1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/OpenMPOpt.h" 16 17 #include "llvm/ADT/EnumeratedArray.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/CallGraphSCCPass.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Frontend/OpenMP/OMPConstants.h" 24 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include "llvm/Transforms/IPO/Attributor.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 31 #include "llvm/Transforms/Utils/CodeExtractor.h" 32 33 using namespace llvm; 34 using namespace omp; 35 36 #define DEBUG_TYPE "openmp-opt" 37 38 static cl::opt<bool> DisableOpenMPOptimizations( 39 "openmp-opt-disable", cl::ZeroOrMore, 40 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 41 cl::init(false)); 42 43 static cl::opt<bool> EnableParallelRegionMerging( 44 "openmp-opt-enable-merging", cl::ZeroOrMore, 45 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 46 cl::init(false)); 47 48 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 49 cl::Hidden); 50 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 51 cl::init(false), cl::Hidden); 52 53 static cl::opt<bool> HideMemoryTransferLatency( 54 "openmp-hide-memory-transfer-latency", 55 cl::desc("[WIP] Tries to hide the latency of host to device memory" 56 " transfers"), 57 cl::Hidden, cl::init(false)); 58 59 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 60 "Number of OpenMP runtime calls deduplicated"); 61 STATISTIC(NumOpenMPParallelRegionsDeleted, 62 "Number of OpenMP parallel regions deleted"); 63 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 64 "Number of OpenMP runtime functions identified"); 65 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 66 "Number of OpenMP runtime function uses identified"); 67 STATISTIC(NumOpenMPTargetRegionKernels, 68 "Number of OpenMP target region entry points (=kernels) identified"); 69 STATISTIC( 70 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 71 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 72 STATISTIC(NumOpenMPParallelRegionsMerged, 73 "Number of OpenMP parallel regions merged"); 74 75 #if !defined(NDEBUG) 76 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 77 #endif 78 79 namespace { 80 81 struct AAICVTracker; 82 83 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 84 /// Attributor runs. 85 struct OMPInformationCache : public InformationCache { 86 OMPInformationCache(Module &M, AnalysisGetter &AG, 87 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 88 SmallPtrSetImpl<Kernel> &Kernels) 89 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 90 Kernels(Kernels) { 91 92 OMPBuilder.initialize(); 93 initializeRuntimeFunctions(); 94 initializeInternalControlVars(); 95 } 96 97 /// Generic information that describes an internal control variable. 98 struct InternalControlVarInfo { 99 /// The kind, as described by InternalControlVar enum. 100 InternalControlVar Kind; 101 102 /// The name of the ICV. 103 StringRef Name; 104 105 /// Environment variable associated with this ICV. 106 StringRef EnvVarName; 107 108 /// Initial value kind. 109 ICVInitValue InitKind; 110 111 /// Initial value. 112 ConstantInt *InitValue; 113 114 /// Setter RTL function associated with this ICV. 115 RuntimeFunction Setter; 116 117 /// Getter RTL function associated with this ICV. 118 RuntimeFunction Getter; 119 120 /// RTL Function corresponding to the override clause of this ICV 121 RuntimeFunction Clause; 122 }; 123 124 /// Generic information that describes a runtime function 125 struct RuntimeFunctionInfo { 126 127 /// The kind, as described by the RuntimeFunction enum. 128 RuntimeFunction Kind; 129 130 /// The name of the function. 131 StringRef Name; 132 133 /// Flag to indicate a variadic function. 134 bool IsVarArg; 135 136 /// The return type of the function. 137 Type *ReturnType; 138 139 /// The argument types of the function. 140 SmallVector<Type *, 8> ArgumentTypes; 141 142 /// The declaration if available. 143 Function *Declaration = nullptr; 144 145 /// Uses of this runtime function per function containing the use. 146 using UseVector = SmallVector<Use *, 16>; 147 148 /// Clear UsesMap for runtime function. 149 void clearUsesMap() { UsesMap.clear(); } 150 151 /// Boolean conversion that is true if the runtime function was found. 152 operator bool() const { return Declaration; } 153 154 /// Return the vector of uses in function \p F. 155 UseVector &getOrCreateUseVector(Function *F) { 156 std::shared_ptr<UseVector> &UV = UsesMap[F]; 157 if (!UV) 158 UV = std::make_shared<UseVector>(); 159 return *UV; 160 } 161 162 /// Return the vector of uses in function \p F or `nullptr` if there are 163 /// none. 164 const UseVector *getUseVector(Function &F) const { 165 auto I = UsesMap.find(&F); 166 if (I != UsesMap.end()) 167 return I->second.get(); 168 return nullptr; 169 } 170 171 /// Return how many functions contain uses of this runtime function. 172 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 173 174 /// Return the number of arguments (or the minimal number for variadic 175 /// functions). 176 size_t getNumArgs() const { return ArgumentTypes.size(); } 177 178 /// Run the callback \p CB on each use and forget the use if the result is 179 /// true. The callback will be fed the function in which the use was 180 /// encountered as second argument. 181 void foreachUse(SmallVectorImpl<Function *> &SCC, 182 function_ref<bool(Use &, Function &)> CB) { 183 for (Function *F : SCC) 184 foreachUse(CB, F); 185 } 186 187 /// Run the callback \p CB on each use within the function \p F and forget 188 /// the use if the result is true. 189 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 190 SmallVector<unsigned, 8> ToBeDeleted; 191 ToBeDeleted.clear(); 192 193 unsigned Idx = 0; 194 UseVector &UV = getOrCreateUseVector(F); 195 196 for (Use *U : UV) { 197 if (CB(*U, *F)) 198 ToBeDeleted.push_back(Idx); 199 ++Idx; 200 } 201 202 // Remove the to-be-deleted indices in reverse order as prior 203 // modifications will not modify the smaller indices. 204 while (!ToBeDeleted.empty()) { 205 unsigned Idx = ToBeDeleted.pop_back_val(); 206 UV[Idx] = UV.back(); 207 UV.pop_back(); 208 } 209 } 210 211 private: 212 /// Map from functions to all uses of this runtime function contained in 213 /// them. 214 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 215 }; 216 217 /// An OpenMP-IR-Builder instance 218 OpenMPIRBuilder OMPBuilder; 219 220 /// Map from runtime function kind to the runtime function description. 221 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 222 RuntimeFunction::OMPRTL___last> 223 RFIs; 224 225 /// Map from ICV kind to the ICV description. 226 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 227 InternalControlVar::ICV___last> 228 ICVs; 229 230 /// Helper to initialize all internal control variable information for those 231 /// defined in OMPKinds.def. 232 void initializeInternalControlVars() { 233 #define ICV_RT_SET(_Name, RTL) \ 234 { \ 235 auto &ICV = ICVs[_Name]; \ 236 ICV.Setter = RTL; \ 237 } 238 #define ICV_RT_GET(Name, RTL) \ 239 { \ 240 auto &ICV = ICVs[Name]; \ 241 ICV.Getter = RTL; \ 242 } 243 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 244 { \ 245 auto &ICV = ICVs[Enum]; \ 246 ICV.Name = _Name; \ 247 ICV.Kind = Enum; \ 248 ICV.InitKind = Init; \ 249 ICV.EnvVarName = _EnvVarName; \ 250 switch (ICV.InitKind) { \ 251 case ICV_IMPLEMENTATION_DEFINED: \ 252 ICV.InitValue = nullptr; \ 253 break; \ 254 case ICV_ZERO: \ 255 ICV.InitValue = ConstantInt::get( \ 256 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 257 break; \ 258 case ICV_FALSE: \ 259 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 260 break; \ 261 case ICV_LAST: \ 262 break; \ 263 } \ 264 } 265 #include "llvm/Frontend/OpenMP/OMPKinds.def" 266 } 267 268 /// Returns true if the function declaration \p F matches the runtime 269 /// function types, that is, return type \p RTFRetType, and argument types 270 /// \p RTFArgTypes. 271 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 272 SmallVector<Type *, 8> &RTFArgTypes) { 273 // TODO: We should output information to the user (under debug output 274 // and via remarks). 275 276 if (!F) 277 return false; 278 if (F->getReturnType() != RTFRetType) 279 return false; 280 if (F->arg_size() != RTFArgTypes.size()) 281 return false; 282 283 auto RTFTyIt = RTFArgTypes.begin(); 284 for (Argument &Arg : F->args()) { 285 if (Arg.getType() != *RTFTyIt) 286 return false; 287 288 ++RTFTyIt; 289 } 290 291 return true; 292 } 293 294 // Helper to collect all uses of the declaration in the UsesMap. 295 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 296 unsigned NumUses = 0; 297 if (!RFI.Declaration) 298 return NumUses; 299 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 300 301 if (CollectStats) { 302 NumOpenMPRuntimeFunctionsIdentified += 1; 303 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 304 } 305 306 // TODO: We directly convert uses into proper calls and unknown uses. 307 for (Use &U : RFI.Declaration->uses()) { 308 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 309 if (ModuleSlice.count(UserI->getFunction())) { 310 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 311 ++NumUses; 312 } 313 } else { 314 RFI.getOrCreateUseVector(nullptr).push_back(&U); 315 ++NumUses; 316 } 317 } 318 return NumUses; 319 } 320 321 // Helper function to recollect uses of a runtime function. 322 void recollectUsesForFunction(RuntimeFunction RTF) { 323 auto &RFI = RFIs[RTF]; 324 RFI.clearUsesMap(); 325 collectUses(RFI, /*CollectStats*/ false); 326 } 327 328 // Helper function to recollect uses of all runtime functions. 