xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BasicAliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/Analysis/InlineAdvisor.h"
30 #include "llvm/Analysis/InlineCost.h"
31 #include "llvm/Analysis/LazyCallGraph.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ReplayInlineAdvisor.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/ModuleUtils.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <functional>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "inline"
69 
70 STATISTIC(NumInlined, "Number of functions inlined");
71 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
72 
73 static cl::opt<int> IntraSCCCostMultiplier(
74     "intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
75     cl::desc(
76         "Cost multiplier to multiply onto inlined call sites where the "
77         "new call was previously an intra-SCC call (not relevant when the "
78         "original call was already intra-SCC). This can accumulate over "
79         "multiple inlinings (e.g. if a call site already had a cost "
80         "multiplier and one of its inlined calls was also subject to "
81         "this, the inlined call would have the original multiplier "
82         "multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
83         "inlining through a child SCC which can cause terrible compile times"));
84 
85 /// A flag for test, so we can print the content of the advisor when running it
86 /// as part of the default (e.g. -O3) pipeline.
87 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
88                                             cl::init(false), cl::Hidden);
89 
90 /// Allows printing the contents of the advisor after each SCC inliner pass.
91 static cl::opt<bool>
92     EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
93                                  cl::init(false), cl::Hidden);
94 
95 
96 static cl::opt<std::string> CGSCCInlineReplayFile(
97     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
98     cl::desc(
99         "Optimization remarks file containing inline remarks to be replayed "
100         "by cgscc inlining."),
101     cl::Hidden);
102 
103 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
104     "cgscc-inline-replay-scope",
105     cl::init(ReplayInlinerSettings::Scope::Function),
106     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
107                           "Replay on functions that have remarks associated "
108                           "with them (default)"),
109                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
110                           "Replay on the entire module")),
111     cl::desc("Whether inline replay should be applied to the entire "
112              "Module or just the Functions (default) that are present as "
113              "callers in remarks during cgscc inlining."),
114     cl::Hidden);
115 
116 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
117     "cgscc-inline-replay-fallback",
118     cl::init(ReplayInlinerSettings::Fallback::Original),
119     cl::values(
120         clEnumValN(
121             ReplayInlinerSettings::Fallback::Original, "Original",
122             "All decisions not in replay send to original advisor (default)"),
123         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
124                    "AlwaysInline", "All decisions not in replay are inlined"),
125         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
126                    "All decisions not in replay are not inlined")),
127     cl::desc(
128         "How cgscc inline replay treats sites that don't come from the replay. "
129         "Original: defers to original advisor, AlwaysInline: inline all sites "
130         "not in replay, NeverInline: inline no sites not in replay"),
131     cl::Hidden);
132 
133 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
134     "cgscc-inline-replay-format",
135     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
136     cl::values(
137         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
138         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
139                    "<Line Number>:<Column Number>"),
140         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
141                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
142         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
143                    "LineColumnDiscriminator",
144                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
145     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
146 
147 /// Return true if the specified inline history ID
148 /// indicates an inline history that includes the specified function.
149 static bool inlineHistoryIncludes(
150     Function *F, int InlineHistoryID,
151     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
152   while (InlineHistoryID != -1) {
153     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
154            "Invalid inline history ID");
155     if (InlineHistory[InlineHistoryID].first == F)
156       return true;
157     InlineHistoryID = InlineHistory[InlineHistoryID].second;
158   }
159   return false;
160 }
161 
162 InlineAdvisor &
163 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
164                         FunctionAnalysisManager &FAM, Module &M) {
165   if (OwnedAdvisor)
166     return *OwnedAdvisor;
167 
168   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
169   if (!IAA) {
170     // It should still be possible to run the inliner as a stand-alone SCC pass,
171     // for test scenarios. In that case, we default to the
172     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
173     // runs. It also uses just the default InlineParams.
174     // In this case, we need to use the provided FAM, which is valid for the
175     // duration of the inliner pass, and thus the lifetime of the owned advisor.
176     // The one we would get from the MAM can be invalidated as a result of the
177     // inliner's activity.
