV : TrackableICVs) {
2539       std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2540       std::optional<Value *> NewReplVal =
2541           ICVTrackingAA.getUniqueReplacementValue(ICV);
2542 
2543       if (ReplVal == NewReplVal)
2544         continue;
2545 
2546       ReplVal = NewReplVal;
2547       Changed = ChangeStatus::CHANGED;
2548     }
2549     return Changed;
2550   }
2551 };
2552 
2553 struct AAExecutionDomainFunction : public AAExecutionDomain {
2554   AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2555       : AAExecutionDomain(IRP, A) {}
2556 
2557   ~AAExecutionDomainFunction() {
2558     delete RPOT;
2559   }
2560 
2561   void initialize(Attributor &A) override {
2562     if (getAnchorScope()->isDeclaration()) {
2563       indicatePessimisticFixpoint();
2564       return;
2565     }
2566     RPOT = new ReversePostOrderTraversal<Function *>(getAnchorScope());
2567   }
2568 
2569   const std::string getAsStr() const override {
2570     unsigned TotalBlocks = 0, InitialThreadBlocks = 0;
2571     for (auto &It : BEDMap) {
2572       TotalBlocks++;
2573       InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly;
2574     }
2575     return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" +
2576            std::to_string(TotalBlocks) + " executed by initial thread only";
2577   }
2578 
2579   /// See AbstractAttribute::trackStatistics().
2580   void trackStatistics() const override {}
2581 
2582   ChangeStatus manifest(Attributor &A) override {
2583     LLVM_DEBUG({
2584       for (const BasicBlock &BB : *getAnchorScope()) {
2585         if (!isExecutedByInitialThreadOnly(BB))
2586           continue;
2587         dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2588                << BB.getName() << " is executed by a single thread.\n";
2589       }
2590     });
2591 
2592     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2593 
2594     if (DisableOpenMPOptBarrierElimination)
2595       return Changed;
2596 
2597     SmallPtrSet<CallBase *, 16> DeletedBarriers;
2598     auto HandleAlignedBarrier = [&](CallBase *CB) {
2599       const ExecutionDomainTy &ED = CEDMap[CB];
2600       if (!ED.IsReachedFromAlignedBarrierOnly ||
2601           ED.EncounteredNonLocalSideEffect)
2602         return;
2603 
2604       // We can remove this barrier, if it is one, or all aligned barriers
2605       // reaching the kernel end. In the latter case we can transitively work
2606       // our way back until we find a barrier that guards a side-effect if we
2607       // are dealing with the kernel end here.
2608       if (CB) {
2609         DeletedBarriers.insert(CB);
2610         A.deleteAfterManifest(*CB);
2611         ++NumBarriersEliminated;
2612         Changed = ChangeStatus::CHANGED;
2613       } else if (!ED.AlignedBarriers.empty()) {
2614         NumBarriersEliminated += ED.AlignedBarriers.size();
2615         Changed = ChangeStatus::CHANGED;
2616         SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(),
2617                                          ED.AlignedBarriers.end());
2618         SmallSetVector<CallBase *, 16> Visited;
2619         while (!Worklist.empty()) {
2620           CallBase *LastCB = Worklist.pop_back_val();
2621           if (!Visited.insert(LastCB))
2622             continue;
2623           if (!DeletedBarriers.count(LastCB)) {
2624             A.deleteAfterManifest(*LastCB);
2625             continue;
2626           }
2627           // The final aligned barrier (LastCB) reaching the kernel end was
2628           // removed already. This means we can go one step further and remove
2629           // the barriers encoutered last before (LastCB).
2630           const ExecutionDomainTy &LastED = CEDMap[LastCB];
2631           Worklist.append(LastED.AlignedBarriers.begin(),
2632                           LastED.AlignedBarriers.end());
2633         }
2634       }
2635 
2636       // If we actually eliminated a barrier we need to eliminate the associated
2637       // llvm.assumes as well to avoid creating UB.
2638       if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty()))
2639         for (auto *AssumeCB : ED.EncounteredAssumes)
2640           A.deleteAfterManifest(*AssumeCB);
2641     };
2642 
2643     for (auto *CB : AlignedBarriers)
2644       HandleAlignedBarrier(CB);
2645 
2646     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2647     // Handle the "kernel end barrier" for kernels too.
2648     if (OMPInfoCache.Kernels.count(getAnchorScope()))
2649       HandleAlignedBarrier(nullptr);
2650 
2651     return Changed;
2652   }
2653 
2654   /// Merge barrier and assumption information from \p PredED into the successor
2655   /// \p ED.
2656   void
2657   mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED,
2658                                            const ExecutionDomainTy &PredED);
2659 
2660   /// Merge all information from \p PredED into the successor \p ED. If
2661   /// \p InitialEdgeOnly is set, only the initial edge will enter the block
2662   /// represented by \p ED from this predecessor.
2663   void mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED,
2664                           const ExecutionDomainTy &PredED,
2665                           bool InitialEdgeOnly = false);
2666 
2667   /// Accumulate information for the entry block in \p EntryBBED.
2668   void handleEntryBB(Attributor &A, ExecutionDomainTy &EntryBBED);
2669 
2670   /// See AbstractAttribute::updateImpl.
2671   ChangeStatus updateImpl(Attributor &A) override;
2672 
2673   /// Query interface, see AAExecutionDomain
2674   ///{
2675   bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2676     if (!isValidState())
2677       return false;
2678     return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly;
2679   }
2680 
2681   bool isExecutedInAlignedRegion(Attributor &A,
2682                                  const Instruction &I) const override {
2683     assert(I.getFunction() == getAnchorScope() &&
2684            "Instruction is out of scope!");
2685     if (!isValidState())
2686       return false;
2687 
2688     const Instruction *CurI;
2689 
2690     // Check forward until a call or the block end is reached.
2691     CurI = &I;
2692     do {
2693       auto *CB = dyn_cast<CallBase>(CurI);
2694       if (!CB)
2695         continue;
2696       if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB))) {
2697         break;
2698       }
2699       const auto &It = CEDMap.find(CB);
2700       if (It == CEDMap.end())
2701         continue;
2702       if (!It->getSecond().IsReachingAlignedBarrierOnly)
2703         return false;
2704       break;
2705     } while ((CurI = CurI->getNextNonDebugInstruction()));
2706 
2707     if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly)
2708       return false;
2709 
2710     // Check backward until a call or the block beginning is reached.
2711     CurI = &I;
2712     do {
2713       auto *CB = dyn_cast<CallBase>(CurI);
2714       if (!CB)
2715         continue;
2716       if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB))) {
2717         break;
2718       }
2719       const auto &It = CEDMap.find(CB);
2720       if (It == CEDMap.end())
2721         continue;
2722       if (!AA::isNoSyncInst(A, *CB, *this)) {
2723         if (It->getSecond().IsReachedFromAlignedBarrierOnly) {
2724           break;
2725         }
2726         return false;
2727       }
2728 
2729       Function *Callee = CB->getCalledFunction();
2730       if (!Callee || Callee->isDeclaration())
2731         return false;
2732       const auto &EDAA = A.getAAFor<AAExecutionDomain>(
2733           *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
2734       if (!EDAA.getState().isValidState())
2735         return false;
2736       if (!EDAA.getFunctionExecutionDomain().IsReachedFromAlignedBarrierOnly)
2737         return false;
2738       break;
2739     } while ((CurI = CurI->getPrevNonDebugInstruction()));
2740 
2741     if (!CurI &&
2742         !llvm::all_of(
2743             predecessors(I.getParent()), [&](const BasicBlock *PredBB) {
2744               return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly;
2745             })) {
2746       return false;
2747     }
2748 
2749     // On neither traversal we found a anything but aligned barriers.
2750     return true;
2751   }
2752 
2753   ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override {
2754     assert(isValidState() &&
2755            "No request should be made against an invalid state!");
2756     return BEDMap.lookup(&BB);
2757   }
2758   ExecutionDomainTy getExecutionDomain(const CallBase &CB) const override {
2759     assert(isValidState() &&
2760            "No request should be made against an invalid state!");
2761     return CEDMap.lookup(&CB);
2762   }
2763   ExecutionDomainTy getFunctionExecutionDomain() const override {
2764     assert(isValidState() &&
2765            "No request should be made against an invalid state!");
2766     return BEDMap.lookup(nullptr);
2767   }
2768   ///}
2769 
2770   // Check if the edge into the successor block contains a condition that only
2771   // lets the main thread execute it.
2772   static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge,
2773                                       BasicBlock &SuccessorBB) {
2774     if (!Edge || !Edge->isConditional())
2775       return false;
2776     if (Edge->getSuccessor(0) != &SuccessorBB)
2777       return false;
2778 
2779     auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2780     if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2781       return false;
2782 
2783     ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2784     if (!C)
2785       return false;
2786 
2787     // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2788     if (C->isAllOnesValue()) {
2789       auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2790       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2791       auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2792       CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2793       if (!CB)
2794         return false;
2795       const int InitModeArgNo = 1;
2796       auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2797       return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2798     }
2799 
2800     if (C->isZero()) {
2801       // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2802       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2803         if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2804           return true;
2805 
2806       // Match: 0 == llvm.amdgcn.workitem.id.x()
2807       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2808         if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2809           return true;
2810     }
2811 
2812     return false;
2813   };
2814 
2815   /// Mapping containing information per block.
2816   DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap;
2817   DenseMap<const CallBase *, ExecutionDomainTy> CEDMap;
2818   SmallSetVector<CallBase *, 16> AlignedBarriers;
2819 
2820   ReversePostOrderTraversal<Function *> *RPOT = nullptr;
2821 };
2822 
2823 void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions(
2824     Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) {
2825   for (auto *EA : PredED.EncounteredAssumes)
2826     ED.addAssumeInst(A, *EA);
2827 
2828   for (auto *AB : PredED.AlignedBarriers)
2829     ED.addAlignedBarrier(A, *AB);
2830 }
2831 
2832 void AAExecutionDomainFunction::mergeInPredecessor(
2833     Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED,
2834     bool InitialEdgeOnly) {
2835   ED.IsExecutedByInitialThreadOnly =
2836       InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly &&
2837                           ED.IsExecutedByInitialThreadOnly);
2838 
2839   ED.IsReachedFromAlignedBarrierOnly = ED.IsReachedFromAlignedBarrierOnly &&
2840                                        PredED.IsReachedFromAlignedBarrierOnly;
2841   ED.EncounteredNonLocalSideEffect =
2842       ED.EncounteredNonLocalSideEffect | PredED.EncounteredNonLocalSideEffect;
2843   if (ED.IsReachedFromAlignedBarrierOnly)
2844     mergeInPredecessorBarriersAndAssumptions(A, ED, PredED);
2845   else
2846     ED.clearAssumeInstAndAlignedBarriers();
2847 }
2848 
2849 void AAExecutionDomainFunction::handleEntryBB(Attributor &A,
2850                                               ExecutionDomainTy &EntryBBED) {
2851   SmallVector<ExecutionDomainTy> PredExecDomains;
2852   auto PredForCallSite = [&](AbstractCallSite ACS) {
2853     const auto &EDAA = A.getAAFor<AAExecutionDomain>(
2854         *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2855         DepClassTy::OPTIONAL);
2856     if (!EDAA.getState().isValidState())
2857       return false;
2858     PredExecDomains.emplace_back(
2859         EDAA.getExecutionDomain(*cast<CallBase>(ACS.getInstruction())));
2860     return true;
2861   };
2862 
2863   bool AllCallSitesKnown;
2864   if (A.checkForAllCallSites(PredForCallSite, *this,
2865                              /* RequiresAllCallSites */ true,
2866                              AllCallSitesKnown)) {
2867     for (const auto &PredED : PredExecDomains)
2868       mergeInPredecessor(A, EntryBBED, PredED);
2869 
2870   } else {
2871     // We could not find all predecessors, so this is either a kernel or a
2872     // function with external linkage (or with some other weird uses).
2873     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2874     if (OMPInfoCache.Kernels.count(getAnchorScope())) {
2875       EntryBBED.IsExecutedByInitialThreadOnly = false;
2876       EntryBBED.IsReachedFromAlignedBarrierOnly = true;
2877       EntryBBED.EncounteredNonLocalSideEffect = false;
2878     } else {
2879       EntryBBED.IsExecutedByInitialThreadOnly = false;
2880       EntryBBED.IsReachedFromAlignedBarrierOnly = false;
2881       EntryBBED.EncounteredNonLocalSideEffect = true;
2882     }
2883   }
2884 
2885   auto &FnED = BEDMap[nullptr];
2886   FnED.IsReachingAlignedBarrierOnly &=
2887       EntryBBED.IsReachedFromAlignedBarrierOnly;
2888 }
2889 
2890 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2891 
2892   bool Changed = false;
2893 
2894   // Helper to deal with an aligned barrier encountered during the forward
2895   // traversal. \p CB is the aligned barrier, \p ED is the execution domain when
2896   // it was encountered.
2897   auto HandleAlignedBarrier = [&](CallBase *CB, ExecutionDomainTy &ED) {
2898     if (CB)
2899       Changed |= AlignedBarriers.insert(CB);
2900     // First, update the barrier ED kept in the separate CEDMap.
