xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BasicAliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/Analysis/InlineAdvisor.h"
30 #include "llvm/Analysis/InlineCost.h"
31 #include "llvm/Analysis/LazyCallGraph.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ReplayInlineAdvisor.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/ModuleUtils.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <functional>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "inline"
69 
70 STATISTIC(NumInlined, "Number of functions inlined");
71 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
72 
73 static cl::opt<int> IntraSCCCostMultiplier(
74     "intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
75     cl::desc(
76         "Cost multiplier to multiply onto inlined call sites where the "
77         "new call was previously an intra-SCC call (not relevant when the "
78         "original call was already intra-SCC). This can accumulate over "
79         "multiple inlinings (e.g. if a call site already had a cost "
80         "multiplier and one of its inlined calls was also subject to "
81         "this, the inlined call would have the original multiplier "
82         "multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
83         "inlining through a child SCC which can cause terrible compile times"));
84 
85 /// A flag for test, so we can print the content of the advisor when running it
86 /// as part of the default (e.g. -O3) pipeline.
87 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
88                                             cl::init(false), cl::Hidden);
89 
90 /// Allows printing the contents of the advisor after each SCC inliner pass.
91 static cl::opt<bool>
92     EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
93                                  cl::init(false), cl::Hidden);
94 
95 
96 static cl::opt<std::string> CGSCCInlineReplayFile(
97     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
98     cl::desc(
99         "Optimization remarks file containing inline remarks to be replayed "
100         "by cgscc inlining."),
101     cl::Hidden);
102 
103 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
104     "cgscc-inline-replay-scope",
105     cl::init(ReplayInlinerSettings::Scope::Function),
106     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
107                           "Replay on functions that have remarks associated "
108                           "with them (default)"),
109                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
110                           "Replay on the entire module")),
111     cl::desc("Whether inline replay should be applied to the entire "
112              "Module or just the Functions (default) that are present as "
113              "callers in remarks during cgscc inlining."),
114     cl::Hidden);
115 
116 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
117     "cgscc-inline-replay-fallback",
118     cl::init(ReplayInlinerSettings::Fallback::Original),
119     cl::values(
120         clEnumValN(
121             ReplayInlinerSettings::Fallback::Original, "Original",
122             "All decisions not in replay send to original advisor (default)"),
123         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
124                    "AlwaysInline", "All decisions not in replay are inlined"),
125         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
126                    "All decisions not in replay are not inlined")),
127     cl::desc(
128         "How cgscc inline replay treats sites that don't come from the replay. "
129         "Original: defers to original advisor, AlwaysInline: inline all sites "
130         "not in replay, NeverInline: inline no sites not in replay"),
131     cl::Hidden);
132 
133 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
134     "cgscc-inline-replay-format",
135     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
136     cl::values(
137         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
138         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
139                    "<Line Number>:<Column Number>"),
140         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
141                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
142         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
143                    "LineColumnDiscriminator",
144                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
145     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
146 
147 /// Return true if the specified inline history ID
148 /// indicates an inline history that includes the specified function.
149 static bool inlineHistoryIncludes(
150     Function *F, int InlineHistoryID,
151     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
152   while (InlineHistoryID != -1) {
153     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
154            "Invalid inline history ID");
155     if (InlineHistory[InlineHistoryID].first == F)
156       return true;
157     InlineHistoryID = InlineHistory[InlineHistoryID].second;
158   }
159   return false;
160 }
161 
162 InlineAdvisor &
163 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
164                         FunctionAnalysisManager &FAM, Module &M) {
165   if (OwnedAdvisor)
166     return *OwnedAdvisor;
167 
168   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
169   if (!IAA) {
170     // It should still be possible to run the inliner as a stand-alone SCC pass,
171     // for test scenarios. In that case, we default to the
172     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
173     // runs. It also uses just the default InlineParams.
174     // In this case, we need to use the provided FAM, which is valid for the
175     // duration of the inliner pass, and thus the lifetime of the owned advisor.
176     // The one we would get from the MAM can be invalidated as a result of the
177     // inliner's activity.