178     OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
179         M, FAM, getInlineParams(),
180         InlineContext{LTOPhase, InlinePass::CGSCCInliner});
181 
182     if (!CGSCCInlineReplayFile.empty())
183       OwnedAdvisor = getReplayInlineAdvisor(
184           M, FAM, M.getContext(), std::move(OwnedAdvisor),
185           ReplayInlinerSettings{CGSCCInlineReplayFile,
186                                 CGSCCInlineReplayScope,
187                                 CGSCCInlineReplayFallback,
188                                 {CGSCCInlineReplayFormat}},
189           /*EmitRemarks=*/true,
190           InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner});
191 
192     return *OwnedAdvisor;
193   }
194   assert(IAA->getAdvisor() &&
195          "Expected a present InlineAdvisorAnalysis also have an "
196          "InlineAdvisor initialized");
197   return *IAA->getAdvisor();
198 }
199 
200 void makeFunctionBodyUnreachable(Function &F) {
201   F.dropAllReferences();
202   for (BasicBlock &BB : make_early_inc_range(F))
203     BB.eraseFromParent();
204   BasicBlock *BB = BasicBlock::Create(F.getContext(), "", &F);
205   new UnreachableInst(F.getContext(), BB);
206 }
207 
208 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
209                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
210                                    CGSCCUpdateResult &UR) {
211   const auto &MAMProxy =
212       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
213   bool Changed = false;
214 
215   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
216   Module &M = *InitialC.begin()->getFunction().getParent();
217   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
218 
219   FunctionAnalysisManager &FAM =
220       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
221           .getManager();
222 
223   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
224   Advisor.onPassEntry(&InitialC);
225 
226   // We use a single common worklist for calls across the entire SCC. We
227   // process these in-order and append new calls introduced during inlining to
228   // the end. The PriorityInlineOrder is optional here, in which the smaller
229   // callee would have a higher priority to inline.
230   //
231   // Note that this particular order of processing is actually critical to
232   // avoid very bad behaviors. Consider *highly connected* call graphs where
233   // each function contains a small amount of code and a couple of calls to
234   // other functions. Because the LLVM inliner is fundamentally a bottom-up
235   // inliner, it can handle gracefully the fact that these all appear to be
236   // reasonable inlining candidates as it will flatten things until they become
237   // too big to inline, and then move on and flatten another batch.
238   //
239   // However, when processing call edges *within* an SCC we cannot rely on this
240   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
241   // functions we can end up incrementally inlining N calls into each of
242   // N functions because each incremental inlining decision looks good and we
243   // don't have a topological ordering to prevent explosions.
244   //
245   // To compensate for this, we don't process transitive edges made immediate
246   // by inlining until we've done one pass of inlining across the entire SCC.
247   // Large, highly connected SCCs still lead to some amount of code bloat in
248   // this model, but it is uniformly spread across all the functions in the SCC
249   // and eventually they all become too large to inline, rather than
250   // incrementally maknig a single function grow in a super linear fashion.
251   SmallVector<std::pair<CallBase *, int>, 16> Calls;
252 
253   // Populate the initial list of calls in this SCC.
254   for (auto &N : InitialC) {
255     auto &ORE =
256         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
257     // We want to generally process call sites top-down in order for
258     // simplifications stemming from replacing the call with the returned value
259     // after inlining to be visible to subsequent inlining decisions.
260     // FIXME: Using instructions sequence is a really bad way to do this.
261     // Instead we should do an actual RPO walk of the function body.
262     for (Instruction &I : instructions(N.getFunction()))
263       if (auto *CB = dyn_cast<CallBase>(&I))
264         if (Function *Callee = CB->getCalledFunction()) {
265           if (!Callee->isDeclaration())
266             Calls.push_back({CB, -1});
267           else if (!isa<IntrinsicInst>(I)) {
268             using namespace ore;
269             setInlineRemark(*CB, "unavailable definition");
270             ORE.emit([&]() {
271               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
272                      << NV("Callee", Callee) << " will not be inlined into "
273                      << NV("Caller", CB->getCaller())
274                      << " because its definition is unavailable"
275                      << setIsVerbose();
276             });
277           }
278         }
279   }
280 
281   // Capture updatable variable for the current SCC.
282   auto *C = &InitialC;
283 
284   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(C); });
285 
286   if (Calls.empty())
287     return PreservedAnalyses::all();
288 
289   // When inlining a callee produces new call sites, we want to keep track of
290   // the fact that they were inlined from the callee.  This allows us to avoid
291   // infinite inlining in some obscure cases.  To represent this, we use an
292   // index into the InlineHistory vector.
293   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
294 
295   // Track a set vector of inlined callees so that we can augment the caller
296   // with all of their edges in the call graph before pruning out the ones that
297   // got simplified away.
298   SmallSetVector<Function *, 4> InlinedCallees;
299 
300   // Track the dead functions to delete once finished with inlining calls. We
301   // defer deleting these to make it easier to handle the call graph updates.
302   SmallVector<Function *, 4> DeadFunctions;
303 
304   // Track potentially dead non-local functions with comdats to see if they can
305   // be deleted as a batch after inlining.