2901     auto &CallED = CEDMap[CB];
2902     mergeInPredecessor(A, CallED, ED);
2903     // Next adjust the ED we use for the traversal.
2904     ED.EncounteredNonLocalSideEffect = false;
2905     ED.IsReachedFromAlignedBarrierOnly = true;
2906     // Aligned barrier collection has to come last.
2907     ED.clearAssumeInstAndAlignedBarriers();
2908     if (CB)
2909       ED.addAlignedBarrier(A, *CB);
2910   };
2911 
2912   auto &LivenessAA =
2913       A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
2914 
2915   // Set \p R to \V and report true if that changed \p R.
2916   auto SetAndRecord = [&](bool &R, bool V) {
2917     bool Eq = (R == V);
2918     R = V;
2919     return !Eq;
2920   };
2921 
2922   auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2923 
2924   Function *F = getAnchorScope();
2925   BasicBlock &EntryBB = F->getEntryBlock();
2926   bool IsKernel = OMPInfoCache.Kernels.count(F);
2927 
2928   SmallVector<Instruction *> SyncInstWorklist;
2929   for (auto &RIt : *RPOT) {
2930     BasicBlock &BB = *RIt;
2931 
2932     bool IsEntryBB = &BB == &EntryBB;
2933     // TODO: We use local reasoning since we don't have a divergence analysis
2934     // 	     running as well. We could basically allow uniform branches here.
2935     bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel;
2936     ExecutionDomainTy ED;
2937     // Propagate "incoming edges" into information about this block.
2938     if (IsEntryBB) {
2939       handleEntryBB(A, ED);
2940     } else {
2941       // For live non-entry blocks we only propagate
2942       // information via live edges.
2943       if (LivenessAA.isAssumedDead(&BB))
2944         continue;
2945 
2946       for (auto *PredBB : predecessors(&BB)) {
2947         if (LivenessAA.isEdgeDead(PredBB, &BB))
2948           continue;
2949         bool InitialEdgeOnly = isInitialThreadOnlyEdge(
2950             A, dyn_cast<BranchInst>(PredBB->getTerminator()), BB);
2951         mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly);
2952       }
2953     }
2954 
2955     // Now we traverse the block, accumulate effects in ED and attach
2956     // information to calls.
2957     for (Instruction &I : BB) {
2958       bool UsedAssumedInformation;
2959       if (A.isAssumedDead(I, *this, &LivenessAA, UsedAssumedInformation,
2960                           /* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL,
2961                           /* CheckForDeadStore */ true))
2962         continue;
2963 
2964       // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the
2965       // former is collected the latter is ignored.
2966       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2967         if (auto *AI = dyn_cast_or_null<AssumeInst>(II)) {
2968           ED.addAssumeInst(A, *AI);
2969           continue;
2970         }
2971         // TODO: Should we also collect and delete lifetime markers?
2972         if (II->isAssumeLikeIntrinsic())
2973           continue;
2974       }
2975 
2976       auto *CB = dyn_cast<CallBase>(&I);
2977       bool IsNoSync = AA::isNoSyncInst(A, I, *this);
2978       bool IsAlignedBarrier =
2979           !IsNoSync && CB &&
2980           AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock);
2981 
2982       AlignedBarrierLastInBlock &= IsNoSync;
2983 
2984       // Next we check for calls. Aligned barriers are handled
2985       // explicitly, everything else is kept for the backward traversal and will
2986       // also affect our state.
2987       if (CB) {
2988         if (IsAlignedBarrier) {
2989           HandleAlignedBarrier(CB, ED);
2990           AlignedBarrierLastInBlock = true;
2991           continue;
2992         }
2993 
2994         // Check the pointer(s) of a memory intrinsic explicitly.
2995         if (isa<MemIntrinsic>(&I)) {
2996           if (!ED.EncounteredNonLocalSideEffect &&
2997               AA::isPotentiallyAffectedByBarrier(A, I, *this))
2998             ED.EncounteredNonLocalSideEffect = true;
2999           if (!IsNoSync) {
3000             ED.IsReachedFromAlignedBarrierOnly = false;
3001             SyncInstWorklist.push_back(&I);
3002           }
3003           continue;
3004         }
3005 
3006         // Record how we entered the call, then accumulate the effect of the
3007         // call in ED for potential use by the callee.
3008         auto &CallED = CEDMap[CB];
3009         mergeInPredecessor(A, CallED, ED);
3010 
3011         // If we have a sync-definition we can check if it starts/ends in an
3012         // aligned barrier. If we are unsure we assume any sync breaks
3013         // alignment.
3014         Function *Callee = CB->getCalledFunction();
3015         if (!IsNoSync && Callee && !Callee->isDeclaration()) {
3016           const auto &EDAA = A.getAAFor<AAExecutionDomain>(
3017               *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
3018           if (EDAA.getState().isValidState()) {
3019             const auto &CalleeED = EDAA.getFunctionExecutionDomain();
3020             ED.IsReachedFromAlignedBarrierOnly =
3021                 CallED.IsReachedFromAlignedBarrierOnly =
3022                     CalleeED.IsReachedFromAlignedBarrierOnly;
3023             AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly;
3024             if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly)
3025               ED.EncounteredNonLocalSideEffect |=
3026                   CalleeED.EncounteredNonLocalSideEffect;
3027             else
3028               ED.EncounteredNonLocalSideEffect =
3029                   CalleeED.EncounteredNonLocalSideEffect;
3030             if (!CalleeED.IsReachingAlignedBarrierOnly)
3031               SyncInstWorklist.push_back(&I);
3032             if (CalleeED.IsReachedFromAlignedBarrierOnly)
3033               mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED);
3034             continue;
3035           }
3036         }
3037         if (!IsNoSync)
3038           ED.IsReachedFromAlignedBarrierOnly =
3039               CallED.IsReachedFromAlignedBarrierOnly = false;
3040         AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly;
3041         ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory();
3042         if (!IsNoSync)
3043           SyncInstWorklist.push_back(&I);
3044       }
3045 
3046       if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
3047         continue;
3048 
3049       // If we have a callee we try to use fine-grained information to
3050       // determine local side-effects.
3051       if (CB) {
3052         const auto &MemAA = A.getAAFor<AAMemoryLocation>(
3053             *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3054 
3055         auto AccessPred = [&](const Instruction *I, const Value *Ptr,
3056                               AAMemoryLocation::AccessKind,
3057                               AAMemoryLocation::MemoryLocationsKind) {
3058           return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I);
3059         };
3060         if (MemAA.getState().isValidState() &&
3061             MemAA.checkForAllAccessesToMemoryKind(
3062                 AccessPred, AAMemoryLocation::ALL_LOCATIONS))
3063           continue;
3064       }
3065 
3066       if (!I.mayHaveSideEffects() && OMPInfoCache.isOnlyUsedByAssume(I))
3067         continue;
3068 
3069       if (auto *LI = dyn_cast<LoadInst>(&I))
3070         if (LI->hasMetadata(LLVMContext::MD_invariant_load))
3071           continue;
3072 
3073       if (!ED.EncounteredNonLocalSideEffect &&
3074           AA::isPotentiallyAffectedByBarrier(A, I, *this))
3075         ED.EncounteredNonLocalSideEffect = true;
3076     }
3077 
3078     if (!isa<UnreachableInst>(BB.getTerminator()) &&
3079         !BB.getTerminator()->getNumSuccessors()) {
3080 
3081       auto &FnED = BEDMap[nullptr];
3082       mergeInPredecessor(A, FnED, ED);
3083 
3084       if (IsKernel)
3085         HandleAlignedBarrier(nullptr, ED);
3086     }
3087 
3088     ExecutionDomainTy &StoredED = BEDMap[&BB];
3089     ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly;
3090 
3091     // Check if we computed anything different as part of the forward
3092     // traversal. We do not take assumptions and aligned barriers into account
3093     // as they do not influence the state we iterate. Backward traversal values
3094     // are handled later on.
3095     if (ED.IsExecutedByInitialThreadOnly !=
3096             StoredED.IsExecutedByInitialThreadOnly ||
3097         ED.IsReachedFromAlignedBarrierOnly !=
3098             StoredED.IsReachedFromAlignedBarrierOnly ||
3099         ED.EncounteredNonLocalSideEffect !=
3100             StoredED.EncounteredNonLocalSideEffect)
3101       Changed = true;
3102 
3103     // Update the state with the new value.
3104     StoredED = std::move(ED);
3105   }
3106 
3107   // Propagate (non-aligned) sync instruction effects backwards until the
3108   // entry is hit or an aligned barrier.
3109   SmallSetVector<BasicBlock *, 16> Visited;
3110   while (!SyncInstWorklist.empty()) {
3111     Instruction *SyncInst = SyncInstWorklist.pop_back_val();
3112     Instruction *CurInst = SyncInst;
3113     bool HitAlignedBarrier = false;
3114     while ((CurInst = CurInst->getPrevNode())) {
3115       auto *CB = dyn_cast<CallBase>(CurInst);
3116       if (!CB)
3117         continue;
3118       auto &CallED = CEDMap[CB];
3119       if (SetAndRecord(CallED.IsReachingAlignedBarrierOnly, false))
3120         Changed = true;
3121       HitAlignedBarrier = AlignedBarriers.count(CB);
3122       if (HitAlignedBarrier)
3123         break;
3124     }
3125     if (HitAlignedBarrier)
3126       continue;
3127     BasicBlock *SyncBB = SyncInst->getParent();
3128     for (auto *PredBB : predecessors(SyncBB)) {
3129       if (LivenessAA.isEdgeDead(PredBB, SyncBB))
3130         continue;
3131       if (!Visited.insert(PredBB))
3132         continue;
3133       SyncInstWorklist.push_back(PredBB->getTerminator());
3134       auto &PredED = BEDMap[PredBB];
3135       if (SetAndRecord(PredED.IsReachingAlignedBarrierOnly, false))
3136         Changed = true;
3137     }
3138     if (SyncBB != &EntryBB)
3139       continue;
3140     auto &FnED = BEDMap[nullptr];
3141     if (SetAndRecord(FnED.IsReachingAlignedBarrierOnly, false))
3142       Changed = true;
3143   }
3144 
3145   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3146 }
3147 
3148 /// Try to replace memory allocation calls called by a single thread with a
3149 /// static buffer of shared memory.
3150 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
3151   using Base = StateWrapper<BooleanState, AbstractAttribute>;
3152   AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3153 
3154   /// Create an abstract attribute view for the position \p IRP.
3155   static AAHeapToShared &createForPosition(const IRPosition &IRP,
3156                                            Attributor &A);
3157 
3158   /// Returns true if HeapToShared conversion is assumed to be possible.
3159   virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
3160 
3161   /// Returns true if HeapToShared conversion is assumed and the CB is a
3162   /// callsite to a free operation to be removed.
3163   virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
3164 
3165   /// See AbstractAttribute::getName().
3166   const std::string getName() const override { return "AAHeapToShared"; }
3167 
3168   /// See AbstractAttribute::getIdAddr().
3169   const char *getIdAddr() const override { return &ID; }
3170 
3171   /// This function should return true if the type of the \p AA is
3172   /// AAHeapToShared.
3173   static bool classof(const AbstractAttribute *AA) {
3174     return (AA->getIdAddr() == &ID);
3175   }
3176 
3177   /// Unique ID (due to the unique address)
3178   static const char ID;
3179 };
3180 
3181 struct AAHeapToSharedFunction : public AAHeapToShared {
3182   AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
3183       : AAHeapToShared(IRP, A) {}
3184 
3185   const std::string getAsStr() const override {
3186     return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
3187            " malloc calls eligible.";
3188   }
3189 
3190   /// See AbstractAttribute::trackStatistics().
3191   void trackStatistics() const override {}
3192 
3193   /// This functions finds free calls that will be removed by the
3194   /// HeapToShared transformation.
3195   void findPotentialRemovedFreeCalls(Attributor &A) {
3196     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3197     auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3198 
3199     PotentialRemovedFreeCalls.clear();
3200     // Update free call users of found malloc calls.
3201     for (CallBase *CB : MallocCalls) {
3202       SmallVector<CallBase *, 4> FreeCalls;
3203       for (auto *U : CB->users()) {
3204         CallBase *C = dyn_cast<CallBase>(U);
3205         if (C && C->getCalledFunction() == FreeRFI.Declaration)
3206           FreeCalls.push_back(C);
3207       }
3208 
3209       if (FreeCalls.size() != 1)
3210         continue;
3211 
3212       PotentialRemovedFreeCalls.insert(FreeCalls.front());
3213     }
3214   }
3215 
3216   void initialize(Attributor &A) override {
3217     if (DisableOpenMPOptDeglobalization) {
3218       indicatePessimisticFixpoint();
3219       return;
3220     }
3221 
3222     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3223     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3224     if (!RFI.Declaration)
3225       return;
3226 
3227     Attributor::SimplifictionCallbackTy SCB =
3228         [](const IRPosition &, const AbstractAttribute *,
3229            bool &) -> std::optional<Value *> { return nullptr; };
3230 
3231     Function *F = getAnchorScope();
3232     for (User *U : RFI.Declaration->users())
3233       if (CallBase *CB = dyn_cast<CallBase>(U)) {
3234         if (CB->getFunction() != F)
3235           continue;
3236         MallocCalls.insert(CB);
3237         A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
3238                                          SCB);
3239       }
3240 
3241     findPotentialRemovedFreeCalls(A);
3242   }
3243 
3244   bool isAssumedHeapToShared(CallBase &CB) const override {
3245     return isValidState() && MallocCalls.count(&CB);
3246   }
3247 
3248   bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
3249     return isValidState() && PotentialRemovedFreeCalls.count(&CB);
3250   }
3251 
3252   ChangeStatus manifest(Attributor &A) override {
3253     if (MallocCalls.empty())
3254       return ChangeStatus::UNCHANGED;
3255 
3256     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3257     auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3258 
3259     Function *F = getAnchorScope();
3260     auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3261                                             DepClassTy::OPTIONAL);
3262 
3263     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3264     for (CallBase *CB : MallocCalls) {
3265       // Skip replacing this if HeapToStack has already claimed it.