329 void recollectUses() { 330 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 331 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 332 } 333 334 /// Helper to initialize all runtime function information for those defined 335 /// in OpenMPKinds.def. 336 void initializeRuntimeFunctions() { 337 Module &M = *((*ModuleSlice.begin())->getParent()); 338 339 // Helper macros for handling __VA_ARGS__ in OMP_RTL 340 #define OMP_TYPE(VarName, ...) \ 341 Type *VarName = OMPBuilder.VarName; \ 342 (void)VarName; 343 344 #define OMP_ARRAY_TYPE(VarName, ...) \ 345 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 346 (void)VarName##Ty; \ 347 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 348 (void)VarName##PtrTy; 349 350 #define OMP_FUNCTION_TYPE(VarName, ...) \ 351 FunctionType *VarName = OMPBuilder.VarName; \ 352 (void)VarName; \ 353 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 354 (void)VarName##Ptr; 355 356 #define OMP_STRUCT_TYPE(VarName, ...) \ 357 StructType *VarName = OMPBuilder.VarName; \ 358 (void)VarName; \ 359 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 360 (void)VarName##Ptr; 361 362 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 363 { \ 364 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 365 Function *F = M.getFunction(_Name); \ 366 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 367 auto &RFI = RFIs[_Enum]; \ 368 RFI.Kind = _Enum; \ 369 RFI.Name = _Name; \ 370 RFI.IsVarArg = _IsVarArg; \ 371 RFI.ReturnType = OMPBuilder._ReturnType; \ 372 RFI.ArgumentTypes = std::move(ArgsTypes); \ 373 RFI.Declaration = F; \ 374 unsigned NumUses = collectUses(RFI); \ 375 (void)NumUses; \ 376 LLVM_DEBUG({ \ 377 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 378 << " found\n"; \ 379 if (RFI.Declaration) \ 380 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 381 << RFI.getNumFunctionsWithUses() \ 382 << " different functions.\n"; \ 383 }); \ 384 } \ 385 } 386 #include "llvm/Frontend/OpenMP/OMPKinds.def" 387 388 // TODO: We should attach the attributes defined in OMPKinds.def. 389 } 390 391 /// Collection of known kernels (\see Kernel) in the module. 392 SmallPtrSetImpl<Kernel> &Kernels; 393 }; 394 395 /// Used to map the values physically (in the IR) stored in an offload 396 /// array, to a vector in memory. 397 struct OffloadArray { 398 /// Physical array (in the IR). 399 AllocaInst *Array = nullptr; 400 /// Mapped values. 401 SmallVector<Value *, 8> StoredValues; 402 /// Last stores made in the offload array. 403 SmallVector<StoreInst *, 8> LastAccesses; 404 405 OffloadArray() = default; 406 407 /// Initializes the OffloadArray with the values stored in \p Array before 408 /// instruction \p Before is reached. Returns false if the initialization 409 /// fails. 410 /// This MUST be used immediately after the construction of the object. 411 bool initialize(AllocaInst &Array, Instruction &Before) { 412 if (!Array.getAllocatedType()->isArrayTy()) 413 return false; 414 415 if (!getValues(Array, Before)) 416 return false; 417 418 this->Array = &Array; 419 return true; 420 } 421 422 static const unsigned DeviceIDArgNum = 1; 423 static const unsigned BasePtrsArgNum = 3; 424 static const unsigned PtrsArgNum = 4; 425 static const unsigned SizesArgNum = 5; 426 427 private: 428 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 429 /// \p Array, leaving StoredValues with the values stored before the 430 /// instruction \p Before is reached. 431 bool getValues(AllocaInst &Array, Instruction &Before) { 432 // Initialize container. 433 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 434 StoredValues.assign(NumValues, nullptr); 435 LastAccesses.assign(NumValues, nullptr); 436 437 // TODO: This assumes the instruction \p Before is in the same 438 // BasicBlock as Array. Make it general, for any control flow graph. 439 BasicBlock *BB = Array.getParent(); 440 if (BB != Before.getParent()) 441 return false; 442 443 const DataLayout &DL = Array.getModule()->getDataLayout(); 444 const unsigned int PointerSize = DL.getPointerSize(); 445 446 for (Instruction &I : *BB) { 447 if (&I == &Before) 448 break; 449 450 if (!isa<StoreInst>(&I)) 451 continue; 452 453 auto *S = cast<StoreInst>(&I); 454 int64_t Offset = -1; 455 auto *Dst = 456 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 457 if (Dst == &Array) { 458 int64_t Idx = Offset / PointerSize; 459 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 460 LastAccesses[Idx] = S; 461 } 462 } 463 464 return isFilled(); 465 } 466 467 /// Returns true if all values in StoredValues and 468 /// LastAccesses are not nullptrs. 469 bool isFilled() { 470 const unsigned NumValues = StoredValues.size(); 471 for (unsigned I = 0; I < NumValues; ++I) { 472 if (!StoredValues[I] || !LastAccesses[I]) 473 return false; 474 } 475 476 return true; 477 } 478 }; 479 480 struct OpenMPOpt { 481 482 using OptimizationRemarkGetter = 483 function_ref<OptimizationRemarkEmitter &(Function *)>; 484 485 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 486 OptimizationRemarkGetter OREGetter, 487 OMPInformationCache &OMPInfoCache, Attributor &A) 488 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 489 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 490 491 /// Check if any remarks are enabled for openmp-opt 492 bool remarksEnabled() { 493 auto &Ctx = M.getContext(); 494 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 495 } 496 497 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 498 bool run() { 499 if (SCC.empty()) 500 return false; 501 502 bool Changed = false; 503 504 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 505 << " functions in a slice with " 506 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 507 508 if (PrintICVValues) 509 printICVs(); 510 if (PrintOpenMPKernels) 511 printKernels(); 512 513 Changed |= rewriteDeviceCodeStateMachine(); 514 515 Changed |= runAttributor(); 516 517 // Recollect uses, in case Attributor deleted any. 518 OMPInfoCache.recollectUses(); 519 520 Changed |= deleteParallelRegions(); 521 if (HideMemoryTransferLatency) 522 Changed |= hideMemTransfersLatency(); 523 if (remarksEnabled()) 524 analysisGlobalization(); 525 Changed |= deduplicateRuntimeCalls(); 526 if (EnableParallelRegionMerging) { 527 if (mergeParallelRegions()) { 528 deduplicateRuntimeCalls(); 529 Changed = true; 530 } 531 } 532 533 return Changed; 534 } 535 536 /// Print initial ICV values for testing. 537 /// FIXME: This should be done from the Attributor once it is added. 538 void printICVs() const { 539 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 540 ICV_proc_bind}; 541 542 for (Function *F : OMPInfoCache.ModuleSlice) { 543 for (auto ICV : ICVs) { 544 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 545 auto Remark = [&](OptimizationRemark OR) { 546 return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 547 << " Value: " 548 << (ICVInfo.InitValue 549 ? ICVInfo.InitValue->getValue().toString(10, true) 550 : "IMPLEMENTATION_DEFINED"); 551 }; 552 553 emitRemarkOnFunction(F, "OpenMPICVTracker", Remark); 554 } 555 } 556 } 557 558 /// Print OpenMP GPU kernels for testing. 559 void printKernels() const { 560 for (Function *F : SCC) { 561 if (!OMPInfoCache.Kernels.count(F)) 562 continue; 563 564 auto Remark = [&](OptimizationRemark OR) { 565 return OR << "OpenMP GPU kernel " 566 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 567 }; 568 569 emitRemarkOnFunction(F, "OpenMPGPU", Remark); 570 } 571 } 572 573 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 574 /// given it has to be the callee or a nullptr is returned. 575 static CallInst *getCallIfRegularCall( 576 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 577 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 578 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 579 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 580 return CI; 581 return nullptr; 582 } 583 584 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 585 /// the callee or a nullptr is returned. 586 static CallInst *getCallIfRegularCall( 587 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 588 CallInst *CI = dyn_cast<CallInst>(&V); 589 if (CI && !CI->hasOperandBundles() && 590 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 591 return CI; 592 return nullptr; 593 } 594 595 private: 596 /// Merge parallel regions when it is safe. 597 bool mergeParallelRegions() { 598 const unsigned CallbackCalleeOperand = 2; 599 const unsigned CallbackFirstArgOperand = 3; 600 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 601 602 // Check if there are any __kmpc_fork_call calls to merge. 603 OMPInformationCache::RuntimeFunctionInfo &RFI = 604 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 605 606 if (!RFI.Declaration) 607 return false; 608 609 // Unmergable calls that prevent merging a parallel region. 610 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 611 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 612 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 613 }; 614 615 bool Changed = false; 616 LoopInfo *LI = nullptr; 617 DominatorTree *DT = nullptr; 618 619 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 620 621 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 622 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 623 BasicBlock &ContinuationIP) { 624 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 625 BasicBlock *CGEndBB = 626 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 627 assert(StartBB != nullptr && "StartBB should not be null"); 628 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 629 assert(EndBB != nullptr && "EndBB should not be null"); 630 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 631 }; 632 633 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 634 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 635 ReplacementValue = &Inner; 636 return CodeGenIP; 637 }; 638 639 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 640 641 /// Create a sequential execution region within a merged parallel region, 642 /// encapsulated in a master construct with a barrier for synchronization. 643 auto CreateSequentialRegion = [&](Function *OuterFn, 644 BasicBlock *OuterPredBB, 645 Instruction *SeqStartI, 646 Instruction *SeqEndI) { 647 // Isolate the instructions of the sequential region to a separate 648 // block. 