306   SmallVector<Function *, 4> DeadFunctionsInComdats;
307 
308   // Loop forward over all of the calls. Note that we cannot cache the size as
309   // inlining can introduce new calls that need to be processed.
310   for (int I = 0; I < (int)Calls.size(); ++I) {
311     // We expect the calls to typically be batched with sequences of calls that
312     // have the same caller, so we first set up some shared infrastructure for
313     // this caller. We also do any pruning we can at this layer on the caller
314     // alone.
315     Function &F = *Calls[I].first->getCaller();
316     LazyCallGraph::Node &N = *CG.lookup(F);
317     if (CG.lookupSCC(N) != C)
318       continue;
319 
320     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
321                       << "    Function size: " << F.getInstructionCount()
322                       << "\n");
323 
324     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
325       return FAM.getResult<AssumptionAnalysis>(F);
326     };
327 
328     // Now process as many calls as we have within this caller in the sequence.
329     // We bail out as soon as the caller has to change so we can update the
330     // call graph and prepare the context of that new caller.
331     bool DidInline = false;
332     for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
333       auto &P = Calls[I];
334       CallBase *CB = P.first;
335       const int InlineHistoryID = P.second;
336       Function &Callee = *CB->getCalledFunction();
337 
338       if (InlineHistoryID != -1 &&
339           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
340         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName()
341                           << " -> " << Callee.getName() << "\n");
342         setInlineRemark(*CB, "recursive");
343         // Set noinline so that we don't forget this decision across CGSCC
344         // iterations.
345         CB->setIsNoInline();
346         continue;
347       }
348 
349       // Check if this inlining may repeat breaking an SCC apart that has
350       // already been split once before. In that case, inlining here may
351       // trigger infinite inlining, much like is prevented within the inliner
352       // itself by the InlineHistory above, but spread across CGSCC iterations
353       // and thus hidden from the full inline history.
354       LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
355       if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
356         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
357                              "previously split out of this SCC by inlining: "
358                           << F.getName() << " -> " << Callee.getName() << "\n");
359         setInlineRemark(*CB, "recursive SCC split");
360         continue;
361       }
362 
363       std::unique_ptr<InlineAdvice> Advice =
364           Advisor.getAdvice(*CB, OnlyMandatory);
365 
366       // Check whether we want to inline this callsite.
367       if (!Advice)
368         continue;
369 
370       if (!Advice->isInliningRecommended()) {
371         Advice->recordUnattemptedInlining();
372         continue;
373       }
374 
375       int CBCostMult =
376           getStringFnAttrAsInt(
377               *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
378               .value_or(1);
379 
380       // Setup the data structure used to plumb customization into the
381       // `InlineFunction` routine.
382       InlineFunctionInfo IFI(
383           GetAssumptionCache, PSI,
384           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
385           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
386 
387       InlineResult IR =
388           InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
389                          &FAM.getResult<AAManager>(*CB->getCaller()));
390       if (!IR.isSuccess()) {
391         Advice->recordUnsuccessfulInlining(IR);
392         continue;
393       }
394 
395       DidInline = true;
396       InlinedCallees.insert(&Callee);
397       ++NumInlined;
398 
399       LLVM_DEBUG(dbgs() << "    Size after inlining: "
400                         << F.getInstructionCount() << "\n");
401 
402       // Add any new callsites to defined functions to the worklist.
403       if (!IFI.InlinedCallSites.empty()) {
404         int NewHistoryID = InlineHistory.size();
405         InlineHistory.push_back({&Callee, InlineHistoryID});
406 
407         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
408           Function *NewCallee = ICB->getCalledFunction();
409           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
410                  "Intrinsic calls should not be tracked.");
411           if (!NewCallee) {
412             // Try to promote an indirect (virtual) call without waiting for
413             // the post-inline cleanup and the next DevirtSCCRepeatedPass
414             // iteration because the next iteration may not happen and we may
415             // miss inlining it.
416             if (tryPromoteCall(*ICB))
417               NewCallee = ICB->getCalledFunction();
418           }
419           if (NewCallee) {
420             if (!NewCallee->isDeclaration()) {
421               Calls.push_back({ICB, NewHistoryID});
422               // Continually inlining through an SCC can result in huge compile
423               // times and bloated code since we arbitrarily stop at some point
424               // when the inliner decides it's not profitable to inline anymore.
425               // We attempt to mitigate this by making these calls exponentially
426               // more expensive.