3266       if (HS && HS->isAssumedHeapToStack(*CB))
3267         continue;
3268 
3269       // Find the unique free call to remove it.
3270       SmallVector<CallBase *, 4> FreeCalls;
3271       for (auto *U : CB->users()) {
3272         CallBase *C = dyn_cast<CallBase>(U);
3273         if (C && C->getCalledFunction() == FreeCall.Declaration)
3274           FreeCalls.push_back(C);
3275       }
3276       if (FreeCalls.size() != 1)
3277         continue;
3278 
3279       auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3280 
3281       if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3282         LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3283                           << " with shared memory."
3284                           << " Shared memory usage is limited to "
3285                           << SharedMemoryLimit << " bytes\n");
3286         continue;
3287       }
3288 
3289       LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3290                         << " with " << AllocSize->getZExtValue()
3291                         << " bytes of shared memory\n");
3292 
3293       // Create a new shared memory buffer of the same size as the allocation
3294       // and replace all the uses of the original allocation with it.
3295       Module *M = CB->getModule();
3296       Type *Int8Ty = Type::getInt8Ty(M->getContext());
3297       Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3298       auto *SharedMem = new GlobalVariable(
3299           *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3300           UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3301           GlobalValue::NotThreadLocal,
3302           static_cast<unsigned>(AddressSpace::Shared));
3303       auto *NewBuffer =
3304           ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3305 
3306       auto Remark = [&](OptimizationRemark OR) {
3307         return OR << "Replaced globalized variable with "
3308                   << ore::NV("SharedMemory", AllocSize->getZExtValue())
3309                   << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3310                   << "of shared memory.";
3311       };
3312       A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3313 
3314       MaybeAlign Alignment = CB->getRetAlign();
3315       assert(Alignment &&
3316              "HeapToShared on allocation without alignment attribute");
3317       SharedMem->setAlignment(MaybeAlign(Alignment));
3318 
3319       A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3320       A.deleteAfterManifest(*CB);
3321       A.deleteAfterManifest(*FreeCalls.front());
3322 
3323       SharedMemoryUsed += AllocSize->getZExtValue();
3324       NumBytesMovedToSharedMemory = SharedMemoryUsed;
3325       Changed = ChangeStatus::CHANGED;
3326     }
3327 
3328     return Changed;
3329   }
3330 
3331   ChangeStatus updateImpl(Attributor &A) override {
3332     if (MallocCalls.empty())
3333       return indicatePessimisticFixpoint();
3334     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3335     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3336     if (!RFI.Declaration)
3337       return ChangeStatus::UNCHANGED;
3338 
3339     Function *F = getAnchorScope();
3340 
3341     auto NumMallocCalls = MallocCalls.size();
3342 
3343     // Only consider malloc calls executed by a single thread with a constant.
3344     for (User *U : RFI.Declaration->users()) {
3345       if (CallBase *CB = dyn_cast<CallBase>(U)) {
3346         if (CB->getCaller() != F)
3347           continue;
3348         if (!MallocCalls.count(CB))
3349           continue;
3350         if (!isa<ConstantInt>(CB->getArgOperand(0))) {
3351           MallocCalls.remove(CB);
3352           continue;
3353         }
3354         const auto &ED = A.getAAFor<AAExecutionDomain>(
3355             *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3356         if (!ED.isExecutedByInitialThreadOnly(*CB))
3357           MallocCalls.remove(CB);
3358       }
3359     }
3360 
3361     findPotentialRemovedFreeCalls(A);
3362 
3363     if (NumMallocCalls != MallocCalls.size())
3364       return ChangeStatus::CHANGED;
3365 
3366     return ChangeStatus::UNCHANGED;
3367   }
3368 
3369   /// Collection of all malloc calls in a function.
3370   SmallSetVector<CallBase *, 4> MallocCalls;
3371   /// Collection of potentially removed free calls in a function.
3372   SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3373   /// The total amount of shared memory that has been used for HeapToShared.
3374   unsigned SharedMemoryUsed = 0;
3375 };
3376 
3377 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3378   using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3379   AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3380 
3381   /// Statistics are tracked as part of manifest for now.
3382   void trackStatistics() const override {}
3383 
3384   /// See AbstractAttribute::getAsStr()
3385   const std::string getAsStr() const override {
3386     if (!isValidState())
3387       return "<invalid>";
3388     return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3389                                                             : "generic") +
3390            std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3391                                                                : "") +
3392            std::string(" #PRs: ") +
3393            (ReachedKnownParallelRegions.isValidState()
3394                 ? std::to_string(ReachedKnownParallelRegions.size())
3395                 : "<invalid>") +
3396            ", #Unknown PRs: " +
3397            (ReachedUnknownParallelRegions.isValidState()
3398                 ? std::to_string(ReachedUnknownParallelRegions.size())
3399                 : "<invalid>") +
3400            ", #Reaching Kernels: " +
3401            (ReachingKernelEntries.isValidState()
3402                 ? std::to_string(ReachingKernelEntries.size())
3403                 : "<invalid>") +
3404            ", #ParLevels: " +
3405            (ParallelLevels.isValidState()
3406                 ? std::to_string(ParallelLevels.size())
3407                 : "<invalid>");
3408   }
3409 
3410   /// Create an abstract attribute biew for the position \p IRP.
3411   static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3412 
3413   /// See AbstractAttribute::getName()
3414   const std::string getName() const override { return "AAKernelInfo"; }
3415 
3416   /// See AbstractAttribute::getIdAddr()
3417   const char *getIdAddr() const override { return &ID; }
3418 
3419   /// This function should return true if the type of the \p AA is AAKernelInfo
3420   static bool classof(const AbstractAttribute *AA) {
3421     return (AA->getIdAddr() == &ID);
3422   }
3423 
3424   static const char ID;
3425 };
3426 
3427 /// The function kernel info abstract attribute, basically, what can we say
3428 /// about a function with regards to the KernelInfoState.
3429 struct AAKernelInfoFunction : AAKernelInfo {
3430   AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3431       : AAKernelInfo(IRP, A) {}
3432 
3433   SmallPtrSet<Instruction *, 4> GuardedInstructions;
3434 
3435   SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3436     return GuardedInstructions;
3437   }
3438 
3439   /// See AbstractAttribute::initialize(...).
3440   void initialize(Attributor &A) override {
3441     // This is a high-level transform that might change the constant arguments
3442     // of the init and dinit calls. We need to tell the Attributor about this
3443     // to avoid other parts using the current constant value for simpliication.
3444     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3445 
3446     Function *Fn = getAnchorScope();
3447 
3448     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3449         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3450     OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3451         OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3452 
3453     // For kernels we perform more initialization work, first we find the init
3454     // and deinit calls.
3455     auto StoreCallBase = [](Use &U,
3456                             OMPInformationCache::RuntimeFunctionInfo &RFI,
3457                             CallBase *&Storage) {
3458       CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3459       assert(CB &&
3460              "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3461       assert(!Storage &&
3462              "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3463       Storage = CB;
3464       return false;
3465     };
3466     InitRFI.foreachUse(
3467         [&](Use &U, Function &) {
3468           StoreCallBase(U, InitRFI, KernelInitCB);
3469           return false;
3470         },
3471         Fn);
3472     DeinitRFI.foreachUse(
3473         [&](Use &U, Function &) {
3474           StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3475           return false;
3476         },
3477         Fn);
3478 
3479     // Ignore kernels without initializers such as global constructors.
3480     if (!KernelInitCB || !KernelDeinitCB)
3481       return;
3482 
3483     // Add itself to the reaching kernel and set IsKernelEntry.
3484     ReachingKernelEntries.insert(Fn);
3485     IsKernelEntry = true;
3486 
3487     // For kernels we might need to initialize/finalize the IsSPMD state and
3488     // we need to register a simplification callback so that the Attributor
3489     // knows the constant arguments to __kmpc_target_init and
3490     // __kmpc_target_deinit might actually change.
3491 
3492     Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3493         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3494             bool &UsedAssumedInformation) -> std::optional<Value *> {
3495       // IRP represents the "use generic state machine" argument of an
3496       // __kmpc_target_init call. We will answer this one with the internal
3497       // state. As long as we are not in an invalid state, we will create a
3498       // custom state machine so the value should be a `i1 false`. If we are
3499       // in an invalid state, we won't change the value that is in the IR.
3500       if (!ReachedKnownParallelRegions.isValidState())
3501         return nullptr;
3502       // If we have disabled state machine rewrites, don't make a custom one.
3503       if (DisableOpenMPOptStateMachineRewrite)
3504         return nullptr;
3505       if (AA)
3506         A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3507       UsedAssumedInformation = !isAtFixpoint();
3508       auto *FalseVal =
3509           ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3510       return FalseVal;
3511     };
3512 
3513     Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3514         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3515             bool &UsedAssumedInformation) -> std::optional<Value *> {
3516       // IRP represents the "SPMDCompatibilityTracker" argument of an
3517       // __kmpc_target_init or
3518       // __kmpc_target_deinit call. We will answer this one with the internal
3519       // state.
3520       if (!SPMDCompatibilityTracker.isValidState())
3521         return nullptr;
3522       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3523         if (AA)
3524           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3525         UsedAssumedInformation = true;
3526       } else {
3527         UsedAssumedInformation = false;
3528       }
3529       auto *Val = ConstantInt::getSigned(
3530           IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3531           SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3532                                                : OMP_TGT_EXEC_MODE_GENERIC);
3533       return Val;
3534     };
3535 
3536     constexpr const int InitModeArgNo = 1;
3537     constexpr const int DeinitModeArgNo = 1;
3538     constexpr const int InitUseStateMachineArgNo = 2;
3539     A.registerSimplificationCallback(
3540         IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3541         StateMachineSimplifyCB);
3542     A.registerSimplificationCallback(
3543         IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3544         ModeSimplifyCB);
3545     A.registerSimplificationCallback(
3546         IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3547         ModeSimplifyCB);
3548 
3549     // Check if we know we are in SPMD-mode already.
3550     ConstantInt *ModeArg =
3551         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3552     if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3553       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3554     // This is a generic region but SPMDization is disabled so stop tracking.
3555     else if (DisableOpenMPOptSPMDization)
3556       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3557 
3558     // Register virtual uses of functions we might need to preserve.
3559     auto RegisterVirtualUse = [&](RuntimeFunction RFKind,
3560                                   Attributor::VirtualUseCallbackTy &CB) {
3561       if (!OMPInfoCache.RFIs[RFKind].Declaration)
3562         return;
3563       A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB);
3564     };
3565 
3566     // Add a dependence to ensure updates if the state changes.
3567     auto AddDependence = [](Attributor &A, const AAKernelInfo *KI,
3568                             const AbstractAttribute *QueryingAA) {
3569       if (QueryingAA) {
3570         A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL);
3571       }
3572       return true;
3573     };
3574 
3575     Attributor::VirtualUseCallbackTy CustomStateMachineUseCB =
3576         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3577           // Whenever we create a custom state machine we will insert calls to
3578           // __kmpc_get_hardware_num_threads_in_block,
3579           // __kmpc_get_warp_size,
3580           // __kmpc_barrier_simple_generic,
3581           // __kmpc_kernel_parallel, and
3582           // __kmpc_kernel_end_parallel.
3583           // Not needed if we are on track for SPMDzation.
3584           if (SPMDCompatibilityTracker.isValidState())
3585             return AddDependence(A, this, QueryingAA);
3586           // Not needed if we can't rewrite due to an invalid state.
3587           if (!ReachedKnownParallelRegions.isValidState())
3588             return AddDependence(A, this, QueryingAA);
3589           return false;
3590         };
3591 
3592     // Not needed if we are pre-runtime merge.
3593     if (!KernelInitCB->getCalledFunction()->isDeclaration()) {
3594       RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block,
3595                          CustomStateMachineUseCB);
3596       RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB);
3597       RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic,
3598                          CustomStateMachineUseCB);
3599       RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel,
3600                          CustomStateMachineUseCB);
3601       RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel,
3602                          CustomStateMachineUseCB);
3603     }
3604 
3605     // If we do not perform SPMDzation we do not need the virtual uses below.
3606     if (SPMDCompatibilityTracker.isAtFixpoint())
3607       return;
3608 
3609     Attributor::VirtualUseCallbackTy HWThreadIdUseCB =
3610         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3611           // Whenever we perform SPMDzation we will insert
3612           // __kmpc_get_hardware_thread_id_in_block calls.