649 BasicBlock *ParentBB = SeqStartI->getParent(); 650 BasicBlock *SeqEndBB = 651 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 652 BasicBlock *SeqAfterBB = 653 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 654 BasicBlock *SeqStartBB = 655 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 656 657 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 658 "Expected a different CFG"); 659 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 660 ParentBB->getTerminator()->eraseFromParent(); 661 662 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 663 BasicBlock &ContinuationIP) { 664 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 665 BasicBlock *CGEndBB = 666 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 667 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 668 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 669 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 670 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 671 }; 672 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 673 674 // Find outputs from the sequential region to outside users and 675 // broadcast their values to them. 676 for (Instruction &I : *SeqStartBB) { 677 SmallPtrSet<Instruction *, 4> OutsideUsers; 678 for (User *Usr : I.users()) { 679 Instruction &UsrI = *cast<Instruction>(Usr); 680 // Ignore outputs to LT intrinsics, code extraction for the merged 681 // parallel region will fix them. 682 if (UsrI.isLifetimeStartOrEnd()) 683 continue; 684 685 if (UsrI.getParent() != SeqStartBB) 686 OutsideUsers.insert(&UsrI); 687 } 688 689 if (OutsideUsers.empty()) 690 continue; 691 692 // Emit an alloca in the outer region to store the broadcasted 693 // value. 694 const DataLayout &DL = M.getDataLayout(); 695 AllocaInst *AllocaI = new AllocaInst( 696 I.getType(), DL.getAllocaAddrSpace(), nullptr, 697 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 698 699 // Emit a store instruction in the sequential BB to update the 700 // value. 701 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 702 703 // Emit a load instruction and replace the use of the output value 704 // with it. 705 for (Instruction *UsrI : OutsideUsers) { 706 LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, 707 I.getName() + ".seq.output.load", UsrI); 708 UsrI->replaceUsesOfWith(&I, LoadI); 709 } 710 } 711 712 OpenMPIRBuilder::LocationDescription Loc( 713 InsertPointTy(ParentBB, ParentBB->end()), DL); 714 InsertPointTy SeqAfterIP = 715 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 716 717 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 718 719 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 720 721 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 722 << "\n"); 723 }; 724 725 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 726 // contained in BB and only separated by instructions that can be 727 // redundantly executed in parallel. The block BB is split before the first 728 // call (in MergableCIs) and after the last so the entire region we merge 729 // into a single parallel region is contained in a single basic block 730 // without any other instructions. We use the OpenMPIRBuilder to outline 731 // that block and call the resulting function via __kmpc_fork_call. 732 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 733 // TODO: Change the interface to allow single CIs expanded, e.g, to 734 // include an outer loop. 735 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 736 737 auto Remark = [&](OptimizationRemark OR) { 738 OR << "Parallel region at " 739 << ore::NV("OpenMPParallelMergeFront", 740 MergableCIs.front()->getDebugLoc()) 741 << " merged with parallel regions at "; 742 for (auto *CI : llvm::drop_begin(MergableCIs)) { 743 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 744 if (CI != MergableCIs.back()) 745 OR << ", "; 746 } 747 return OR; 748 }; 749 750 emitRemark<OptimizationRemark>(MergableCIs.front(), 751 "OpenMPParallelRegionMerging", Remark); 752 753 Function *OriginalFn = BB->getParent(); 754 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 755 << " parallel regions in " << OriginalFn->getName() 756 << "\n"); 757 758 // Isolate the calls to merge in a separate block. 759 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 760 BasicBlock *AfterBB = 761 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 762 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 763 "omp.par.merged"); 764 765 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 766 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 767 BB->getTerminator()->eraseFromParent(); 768 769 // Create sequential regions for sequential instructions that are 770 // in-between mergable parallel regions. 771 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 772 It != End; ++It) { 773 Instruction *ForkCI = *It; 774 Instruction *NextForkCI = *(It + 1); 775 776 // Continue if there are not in-between instructions. 777 if (ForkCI->getNextNode() == NextForkCI) 778 continue; 779 780 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 781 NextForkCI->getPrevNode()); 782 } 783 784 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 785 DL); 786 IRBuilder<>::InsertPoint AllocaIP( 787 &OriginalFn->getEntryBlock(), 788 OriginalFn->getEntryBlock().getFirstInsertionPt()); 789 // Create the merged parallel region with default proc binding, to 790 // avoid overriding binding settings, and without explicit cancellation. 791 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 792 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 793 OMP_PROC_BIND_default, /* IsCancellable */ false); 794 BranchInst::Create(AfterBB, AfterIP.getBlock()); 795 796 // Perform the actual outlining. 797 OMPInfoCache.OMPBuilder.finalize(/* AllowExtractorSinking */ true); 798 799 Function *OutlinedFn = MergableCIs.front()->getCaller(); 800 801 // Replace the __kmpc_fork_call calls with direct calls to the outlined 802 // callbacks. 803 SmallVector<Value *, 8> Args; 804 for (auto *CI : MergableCIs) { 805 Value *Callee = 806 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 807 FunctionType *FT = 808 cast<FunctionType>(Callee->getType()->getPointerElementType()); 809 Args.clear(); 810 Args.push_back(OutlinedFn->getArg(0)); 811 Args.push_back(OutlinedFn->getArg(1)); 812 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 813 U < E; ++U) 814 Args.push_back(CI->getArgOperand(U)); 815 816 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 817 if (CI->getDebugLoc()) 818 NewCI->setDebugLoc(CI->getDebugLoc()); 819 820 // Forward parameter attributes from the callback to the callee. 821 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 822 U < E; ++U) 823 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 824 NewCI->addParamAttr( 825 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 826 827 // Emit an explicit barrier to replace the implicit fork-join barrier. 828 if (CI != MergableCIs.back()) { 829 // TODO: Remove barrier if the merged parallel region includes the 830 // 'nowait' clause. 831 OMPInfoCache.OMPBuilder.createBarrier( 832 InsertPointTy(NewCI->getParent(), 833 NewCI->getNextNode()->getIterator()), 834 OMPD_parallel); 835 } 836 837 auto Remark = [&](OptimizationRemark OR) { 838 return OR << "Parallel region at " 839 << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()) 840 << " merged with " 841 << ore::NV("OpenMPParallelMergeFront", 842 MergableCIs.front()->getDebugLoc()); 843 }; 844 if (CI != MergableCIs.front()) 845 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging", 846 Remark); 847 848 CI->eraseFromParent(); 849 } 850 851 assert(OutlinedFn != OriginalFn && "Outlining failed"); 852 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 853 CGUpdater.reanalyzeFunction(*OriginalFn); 854 855 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 856 857 return true; 858 }; 859 860 // Helper function that identifes sequences of 861 // __kmpc_fork_call uses in a basic block. 862 auto DetectPRsCB = [&](Use &U, Function &F) { 863 CallInst *CI = getCallIfRegularCall(U, &RFI); 864 BB2PRMap[CI->getParent()].insert(CI); 865 866 return false; 867 }; 868 869 BB2PRMap.clear(); 870 RFI.foreachUse(SCC, DetectPRsCB); 871 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 872 // Find mergable parallel regions within a basic block that are 873 // safe to merge, that is any in-between instructions can safely 874 // execute in parallel after merging. 875 // TODO: support merging across basic-blocks. 876 for (auto &It : BB2PRMap) { 877 auto &CIs = It.getSecond(); 878 if (CIs.size() < 2) 879 continue; 880 881 BasicBlock *BB = It.getFirst(); 882 SmallVector<CallInst *, 4> MergableCIs; 883 884 /// Returns true if the instruction is mergable, false otherwise. 885 /// A terminator instruction is unmergable by definition since merging 886 /// works within a BB. Instructions before the mergable region are 887 /// mergable if they are not calls to OpenMP runtime functions that may 888 /// set different execution parameters for subsequent parallel regions. 889 /// Instructions in-between parallel regions are mergable if they are not 890 /// calls to any non-intrinsic function since that may call a non-mergable 891 /// OpenMP runtime function. 892 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 893 // We do not merge across BBs, hence return false (unmergable) if the 894 // instruction is a terminator. 895 if (I.isTerminator()) 896 return false; 897 898 if (!isa<CallInst>(&I)) 899 return true; 900 901 CallInst *CI = cast<CallInst>(&I); 902 if (IsBeforeMergableRegion) { 903 Function *CalledFunction = CI->getCalledFunction(); 904 if (!CalledFunction) 905 return false; 906 // Return false (unmergable) if the call before the parallel 907 // region calls an explicit affinity (proc_bind) or number of 908 // threads (num_threads) compiler-generated function. Those settings 909 // may be incompatible with following parallel regions. 910 // TODO: ICV tracking to detect compatibility. 911 for (const auto &RFI : UnmergableCallsInfo) { 912 if (CalledFunction == RFI.Declaration) 913 return false; 914 } 915 } else { 916 // Return false (unmergable) if there is a call instruction 917 // in-between parallel regions when it is not an intrinsic. It 918 // may call an unmergable OpenMP runtime function in its callpath. 919 // TODO: Keep track of possible OpenMP calls in the callpath. 920 if (!isa<IntrinsicInst>(CI)) 921 return false; 922 } 923 924 return true; 925 }; 926 // Find maximal number of parallel region CIs that are safe to merge. 