178     OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
179         M, FAM, getInlineParams(),
180         InlineContext{LTOPhase, InlinePass::CGSCCInliner});
181 
182     if (!CGSCCInlineReplayFile.empty())
183       OwnedAdvisor = getReplayInlineAdvisor(
184           M, FAM, M.getContext(), std::move(OwnedAdvisor),
185           ReplayInlinerSettings{CGSCCInlineReplayFile,
186                                 CGSCCInlineReplayScope,
187                                 CGSCCInlineReplayFallback,
188                                 {CGSCCInlineReplayFormat}},
189           /*EmitRemarks=*/true,
190           InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner});
191 
192     return *OwnedAdvisor;
193   }
194   assert(IAA->getAdvisor() &&
195          "Expected a present InlineAdvisorAnalysis also have an "
196          "InlineAdvisor initialized");
197   return *IAA->getAdvisor();
198 }
199 
200 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
201                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
202                                    CGSCCUpdateResult &UR) {
203   const auto &MAMProxy =
204       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
205   bool Changed = false;
206 
207   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
208   Module &M = *InitialC.begin()->getFunction().getParent();
209   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
210 
211   FunctionAnalysisManager &FAM =
212       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
213           .getManager();
214 
215   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
216   Advisor.onPassEntry(&InitialC);
217 
218   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); });
219 
220   // We use a single common worklist for calls across the entire SCC. We
221   // process these in-order and append new calls introduced during inlining to
222   // the end. The PriorityInlineOrder is optional here, in which the smaller
223   // callee would have a higher priority to inline.
224   //
225   // Note that this particular order of processing is actually critical to
226   // avoid very bad behaviors. Consider *highly connected* call graphs where
227   // each function contains a small amount of code and a couple of calls to
228   // other functions. Because the LLVM inliner is fundamentally a bottom-up
229   // inliner, it can handle gracefully the fact that these all appear to be
230   // reasonable inlining candidates as it will flatten things until they become
231   // too big to inline, and then move on and flatten another batch.
232   //
233   // However, when processing call edges *within* an SCC we cannot rely on this
234   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
235   // functions we can end up incrementally inlining N calls into each of
236   // N functions because each incremental inlining decision looks good and we
237   // don't have a topological ordering to prevent explosions.
238   //
239   // To compensate for this, we don't process transitive edges made immediate
240   // by inlining until we've done one pass of inlining across the entire SCC.
241   // Large, highly connected SCCs still lead to some amount of code bloat in
242   // this model, but it is uniformly spread across all the functions in the SCC
243   // and eventually they all become too large to inline, rather than
244   // incrementally maknig a single function grow in a super linear fashion.
245   SmallVector<std::pair<CallBase *, int>, 16> Calls;
246 
247   // Populate the initial list of calls in this SCC.
248   for (auto &N : InitialC) {
249     auto &ORE =
250         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
251     // We want to generally process call sites top-down in order for
252     // simplifications stemming from replacing the call with the returned value
253     // after inlining to be visible to subsequent inlining decisions.
254     // FIXME: Using instructions sequence is a really bad way to do this.
255     // Instead we should do an actual RPO walk of the function body.
256     for (Instruction &I : instructions(N.getFunction()))
257       if (auto *CB = dyn_cast<CallBase>(&I))
258         if (Function *Callee = CB->getCalledFunction()) {
259           if (!Callee->isDeclaration())
260             Calls.push_back({CB, -1});
261           else if (!isa<IntrinsicInst>(I)) {
262             using namespace ore;
263             setInlineRemark(*CB, "unavailable definition");
264             ORE.emit([&]() {
265               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
266                      << NV("Callee", Callee) << " will not be inlined into "
267                      << NV("Caller", CB->getCaller())
268                      << " because its definition is unavailable"
269                      << setIsVerbose();
270             });
271           }
272         }
273   }
274   if (Calls.empty())
275     return PreservedAnalyses::all();
276 
277   // Capture updatable variable for the current SCC.
278   auto *C = &InitialC;
279 
280   // When inlining a callee produces new call sites, we want to keep track of
281   // the fact that they were inlined from the callee.  This allows us to avoid
282   // infinite inlining in some obscure cases.  To represent this, we use an
283   // index into the InlineHistory vector.
284   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
285 
286   // Track a set vector of inlined callees so that we can augment the caller
287   // with all of their edges in the call graph before pruning out the ones that
288   // got simplified away.
289   SmallSetVector<Function *, 4> InlinedCallees;
290 
291   // Track the dead functions to delete once finished with inlining calls. We
292   // defer deleting these to make it easier to handle the call graph updates.
293   SmallVector<Function *, 4> DeadFunctions;
294 
295   // Track potentially dead non-local functions with comdats to see if they can
296   // be deleted as a batch after inlining.
297   SmallVector<Function *, 4> DeadFunctionsInComdats;
298 
299   // Loop forward over all of the calls. Note that we cannot cache the size as
300   // inlining can introduce new calls that need to be processed.