3613           if (!SPMDCompatibilityTracker.isValidState())
3614             return AddDependence(A, this, QueryingAA);
3615           return false;
3616         };
3617     RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block,
3618                        HWThreadIdUseCB);
3619 
3620     Attributor::VirtualUseCallbackTy SPMDBarrierUseCB =
3621         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3622           // Whenever we perform SPMDzation with guarding we will insert
3623           // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is
3624           // nothing to guard, or there are no parallel regions, we don't need
3625           // the calls.
3626           if (!SPMDCompatibilityTracker.isValidState())
3627             return AddDependence(A, this, QueryingAA);
3628           if (SPMDCompatibilityTracker.empty())
3629             return AddDependence(A, this, QueryingAA);
3630           if (!mayContainParallelRegion())
3631             return AddDependence(A, this, QueryingAA);
3632           return false;
3633         };
3634     RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB);
3635   }
3636 
3637   /// Sanitize the string \p S such that it is a suitable global symbol name.
3638   static std::string sanitizeForGlobalName(std::string S) {
3639     std::replace_if(
3640         S.begin(), S.end(),
3641         [](const char C) {
3642           return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3643                    (C >= '0' && C <= '9') || C == '_');
3644         },
3645         '.');
3646     return S;
3647   }
3648 
3649   /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3650   /// finished now.
3651   ChangeStatus manifest(Attributor &A) override {
3652     // If we are not looking at a kernel with __kmpc_target_init and
3653     // __kmpc_target_deinit call we cannot actually manifest the information.
3654     if (!KernelInitCB || !KernelDeinitCB)
3655       return ChangeStatus::UNCHANGED;
3656 
3657     /// Insert nested Parallelism global variable
3658     Function *Kernel = getAnchorScope();
3659     Module &M = *Kernel->getParent();
3660     Type *Int8Ty = Type::getInt8Ty(M.getContext());
3661     new GlobalVariable(M, Int8Ty, /* isConstant */ true,
3662                        GlobalValue::WeakAnyLinkage,
3663                        ConstantInt::get(Int8Ty, NestedParallelism ? 1 : 0),
3664                        Kernel->getName() + "_nested_parallelism");
3665 
3666     // If we can we change the execution mode to SPMD-mode otherwise we build a
3667     // custom state machine.
3668     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3669     if (!changeToSPMDMode(A, Changed)) {
3670       if (!KernelInitCB->getCalledFunction()->isDeclaration())
3671         return buildCustomStateMachine(A);
3672     }
3673 
3674     return Changed;
3675   }
3676 
3677   void insertInstructionGuardsHelper(Attributor &A) {
3678     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3679 
3680     auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3681                                    Instruction *RegionEndI) {
3682       LoopInfo *LI = nullptr;
3683       DominatorTree *DT = nullptr;
3684       MemorySSAUpdater *MSU = nullptr;
3685       using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3686 
3687       BasicBlock *ParentBB = RegionStartI->getParent();
3688       Function *Fn = ParentBB->getParent();
3689       Module &M = *Fn->getParent();
3690 
3691       // Create all the blocks and logic.
3692       // ParentBB:
3693       //    goto RegionCheckTidBB
3694       // RegionCheckTidBB:
3695       //    Tid = __kmpc_hardware_thread_id()
3696       //    if (Tid != 0)
3697       //        goto RegionBarrierBB
3698       // RegionStartBB:
3699       //    <execute instructions guarded>
3700       //    goto RegionEndBB
3701       // RegionEndBB:
3702       //    <store escaping values to shared mem>
3703       //    goto RegionBarrierBB
3704       //  RegionBarrierBB:
3705       //    __kmpc_simple_barrier_spmd()
3706       //    // second barrier is omitted if lacking escaping values.
3707       //    <load escaping values from shared mem>
3708       //    __kmpc_simple_barrier_spmd()
3709       //    goto RegionExitBB
3710       // RegionExitBB:
3711       //    <execute rest of instructions>
3712 
3713       BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3714                                            DT, LI, MSU, "region.guarded.end");
3715       BasicBlock *RegionBarrierBB =
3716           SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3717                      MSU, "region.barrier");
3718       BasicBlock *RegionExitBB =
3719           SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3720                      DT, LI, MSU, "region.exit");
3721       BasicBlock *RegionStartBB =
3722           SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3723 
3724       assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3725              "Expected a different CFG");
3726 
3727       BasicBlock *RegionCheckTidBB = SplitBlock(
3728           ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3729 
3730       // Register basic blocks with the Attributor.
3731       A.registerManifestAddedBasicBlock(*RegionEndBB);
3732       A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3733       A.registerManifestAddedBasicBlock(*RegionExitBB);
3734       A.registerManifestAddedBasicBlock(*RegionStartBB);
3735       A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3736 
3737       bool HasBroadcastValues = false;
3738       // Find escaping outputs from the guarded region to outside users and
3739       // broadcast their values to them.
3740       for (Instruction &I : *RegionStartBB) {
3741         SmallPtrSet<Instruction *, 4> OutsideUsers;
3742         for (User *Usr : I.users()) {
3743           Instruction &UsrI = *cast<Instruction>(Usr);
3744           if (UsrI.getParent() != RegionStartBB)
3745             OutsideUsers.insert(&UsrI);
3746         }
3747 
3748         if (OutsideUsers.empty())
3749           continue;
3750 
3751         HasBroadcastValues = true;
3752 
3753         // Emit a global variable in shared memory to store the broadcasted
3754         // value.
3755         auto *SharedMem = new GlobalVariable(
3756             M, I.getType(), /* IsConstant */ false,
3757             GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3758             sanitizeForGlobalName(
3759                 (I.getName() + ".guarded.output.alloc").str()),
3760             nullptr, GlobalValue::NotThreadLocal,
3761             static_cast<unsigned>(AddressSpace::Shared));
3762 
3763         // Emit a store instruction to update the value.
3764         new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3765 
3766         LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3767                                        I.getName() + ".guarded.output.load",
3768                                        RegionBarrierBB->getTerminator());
3769 
3770         // Emit a load instruction and replace uses of the output value.
3771         for (Instruction *UsrI : OutsideUsers)
3772           UsrI->replaceUsesOfWith(&I, LoadI);
3773       }
3774 
3775       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3776 
3777       // Go to tid check BB in ParentBB.
3778       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3779       ParentBB->getTerminator()->eraseFromParent();
3780       OpenMPIRBuilder::LocationDescription Loc(
3781           InsertPointTy(ParentBB, ParentBB->end()), DL);
3782       OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3783       uint32_t SrcLocStrSize;
3784       auto *SrcLocStr =
3785           OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3786       Value *Ident =
3787           OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3788       BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3789 
3790       // Add check for Tid in RegionCheckTidBB
3791       RegionCheckTidBB->getTerminator()->eraseFromParent();
3792       OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3793           InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3794       OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3795       FunctionCallee HardwareTidFn =
3796           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3797               M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3798       CallInst *Tid =
3799           OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3800       Tid->setDebugLoc(DL);
3801       OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3802       Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3803       OMPInfoCache.OMPBuilder.Builder
3804           .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3805           ->setDebugLoc(DL);
3806 
3807       // First barrier for synchronization, ensures main thread has updated
3808       // values.
3809       FunctionCallee BarrierFn =
3810           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3811               M, OMPRTL___kmpc_barrier_simple_spmd);
3812       OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3813           RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3814       CallInst *Barrier =
3815           OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3816       Barrier->setDebugLoc(DL);
3817       OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3818 
3819       // Second barrier ensures workers have read broadcast values.
3820       if (HasBroadcastValues) {
3821         CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3822                                              RegionBarrierBB->getTerminator());
3823         Barrier->setDebugLoc(DL);
3824         OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3825       }
3826     };
3827 
3828     auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3829     SmallPtrSet<BasicBlock *, 8> Visited;
3830     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3831       BasicBlock *BB = GuardedI->getParent();
3832       if (!Visited.insert(BB).second)
3833         continue;
3834 
3835       SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3836       Instruction *LastEffect = nullptr;
3837       BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3838       while (++IP != IPEnd) {
3839         if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3840           continue;
3841         Instruction *I = &*IP;
3842         if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3843           continue;
3844         if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3845           LastEffect = nullptr;
3846           continue;
3847         }
3848         if (LastEffect)
3849           Reorders.push_back({I, LastEffect});
3850         LastEffect = &*IP;
3851       }
3852       for (auto &Reorder : Reorders)
3853         Reorder.first->moveBefore(Reorder.second);
3854     }
3855 
3856     SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3857 
3858     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3859       BasicBlock *BB = GuardedI->getParent();
3860       auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3861           IRPosition::function(*GuardedI->getFunction()), nullptr,
3862           DepClassTy::NONE);
3863       assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3864       auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3865       // Continue if instruction is already guarded.
3866       if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3867         continue;
3868 
3869       Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3870       for (Instruction &I : *BB) {
3871         // If instruction I needs to be guarded update the guarded region
3872         // bounds.
3873         if (SPMDCompatibilityTracker.contains(&I)) {
3874           CalleeAAFunction.getGuardedInstructions().insert(&I);
3875           if (GuardedRegionStart)
3876             GuardedRegionEnd = &I;
3877           else
3878             GuardedRegionStart = GuardedRegionEnd = &I;
3879 
3880           continue;
3881         }
3882 
3883         // Instruction I does not need guarding, store
3884         // any region found and reset bounds.
3885         if (GuardedRegionStart) {
3886           GuardedRegions.push_back(
3887               std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3888           GuardedRegionStart = nullptr;
3889           GuardedRegionEnd = nullptr;
3890         }
3891       }
3892     }
3893 
3894     for (auto &GR : GuardedRegions)
3895       CreateGuardedRegion(GR.first, GR.second);
3896   }
3897 
3898   void forceSingleThreadPerWorkgroupHelper(Attributor &A) {
3899     // Only allow 1 thread per workgroup to continue executing the user code.
3900     //
3901     //     InitCB = __kmpc_target_init(...)
3902     //     ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block();
3903     //     if (ThreadIdInBlock != 0) return;
3904     // UserCode:
3905     //     // user code
3906     //
3907     auto &Ctx = getAnchorValue().getContext();
3908     Function *Kernel = getAssociatedFunction();
3909     assert(Kernel && "Expected an associated function!");
3910 
3911     // Create block for user code to branch to from initial block.
3912     BasicBlock *InitBB = KernelInitCB->getParent();
3913     BasicBlock *UserCodeBB = InitBB->splitBasicBlock(
3914         KernelInitCB->getNextNode(), "main.thread.user_code");
3915     BasicBlock *ReturnBB =
3916         BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB);
3917 
3918     // Register blocks with attributor:
3919     A.registerManifestAddedBasicBlock(*InitBB);
3920     A.registerManifestAddedBasicBlock(*UserCodeBB);
3921     A.registerManifestAddedBasicBlock(*ReturnBB);
3922 
3923     // Debug location:
3924     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3925     ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc);
3926     InitBB->getTerminator()->eraseFromParent();
3927 
3928     // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block.
3929     Module &M = *Kernel->getParent();
3930     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3931     FunctionCallee ThreadIdInBlockFn =
3932         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3933             M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3934 
3935     // Get thread ID in block.
3936     CallInst *ThreadIdInBlock =
3937         CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB);
3938     OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock);
3939     ThreadIdInBlock->setDebugLoc(DLoc);
3940 
3941     // Eliminate all threads in the block with ID not equal to 0:
3942     Instruction *IsMainThread =
3943         ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock,
3944                          ConstantInt::get(ThreadIdInBlock->getType(), 0),
3945                          "thread.is_main", InitBB);
3946     IsMainThread->setDebugLoc(DLoc);
3947     BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB);
3948   }
3949 
3950   bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3951     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3952 
3953     // We cannot change to SPMD mode if the runtime functions aren't availible.
3954     if (!OMPInfoCache.runtimeFnsAvailable(
3955             {OMPRTL___kmpc_get_hardware_thread_id_in_block,
3956              OMPRTL___kmpc_barrier_simple_spmd}))
3957       return false;
3958 
3959     if (!SPMDCompatibilityTracker.isAssumed()) {
3960       for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3961         if (!NonCompatibleI)
3962           continue;
3963 
3964         // Skip diagnostics on calls to known OpenMP runtime functions for now.
3965         if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3966           if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3967             continue;
3968 
3969         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3970           ORA << "Value has potential side effects preventing SPMD-mode "
3971                  "execution";
3972           if (isa<CallBase>(NonCompatibleI)) {
3973             ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3974                    "the called function to override";
3975           }
3976           return ORA << ".";
3977         };
3978         A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3979                                                  Remark);
3980 
3981         LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3982                           << *NonCompatibleI << "\n");
3983       }
3984 
3985       return false;
3986     }
3987 
3988     // Get the actual kernel, could be the caller of the anchor scope if we have
3989     // a debug wrapper.
3990     Function *Kernel = getAnchorScope();
3991     if (Kernel->hasLocalLinkage()) {
3992       assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3993       auto *CB = cast<CallBase>(Kernel->user_back());
3994       Kernel = CB->getCaller();
3995     }
3996     assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3997 
3998     // Check if the kernel is already in SPMD mode, if so, return success.