927 for (auto It = BB->begin(), End = BB->end(); It != End;) { 928 Instruction &I = *It; 929 ++It; 930 931 if (CIs.count(&I)) { 932 MergableCIs.push_back(cast<CallInst>(&I)); 933 continue; 934 } 935 936 // Continue expanding if the instruction is mergable. 937 if (IsMergable(I, MergableCIs.empty())) 938 continue; 939 940 // Forward the instruction iterator to skip the next parallel region 941 // since there is an unmergable instruction which can affect it. 942 for (; It != End; ++It) { 943 Instruction &SkipI = *It; 944 if (CIs.count(&SkipI)) { 945 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 946 << " due to " << I << "\n"); 947 ++It; 948 break; 949 } 950 } 951 952 // Store mergable regions found. 953 if (MergableCIs.size() > 1) { 954 MergableCIsVector.push_back(MergableCIs); 955 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 956 << " parallel regions in block " << BB->getName() 957 << " of function " << BB->getParent()->getName() 958 << "\n";); 959 } 960 961 MergableCIs.clear(); 962 } 963 964 if (!MergableCIsVector.empty()) { 965 Changed = true; 966 967 for (auto &MergableCIs : MergableCIsVector) 968 Merge(MergableCIs, BB); 969 } 970 } 971 972 if (Changed) { 973 /// Re-collect use for fork calls, emitted barrier calls, and 974 /// any emitted master/end_master calls. 975 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 976 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 977 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 978 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 979 } 980 981 return Changed; 982 } 983 984 /// Try to delete parallel regions if possible. 985 bool deleteParallelRegions() { 986 const unsigned CallbackCalleeOperand = 2; 987 988 OMPInformationCache::RuntimeFunctionInfo &RFI = 989 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 990 991 if (!RFI.Declaration) 992 return false; 993 994 bool Changed = false; 995 auto DeleteCallCB = [&](Use &U, Function &) { 996 CallInst *CI = getCallIfRegularCall(U); 997 if (!CI) 998 return false; 999 auto *Fn = dyn_cast<Function>( 1000 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1001 if (!Fn) 1002 return false; 1003 if (!Fn->onlyReadsMemory()) 1004 return false; 1005 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1006 return false; 1007 1008 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1009 << CI->getCaller()->getName() << "\n"); 1010 1011 auto Remark = [&](OptimizationRemark OR) { 1012 return OR << "Parallel region in " 1013 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 1014 << " deleted"; 1015 }; 1016 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 1017 Remark); 1018 1019 CGUpdater.removeCallSite(*CI); 1020 CI->eraseFromParent(); 1021 Changed = true; 1022 ++NumOpenMPParallelRegionsDeleted; 1023 return true; 1024 }; 1025 1026 RFI.foreachUse(SCC, DeleteCallCB); 1027 1028 return Changed; 1029 } 1030 1031 /// Try to eliminate runtime calls by reusing existing ones. 1032 bool deduplicateRuntimeCalls() { 1033 bool Changed = false; 1034 1035 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1036 OMPRTL_omp_get_num_threads, 1037 OMPRTL_omp_in_parallel, 1038 OMPRTL_omp_get_cancellation, 1039 OMPRTL_omp_get_thread_limit, 1040 OMPRTL_omp_get_supported_active_levels, 1041 OMPRTL_omp_get_level, 1042 OMPRTL_omp_get_ancestor_thread_num, 1043 OMPRTL_omp_get_team_size, 1044 OMPRTL_omp_get_active_level, 1045 OMPRTL_omp_in_final, 1046 OMPRTL_omp_get_proc_bind, 1047 OMPRTL_omp_get_num_places, 1048 OMPRTL_omp_get_num_procs, 1049 OMPRTL_omp_get_place_num, 1050 OMPRTL_omp_get_partition_num_places, 1051 OMPRTL_omp_get_partition_place_nums}; 1052 1053 // Global-tid is handled separately. 1054 SmallSetVector<Value *, 16> GTIdArgs; 1055 collectGlobalThreadIdArguments(GTIdArgs); 1056 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1057 << " global thread ID arguments\n"); 1058 1059 for (Function *F : SCC) { 1060 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1061 Changed |= deduplicateRuntimeCalls( 1062 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1063 1064 // __kmpc_global_thread_num is special as we can replace it with an 1065 // argument in enough cases to make it worth trying. 1066 Value *GTIdArg = nullptr; 1067 for (Argument &Arg : F->args()) 1068 if (GTIdArgs.count(&Arg)) { 1069 GTIdArg = &Arg; 1070 break; 1071 } 1072 Changed |= deduplicateRuntimeCalls( 1073 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1074 } 1075 1076 return Changed; 1077 } 1078 1079 /// Tries to hide the latency of runtime calls that involve host to 1080 /// device memory transfers by splitting them into their "issue" and "wait" 1081 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1082 /// moved downards as much as possible. The "issue" issues the memory transfer 1083 /// asynchronously, returning a handle. The "wait" waits in the returned 1084 /// handle for the memory transfer to finish. 1085 bool hideMemTransfersLatency() { 1086 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1087 bool Changed = false; 1088 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1089 auto *RTCall = getCallIfRegularCall(U, &RFI); 1090 if (!RTCall) 1091 return false; 1092 1093 OffloadArray OffloadArrays[3]; 1094 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1095 return false; 1096 1097 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1098 1099 // TODO: Check if can be moved upwards. 1100 bool WasSplit = false; 1101 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1102 if (WaitMovementPoint) 1103 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1104 1105 Changed |= WasSplit; 1106 return WasSplit; 1107 }; 1108 RFI.foreachUse(SCC, SplitMemTransfers); 1109 1110 return Changed; 1111 } 1112 1113 void analysisGlobalization() { 1114 RuntimeFunction GlobalizationRuntimeIDs[] = { 1115 OMPRTL___kmpc_data_sharing_coalesced_push_stack, 1116 OMPRTL___kmpc_data_sharing_push_stack}; 1117 1118 for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) { 1119 auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID]; 1120 1121 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1122 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1123 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1124 return ORA 1125 << "Found thread data sharing on the GPU. " 1126 << "Expect degraded performance due to data globalization."; 1127 }; 1128 emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization", 1129 Remark); 1130 } 1131 1132 return false; 1133 }; 1134 1135 RFI.foreachUse(SCC, CheckGlobalization); 1136 } 1137 } 1138 1139 /// Maps the values stored in the offload arrays passed as arguments to 1140 /// \p RuntimeCall into the offload arrays in \p OAs. 1141 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1142 MutableArrayRef<OffloadArray> OAs) { 1143 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1144 1145 // A runtime call that involves memory offloading looks something like: 1146 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1147 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1148 // ...) 1149 // So, the idea is to access the allocas that allocate space for these 1150 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1151 // Therefore: 1152 // i8** %offload_baseptrs. 1153 Value *BasePtrsArg = 1154 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1155 // i8** %offload_ptrs. 1156 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1157 // i8** %offload_sizes. 1158 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1159 1160 // Get values stored in **offload_baseptrs. 1161 auto *V = getUnderlyingObject(BasePtrsArg); 1162 if (!isa<AllocaInst>(V)) 1163 return false; 1164 auto *BasePtrsArray = cast<AllocaInst>(V); 1165 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1166 return false; 1167 1168 // Get values stored in **offload_baseptrs. 1169 V = getUnderlyingObject(PtrsArg); 1170 if (!isa<AllocaInst>(V)) 1171 return false; 1172 auto *PtrsArray = cast<AllocaInst>(V); 1173 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1174 return false; 1175 1176 // Get values stored in **offload_sizes. 1177 V = getUnderlyingObject(SizesArg); 1178 // If it's a [constant] global array don't analyze it. 1179 if (isa<GlobalValue>(V)) 1180 return isa<Constant>(V); 1181 if (!isa<AllocaInst>(V)) 1182 return false; 1183 1184 auto *SizesArray = cast<AllocaInst>(V); 1185 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1186 return false; 1187 1188 return true; 1189 } 1190 1191 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1192 /// For now this is a way to test that the function getValuesInOffloadArrays 1193 /// is working properly. 1194 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1195 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1196 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1197 1198 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1199 std::string ValuesStr; 1200 raw_string_ostream Printer(ValuesStr); 1201 std::string Separator = " --- "; 1202 1203 for (auto *BP : OAs[0].StoredValues) { 1204 BP->print(Printer); 1205 Printer << Separator; 1206 } 1207 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1208 ValuesStr.clear(); 1209 1210 for (auto *P : OAs[1].StoredValues) { 1211 P->print(Printer); 1212 Printer << Separator; 1213 } 1214 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1215 ValuesStr.clear(); 1216 1217 for (auto *S : OAs[2].StoredValues) { 1218 S->print(Printer); 1219 Printer << Separator; 1220 } 1221 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1222 } 1223 1224 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1225 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1226 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1227 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1228 // Make it traverse the CFG. 1229 1230 Instruction *CurrentI = &RuntimeCall; 1231 bool IsWorthIt = false; 1232 while ((CurrentI = CurrentI->getNextNode())) { 1233 1234 // TODO: Once we detect the regions to be offloaded we should use the 1235 // alias analysis manager to check if CurrentI may modify one of 1236 // the offloaded regions. 