301   for (int I = 0; I < (int)Calls.size(); ++I) {
302     // We expect the calls to typically be batched with sequences of calls that
303     // have the same caller, so we first set up some shared infrastructure for
304     // this caller. We also do any pruning we can at this layer on the caller
305     // alone.
306     Function &F = *Calls[I].first->getCaller();
307     LazyCallGraph::Node &N = *CG.lookup(F);
308     if (CG.lookupSCC(N) != C)
309       continue;
310 
311     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
312                       << "    Function size: " << F.getInstructionCount()
313                       << "\n");
314 
315     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
316       return FAM.getResult<AssumptionAnalysis>(F);
317     };
318 
319     // Now process as many calls as we have within this caller in the sequence.
320     // We bail out as soon as the caller has to change so we can update the
321     // call graph and prepare the context of that new caller.
322     bool DidInline = false;
323     for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
324       auto &P = Calls[I];
325       CallBase *CB = P.first;
326       const int InlineHistoryID = P.second;
327       Function &Callee = *CB->getCalledFunction();
328 
329       if (InlineHistoryID != -1 &&
330           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
331         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName()
332                           << " -> " << Callee.getName() << "\n");
333         setInlineRemark(*CB, "recursive");
334         // Set noinline so that we don't forget this decision across CGSCC
335         // iterations.
336         CB->setIsNoInline();
337         continue;
338       }
339 
340       // Check if this inlining may repeat breaking an SCC apart that has
341       // already been split once before. In that case, inlining here may
342       // trigger infinite inlining, much like is prevented within the inliner
343       // itself by the InlineHistory above, but spread across CGSCC iterations
344       // and thus hidden from the full inline history.
345       LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
346       if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
347         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
348                              "previously split out of this SCC by inlining: "
349                           << F.getName() << " -> " << Callee.getName() << "\n");
350         setInlineRemark(*CB, "recursive SCC split");
351         continue;
352       }
353 
354       std::unique_ptr<InlineAdvice> Advice =
355           Advisor.getAdvice(*CB, OnlyMandatory);
356 
357       // Check whether we want to inline this callsite.
358       if (!Advice)
359         continue;
360 
361       if (!Advice->isInliningRecommended()) {
362         Advice->recordUnattemptedInlining();
363         continue;
364       }
365 
366       int CBCostMult =
367           getStringFnAttrAsInt(
368               *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
369               .value_or(1);
370 
371       // Setup the data structure used to plumb customization into the
372       // `InlineFunction` routine.
373       InlineFunctionInfo IFI(
374           GetAssumptionCache, PSI,
375           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
376           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
377 
378       InlineResult IR =
379           InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
380                          &FAM.getResult<AAManager>(*CB->getCaller()));
381       if (!IR.isSuccess()) {
382         Advice->recordUnsuccessfulInlining(IR);
383         continue;
384       }
385 
386       DidInline = true;
387       InlinedCallees.insert(&Callee);
388       ++NumInlined;
389 
390       LLVM_DEBUG(dbgs() << "    Size after inlining: "
391                         << F.getInstructionCount() << "\n");
392 
393       // Add any new callsites to defined functions to the worklist.
394       if (!IFI.InlinedCallSites.empty()) {
395         int NewHistoryID = InlineHistory.size();
396         InlineHistory.push_back({&Callee, InlineHistoryID});
397 
398         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
399           Function *NewCallee = ICB->getCalledFunction();
400           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
401                  "Intrinsic calls should not be tracked.");
402           if (!NewCallee) {
403             // Try to promote an indirect (virtual) call without waiting for
404             // the post-inline cleanup and the next DevirtSCCRepeatedPass
405             // iteration because the next iteration may not happen and we may
406             // miss inlining it.
407             if (tryPromoteCall(*ICB))
408               NewCallee = ICB->getCalledFunction();
409           }
410           if (NewCallee) {
411             if (!NewCallee->isDeclaration()) {
412               Calls.push_back({ICB, NewHistoryID});
413               // Continually inlining through an SCC can result in huge compile
414               // times and bloated code since we arbitrarily stop at some point
415               // when the inliner decides it's not profitable to inline anymore.
416               // We attempt to mitigate this by making these calls exponentially
417               // more expensive.
418               // This doesn't apply to calls in the same SCC since if we do
419               // inline through the SCC the function will end up being
420               // self-recursive which the inliner bails out on, and inlining
421               // within an SCC is necessary for performance.