3999     GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
4000         (Kernel->getName() + "_exec_mode").str());
4001     assert(ExecMode && "Kernel without exec mode?");
4002     assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
4003 
4004     // Set the global exec mode flag to indicate SPMD-Generic mode.
4005     assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
4006            "ExecMode is not an integer!");
4007     const int8_t ExecModeVal =
4008         cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
4009     if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
4010       return true;
4011 
4012     // We will now unconditionally modify the IR, indicate a change.
4013     Changed = ChangeStatus::CHANGED;
4014 
4015     // Do not use instruction guards when no parallel is present inside
4016     // the target region.
4017     if (mayContainParallelRegion())
4018       insertInstructionGuardsHelper(A);
4019     else
4020       forceSingleThreadPerWorkgroupHelper(A);
4021 
4022     // Adjust the global exec mode flag that tells the runtime what mode this
4023     // kernel is executed in.
4024     assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
4025            "Initially non-SPMD kernel has SPMD exec mode!");
4026     ExecMode->setInitializer(
4027         ConstantInt::get(ExecMode->getInitializer()->getType(),
4028                          ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
4029 
4030     // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
4031     const int InitModeArgNo = 1;
4032     const int DeinitModeArgNo = 1;
4033     const int InitUseStateMachineArgNo = 2;
4034 
4035     auto &Ctx = getAnchorValue().getContext();
4036     A.changeUseAfterManifest(
4037         KernelInitCB->getArgOperandUse(InitModeArgNo),
4038         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4039                                 OMP_TGT_EXEC_MODE_SPMD));
4040     A.changeUseAfterManifest(
4041         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
4042         *ConstantInt::getBool(Ctx, false));
4043     A.changeUseAfterManifest(
4044         KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
4045         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4046                                 OMP_TGT_EXEC_MODE_SPMD));
4047 
4048     ++NumOpenMPTargetRegionKernelsSPMD;
4049 
4050     auto Remark = [&](OptimizationRemark OR) {
4051       return OR << "Transformed generic-mode kernel to SPMD-mode.";
4052     };
4053     A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
4054     return true;
4055   };
4056 
4057   ChangeStatus buildCustomStateMachine(Attributor &A) {
4058     // If we have disabled state machine rewrites, don't make a custom one
4059     if (DisableOpenMPOptStateMachineRewrite)
4060       return ChangeStatus::UNCHANGED;
4061 
4062     // Don't rewrite the state machine if we are not in a valid state.
4063     if (!ReachedKnownParallelRegions.isValidState())
4064       return ChangeStatus::UNCHANGED;
4065 
4066     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4067     if (!OMPInfoCache.runtimeFnsAvailable(
4068             {OMPRTL___kmpc_get_hardware_num_threads_in_block,
4069              OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic,
4070              OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel}))
4071       return ChangeStatus::UNCHANGED;
4072 
4073     const int InitModeArgNo = 1;
4074     const int InitUseStateMachineArgNo = 2;
4075 
4076     // Check if the current configuration is non-SPMD and generic state machine.
4077     // If we already have SPMD mode or a custom state machine we do not need to
4078     // go any further. If it is anything but a constant something is weird and
4079     // we give up.
4080     ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
4081         KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
4082     ConstantInt *Mode =
4083         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
4084 
4085     // If we are stuck with generic mode, try to create a custom device (=GPU)
4086     // state machine which is specialized for the parallel regions that are
4087     // reachable by the kernel.
4088     if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
4089         (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
4090       return ChangeStatus::UNCHANGED;
4091 
4092     // If not SPMD mode, indicate we use a custom state machine now.
4093     auto &Ctx = getAnchorValue().getContext();
4094     auto *FalseVal = ConstantInt::getBool(Ctx, false);
4095     A.changeUseAfterManifest(
4096         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
4097 
4098     // If we don't actually need a state machine we are done here. This can
4099     // happen if there simply are no parallel regions. In the resulting kernel
4100     // all worker threads will simply exit right away, leaving the main thread
4101     // to do the work alone.
4102     if (!mayContainParallelRegion()) {
4103       ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
4104 
4105       auto Remark = [&](OptimizationRemark OR) {
4106         return OR << "Removing unused state machine from generic-mode kernel.";
4107       };
4108       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
4109 
4110       return ChangeStatus::CHANGED;
4111     }
4112 
4113     // Keep track in the statistics of our new shiny custom state machine.
4114     if (ReachedUnknownParallelRegions.empty()) {
4115       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
4116 
4117       auto Remark = [&](OptimizationRemark OR) {
4118         return OR << "Rewriting generic-mode kernel with a customized state "
4119                      "machine.";
4120       };
4121       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
4122     } else {
4123       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
4124 
4125       auto Remark = [&](OptimizationRemarkAnalysis OR) {
4126         return OR << "Generic-mode kernel is executed with a customized state "
4127                      "machine that requires a fallback.";
4128       };
4129       A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
4130 
4131       // Tell the user why we ended up with a fallback.
4132       for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
4133         if (!UnknownParallelRegionCB)
4134           continue;
4135         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4136           return ORA << "Call may contain unknown parallel regions. Use "
4137                      << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
4138                         "override.";
4139         };
4140         A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
4141                                                  "OMP133", Remark);
4142       }
4143     }
4144 
4145     // Create all the blocks:
4146     //
4147     //                       InitCB = __kmpc_target_init(...)
4148     //                       BlockHwSize =
4149     //                         __kmpc_get_hardware_num_threads_in_block();
4150     //                       WarpSize = __kmpc_get_warp_size();
4151     //                       BlockSize = BlockHwSize - WarpSize;
4152     // IsWorkerCheckBB:      bool IsWorker = InitCB != -1;
4153     //                       if (IsWorker) {
4154     //                         if (InitCB >= BlockSize) return;
4155     // SMBeginBB:               __kmpc_barrier_simple_generic(...);
4156     //                         void *WorkFn;
4157     //                         bool Active = __kmpc_kernel_parallel(&WorkFn);
4158     //                         if (!WorkFn) return;
4159     // SMIsActiveCheckBB:       if (Active) {
4160     // SMIfCascadeCurrentBB:      if      (WorkFn == <ParFn0>)
4161     //                              ParFn0(...);
4162     // SMIfCascadeCurrentBB:      else if (WorkFn == <ParFn1>)
4163     //                              ParFn1(...);
4164     //                            ...
4165     // SMIfCascadeCurrentBB:      else
4166     //                              ((WorkFnTy*)WorkFn)(...);
4167     // SMEndParallelBB:           __kmpc_kernel_end_parallel(...);
4168     //                          }
4169     // SMDoneBB:                __kmpc_barrier_simple_generic(...);
4170     //                          goto SMBeginBB;
4171     //                       }
4172     // UserCodeEntryBB:      // user code
4173     //                       __kmpc_target_deinit(...)
4174     //
4175     Function *Kernel = getAssociatedFunction();
4176     assert(Kernel && "Expected an associated function!");
4177 
4178     BasicBlock *InitBB = KernelInitCB->getParent();
4179     BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
4180         KernelInitCB->getNextNode(), "thread.user_code.check");
4181     BasicBlock *IsWorkerCheckBB =
4182         BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
4183     BasicBlock *StateMachineBeginBB = BasicBlock::Create(
4184         Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
4185     BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
4186         Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
4187     BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
4188         Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
4189     BasicBlock *StateMachineIfCascadeCurrentBB =
4190         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4191                            Kernel, UserCodeEntryBB);
4192     BasicBlock *StateMachineEndParallelBB =
4193         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
4194                            Kernel, UserCodeEntryBB);
4195     BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
4196         Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
4197     A.registerManifestAddedBasicBlock(*InitBB);
4198     A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
4199     A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
4200     A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
4201     A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
4202     A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
4203     A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
4204     A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
4205     A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
4206 
4207     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
4208     ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
4209     InitBB->getTerminator()->eraseFromParent();
4210 
4211     Instruction *IsWorker =
4212         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
4213                          ConstantInt::get(KernelInitCB->getType(), -1),
4214                          "thread.is_worker", InitBB);
4215     IsWorker->setDebugLoc(DLoc);
4216     BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
4217 
4218     Module &M = *Kernel->getParent();
4219     FunctionCallee BlockHwSizeFn =
4220         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4221             M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
4222     FunctionCallee WarpSizeFn =
4223         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4224             M, OMPRTL___kmpc_get_warp_size);
4225     CallInst *BlockHwSize =
4226         CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
4227     OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
4228     BlockHwSize->setDebugLoc(DLoc);
4229     CallInst *WarpSize =
4230         CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
4231     OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
4232     WarpSize->setDebugLoc(DLoc);
4233     Instruction *BlockSize = BinaryOperator::CreateSub(
4234         BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
4235     BlockSize->setDebugLoc(DLoc);
4236     Instruction *IsMainOrWorker = ICmpInst::Create(
4237         ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
4238         "thread.is_main_or_worker", IsWorkerCheckBB);
4239     IsMainOrWorker->setDebugLoc(DLoc);
4240     BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
4241                        IsMainOrWorker, IsWorkerCheckBB);
4242 
4243     // Create local storage for the work function pointer.
4244     const DataLayout &DL = M.getDataLayout();
4245     Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
4246     Instruction *WorkFnAI =
4247         new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
4248                        "worker.work_fn.addr", &Kernel->getEntryBlock().front());
4249     WorkFnAI->setDebugLoc(DLoc);
4250 
4251     OMPInfoCache.OMPBuilder.updateToLocation(
4252         OpenMPIRBuilder::LocationDescription(
4253             IRBuilder<>::InsertPoint(StateMachineBeginBB,
4254                                      StateMachineBeginBB->end()),
4255             DLoc));
4256 
4257     Value *Ident = KernelInitCB->getArgOperand(0);
4258     Value *GTid = KernelInitCB;
4259 
4260     FunctionCallee BarrierFn =
4261         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4262             M, OMPRTL___kmpc_barrier_simple_generic);
4263     CallInst *Barrier =
4264         CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
4265     OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4266     Barrier->setDebugLoc(DLoc);
4267 
4268     if (WorkFnAI->getType()->getPointerAddressSpace() !=
4269         (unsigned int)AddressSpace::Generic) {
4270       WorkFnAI = new AddrSpaceCastInst(
4271           WorkFnAI,
4272           PointerType::getWithSamePointeeType(
4273               cast<PointerType>(WorkFnAI->getType()),
4274               (unsigned int)AddressSpace::Generic),
4275           WorkFnAI->getName() + ".generic", StateMachineBeginBB);
4276       WorkFnAI->setDebugLoc(DLoc);
4277     }
4278 
4279     FunctionCallee KernelParallelFn =
4280         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4281             M, OMPRTL___kmpc_kernel_parallel);
4282     CallInst *IsActiveWorker = CallInst::Create(
4283         KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
4284     OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
4285     IsActiveWorker->setDebugLoc(DLoc);
4286     Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
4287                                        StateMachineBeginBB);
4288     WorkFn->setDebugLoc(DLoc);
4289 
4290     FunctionType *ParallelRegionFnTy = FunctionType::get(
4291         Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
4292         false);
4293     Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
4294         WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
4295         StateMachineBeginBB);
4296 
4297     Instruction *IsDone =
4298         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
4299                          Constant::getNullValue(VoidPtrTy), "worker.is_done",
4300                          StateMachineBeginBB);
4301     IsDone->setDebugLoc(DLoc);
4302     BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
4303                        IsDone, StateMachineBeginBB)
4304         ->setDebugLoc(DLoc);
4305 
4306     BranchInst::Create(StateMachineIfCascadeCurrentBB,
4307                        StateMachineDoneBarrierBB, IsActiveWorker,
4308                        StateMachineIsActiveCheckBB)
4309         ->setDebugLoc(DLoc);
4310 
4311     Value *ZeroArg =
4312         Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
4313 
4314     // Now that we have most of the CFG skeleton it is time for the if-cascade
4315     // that checks the function pointer we got from the runtime against the
4316     // parallel regions we expect, if there are any.
4317     for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
4318       auto *ParallelRegion = ReachedKnownParallelRegions[I];
4319       BasicBlock *PRExecuteBB = BasicBlock::Create(
4320           Ctx, "worker_state_machine.parallel_region.execute", Kernel,
4321           StateMachineEndParallelBB);
4322       CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
4323           ->setDebugLoc(DLoc);
4324       BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
4325           ->setDebugLoc(DLoc);
4326 
4327       BasicBlock *PRNextBB =
4328           BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4329                              Kernel, StateMachineEndParallelBB);
4330 
4331       // Check if we need to compare the pointer at all or if we can just
4332       // call the parallel region function.
4333       Value *IsPR;
4334       if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
4335         Instruction *CmpI = ICmpInst::Create(
4336             ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
4337             "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
4338         CmpI->setDebugLoc(DLoc);
4339         IsPR = CmpI;
4340       } else {
4341         IsPR = ConstantInt::getTrue(Ctx);
4342       }
4343 
4344       BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
4345                          StateMachineIfCascadeCurrentBB)
4346           ->setDebugLoc(DLoc);
4347       StateMachineIfCascadeCurrentBB = PRNextBB;
4348     }
4349 
4350     // At the end of the if-cascade we place the indirect function pointer call
4351     // in case we might need it, that is if there can be parallel regions we
4352     // have not handled in the if-cascade above.