427               // This doesn't apply to calls in the same SCC since if we do
428               // inline through the SCC the function will end up being
429               // self-recursive which the inliner bails out on, and inlining
430               // within an SCC is necessary for performance.
431               if (CalleeSCC != C &&
432                   CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
433                 Attribute NewCBCostMult = Attribute::get(
434                     M.getContext(),
435                     InlineConstants::FunctionInlineCostMultiplierAttributeName,
436                     itostr(CBCostMult * IntraSCCCostMultiplier));
437                 ICB->addFnAttr(NewCBCostMult);
438               }
439             }
440           }
441         }
442       }
443 
444       // For local functions or discardable functions without comdats, check
445       // whether this makes the callee trivially dead. In that case, we can drop
446       // the body of the function eagerly which may reduce the number of callers
447       // of other functions to one, changing inline cost thresholds. Non-local
448       // discardable functions with comdats are checked later on.
449       bool CalleeWasDeleted = false;
450       if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
451           !CG.isLibFunction(Callee)) {
452         if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
453           Calls.erase(
454               std::remove_if(Calls.begin() + I + 1, Calls.end(),
455                              [&](const std::pair<CallBase *, int> &Call) {
456                                return Call.first->getCaller() == &Callee;
457                              }),
458               Calls.end());
459 
460           // Clear the body and queue the function itself for call graph
461           // updating when we finish inlining.
462           makeFunctionBodyUnreachable(Callee);
463           assert(!is_contained(DeadFunctions, &Callee) &&
464                  "Cannot put cause a function to become dead twice!");
465           DeadFunctions.push_back(&Callee);
466           CalleeWasDeleted = true;
467         } else {
468           DeadFunctionsInComdats.push_back(&Callee);
469         }
470       }
471       if (CalleeWasDeleted)
472         Advice->recordInliningWithCalleeDeleted();
473       else
474         Advice->recordInlining();
475     }
476 
477     // Back the call index up by one to put us in a good position to go around
478     // the outer loop.
479     --I;
480 
481     if (!DidInline)
482       continue;
483     Changed = true;
484 
485     // At this point, since we have made changes we have at least removed
486     // a call instruction. However, in the process we do some incremental
487     // simplification of the surrounding code. This simplification can
488     // essentially do all of the same things as a function pass and we can
489     // re-use the exact same logic for updating the call graph to reflect the
490     // change.
491 
492     // Inside the update, we also update the FunctionAnalysisManager in the
493     // proxy for this particular SCC. We do this as the SCC may have changed and
494     // as we're going to mutate this particular function we want to make sure
495     // the proxy is in place to forward any invalidation events.
496     LazyCallGraph::SCC *OldC = C;
497     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
498     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
499 
500     // If this causes an SCC to split apart into multiple smaller SCCs, there
501     // is a subtle risk we need to prepare for. Other transformations may
502     // expose an "infinite inlining" opportunity later, and because of the SCC
503     // mutation, we will revisit this function and potentially re-inline. If we
504     // do, and that re-inlining also has the potentially to mutate the SCC
505     // structure, the infinite inlining problem can manifest through infinite
506     // SCC splits and merges. To avoid this, we capture the originating caller
507     // node and the SCC containing the call edge. This is a slight over
508     // approximation of the possible inlining decisions that must be avoided,
509     // but is relatively efficient to store. We use C != OldC to know when
510     // a new SCC is generated and the original SCC may be generated via merge
511     // in later iterations.
512     //
513     // It is also possible that even if no new SCC is generated
514     // (i.e., C == OldC), the original SCC could be split and then merged
515     // into the same one as itself. and the original SCC will be added into
516     // UR.CWorklist again, we want to catch such cases too.
517     //
518     // FIXME: This seems like a very heavyweight way of retaining the inline
519     // history, we should look for a more efficient way of tracking it.
520     if ((C != OldC || UR.CWorklist.count(OldC)) &&
521         llvm::any_of(InlinedCallees, [&](Function *Callee) {
522           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
523         })) {
524       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
525                            "retaining this to avoid infinite inlining.\n");
526       UR.InlinedInternalEdges.insert({&N, OldC});
527     }
528     InlinedCallees.clear();
529 
530     // Invalidate analyses for this function now so that we don't have to
531     // invalidate analyses for all functions in this SCC later.
532     FAM.invalidate(F, PreservedAnalyses::none());
533   }
534 
535   // We must ensure that we only delete functions with comdats if every function
536   // in the comdat is going to be deleted.