422               if (CalleeSCC != C &&
423                   CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
424                 Attribute NewCBCostMult = Attribute::get(
425                     M.getContext(),
426                     InlineConstants::FunctionInlineCostMultiplierAttributeName,
427                     itostr(CBCostMult * IntraSCCCostMultiplier));
428                 ICB->addFnAttr(NewCBCostMult);
429               }
430             }
431           }
432         }
433       }
434 
435       // For local functions or discardable functions without comdats, check
436       // whether this makes the callee trivially dead. In that case, we can drop
437       // the body of the function eagerly which may reduce the number of callers
438       // of other functions to one, changing inline cost thresholds. Non-local
439       // discardable functions with comdats are checked later on.
440       bool CalleeWasDeleted = false;
441       if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
442           !CG.isLibFunction(Callee)) {
443         if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
444           Calls.erase(
445               std::remove_if(Calls.begin() + I + 1, Calls.end(),
446                              [&](const std::pair<CallBase *, int> &Call) {
447                                return Call.first->getCaller() == &Callee;
448                              }),
449               Calls.end());
450 
451           // Clear the body and queue the function itself for deletion when we
452           // finish inlining and call graph updates.
453           // Note that after this point, it is an error to do anything other
454           // than use the callee's address or delete it.
455           Callee.dropAllReferences();
456           assert(!is_contained(DeadFunctions, &Callee) &&
457                  "Cannot put cause a function to become dead twice!");
458           DeadFunctions.push_back(&Callee);
459           CalleeWasDeleted = true;
460         } else {
461           DeadFunctionsInComdats.push_back(&Callee);
462         }
463       }
464       if (CalleeWasDeleted)
465         Advice->recordInliningWithCalleeDeleted();
466       else
467         Advice->recordInlining();
468     }
469 
470     // Back the call index up by one to put us in a good position to go around
471     // the outer loop.
472     --I;
473 
474     if (!DidInline)
475       continue;
476     Changed = true;
477 
478     // At this point, since we have made changes we have at least removed
479     // a call instruction. However, in the process we do some incremental
480     // simplification of the surrounding code. This simplification can
481     // essentially do all of the same things as a function pass and we can
482     // re-use the exact same logic for updating the call graph to reflect the
483     // change.
484 
485     // Inside the update, we also update the FunctionAnalysisManager in the
486     // proxy for this particular SCC. We do this as the SCC may have changed and
487     // as we're going to mutate this particular function we want to make sure
488     // the proxy is in place to forward any invalidation events.
489     LazyCallGraph::SCC *OldC = C;
490     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
491     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
492 
493     // If this causes an SCC to split apart into multiple smaller SCCs, there
494     // is a subtle risk we need to prepare for. Other transformations may
495     // expose an "infinite inlining" opportunity later, and because of the SCC
496     // mutation, we will revisit this function and potentially re-inline. If we
497     // do, and that re-inlining also has the potentially to mutate the SCC
498     // structure, the infinite inlining problem can manifest through infinite
499     // SCC splits and merges. To avoid this, we capture the originating caller
500     // node and the SCC containing the call edge. This is a slight over
501     // approximation of the possible inlining decisions that must be avoided,
502     // but is relatively efficient to store. We use C != OldC to know when
503     // a new SCC is generated and the original SCC may be generated via merge
504     // in later iterations.
505     //
506     // It is also possible that even if no new SCC is generated
507     // (i.e., C == OldC), the original SCC could be split and then merged
508     // into the same one as itself. and the original SCC will be added into
509     // UR.CWorklist again, we want to catch such cases too.
510     //
511     // FIXME: This seems like a very heavyweight way of retaining the inline
512     // history, we should look for a more efficient way of tracking it.
513     if ((C != OldC || UR.CWorklist.count(OldC)) &&
514         llvm::any_of(InlinedCallees, [&](Function *Callee) {
515           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
516         })) {
517       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
518                            "retaining this to avoid infinite inlining.\n");
519       UR.InlinedInternalEdges.insert({&N, OldC});
520     }
521     InlinedCallees.clear();
522 
523     // Invalidate analyses for this function now so that we don't have to
524     // invalidate analyses for all functions in this SCC later.
525     FAM.invalidate(F, PreservedAnalyses::none());
526   }
527 
528   // We must ensure that we only delete functions with comdats if every function
529   // in the comdat is going to be deleted.
530   if (!DeadFunctionsInComdats.empty()) {
531     filterDeadComdatFunctions(DeadFunctionsInComdats);
532     for (auto *Callee : DeadFunctionsInComdats)
533       Callee->dropAllReferences();
534     DeadFunctions.append(DeadFunctionsInComdats);
535   }
536 
537   // Now that we've finished inlining all of the calls across this SCC, delete
538   // all of the trivially dead functions, updating the call graph and the CGSCC
539   // pass manager in the process.