4353     if (!ReachedUnknownParallelRegions.empty()) {
4354       StateMachineIfCascadeCurrentBB->setName(
4355           "worker_state_machine.parallel_region.fallback.execute");
4356       CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
4357                        StateMachineIfCascadeCurrentBB)
4358           ->setDebugLoc(DLoc);
4359     }
4360     BranchInst::Create(StateMachineEndParallelBB,
4361                        StateMachineIfCascadeCurrentBB)
4362         ->setDebugLoc(DLoc);
4363 
4364     FunctionCallee EndParallelFn =
4365         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4366             M, OMPRTL___kmpc_kernel_end_parallel);
4367     CallInst *EndParallel =
4368         CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
4369     OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
4370     EndParallel->setDebugLoc(DLoc);
4371     BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
4372         ->setDebugLoc(DLoc);
4373 
4374     CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
4375         ->setDebugLoc(DLoc);
4376     BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
4377         ->setDebugLoc(DLoc);
4378 
4379     return ChangeStatus::CHANGED;
4380   }
4381 
4382   /// Fixpoint iteration update function. Will be called every time a dependence
4383   /// changed its state (and in the beginning).
4384   ChangeStatus updateImpl(Attributor &A) override {
4385     KernelInfoState StateBefore = getState();
4386 
4387     // Callback to check a read/write instruction.
4388     auto CheckRWInst = [&](Instruction &I) {
4389       // We handle calls later.
4390       if (isa<CallBase>(I))
4391         return true;
4392       // We only care about write effects.
4393       if (!I.mayWriteToMemory())
4394         return true;
4395       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4396         const auto &UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
4397             *this, IRPosition::value(*SI->getPointerOperand()),
4398             DepClassTy::OPTIONAL);
4399         auto &HS = A.getAAFor<AAHeapToStack>(
4400             *this, IRPosition::function(*I.getFunction()),
4401             DepClassTy::OPTIONAL);
4402         if (UnderlyingObjsAA.forallUnderlyingObjects([&](Value &Obj) {
4403               if (AA::isAssumedThreadLocalObject(A, Obj, *this))
4404                 return true;
4405               // Check for AAHeapToStack moved objects which must not be
4406               // guarded.
4407               auto *CB = dyn_cast<CallBase>(&Obj);
4408               return CB && HS.isAssumedHeapToStack(*CB);
4409             }))
4410           return true;
4411       }
4412 
4413       // Insert instruction that needs guarding.
4414       SPMDCompatibilityTracker.insert(&I);
4415       return true;
4416     };
4417 
4418     bool UsedAssumedInformationInCheckRWInst = false;
4419     if (!SPMDCompatibilityTracker.isAtFixpoint())
4420       if (!A.checkForAllReadWriteInstructions(
4421               CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4422         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4423 
4424     bool UsedAssumedInformationFromReachingKernels = false;
4425     if (!IsKernelEntry) {
4426       updateParallelLevels(A);
4427 
4428       bool AllReachingKernelsKnown = true;
4429       updateReachingKernelEntries(A, AllReachingKernelsKnown);
4430       UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4431 
4432       if (!SPMDCompatibilityTracker.empty()) {
4433         if (!ParallelLevels.isValidState())
4434           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4435         else if (!ReachingKernelEntries.isValidState())
4436           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4437         else {
4438           // Check if all reaching kernels agree on the mode as we can otherwise
4439           // not guard instructions. We might not be sure about the mode so we
4440           // we cannot fix the internal spmd-zation state either.
4441           int SPMD = 0, Generic = 0;
4442           for (auto *Kernel : ReachingKernelEntries) {
4443             auto &CBAA = A.getAAFor<AAKernelInfo>(
4444                 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4445             if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4446                 CBAA.SPMDCompatibilityTracker.isAssumed())
4447               ++SPMD;
4448             else
4449               ++Generic;
4450             if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4451               UsedAssumedInformationFromReachingKernels = true;
4452           }
4453           if (SPMD != 0 && Generic != 0)
4454             SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4455         }
4456       }
4457     }
4458 
4459     // Callback to check a call instruction.
4460     bool AllParallelRegionStatesWereFixed = true;
4461     bool AllSPMDStatesWereFixed = true;
4462     auto CheckCallInst = [&](Instruction &I) {
4463       auto &CB = cast<CallBase>(I);
4464       auto &CBAA = A.getAAFor<AAKernelInfo>(
4465           *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4466       getState() ^= CBAA.getState();
4467       AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4468       AllParallelRegionStatesWereFixed &=
4469           CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4470       AllParallelRegionStatesWereFixed &=
4471           CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4472       return true;
4473     };
4474 
4475     bool UsedAssumedInformationInCheckCallInst = false;
4476     if (!A.checkForAllCallLikeInstructions(
4477             CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4478       LLVM_DEBUG(dbgs() << TAG
4479                         << "Failed to visit all call-like instructions!\n";);
4480       return indicatePessimisticFixpoint();
4481     }
4482 
4483     // If we haven't used any assumed information for the reached parallel
4484     // region states we can fix it.
4485     if (!UsedAssumedInformationInCheckCallInst &&
4486         AllParallelRegionStatesWereFixed) {
4487       ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4488       ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4489     }
4490 
4491     // If we haven't used any assumed information for the SPMD state we can fix
4492     // it.
4493     if (!UsedAssumedInformationInCheckRWInst &&
4494         !UsedAssumedInformationInCheckCallInst &&
4495         !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4496       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4497 
4498     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4499                                      : ChangeStatus::CHANGED;
4500   }
4501 
4502 private:
4503   /// Update info regarding reaching kernels.
4504   void updateReachingKernelEntries(Attributor &A,
4505                                    bool &AllReachingKernelsKnown) {
4506     auto PredCallSite = [&](AbstractCallSite ACS) {
4507       Function *Caller = ACS.getInstruction()->getFunction();
4508 
4509       assert(Caller && "Caller is nullptr");
4510 
4511       auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4512           IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4513       if (CAA.ReachingKernelEntries.isValidState()) {
4514         ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4515         return true;
4516       }
4517 
4518       // We lost track of the caller of the associated function, any kernel
4519       // could reach now.
4520       ReachingKernelEntries.indicatePessimisticFixpoint();
4521 
4522       return true;
4523     };
4524 
4525     if (!A.checkForAllCallSites(PredCallSite, *this,
4526                                 true /* RequireAllCallSites */,
4527                                 AllReachingKernelsKnown))
4528       ReachingKernelEntries.indicatePessimisticFixpoint();
4529   }
4530 
4531   /// Update info regarding parallel levels.
4532   void updateParallelLevels(Attributor &A) {
4533     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4534     OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4535         OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4536 
4537     auto PredCallSite = [&](AbstractCallSite ACS) {
4538       Function *Caller = ACS.getInstruction()->getFunction();
4539 
4540       assert(Caller && "Caller is nullptr");
4541 
4542       auto &CAA =
4543           A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4544       if (CAA.ParallelLevels.isValidState()) {
4545         // Any function that is called by `__kmpc_parallel_51` will not be
4546         // folded as the parallel level in the function is updated. In order to
4547         // get it right, all the analysis would depend on the implentation. That
4548         // said, if in the future any change to the implementation, the analysis
4549         // could be wrong. As a consequence, we are just conservative here.
4550         if (Caller == Parallel51RFI.Declaration) {
4551           ParallelLevels.indicatePessimisticFixpoint();
4552           return true;
4553         }
4554 
4555         ParallelLevels ^= CAA.ParallelLevels;
4556 
4557         return true;
4558       }
4559 
4560       // We lost track of the caller of the associated function, any kernel
4561       // could reach now.
4562       ParallelLevels.indicatePessimisticFixpoint();
4563 
4564       return true;
4565     };
4566 
4567     bool AllCallSitesKnown = true;
4568     if (!A.checkForAllCallSites(PredCallSite, *this,
4569                                 true /* RequireAllCallSites */,
4570                                 AllCallSitesKnown))
4571       ParallelLevels.indicatePessimisticFixpoint();
4572   }
4573 };
4574 
4575 /// The call site kernel info abstract attribute, basically, what can we say
4576 /// about a call site with regards to the KernelInfoState. For now this simply
4577 /// forwards the information from the callee.
4578 struct AAKernelInfoCallSite : AAKernelInfo {
4579   AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4580       : AAKernelInfo(IRP, A) {}
4581 
4582   /// See AbstractAttribute::initialize(...).
4583   void initialize(Attributor &A) override {
4584     AAKernelInfo::initialize(A);
4585 
4586     CallBase &CB = cast<CallBase>(getAssociatedValue());
4587     Function *Callee = getAssociatedFunction();
4588 
4589     auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4590         *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4591 
4592     // Check for SPMD-mode assumptions.
4593     if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4594       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4595       indicateOptimisticFixpoint();
4596     }
4597 
4598     // First weed out calls we do not care about, that is readonly/readnone
4599     // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4600     // parallel region or anything else we are looking for.
4601     if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4602       indicateOptimisticFixpoint();
4603       return;
4604     }
4605 
4606     // Next we check if we know the callee. If it is a known OpenMP function
4607     // we will handle them explicitly in the switch below. If it is not, we
4608     // will use an AAKernelInfo object on the callee to gather information and
4609     // merge that into the current state. The latter happens in the updateImpl.
4610     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4611     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4612     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4613       // Unknown caller or declarations are not analyzable, we give up.
4614       if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4615 
4616         // Unknown callees might contain parallel regions, except if they have
4617         // an appropriate assumption attached.
4618         if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4619               AssumptionAA.hasAssumption("omp_no_parallelism")))
4620           ReachedUnknownParallelRegions.insert(&CB);
4621 
4622         // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4623         // idea we can run something unknown in SPMD-mode.
4624         if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4625           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4626           SPMDCompatibilityTracker.insert(&CB);
4627         }
4628 
4629         // We have updated the state for this unknown call properly, there won't
4630         // be any change so we indicate a fixpoint.
4631         indicateOptimisticFixpoint();
4632       }
4633       // If the callee is known and can be used in IPO, we will update the state
4634       // based on the callee state in updateImpl.
4635       return;
4636     }
4637 
4638     const unsigned int WrapperFunctionArgNo = 6;
4639     RuntimeFunction RF = It->getSecond();
4640     switch (RF) {
4641     // All the functions we know are compatible with SPMD mode.
4642     case OMPRTL___kmpc_is_spmd_exec_mode:
4643     case OMPRTL___kmpc_distribute_static_fini:
4644     case OMPRTL___kmpc_for_static_fini:
4645     case OMPRTL___kmpc_global_thread_num:
4646     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4647     case OMPRTL___kmpc_get_hardware_num_blocks:
4648     case OMPRTL___kmpc_single:
4649     case OMPRTL___kmpc_end_single:
4650     case OMPRTL___kmpc_master:
4651     case OMPRTL___kmpc_end_master:
4652     case OMPRTL___kmpc_barrier:
4653     case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4654     case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4655     case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4656       break;
4657     case OMPRTL___kmpc_distribute_static_init_4:
4658     case OMPRTL___kmpc_distribute_static_init_4u:
4659     case OMPRTL___kmpc_distribute_static_init_8:
4660     case OMPRTL___kmpc_distribute_static_init_8u:
4661     case OMPRTL___kmpc_for_static_init_4:
4662     case OMPRTL___kmpc_for_static_init_4u:
4663     case OMPRTL___kmpc_for_static_init_8:
4664     case OMPRTL___kmpc_for_static_init_8u: {
4665       // Check the schedule and allow static schedule in SPMD mode.
4666       unsigned ScheduleArgOpNo = 2;
4667       auto *ScheduleTypeCI =
4668           dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4669       unsigned ScheduleTypeVal =
4670           ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4671       switch (OMPScheduleType(ScheduleTypeVal)) {
4672       case OMPScheduleType::UnorderedStatic:
4673       case OMPScheduleType::UnorderedStaticChunked:
4674       case OMPScheduleType::OrderedDistribute:
4675       case OMPScheduleType::OrderedDistributeChunked:
4676         break;
4677       default:
4678         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4679         SPMDCompatibilityTracker.insert(&CB);
4680         break;
4681       };
4682     } break;
4683     case OMPRTL___kmpc_target_init:
4684       KernelInitCB = &CB;
4685       break;
4686     case OMPRTL___kmpc_target_deinit:
4687       KernelDeinitCB = &CB;
4688       break;
4689     case OMPRTL___kmpc_parallel_51:
4690       if (auto *ParallelRegion = dyn_cast<Function>(
4691               CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4692         ReachedKnownParallelRegions.insert(ParallelRegion);
4693         /// Check nested parallelism
4694         auto &FnAA = A.getAAFor<AAKernelInfo>(
4695             *this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL);
4696         NestedParallelism |= !FnAA.getState().isValidState() ||
4697                              !FnAA.ReachedKnownParallelRegions.empty() ||
4698                              !FnAA.ReachedUnknownParallelRegions.empty();
4699         break;
4700       }
4701       // The condition above should usually get the parallel region function
4702       // pointer and record it. In the off chance it doesn't we assume the
4703       // worst.
4704       ReachedUnknownParallelRegions.insert(&CB);
4705       break;
4706     case OMPRTL___kmpc_omp_task:
4707       // We do not look into tasks right now, just give up.