537   if (!DeadFunctionsInComdats.empty()) {
538     filterDeadComdatFunctions(DeadFunctionsInComdats);
539     for (auto *Callee : DeadFunctionsInComdats)
540       makeFunctionBodyUnreachable(*Callee);
541     DeadFunctions.append(DeadFunctionsInComdats);
542   }
543 
544   // Now that we've finished inlining all of the calls across this SCC, delete
545   // all of the trivially dead functions, updating the call graph and the CGSCC
546   // pass manager in the process.
547   //
548   // Note that this walks a pointer set which has non-deterministic order but
549   // that is OK as all we do is delete things and add pointers to unordered
550   // sets.
551   for (Function *DeadF : DeadFunctions) {
552     CG.markDeadFunction(*DeadF);
553     // Get the necessary information out of the call graph and nuke the
554     // function there. Also, clear out any cached analyses.
555     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
556     FAM.clear(*DeadF, DeadF->getName());
557     AM.clear(DeadC, DeadC.getName());
558 
559     // Mark the relevant parts of the call graph as invalid so we don't visit
560     // them.
561     UR.InvalidatedSCCs.insert(&DeadC);
562 
563     UR.DeadFunctions.push_back(DeadF);
564 
565     ++NumDeleted;
566   }
567 
568   if (!Changed)
569     return PreservedAnalyses::all();
570 
571   PreservedAnalyses PA;
572   // Even if we change the IR, we update the core CGSCC data structures and so
573   // can preserve the proxy to the function analysis manager.
574   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
575   // We have already invalidated all analyses on modified functions.
576   PA.preserveSet<AllAnalysesOn<Function>>();
577   return PA;
578 }
579 
580 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
581                                                    bool MandatoryFirst,
582                                                    InlineContext IC,
583                                                    InliningAdvisorMode Mode,
584                                                    unsigned MaxDevirtIterations)
585     : Params(Params), IC(IC), Mode(Mode),
586       MaxDevirtIterations(MaxDevirtIterations) {
587   // Run the inliner first. The theory is that we are walking bottom-up and so
588   // the callees have already been fully optimized, and we want to inline them
589   // into the callers so that our optimizations can reflect that.
590   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
591   // because it makes profile annotation in the backend inaccurate.
592   if (MandatoryFirst) {
593     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
594     if (EnablePostSCCAdvisorPrinting)
595       PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
596   }
597   PM.addPass(InlinerPass());
598   if (EnablePostSCCAdvisorPrinting)
599     PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
600 }
601 
602 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
603                                                 ModuleAnalysisManager &MAM) {
604   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
605   if (!IAA.tryCreate(Params, Mode,
606                      {CGSCCInlineReplayFile,
607                       CGSCCInlineReplayScope,
608                       CGSCCInlineReplayFallback,
609                       {CGSCCInlineReplayFormat}},
610                      IC)) {
611     M.getContext().emitError(
612         "Could not setup Inlining Advisor for the requested "
613         "mode and/or options");
614     return PreservedAnalyses::all();
615   }
616 
617   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
618   // to detect when we devirtualize indirect calls and iterate the SCC passes
619   // in that case to try and catch knock-on inlining or function attrs
620   // opportunities. Then we add it to the module pipeline by walking the SCCs
621   // in postorder (or bottom-up).
622   // If MaxDevirtIterations is 0, we just don't use the devirtualization
623   // wrapper.
624   if (MaxDevirtIterations == 0)
625     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
626   else
627     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
628         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
629 
630   MPM.addPass(std::move(AfterCGMPM));
631   MPM.run(M, MAM);
632 
633   // Discard the InlineAdvisor, a subsequent inlining session should construct
634   // its own.
635   auto PA = PreservedAnalyses::all();
636   if (!KeepAdvisorForPrinting)
637     PA.abandon<InlineAdvisorAnalysis>();
638   return PA;
639 }
640 
641 void InlinerPass::printPipeline(
642     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
643   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
644       OS, MapClassName2PassName);
645   if (OnlyMandatory)
646     OS << "<only-mandatory>";
647 }
648 
649 void ModuleInlinerWrapperPass::printPipeline(
650     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
651   // Print some info about passes added to the wrapper. This is however
652   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
653   // on Params and Mode).
654   if (!MPM.isEmpty()) {
655     MPM.printPipeline(OS, MapClassName2PassName);
656     OS << ',';
657   }
658   OS << "cgscc(";
659   if (MaxDevirtIterations != 0)
660     OS << "devirt<" << MaxDevirtIterations << ">(";
661   PM.printPipeline(OS, MapClassName2PassName);
662   if (MaxDevirtIterations != 0)
663     OS << ')';
664   OS << ')';
665 }
666