1237 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1238 if (IsWorthIt) 1239 return CurrentI; 1240 1241 return nullptr; 1242 } 1243 1244 // FIXME: For now if we move it over anything without side effect 1245 // is worth it. 1246 IsWorthIt = true; 1247 } 1248 1249 // Return end of BasicBlock. 1250 return RuntimeCall.getParent()->getTerminator(); 1251 } 1252 1253 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1254 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1255 Instruction &WaitMovementPoint) { 1256 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1257 // function. Used for storing information of the async transfer, allowing to 1258 // wait on it later. 1259 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1260 auto *F = RuntimeCall.getCaller(); 1261 Instruction *FirstInst = &(F->getEntryBlock().front()); 1262 AllocaInst *Handle = new AllocaInst( 1263 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1264 1265 // Add "issue" runtime call declaration: 1266 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1267 // i8**, i8**, i64*, i64*) 1268 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1269 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1270 1271 // Change RuntimeCall call site for its asynchronous version. 1272 SmallVector<Value *, 16> Args; 1273 for (auto &Arg : RuntimeCall.args()) 1274 Args.push_back(Arg.get()); 1275 Args.push_back(Handle); 1276 1277 CallInst *IssueCallsite = 1278 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1279 RuntimeCall.eraseFromParent(); 1280 1281 // Add "wait" runtime call declaration: 1282 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1283 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1284 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1285 1286 Value *WaitParams[2] = { 1287 IssueCallsite->getArgOperand( 1288 OffloadArray::DeviceIDArgNum), // device_id. 1289 Handle // handle to wait on. 1290 }; 1291 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1292 1293 return true; 1294 } 1295 1296 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1297 bool GlobalOnly, bool &SingleChoice) { 1298 if (CurrentIdent == NextIdent) 1299 return CurrentIdent; 1300 1301 // TODO: Figure out how to actually combine multiple debug locations. For 1302 // now we just keep an existing one if there is a single choice. 1303 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1304 SingleChoice = !CurrentIdent; 1305 return NextIdent; 1306 } 1307 return nullptr; 1308 } 1309 1310 /// Return an `struct ident_t*` value that represents the ones used in the 1311 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1312 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1313 /// return value we create one from scratch. We also do not yet combine 1314 /// information, e.g., the source locations, see combinedIdentStruct. 1315 Value * 1316 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1317 Function &F, bool GlobalOnly) { 1318 bool SingleChoice = true; 1319 Value *Ident = nullptr; 1320 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1321 CallInst *CI = getCallIfRegularCall(U, &RFI); 1322 if (!CI || &F != &Caller) 1323 return false; 1324 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1325 /* GlobalOnly */ true, SingleChoice); 1326 return false; 1327 }; 1328 RFI.foreachUse(SCC, CombineIdentStruct); 1329 1330 if (!Ident || !SingleChoice) { 1331 // The IRBuilder uses the insertion block to get to the module, this is 1332 // unfortunate but we work around it for now. 1333 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1334 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1335 &F.getEntryBlock(), F.getEntryBlock().begin())); 1336 // Create a fallback location if non was found. 1337 // TODO: Use the debug locations of the calls instead. 1338 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1339 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1340 } 1341 return Ident; 1342 } 1343 1344 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1345 /// \p ReplVal if given. 1346 bool deduplicateRuntimeCalls(Function &F, 1347 OMPInformationCache::RuntimeFunctionInfo &RFI, 1348 Value *ReplVal = nullptr) { 1349 auto *UV = RFI.getUseVector(F); 1350 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1351 return false; 1352 1353 LLVM_DEBUG( 1354 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1355 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1356 1357 assert((!ReplVal || (isa<Argument>(ReplVal) && 1358 cast<Argument>(ReplVal)->getParent() == &F)) && 1359 "Unexpected replacement value!"); 1360 1361 // TODO: Use dominance to find a good position instead. 1362 auto CanBeMoved = [this](CallBase &CB) { 1363 unsigned NumArgs = CB.getNumArgOperands(); 1364 if (NumArgs == 0) 1365 return true; 1366 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1367 return false; 1368 for (unsigned u = 1; u < NumArgs; ++u) 1369 if (isa<Instruction>(CB.getArgOperand(u))) 1370 return false; 1371 return true; 1372 }; 1373 1374 if (!ReplVal) { 1375 for (Use *U : *UV) 1376 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1377 if (!CanBeMoved(*CI)) 1378 continue; 1379 1380 auto Remark = [&](OptimizationRemark OR) { 1381 auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); 1382 return OR << "OpenMP runtime call " 1383 << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " 1384 << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); 1385 }; 1386 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark); 1387 1388 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1389 ReplVal = CI; 1390 break; 1391 } 1392 if (!ReplVal) 1393 return false; 1394 } 1395 1396 // If we use a call as a replacement value we need to make sure the ident is 1397 // valid at the new location. For now we just pick a global one, either 1398 // existing and used by one of the calls, or created from scratch. 1399 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1400 if (CI->getNumArgOperands() > 0 && 1401 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1402 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1403 /* GlobalOnly */ true); 1404 CI->setArgOperand(0, Ident); 1405 } 1406 } 1407 1408 bool Changed = false; 1409 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1410 CallInst *CI = getCallIfRegularCall(U, &RFI); 1411 if (!CI || CI == ReplVal || &F != &Caller) 1412 return false; 1413 assert(CI->getCaller() == &F && "Unexpected call!"); 1414 1415 auto Remark = [&](OptimizationRemark OR) { 1416 return OR << "OpenMP runtime call " 1417 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 1418 }; 1419 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark); 1420 1421 CGUpdater.removeCallSite(*CI); 1422 CI->replaceAllUsesWith(ReplVal); 1423 CI->eraseFromParent(); 1424 ++NumOpenMPRuntimeCallsDeduplicated; 1425 Changed = true; 1426 return true; 1427 }; 1428 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1429 1430 return Changed; 1431 } 1432 1433 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1434 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1435 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1436 // initialization. We could define an AbstractAttribute instead and 1437 // run the Attributor here once it can be run as an SCC pass. 1438 1439 // Helper to check the argument \p ArgNo at all call sites of \p F for 1440 // a GTId. 1441 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1442 if (!F.hasLocalLinkage()) 1443 return false; 1444 for (Use &U : F.uses()) { 1445 if (CallInst *CI = getCallIfRegularCall(U)) { 1446 Value *ArgOp = CI->getArgOperand(ArgNo); 1447 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1448 getCallIfRegularCall( 1449 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1450 continue; 1451 } 1452 return false; 1453 } 1454 return true; 1455 }; 1456 1457 // Helper to identify uses of a GTId as GTId arguments. 1458 auto AddUserArgs = [&](Value >Id) { 1459 for (Use &U : GTId.uses()) 1460 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1461 if (CI->isArgOperand(&U)) 1462 if (Function *Callee = CI->getCalledFunction()) 1463 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1464 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1465 }; 1466 1467 // The argument users of __kmpc_global_thread_num calls are GTIds. 1468 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1469 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1470 1471 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1472 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1473 AddUserArgs(*CI); 1474 return false; 1475 }); 1476 1477 // Transitively search for more arguments by looking at the users of the 1478 // ones we know already. During the search the GTIdArgs vector is extended 1479 // so we cannot cache the size nor can we use a range based for. 1480 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1481 AddUserArgs(*GTIdArgs[u]); 1482 } 1483 1484 /// Kernel (=GPU) optimizations and utility functions 1485 /// 1486 ///{{ 1487 1488 /// Check if \p F is a kernel, hence entry point for target offloading. 1489 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1490 1491 /// Cache to remember the unique kernel for a function. 1492 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1493 1494 /// Find the unique kernel that will execute \p F, if any. 1495 Kernel getUniqueKernelFor(Function &F); 1496 1497 /// Find the unique kernel that will execute \p I, if any. 1498 Kernel getUniqueKernelFor(Instruction &I) { 1499 return getUniqueKernelFor(*I.getFunction()); 1500 } 1501 1502 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1503 /// the cases we can avoid taking the address of a function. 1504 bool rewriteDeviceCodeStateMachine(); 1505 1506 /// 1507 ///}} 1508 1509 /// Emit a remark generically 1510 /// 1511 /// This template function can be used to generically emit a remark. The 1512 /// RemarkKind should be one of the following: 1513 /// - OptimizationRemark to indicate a successful optimization attempt 1514 /// - OptimizationRemarkMissed to report a failed optimization attempt 1515 /// - OptimizationRemarkAnalysis to provide additional information about an 1516 /// optimization attempt 1517 /// 1518 /// The remark is built using a callback function provided by the caller that 1519 /// takes a RemarkKind as input and returns a RemarkKind. 