4708       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4709       SPMDCompatibilityTracker.insert(&CB);
4710       ReachedUnknownParallelRegions.insert(&CB);
4711       break;
4712     case OMPRTL___kmpc_alloc_shared:
4713     case OMPRTL___kmpc_free_shared:
4714       // Return without setting a fixpoint, to be resolved in updateImpl.
4715       return;
4716     default:
4717       // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4718       // generally. However, they do not hide parallel regions.
4719       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4720       SPMDCompatibilityTracker.insert(&CB);
4721       break;
4722     }
4723     // All other OpenMP runtime calls will not reach parallel regions so they
4724     // can be safely ignored for now. Since it is a known OpenMP runtime call we
4725     // have now modeled all effects and there is no need for any update.
4726     indicateOptimisticFixpoint();
4727   }
4728 
4729   ChangeStatus updateImpl(Attributor &A) override {
4730     // TODO: Once we have call site specific value information we can provide
4731     //       call site specific liveness information and then it makes
4732     //       sense to specialize attributes for call sites arguments instead of
4733     //       redirecting requests to the callee argument.
4734     Function *F = getAssociatedFunction();
4735 
4736     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4737     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4738 
4739     // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4740     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4741       const IRPosition &FnPos = IRPosition::function(*F);
4742       auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4743       if (getState() == FnAA.getState())
4744         return ChangeStatus::UNCHANGED;
4745       getState() = FnAA.getState();
4746       return ChangeStatus::CHANGED;
4747     }
4748 
4749     // F is a runtime function that allocates or frees memory, check
4750     // AAHeapToStack and AAHeapToShared.
4751     KernelInfoState StateBefore = getState();
4752     assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4753             It->getSecond() == OMPRTL___kmpc_free_shared) &&
4754            "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4755 
4756     CallBase &CB = cast<CallBase>(getAssociatedValue());
4757 
4758     auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4759         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4760     auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4761         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4762 
4763     RuntimeFunction RF = It->getSecond();
4764 
4765     switch (RF) {
4766     // If neither HeapToStack nor HeapToShared assume the call is removed,
4767     // assume SPMD incompatibility.
4768     case OMPRTL___kmpc_alloc_shared:
4769       if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4770           !HeapToSharedAA.isAssumedHeapToShared(CB))
4771         SPMDCompatibilityTracker.insert(&CB);
4772       break;
4773     case OMPRTL___kmpc_free_shared:
4774       if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4775           !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4776         SPMDCompatibilityTracker.insert(&CB);
4777       break;
4778     default:
4779       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4780       SPMDCompatibilityTracker.insert(&CB);
4781     }
4782 
4783     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4784                                      : ChangeStatus::CHANGED;
4785   }
4786 };
4787 
4788 struct AAFoldRuntimeCall
4789     : public StateWrapper<BooleanState, AbstractAttribute> {
4790   using Base = StateWrapper<BooleanState, AbstractAttribute>;
4791 
4792   AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4793 
4794   /// Statistics are tracked as part of manifest for now.
4795   void trackStatistics() const override {}
4796 
4797   /// Create an abstract attribute biew for the position \p IRP.
4798   static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4799                                               Attributor &A);
4800 
4801   /// See AbstractAttribute::getName()
4802   const std::string getName() const override { return "AAFoldRuntimeCall"; }
4803 
4804   /// See AbstractAttribute::getIdAddr()
4805   const char *getIdAddr() const override { return &ID; }
4806 
4807   /// This function should return true if the type of the \p AA is
4808   /// AAFoldRuntimeCall
4809   static bool classof(const AbstractAttribute *AA) {
4810     return (AA->getIdAddr() == &ID);
4811   }
4812 
4813   static const char ID;
4814 };
4815 
4816 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4817   AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4818       : AAFoldRuntimeCall(IRP, A) {}
4819 
4820   /// See AbstractAttribute::getAsStr()
4821   const std::string getAsStr() const override {
4822     if (!isValidState())
4823       return "<invalid>";
4824 
4825     std::string Str("simplified value: ");
4826 
4827     if (!SimplifiedValue)
4828       return Str + std::string("none");
4829 
4830     if (!*SimplifiedValue)
4831       return Str + std::string("nullptr");
4832 
4833     if (ConstantInt *CI = dyn_cast<ConstantInt>(*SimplifiedValue))
4834       return Str + std::to_string(CI->getSExtValue());
4835 
4836     return Str + std::string("unknown");
4837   }
4838 
4839   void initialize(Attributor &A) override {
4840     if (DisableOpenMPOptFolding)
4841       indicatePessimisticFixpoint();
4842 
4843     Function *Callee = getAssociatedFunction();
4844 
4845     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4846     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4847     assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4848            "Expected a known OpenMP runtime function");
4849 
4850     RFKind = It->getSecond();
4851 
4852     CallBase &CB = cast<CallBase>(getAssociatedValue());
4853     A.registerSimplificationCallback(
4854         IRPosition::callsite_returned(CB),
4855         [&](const IRPosition &IRP, const AbstractAttribute *AA,
4856             bool &UsedAssumedInformation) -> std::optional<Value *> {
4857           assert((isValidState() ||
4858                   (SimplifiedValue && *SimplifiedValue == nullptr)) &&
4859                  "Unexpected invalid state!");
4860 
4861           if (!isAtFixpoint()) {
4862             UsedAssumedInformation = true;
4863             if (AA)
4864               A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4865           }
4866           return SimplifiedValue;
4867         });
4868   }
4869 
4870   ChangeStatus updateImpl(Attributor &A) override {
4871     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4872     switch (RFKind) {
4873     case OMPRTL___kmpc_is_spmd_exec_mode:
4874       Changed |= foldIsSPMDExecMode(A);
4875       break;
4876     case OMPRTL___kmpc_parallel_level:
4877       Changed |= foldParallelLevel(A);
4878       break;
4879     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4880       Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4881       break;
4882     case OMPRTL___kmpc_get_hardware_num_blocks:
4883       Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4884       break;
4885     default:
4886       llvm_unreachable("Unhandled OpenMP runtime function!");
4887     }
4888 
4889     return Changed;
4890   }
4891 
4892   ChangeStatus manifest(Attributor &A) override {
4893     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4894 
4895     if (SimplifiedValue && *SimplifiedValue) {
4896       Instruction &I = *getCtxI();
4897       A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4898       A.deleteAfterManifest(I);
4899 
4900       CallBase *CB = dyn_cast<CallBase>(&I);
4901       auto Remark = [&](OptimizationRemark OR) {
4902         if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4903           return OR << "Replacing OpenMP runtime call "
4904                     << CB->getCalledFunction()->getName() << " with "
4905                     << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4906         return OR << "Replacing OpenMP runtime call "
4907                   << CB->getCalledFunction()->getName() << ".";
4908       };
4909 
4910       if (CB && EnableVerboseRemarks)
4911         A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4912 
4913       LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4914                         << **SimplifiedValue << "\n");
4915 
4916       Changed = ChangeStatus::CHANGED;
4917     }
4918 
4919     return Changed;
4920   }
4921 
4922   ChangeStatus indicatePessimisticFixpoint() override {
4923     SimplifiedValue = nullptr;
4924     return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4925   }
4926 
4927 private:
4928   /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4929   ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4930     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4931 
4932     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4933     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4934     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4935         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4936 
4937     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4938       return indicatePessimisticFixpoint();
4939 
4940     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4941       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4942                                           DepClassTy::REQUIRED);
4943 
4944       if (!AA.isValidState()) {
4945         SimplifiedValue = nullptr;
4946         return indicatePessimisticFixpoint();
4947       }
4948 
4949       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4950         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4951           ++KnownSPMDCount;
4952         else
4953           ++AssumedSPMDCount;
4954       } else {
4955         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4956           ++KnownNonSPMDCount;
4957         else
4958           ++AssumedNonSPMDCount;
4959       }
4960     }
4961 
4962     if ((AssumedSPMDCount + KnownSPMDCount) &&
4963         (AssumedNonSPMDCount + KnownNonSPMDCount))
4964       return indicatePessimisticFixpoint();
4965 
4966     auto &Ctx = getAnchorValue().getContext();
4967     if (KnownSPMDCount || AssumedSPMDCount) {
4968       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4969              "Expected only SPMD kernels!");
4970       // All reaching kernels are in SPMD mode. Update all function calls to
4971       // __kmpc_is_spmd_exec_mode to 1.
4972       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4973     } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4974       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4975              "Expected only non-SPMD kernels!");
4976       // All reaching kernels are in non-SPMD mode. Update all function
4977       // calls to __kmpc_is_spmd_exec_mode to 0.
4978       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4979     } else {
4980       // We have empty reaching kernels, therefore we cannot tell if the
4981       // associated call site can be folded. At this moment, SimplifiedValue
4982       // must be none.
4983       assert(!SimplifiedValue && "SimplifiedValue should be none");
4984     }
4985 
4986     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4987                                                     : ChangeStatus::CHANGED;
4988   }
4989 
4990   /// Fold __kmpc_parallel_level into a constant if possible.
4991   ChangeStatus foldParallelLevel(Attributor &A) {
4992     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4993 
4994     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4995         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4996 
4997     if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4998       return indicatePessimisticFixpoint();
4999 
5000     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
5001       return indicatePessimisticFixpoint();
5002 
5003     if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
5004       assert(!SimplifiedValue &&
5005              "SimplifiedValue should keep none at this point");
5006       return ChangeStatus::UNCHANGED;
5007     }
5008 
5009     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
5010     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
5011     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
5012       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
5013                                           DepClassTy::REQUIRED);
5014       if (!AA.SPMDCompatibilityTracker.isValidState())
5015         return indicatePessimisticFixpoint();
5016 
5017       if (AA.SPMDCompatibilityTracker.isAssumed()) {
5018         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
5019           ++KnownSPMDCount;
5020         else
5021           ++AssumedSPMDCount;
5022       } else {
5023         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
5024           ++KnownNonSPMDCount;
5025         else
5026           ++AssumedNonSPMDCount;
5027       }
5028     }
5029 
5030     if ((AssumedSPMDCount + KnownSPMDCount) &&
5031         (AssumedNonSPMDCount + KnownNonSPMDCount))
5032       return indicatePessimisticFixpoint();
5033 
5034     auto &Ctx = getAnchorValue().getContext();
5035     // If the caller can only be reached by SPMD kernel entries, the parallel
5036     // level is 1. Similarly, if the caller can only be reached by non-SPMD
5037     // kernel entries, it is 0.
5038     if (AssumedSPMDCount || KnownSPMDCount) {
5039       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
5040              "Expected only SPMD kernels!");
5041       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
5042     } else {
5043       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
5044              "Expected only non-SPMD kernels!");
5045       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
5046     }
5047     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5048                                                     : ChangeStatus::CHANGED;
5049   }
5050 
5051   ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
5052     // Specialize only if all the calls agree with the attribute constant value
5053     int32_t CurrentAttrValue = -1;
5054     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5055 
5056     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5057         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5058 
5059     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
5060       return indicatePessimisticFixpoint();
5061 
5062     // Iterate over the kernels that reach this function
5063     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
5064       int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Attr, -1);
5065 
5066       if (NextAttrVal == -1 ||
5067           (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
5068         return indicatePessimisticFixpoint();
5069       CurrentAttrValue = NextAttrVal;
5070     }
5071 
5072     if (CurrentAttrValue != -1) {
5073       auto &Ctx = getAnchorValue().getContext();
5074       SimplifiedValue =
5075           ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
5076     }
5077     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5078                                                     : ChangeStatus::CHANGED;
5079   }
5080 
5081   /// An optional value the associated value is assumed to fold to. That is, we
5082   /// assume the associated value (which is a call) can be replaced by this
5083   /// simplified value.
5084   std::optional<Value *> SimplifiedValue;
5085 
5086   /// The runtime function kind of the callee of the associated call site.
5087   RuntimeFunction RFKind;
5088 };
5089 
5090 } // namespace
5091 
5092 /// Register folding callsite
5093 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
5094   auto &RFI = OMPInfoCache.RFIs[RF];
5095   RFI.foreachUse(SCC, [&](Use &U, Function &F) {
5096     CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
5097     if (!CI)
5098       return false;
5099     A.getOrCreateAAFor<AAFoldRuntimeCall>(
5100         IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
5101         DepClassTy::NONE, /* ForceUpdate */ false,
5102         /* UpdateAfterInit */ false);
5103     return false;
5104   });
5105 }
5106 
5107 void OpenMPOpt::registerAAs(bool IsModulePass) {
5108   if (SCC.empty())
5109     return;
5110 
5111   if (IsModulePass) {
5112     // Ensure we create the AAKernelInfo AAs first and without triggering an
5113     // update. This will make sure we register all value simplification
5114     // callbacks before any other AA has the chance to create an AAValueSimplify
5115     // or similar.
5116     auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
5117       A.getOrCreateAAFor<AAKernelInfo>(
5118           IRPosition::function(Kernel), /* QueryingAA */ nullptr,
5119           DepClassTy::NONE, /* ForceUpdate */ false,
5120           /* UpdateAfterInit */ false);
5121       return false;
5122     };
5123     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
5124         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
5125     InitRFI.foreachUse(SCC, CreateKernelInfoCB);
5126 
5127     registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
5128     registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
5129     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
5130     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
5131   }
5132 
5133   // Create CallSite AA for all Getters.