540   //
541   // Note that this walks a pointer set which has non-deterministic order but
542   // that is OK as all we do is delete things and add pointers to unordered
543   // sets.
544   for (Function *DeadF : DeadFunctions) {
545     // Get the necessary information out of the call graph and nuke the
546     // function there. Also, clear out any cached analyses.
547     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
548     FAM.clear(*DeadF, DeadF->getName());
549     AM.clear(DeadC, DeadC.getName());
550     auto &DeadRC = DeadC.getOuterRefSCC();
551     CG.removeDeadFunction(*DeadF);
552 
553     // Mark the relevant parts of the call graph as invalid so we don't visit
554     // them.
555     UR.InvalidatedSCCs.insert(&DeadC);
556     UR.InvalidatedRefSCCs.insert(&DeadRC);
557 
558     // If the updated SCC was the one containing the deleted function, clear it.
559     if (&DeadC == UR.UpdatedC)
560       UR.UpdatedC = nullptr;
561 
562     // And delete the actual function from the module.
563     M.getFunctionList().erase(DeadF);
564 
565     ++NumDeleted;
566   }
567 
568   if (!Changed)
569     return PreservedAnalyses::all();
570 
571   PreservedAnalyses PA;
572   // Even if we change the IR, we update the core CGSCC data structures and so
573   // can preserve the proxy to the function analysis manager.
574   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
575   // We have already invalidated all analyses on modified functions.
576   PA.preserveSet<AllAnalysesOn<Function>>();
577   return PA;
578 }
579 
580 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
581                                                    bool MandatoryFirst,
582                                                    InlineContext IC,
583                                                    InliningAdvisorMode Mode,
584                                                    unsigned MaxDevirtIterations)
585     : Params(Params), IC(IC), Mode(Mode),
586       MaxDevirtIterations(MaxDevirtIterations) {
587   // Run the inliner first. The theory is that we are walking bottom-up and so
588   // the callees have already been fully optimized, and we want to inline them
589   // into the callers so that our optimizations can reflect that.
590   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
591   // because it makes profile annotation in the backend inaccurate.
592   if (MandatoryFirst) {
593     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
594     if (EnablePostSCCAdvisorPrinting)
595       PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
596   }
597   PM.addPass(InlinerPass());
598   if (EnablePostSCCAdvisorPrinting)
599     PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
600 }
601 
602 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
603                                                 ModuleAnalysisManager &MAM) {
604   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
605   if (!IAA.tryCreate(Params, Mode,
606                      {CGSCCInlineReplayFile,
607                       CGSCCInlineReplayScope,
608                       CGSCCInlineReplayFallback,
609                       {CGSCCInlineReplayFormat}},
610                      IC)) {
611     M.getContext().emitError(
612         "Could not setup Inlining Advisor for the requested "
613         "mode and/or options");
614     return PreservedAnalyses::all();
615   }
616 
617   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
618   // to detect when we devirtualize indirect calls and iterate the SCC passes
619   // in that case to try and catch knock-on inlining or function attrs
620   // opportunities. Then we add it to the module pipeline by walking the SCCs
621   // in postorder (or bottom-up).
622   // If MaxDevirtIterations is 0, we just don't use the devirtualization
623   // wrapper.
624   if (MaxDevirtIterations == 0)
625     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
626   else
627     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
628         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
629 
630   MPM.addPass(std::move(AfterCGMPM));
631   MPM.run(M, MAM);
632 
633   // Discard the InlineAdvisor, a subsequent inlining session should construct
634   // its own.
635   auto PA = PreservedAnalyses::all();
636   if (!KeepAdvisorForPrinting)
637     PA.abandon<InlineAdvisorAnalysis>();
638   return PA;
639 }
640 
641 void InlinerPass::printPipeline(
642     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
643   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
644       OS, MapClassName2PassName);
645   if (OnlyMandatory)
646     OS << "<only-mandatory>";
647 }
648 
649 void ModuleInlinerWrapperPass::printPipeline(
650     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
651   // Print some info about passes added to the wrapper. This is however
652   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
653   // on Params and Mode).
654   if (!MPM.isEmpty()) {
655     MPM.printPipeline(OS, MapClassName2PassName);
656     OS << ',';
657   }
658   OS << "cgscc(";
659   if (MaxDevirtIterations != 0)
660     OS << "devirt<" << MaxDevirtIterations << ">(";
661   PM.printPipeline(OS, MapClassName2PassName);
662   if (MaxDevirtIterations != 0)
663     OS << ')';
664   OS << ')';
665 }
666