1520 template <typename RemarkKind, 1521 typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>> 1522 void emitRemark(Instruction *Inst, StringRef RemarkName, 1523 RemarkCallBack &&RemarkCB) const { 1524 Function *F = Inst->getParent()->getParent(); 1525 auto &ORE = OREGetter(F); 1526 1527 ORE.emit( 1528 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); }); 1529 } 1530 1531 /// Emit a remark on a function. Since only OptimizationRemark is supporting 1532 /// this, it can't be made generic. 1533 void 1534 emitRemarkOnFunction(Function *F, StringRef RemarkName, 1535 function_ref<OptimizationRemark(OptimizationRemark &&)> 1536 &&RemarkCB) const { 1537 auto &ORE = OREGetter(F); 1538 1539 ORE.emit([&]() { 1540 return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F)); 1541 }); 1542 } 1543 1544 /// The underlying module. 1545 Module &M; 1546 1547 /// The SCC we are operating on. 1548 SmallVectorImpl<Function *> &SCC; 1549 1550 /// Callback to update the call graph, the first argument is a removed call, 1551 /// the second an optional replacement call. 1552 CallGraphUpdater &CGUpdater; 1553 1554 /// Callback to get an OptimizationRemarkEmitter from a Function * 1555 OptimizationRemarkGetter OREGetter; 1556 1557 /// OpenMP-specific information cache. Also Used for Attributor runs. 1558 OMPInformationCache &OMPInfoCache; 1559 1560 /// Attributor instance. 1561 Attributor &A; 1562 1563 /// Helper function to run Attributor on SCC. 1564 bool runAttributor() { 1565 if (SCC.empty()) 1566 return false; 1567 1568 registerAAs(); 1569 1570 ChangeStatus Changed = A.run(); 1571 1572 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1573 << " functions, result: " << Changed << ".\n"); 1574 1575 return Changed == ChangeStatus::CHANGED; 1576 } 1577 1578 /// Populate the Attributor with abstract attribute opportunities in the 1579 /// function. 1580 void registerAAs() { 1581 if (SCC.empty()) 1582 return; 1583 1584 // Create CallSite AA for all Getters. 1585 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 1586 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 1587 1588 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 1589 1590 auto CreateAA = [&](Use &U, Function &Caller) { 1591 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 1592 if (!CI) 1593 return false; 1594 1595 auto &CB = cast<CallBase>(*CI); 1596 1597 IRPosition CBPos = IRPosition::callsite_function(CB); 1598 A.getOrCreateAAFor<AAICVTracker>(CBPos); 1599 return false; 1600 }; 1601 1602 GetterRFI.foreachUse(SCC, CreateAA); 1603 } 1604 } 1605 }; 1606 1607 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1608 if (!OMPInfoCache.ModuleSlice.count(&F)) 1609 return nullptr; 1610 1611 // Use a scope to keep the lifetime of the CachedKernel short. 1612 { 1613 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1614 if (CachedKernel) 1615 return *CachedKernel; 1616 1617 // TODO: We should use an AA to create an (optimistic and callback 1618 // call-aware) call graph. For now we stick to simple patterns that 1619 // are less powerful, basically the worst fixpoint. 1620 if (isKernel(F)) { 1621 CachedKernel = Kernel(&F); 1622 return *CachedKernel; 1623 } 1624 1625 CachedKernel = nullptr; 1626 if (!F.hasLocalLinkage()) { 1627 1628 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1629 auto Remark = [&](OptimizationRemark OR) { 1630 return OR << "[OMP100] Potentially unknown OpenMP target region caller"; 1631 }; 1632 emitRemarkOnFunction(&F, "OMP100", Remark); 1633 1634 return nullptr; 1635 } 1636 } 1637 1638 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1639 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1640 // Allow use in equality comparisons. 1641 if (Cmp->isEquality()) 1642 return getUniqueKernelFor(*Cmp); 1643 return nullptr; 1644 } 1645 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1646 // Allow direct calls. 1647 if (CB->isCallee(&U)) 1648 return getUniqueKernelFor(*CB); 1649 // Allow the use in __kmpc_kernel_prepare_parallel calls. 1650 if (Function *Callee = CB->getCalledFunction()) 1651 if (Callee->getName() == "__kmpc_kernel_prepare_parallel") 1652 return getUniqueKernelFor(*CB); 1653 return nullptr; 1654 } 1655 // Disallow every other use. 1656 return nullptr; 1657 }; 1658 1659 // TODO: In the future we want to track more than just a unique kernel. 1660 SmallPtrSet<Kernel, 2> PotentialKernels; 1661 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1662 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1663 }); 1664 1665 Kernel K = nullptr; 1666 if (PotentialKernels.size() == 1) 1667 K = *PotentialKernels.begin(); 1668 1669 // Cache the result. 1670 UniqueKernelMap[&F] = K; 1671 1672 return K; 1673 } 1674 1675 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1676 OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI = 1677 OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel]; 1678 1679 bool Changed = false; 1680 if (!KernelPrepareParallelRFI) 1681 return Changed; 1682 1683 for (Function *F : SCC) { 1684 1685 // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at 1686 // all. 1687 bool UnknownUse = false; 1688 bool KernelPrepareUse = false; 1689 unsigned NumDirectCalls = 0; 1690 1691 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1692 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1693 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1694 if (CB->isCallee(&U)) { 1695 ++NumDirectCalls; 1696 return; 1697 } 1698 1699 if (isa<ICmpInst>(U.getUser())) { 1700 ToBeReplacedStateMachineUses.push_back(&U); 1701 return; 1702 } 1703 if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall( 1704 *U.getUser(), &KernelPrepareParallelRFI)) { 1705 KernelPrepareUse = true; 1706 ToBeReplacedStateMachineUses.push_back(&U); 1707 return; 1708 } 1709 UnknownUse = true; 1710 }); 1711 1712 // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel 1713 // use. 1714 if (!KernelPrepareUse) 1715 continue; 1716 1717 { 1718 auto Remark = [&](OptimizationRemark OR) { 1719 return OR << "Found a parallel region that is called in a target " 1720 "region but not part of a combined target construct nor " 1721 "nesed inside a target construct without intermediate " 1722 "code. This can lead to excessive register usage for " 1723 "unrelated target regions in the same translation unit " 1724 "due to spurious call edges assumed by ptxas."; 1725 }; 1726 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1727 } 1728 1729 // If this ever hits, we should investigate. 1730 // TODO: Checking the number of uses is not a necessary restriction and 1731 // should be lifted. 1732 if (UnknownUse || NumDirectCalls != 1 || 1733 ToBeReplacedStateMachineUses.size() != 2) { 1734 { 1735 auto Remark = [&](OptimizationRemark OR) { 1736 return OR << "Parallel region is used in " 1737 << (UnknownUse ? "unknown" : "unexpected") 1738 << " ways; will not attempt to rewrite the state machine."; 1739 }; 1740 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1741 } 1742 continue; 1743 } 1744 1745 // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give 1746 // up if the function is not called from a unique kernel. 1747 Kernel K = getUniqueKernelFor(*F); 1748 if (!K) { 1749 { 1750 auto Remark = [&](OptimizationRemark OR) { 1751 return OR << "Parallel region is not known to be called from a " 1752 "unique single target region, maybe the surrounding " 1753 "function has external linkage?; will not attempt to " 1754 "rewrite the state machine use."; 1755 }; 1756 emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl", 1757 Remark); 1758 } 1759 continue; 1760 } 1761 1762 // We now know F is a parallel body function called only from the kernel K. 1763 // We also identified the state machine uses in which we replace the 1764 // function pointer by a new global symbol for identification purposes. This 1765 // ensures only direct calls to the function are left. 1766 1767 { 1768 auto RemarkParalleRegion = [&](OptimizationRemark OR) { 1769 return OR << "Specialize parallel region that is only reached from a " 1770 "single target region to avoid spurious call edges and " 1771 "excessive register usage in other target regions. " 1772 "(parallel region ID: " 1773 << ore::NV("OpenMPParallelRegion", F->getName()) 1774 << ", kernel ID: " 1775 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1776 }; 1777 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", 1778 RemarkParalleRegion); 1779 auto RemarkKernel = [&](OptimizationRemark OR) { 1780 return OR << "Target region containing the parallel region that is " 1781 "specialized. (parallel region ID: " 1782 << ore::NV("OpenMPParallelRegion", F->getName()) 1783 << ", kernel ID: " 1784 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1785 }; 1786 emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel); 1787 } 1788 1789 Module &M = *F->getParent(); 1790 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1791 1792 auto *ID = new GlobalVariable( 1793 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1794 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1795 1796 for (Use *U : ToBeReplacedStateMachineUses) 1797 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1798 1799 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1800 1801 Changed = true; 1802 } 1803 1804 return Changed; 1805 } 1806 1807 /// Abstract Attribute for tracking ICV values. 1808 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1809 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1810 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1811 1812 void initialize(Attributor &A) override { 1813 Function *F = getAnchorScope(); 1814 if (!F || !A.isFunctionIPOAmendable(*F)) 1815 indicatePessimisticFixpoint(); 1816 } 1817 1818 /// Returns true if value is assumed to be tracked. 1819 bool isAssumedTracked() const { return getAssumed(); } 1820 1821 /// Returns true if value is known to be tracked. 