5134   if (DeduceICVValues) {
5135     for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
5136       auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
5137 
5138       auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
5139 
5140       auto CreateAA = [&](Use &U, Function &Caller) {
5141         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
5142         if (!CI)
5143           return false;
5144 
5145         auto &CB = cast<CallBase>(*CI);
5146 
5147         IRPosition CBPos = IRPosition::callsite_function(CB);
5148         A.getOrCreateAAFor<AAICVTracker>(CBPos);
5149         return false;
5150       };
5151 
5152       GetterRFI.foreachUse(SCC, CreateAA);
5153     }
5154   }
5155 
5156   // Create an ExecutionDomain AA for every function and a HeapToStack AA for
5157   // every function if there is a device kernel.
5158   if (!isOpenMPDevice(M))
5159     return;
5160 
5161   for (auto *F : SCC) {
5162     if (F->isDeclaration())
5163       continue;
5164 
5165     // We look at internal functions only on-demand but if any use is not a
5166     // direct call or outside the current set of analyzed functions, we have
5167     // to do it eagerly.
5168     if (F->hasLocalLinkage()) {
5169       if (llvm::all_of(F->uses(), [this](const Use &U) {
5170             const auto *CB = dyn_cast<CallBase>(U.getUser());
5171             return CB && CB->isCallee(&U) &&
5172                    A.isRunOn(const_cast<Function *>(CB->getCaller()));
5173           }))
5174         continue;
5175     }
5176     registerAAsForFunction(A, *F);
5177   }
5178 }
5179 
5180 void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) {
5181   if (!DisableOpenMPOptDeglobalization)
5182     A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
5183   A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(F));
5184   if (!DisableOpenMPOptDeglobalization)
5185     A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(F));
5186 
5187   for (auto &I : instructions(F)) {
5188     if (auto *LI = dyn_cast<LoadInst>(&I)) {
5189       bool UsedAssumedInformation = false;
5190       A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
5191                              UsedAssumedInformation, AA::Interprocedural);
5192       continue;
5193     }
5194     if (auto *SI = dyn_cast<StoreInst>(&I)) {
5195       A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
5196       continue;
5197     }
5198     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
5199       if (II->getIntrinsicID() == Intrinsic::assume) {
5200         A.getOrCreateAAFor<AAPotentialValues>(
5201             IRPosition::value(*II->getArgOperand(0)));
5202         continue;
5203       }
5204     }
5205   }
5206 }
5207 
5208 const char AAICVTracker::ID = 0;
5209 const char AAKernelInfo::ID = 0;
5210 const char AAExecutionDomain::ID = 0;
5211 const char AAHeapToShared::ID = 0;
5212 const char AAFoldRuntimeCall::ID = 0;
5213 
5214 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
5215                                               Attributor &A) {
5216   AAICVTracker *AA = nullptr;
5217   switch (IRP.getPositionKind()) {
5218   case IRPosition::IRP_INVALID:
5219   case IRPosition::IRP_FLOAT:
5220   case IRPosition::IRP_ARGUMENT:
5221   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5222     llvm_unreachable("ICVTracker can only be created for function position!");
5223   case IRPosition::IRP_RETURNED:
5224     AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
5225     break;
5226   case IRPosition::IRP_CALL_SITE_RETURNED:
5227     AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
5228     break;
5229   case IRPosition::IRP_CALL_SITE:
5230     AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
5231     break;
5232   case IRPosition::IRP_FUNCTION:
5233     AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
5234     break;
5235   }
5236 
5237   return *AA;
5238 }
5239 
5240 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
5241                                                         Attributor &A) {
5242   AAExecutionDomainFunction *AA = nullptr;
5243   switch (IRP.getPositionKind()) {
5244   case IRPosition::IRP_INVALID:
5245   case IRPosition::IRP_FLOAT:
5246   case IRPosition::IRP_ARGUMENT:
5247   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5248   case IRPosition::IRP_RETURNED:
5249   case IRPosition::IRP_CALL_SITE_RETURNED:
5250   case IRPosition::IRP_CALL_SITE:
5251     llvm_unreachable(
5252         "AAExecutionDomain can only be created for function position!");
5253   case IRPosition::IRP_FUNCTION:
5254     AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
5255     break;
5256   }
5257 
5258   return *AA;
5259 }
5260 
5261 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
5262                                                   Attributor &A) {
5263   AAHeapToSharedFunction *AA = nullptr;
5264   switch (IRP.getPositionKind()) {
5265   case IRPosition::IRP_INVALID:
5266   case IRPosition::IRP_FLOAT:
5267   case IRPosition::IRP_ARGUMENT:
5268   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5269   case IRPosition::IRP_RETURNED:
5270   case IRPosition::IRP_CALL_SITE_RETURNED:
5271   case IRPosition::IRP_CALL_SITE:
5272     llvm_unreachable(
5273         "AAHeapToShared can only be created for function position!");
5274   case IRPosition::IRP_FUNCTION:
5275     AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
5276     break;
5277   }
5278 
5279   return *AA;
5280 }
5281 
5282 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
5283                                               Attributor &A) {
5284   AAKernelInfo *AA = nullptr;
5285   switch (IRP.getPositionKind()) {
5286   case IRPosition::IRP_INVALID:
5287   case IRPosition::IRP_FLOAT:
5288   case IRPosition::IRP_ARGUMENT:
5289   case IRPosition::IRP_RETURNED:
5290   case IRPosition::IRP_CALL_SITE_RETURNED:
5291   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5292     llvm_unreachable("KernelInfo can only be created for function position!");
5293   case IRPosition::IRP_CALL_SITE:
5294     AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
5295     break;
5296   case IRPosition::IRP_FUNCTION:
5297     AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
5298     break;
5299   }
5300 
5301   return *AA;
5302 }
5303 
5304 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
5305                                                         Attributor &A) {
5306   AAFoldRuntimeCall *AA = nullptr;
5307   switch (IRP.getPositionKind()) {
5308   case IRPosition::IRP_INVALID:
5309   case IRPosition::IRP_FLOAT:
5310   case IRPosition::IRP_ARGUMENT:
5311   case IRPosition::IRP_RETURNED:
5312   case IRPosition::IRP_FUNCTION:
5313   case IRPosition::IRP_CALL_SITE:
5314   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5315     llvm_unreachable("KernelInfo can only be created for call site position!");
5316   case IRPosition::IRP_CALL_SITE_RETURNED:
5317     AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
5318     break;
5319   }
5320 
5321   return *AA;
5322 }
5323 
5324 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
5325   if (!containsOpenMP(M))
5326     return PreservedAnalyses::all();
5327   if (DisableOpenMPOptimizations)
5328     return PreservedAnalyses::all();
5329 
5330   FunctionAnalysisManager &FAM =
5331       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
5332   KernelSet Kernels = getDeviceKernels(M);
5333 
5334   if (PrintModuleBeforeOptimizations)
5335     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
5336 
5337   auto IsCalled = [&](Function &F) {
5338     if (Kernels.contains(&F))
5339       return true;
5340     for (const User *U : F.users())
5341       if (!isa<BlockAddress>(U))
5342         return true;
5343     return false;
5344   };
5345 
5346   auto EmitRemark = [&](Function &F) {
5347     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5348     ORE.emit([&]() {
5349       OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
5350       return ORA << "Could not internalize function. "
5351                  << "Some optimizations may not be possible. [OMP140]";
5352     });
5353   };
5354 
5355   // Create internal copies of each function if this is a kernel Module. This
5356   // allows iterprocedural passes to see every call edge.
5357   DenseMap<Function *, Function *> InternalizedMap;
5358   if (isOpenMPDevice(M)) {
5359     SmallPtrSet<Function *, 16> InternalizeFns;
5360     for (Function &F : M)
5361       if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
5362           !DisableInternalization) {
5363         if (Attributor::isInternalizable(F)) {
5364           InternalizeFns.insert(&F);
5365         } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
5366           EmitRemark(F);
5367         }
5368       }
5369 
5370     Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
5371   }
5372 
5373   // Look at every function in the Module unless it was internalized.
5374   SetVector<Function *> Functions;
5375   SmallVector<Function *, 16> SCC;
5376   for (Function &F : M)
5377     if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) {
5378       SCC.push_back(&F);
5379       Functions.insert(&F);
5380     }
5381 
5382   if (SCC.empty())
5383     return PreservedAnalyses::all();
5384 
5385   AnalysisGetter AG(FAM);
5386 
5387   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5388     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5389   };
5390 
5391   BumpPtrAllocator Allocator;
5392   CallGraphUpdater CGUpdater;
5393 
5394   bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5395                   LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5396   OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, Kernels,
5397                                 PostLink);
5398 
5399   unsigned MaxFixpointIterations =
5400       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5401 
5402   AttributorConfig AC(CGUpdater);
5403   AC.DefaultInitializeLiveInternals = false;
5404   AC.IsModulePass = true;
5405   AC.RewriteSignatures = false;
5406   AC.MaxFixpointIterations = MaxFixpointIterations;
5407   AC.OREGetter = OREGetter;
5408   AC.PassName = DEBUG_TYPE;
5409   AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5410 
5411   Attributor A(Functions, InfoCache, AC);
5412 
5413   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5414   bool Changed = OMPOpt.run(true);
5415 
5416   // Optionally inline device functions for potentially better performance.
5417   if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5418     for (Function &F : M)
5419       if (!F.isDeclaration() && !Kernels.contains(&F) &&
5420           !F.hasFnAttribute(Attribute::NoInline))
5421         F.addFnAttr(Attribute::AlwaysInline);
5422 
5423   if (PrintModuleAfterOptimizations)
5424     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5425 
5426   if (Changed)
5427     return PreservedAnalyses::none();
5428 
5429   return PreservedAnalyses::all();
5430 }
5431 
5432 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5433                                           CGSCCAnalysisManager &AM,
5434                                           LazyCallGraph &CG,
5435                                           CGSCCUpdateResult &UR) {
5436   if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5437     return PreservedAnalyses::all();
5438   if (DisableOpenMPOptimizations)
5439     return PreservedAnalyses::all();
5440 
5441   SmallVector<Function *, 16> SCC;
5442   // If there are kernels in the module, we have to run on all SCC's.
5443   for (LazyCallGraph::Node &N : C) {
5444     Function *Fn = &N.getFunction();
5445     SCC.push_back(Fn);
5446   }
5447 
5448   if (SCC.empty())
5449     return PreservedAnalyses::all();
5450 
5451   Module &M = *C.begin()->getFunction().getParent();
5452 
5453   if (PrintModuleBeforeOptimizations)
5454     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5455 
5456   KernelSet Kernels = getDeviceKernels(M);
5457 
5458   FunctionAnalysisManager &FAM =
5459       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5460 
5461   AnalysisGetter AG(FAM);
5462 
5463   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5464     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5465   };
5466 
5467   BumpPtrAllocator Allocator;
5468   CallGraphUpdater CGUpdater;
5469   CGUpdater.initialize(CG, C, AM, UR);
5470 
5471   bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5472                   LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5473   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5474   OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5475                                 /*CGSCC*/ &Functions, Kernels, PostLink);
5476 
5477   unsigned MaxFixpointIterations =
5478       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5479 
5480   AttributorConfig AC(CGUpdater);
5481   AC.DefaultInitializeLiveInternals = false;
5482   AC.IsModulePass = false;
5483   AC.RewriteSignatures = false;
5484   AC.MaxFixpointIterations = MaxFixpointIterations;
5485   AC.OREGetter = OREGetter;
5486   AC.PassName = DEBUG_TYPE;
5487   AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5488 
5489   Attributor A(Functions, InfoCache, AC);
5490 
5491   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5492   bool Changed = OMPOpt.run(false);
5493 
5494   if (PrintModuleAfterOptimizations)
5495     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5496 
5497   if (Changed)
5498     return PreservedAnalyses::none();
5499 
5500   return PreservedAnalyses::all();
5501 }
5502 
5503 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5504   // TODO: Create a more cross-platform way of determining device kernels.
5505   NamedMDNode *MD = M.getNamedMetadata("nvvm.annotations");
5506   KernelSet Kernels;
5507 
5508   if (!MD)
5509     return Kernels;
5510 
5511   for (auto *Op : MD->operands()) {
5512     if (Op->getNumOperands() < 2)
5513       continue;
5514     MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5515     if (!KindID || KindID->getString() != "kernel")
5516       continue;
5517 
5518     Function *KernelFn =
5519         mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5520     if (!KernelFn)
5521       continue;
5522 
5523     ++NumOpenMPTargetRegionKernels;
5524 
5525     Kernels.insert(KernelFn);
5526   }
5527 
5528   return Kernels;
5529 }
5530 
5531 bool llvm::omp::containsOpenMP(Module &M) {
5532   Metadata *MD = M.getModuleFlag("openmp");
5533   if (!MD)
5534     return false;
5535 
5536   return true;
5537 }
5538 
5539 bool llvm::omp::isOpenMPDevice(Module &M) {
5540   Metadata *MD = M.getModuleFlag("openmp-device");
5541   if (!MD)
5542     return false;
5543 
5544   return true;
5545 }
5546