1822 bool isKnownTracked() const { return getAssumed(); } 1823 1824 /// Create an abstract attribute biew for the position \p IRP. 1825 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1826 1827 /// Return the value with which \p I can be replaced for specific \p ICV. 1828 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1829 const Instruction *I, 1830 Attributor &A) const { 1831 return None; 1832 } 1833 1834 /// Return an assumed unique ICV value if a single candidate is found. If 1835 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1836 /// Optional::NoneType. 1837 virtual Optional<Value *> 1838 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 1839 1840 // Currently only nthreads is being tracked. 1841 // this array will only grow with time. 1842 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 1843 1844 /// See AbstractAttribute::getName() 1845 const std::string getName() const override { return "AAICVTracker"; } 1846 1847 /// See AbstractAttribute::getIdAddr() 1848 const char *getIdAddr() const override { return &ID; } 1849 1850 /// This function should return true if the type of the \p AA is AAICVTracker 1851 static bool classof(const AbstractAttribute *AA) { 1852 return (AA->getIdAddr() == &ID); 1853 } 1854 1855 static const char ID; 1856 }; 1857 1858 struct AAICVTrackerFunction : public AAICVTracker { 1859 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 1860 : AAICVTracker(IRP, A) {} 1861 1862 // FIXME: come up with better string. 1863 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 1864 1865 // FIXME: come up with some stats. 1866 void trackStatistics() const override {} 1867 1868 /// We don't manifest anything for this AA. 1869 ChangeStatus manifest(Attributor &A) override { 1870 return ChangeStatus::UNCHANGED; 1871 } 1872 1873 // Map of ICV to their values at specific program point. 1874 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 1875 InternalControlVar::ICV___last> 1876 ICVReplacementValuesMap; 1877 1878 ChangeStatus updateImpl(Attributor &A) override { 1879 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 1880 1881 Function *F = getAnchorScope(); 1882 1883 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1884 1885 for (InternalControlVar ICV : TrackableICVs) { 1886 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1887 1888 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1889 auto TrackValues = [&](Use &U, Function &) { 1890 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 1891 if (!CI) 1892 return false; 1893 1894 // FIXME: handle setters with more that 1 arguments. 1895 /// Track new value. 1896 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 1897 HasChanged = ChangeStatus::CHANGED; 1898 1899 return false; 1900 }; 1901 1902 auto CallCheck = [&](Instruction &I) { 1903 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 1904 if (ReplVal.hasValue() && 1905 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 1906 HasChanged = ChangeStatus::CHANGED; 1907 1908 return true; 1909 }; 1910 1911 // Track all changes of an ICV. 1912 SetterRFI.foreachUse(TrackValues, F); 1913 1914 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 1915 /* CheckBBLivenessOnly */ true); 1916 1917 /// TODO: Figure out a way to avoid adding entry in 1918 /// ICVReplacementValuesMap 1919 Instruction *Entry = &F->getEntryBlock().front(); 1920 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 1921 ValuesMap.insert(std::make_pair(Entry, nullptr)); 1922 } 1923 1924 return HasChanged; 1925 } 1926 1927 /// Hepler to check if \p I is a call and get the value for it if it is 1928 /// unique. 1929 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 1930 InternalControlVar &ICV) const { 1931 1932 const auto *CB = dyn_cast<CallBase>(I); 1933 if (!CB || CB->hasFnAttr("no_openmp") || 1934 CB->hasFnAttr("no_openmp_routines")) 1935 return None; 1936 1937 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1938 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 1939 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1940 Function *CalledFunction = CB->getCalledFunction(); 1941 1942 // Indirect call, assume ICV changes. 1943 if (CalledFunction == nullptr) 1944 return nullptr; 1945 if (CalledFunction == GetterRFI.Declaration) 1946 return None; 1947 if (CalledFunction == SetterRFI.Declaration) { 1948 if (ICVReplacementValuesMap[ICV].count(I)) 1949 return ICVReplacementValuesMap[ICV].lookup(I); 1950 1951 return nullptr; 1952 } 1953 1954 // Since we don't know, assume it changes the ICV. 1955 if (CalledFunction->isDeclaration()) 1956 return nullptr; 1957 1958 const auto &ICVTrackingAA = 1959 A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB)); 1960 1961 if (ICVTrackingAA.isAssumedTracked()) 1962 return ICVTrackingAA.getUniqueReplacementValue(ICV); 1963 1964 // If we don't know, assume it changes. 1965 return nullptr; 1966 } 1967 1968 // We don't check unique value for a function, so return None. 1969 Optional<Value *> 1970 getUniqueReplacementValue(InternalControlVar ICV) const override { 1971 return None; 1972 } 1973 1974 /// Return the value with which \p I can be replaced for specific \p ICV. 1975 Optional<Value *> getReplacementValue(InternalControlVar ICV, 1976 const Instruction *I, 1977 Attributor &A) const override { 1978 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1979 if (ValuesMap.count(I)) 1980 return ValuesMap.lookup(I); 1981 1982 SmallVector<const Instruction *, 16> Worklist; 1983 SmallPtrSet<const Instruction *, 16> Visited; 1984 Worklist.push_back(I); 1985 1986 Optional<Value *> ReplVal; 1987 1988 while (!Worklist.empty()) { 1989 const Instruction *CurrInst = Worklist.pop_back_val(); 1990 if (!Visited.insert(CurrInst).second) 1991 continue; 1992 1993 const BasicBlock *CurrBB = CurrInst->getParent(); 1994 1995 // Go up and look for all potential setters/calls that might change the 1996 // ICV. 1997 while ((CurrInst = CurrInst->getPrevNode())) { 1998 if (ValuesMap.count(CurrInst)) { 1999 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2000 // Unknown value, track new. 2001 if (!ReplVal.hasValue()) { 2002 ReplVal = NewReplVal; 2003 break; 2004 } 2005 2006 // If we found a new value, we can't know the icv value anymore. 2007 if (NewReplVal.hasValue()) 2008 if (ReplVal != NewReplVal) 2009 return nullptr; 2010 2011 break; 2012 } 2013 2014 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2015 if (!NewReplVal.hasValue()) 2016 continue; 2017 2018 // Unknown value, track new. 2019 if (!ReplVal.hasValue()) { 2020 ReplVal = NewReplVal; 2021 break; 2022 } 2023 2024 // if (NewReplVal.hasValue()) 2025 // We found a new value, we can't know the icv value anymore. 2026 if (ReplVal != NewReplVal) 2027 return nullptr; 2028 } 2029 2030 // If we are in the same BB and we have a value, we are done. 2031 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2032 return ReplVal; 2033 2034 // Go through all predecessors and add terminators for analysis. 2035 for (const BasicBlock *Pred : predecessors(CurrBB)) 2036 if (const Instruction *Terminator = Pred->getTerminator()) 2037 Worklist.push_back(Terminator); 2038 } 2039 2040 return ReplVal; 2041 } 2042 }; 2043 2044 struct AAICVTrackerFunctionReturned : AAICVTracker { 2045 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2046 : AAICVTracker(IRP, A) {} 2047 2048 // FIXME: come up with better string. 2049 const std::string getAsStr() const override { 2050 return "ICVTrackerFunctionReturned"; 2051 } 2052 2053 // FIXME: come up with some stats. 2054 void trackStatistics() const override {} 2055 2056 /// We don't manifest anything for this AA. 2057 ChangeStatus manifest(Attributor &A) override { 2058 return ChangeStatus::UNCHANGED; 2059 } 2060 2061 // Map of ICV to their values at specific program point. 2062 EnumeratedArray<Optional<Value *>, InternalControlVar, 2063 InternalControlVar::ICV___last> 2064 ICVReplacementValuesMap; 2065 2066 /// Return the value with which \p I can be replaced for specific \p ICV. 2067 Optional<Value *> 2068 getUniqueReplacementValue(InternalControlVar ICV) const override { 2069 return ICVReplacementValuesMap[ICV]; 2070 } 2071 2072 ChangeStatus updateImpl(Attributor &A) override { 2073 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2074 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2075 *this, IRPosition::function(*getAnchorScope())); 2076 2077 if (!ICVTrackingAA.isAssumedTracked()) 2078 return indicatePessimisticFixpoint(); 2079 2080 for (InternalControlVar ICV : TrackableICVs) { 2081 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2082 Optional<Value *> UniqueICVValue; 2083 2084 auto CheckReturnInst = [&](Instruction &I) { 2085 Optional<Value *> NewReplVal = 2086 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2087 2088 // If we found a second ICV value there is no unique returned value. 2089 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2090 return false; 2091 2092 UniqueICVValue = NewReplVal; 2093 2094 return true; 2095 }; 2096 2097 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2098 /* CheckBBLivenessOnly */ true)) 2099 UniqueICVValue = nullptr; 2100 2101 if (UniqueICVValue == ReplVal) 2102 continue; 2103 2104 ReplVal = UniqueICVValue; 2105 Changed = ChangeStatus::CHANGED; 2106 } 2107 2108 return Changed; 2109 } 2110 }; 2111 2112 struct AAICVTrackerCallSite : AAICVTracker { 2113 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2114 : AAICVTracker(IRP, A) {} 2115 2116 void initialize(Attributor &A) override { 2117 Function *F = getAnchorScope(); 2118 if (!F || !A.isFunctionIPOAmendable(*F)) 2119 indicatePessimisticFixpoint(); 2120 2121 // We only initialize this AA for getters, so we need to know which ICV it 2122 // gets. 2123 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2124 for (InternalControlVar ICV : TrackableICVs) { 2125 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2126 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2127 if (Getter.Declaration == getAssociatedFunction()) { 2128 AssociatedICV = ICVInfo.Kind; 2129 return; 2130 } 2131 } 2132 2133 /// Unknown ICV. 2134 indicatePessimisticFixpoint(); 2135 } 2136 2137 ChangeStatus manifest(Attributor &A) override { 2138 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2139 return ChangeStatus::UNCHANGED; 2140 2141 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2142 A.deleteAfterManifest(*getCtxI()); 2143 2144 return ChangeStatus::CHANGED; 2145 } 2146 2147 // FIXME: come up with better string. 2148 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2149 2150 // FIXME: come up with some stats. 2151 void trackStatistics() const override {} 2152 2153 InternalControlVar AssociatedICV; 2154 Optional<Value *> ReplVal; 2155 2156 ChangeStatus updateImpl(Attributor &A) override { 2157 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2158 *this, IRPosition::function(*getAnchorScope())); 2159 2160 // We don't have any information, so we assume it changes the ICV. 2161 if (!ICVTrackingAA.isAssumedTracked()) 2162 return indicatePessimisticFixpoint(); 2163 2164 Optional<Value *> NewReplVal = 2165 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2166 2167 if (ReplVal == NewReplVal) 2168 return ChangeStatus::UNCHANGED; 2169 2170 ReplVal = NewReplVal; 2171 return ChangeStatus::CHANGED; 2172 } 2173 2174 // Return the value with which associated value can be replaced for specific 2175 // \p ICV. 2176 Optional<Value *> 2177 getUniqueReplacementValue(InternalControlVar ICV) const override { 2178 return ReplVal; 2179 } 2180 }; 2181 2182 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2183 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2184 : AAICVTracker(IRP, A) {} 2185 2186 // FIXME: come up with better string. 2187 const std::string getAsStr() const override { 2188 return "ICVTrackerCallSiteReturned"; 2189 } 2190 2191 // FIXME: come up with some stats. 2192 void trackStatistics() const override {} 2193 2194 /// We don't manifest anything for this AA. 2195 ChangeStatus manifest(Attributor &A) override { 2196 return ChangeStatus::UNCHANGED; 2197 } 2198 2199 // Map of ICV to their values at specific program point. 2200 EnumeratedArray<Optional<Value *>, InternalControlVar, 2201 InternalControlVar::ICV___last> 2202 ICVReplacementValuesMap; 2203 2204 /// Return the value with which associated value can be replaced for specific 2205 /// \p ICV. 2206 Optional<Value *> 2207 getUniqueReplacementValue(InternalControlVar ICV) const override { 2208 return ICVReplacementValuesMap[ICV]; 2209 } 2210 2211 ChangeStatus updateImpl(Attributor &A) override { 2212 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2213 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2214 *this, IRPosition::returned(*getAssociatedFunction())); 2215 2216 // We don't have any information, so we assume it changes the ICV. 2217 if (!ICVTrackingAA.isAssumedTracked()) 2218 return indicatePessimisticFixpoint(); 2219 2220 for (InternalControlVar ICV : TrackableICVs) { 2221 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2222 Optional<Value *> NewReplVal = 2223 ICVTrackingAA.getUniqueReplacementValue(ICV); 2224 2225 if (ReplVal == NewReplVal) 2226 continue; 2227 2228 ReplVal = NewReplVal; 2229 Changed = ChangeStatus::CHANGED; 2230 } 2231 return Changed; 2232 } 2233 }; 2234 } // namespace 2235 2236 const char AAICVTracker::ID = 0; 2237 2238 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 2239 Attributor &A) { 2240 AAICVTracker *AA = nullptr; 2241 switch (IRP.getPositionKind()) { 2242 case IRPosition::IRP_INVALID: 2243 case IRPosition::IRP_FLOAT: 2244 case IRPosition::IRP_ARGUMENT: 2245 case IRPosition::IRP_CALL_SITE_ARGUMENT: 2246 llvm_unreachable("ICVTracker can only be created for function position!"); 2247 case IRPosition::IRP_RETURNED: 2248 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 2249 break; 2250 case IRPosition::IRP_CALL_SITE_RETURNED: 2251 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 2252 break; 2253 case IRPosition::IRP_CALL_SITE: 2254 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 2255 break; 2256 case IRPosition::IRP_FUNCTION: 2257 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 2258 break; 2259 } 2260 2261 return *AA; 2262 } 2263 2264 PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, 2265 CGSCCAnalysisManager &AM, 2266 LazyCallGraph &CG, CGSCCUpdateResult &UR) { 2267 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) 2268 return PreservedAnalyses::all(); 2269 2270 if (DisableOpenMPOptimizations) 2271 return PreservedAnalyses::all(); 2272 2273 SmallVector<Function *, 16> SCC; 2274 // If there are kernels in the module, we have to run on all SCC's. 2275 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 2276 for (LazyCallGraph::Node &N : C) { 2277 Function *Fn = &N.getFunction(); 2278 SCC.push_back(Fn); 2279 2280 // Do we already know that the SCC contains kernels, 2281 // or that OpenMP functions are called from this SCC? 2282 if (SCCIsInteresting) 2283 continue; 2284 // If not, let's check that. 2285 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 2286 } 2287 2288 if (!SCCIsInteresting || SCC.empty()) 2289 return PreservedAnalyses::all(); 2290 2291 FunctionAnalysisManager &FAM = 2292 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 2293 2294 AnalysisGetter AG(FAM); 2295 2296 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 2297 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 2298 }; 2299 2300 CallGraphUpdater CGUpdater; 2301 CGUpdater.initialize(CG, C, AM, UR); 2302 2303 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 2304 BumpPtrAllocator Allocator; 2305 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 2306 /*CGSCC*/ Functions, OMPInModule.getKernels()); 2307 2308 Attributor A(Functions, InfoCache, CGUpdater); 2309 2310 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 2311 bool Changed = OMPOpt.run(); 2312 if (Changed) 2313 return PreservedAnalyses::none(); 2314 2315 return PreservedAnalyses::all(); 2316 } 2317 2318 namespace { 2319 2320 struct OpenMPOptLegacyPass : public CallGraphSCCPass { 2321 CallGraphUpdater CGUpdater; 2322 OpenMPInModule OMPInModule; 2323 static char ID; 2324 2325 OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { 2326 initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2327 } 2328 2329 void getAnalysisUsage(AnalysisUsage &AU) const override { 2330 CallGraphSCCPass::getAnalysisUsage(AU); 2331 } 2332 2333 bool doInitialization(CallGraph &CG) override { 2334 // Disable the pass if there is no OpenMP (runtime call) in the module. 2335 containsOpenMP(CG.getModule(), OMPInModule); 2336 return false; 2337 } 2338 2339 bool runOnSCC(CallGraphSCC &CGSCC) override { 2340 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) 2341 return false; 2342 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 2343 return false; 2344 2345 SmallVector<Function *, 16> SCC; 2346 // If there are kernels in the module, we have to run on all SCC's. 2347 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 2348 for (CallGraphNode *CGN : CGSCC) { 2349 Function *Fn = CGN->getFunction(); 2350 if (!Fn || Fn->isDeclaration()) 2351 continue; 2352 SCC.push_back(Fn); 2353 2354 // Do we already know that the SCC contains kernels, 2355 // or that OpenMP functions are called from this SCC? 2356 if (SCCIsInteresting) 2357 continue; 2358 // If not, let's check that. 2359 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 2360 } 2361 2362 if (!SCCIsInteresting || SCC.empty()) 2363 return false; 2364 2365 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2366 CGUpdater.initialize(CG, CGSCC); 2367 2368 // Maintain a map of functions to avoid rebuilding the ORE 2369 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 2370 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 2371 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 2372 if (!ORE) 2373 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 2374 return *ORE; 2375 }; 2376 2377 AnalysisGetter AG; 2378 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 2379 BumpPtrAllocator Allocator; 2380 OMPInformationCache InfoCache( 2381 *(Functions.back()->getParent()), AG, Allocator, 2382 /*CGSCC*/ Functions, OMPInModule.getKernels()); 2383 2384 Attributor A(Functions, InfoCache, CGUpdater); 2385 2386 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 2387 return OMPOpt.run(); 2388 } 2389 2390 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 2391 }; 2392 2393 } // end anonymous namespace 2394 2395 void OpenMPInModule::identifyKernels(Module &M) { 2396 2397 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 2398 if (!MD) 2399 return; 2400 2401 for (auto *Op : MD->operands()) { 2402 if (Op->getNumOperands() < 2) 2403 continue; 2404 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 2405 if (!KindID || KindID->getString() != "kernel") 2406 continue; 2407 2408 Function *KernelFn = 2409 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 2410 if (!KernelFn) 2411 continue; 2412 2413 ++NumOpenMPTargetRegionKernels; 2414 2415 Kernels.insert(KernelFn); 2416 } 2417 } 2418 2419 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { 2420 if (OMPInModule.isKnown()) 2421 return OMPInModule; 2422 2423 auto RecordFunctionsContainingUsesOf = [&](Function *F) { 2424 for (User *U : F->users()) 2425 if (auto *I = dyn_cast<Instruction>(U)) 2426 OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction()); 2427 }; 2428 2429 // MSVC doesn't like long if-else chains for some reason and instead just 2430 // issues an error. Work around it.. 2431 do { 2432 #define OMP_RTL(_Enum, _Name, ...) \ 2433 if (Function *F = M.getFunction(_Name)) { \ 2434 RecordFunctionsContainingUsesOf(F); \ 2435 OMPInModule = true; \ 2436 } 2437 #include "llvm/Frontend/OpenMP/OMPKinds.def" 2438 } while (false); 2439 2440 // Identify kernels once. TODO: We should split the OMPInformationCache into a 2441 // module and an SCC part. The kernel information, among other things, could 2442 // go into the module part. 2443 if (OMPInModule.isKnown() && OMPInModule) { 2444 OMPInModule.identifyKernels(M); 2445 return true; 2446 } 2447 2448 return OMPInModule = false; 2449 } 2450 2451 char OpenMPOptLegacyPass::ID = 0; 2452 2453 INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", 2454 "OpenMP specific optimizations", false, false) 2455 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 2456 INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", 2457 "OpenMP specific optimizations", false, false) 2458 2459 Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); } 2460