1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/BlockFrequencyInfo.h" 30 #include "llvm/Analysis/CGSCCPassManager.h" 31 #include "llvm/Analysis/CallGraph.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/InlineAdvisor.h" 34 #include "llvm/Analysis/InlineCost.h" 35 #include "llvm/Analysis/InlineOrder.h" 36 #include "llvm/Analysis/LazyCallGraph.h" 37 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/ReplayInlineAdvisor.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/DiagnosticInfo.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/PassManager.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ModuleUtils.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <functional> 71 #include <sstream> 72 #include <tuple> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "inline" 79 80 STATISTIC(NumInlined, "Number of functions inlined"); 81 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 82 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 83 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 84 85 /// Flag to disable manual alloca merging. 86 /// 87 /// Merging of allocas was originally done as a stack-size saving technique 88 /// prior to LLVM's code generator having support for stack coloring based on 89 /// lifetime markers. It is now in the process of being removed. To experiment 90 /// with disabling it and relying fully on lifetime marker based stack 91 /// coloring, you can pass this flag to LLVM. 92 static cl::opt<bool> 93 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<int> IntraSCCCostMultiplier( 97 "intra-scc-cost-multiplier", cl::init(2), cl::Hidden, 98 cl::desc( 99 "Cost multiplier to multiply onto inlined call sites where the " 100 "new call was previously an intra-SCC call (not relevant when the " 101 "original call was already intra-SCC). This can accumulate over " 102 "multiple inlinings (e.g. if a call site already had a cost " 103 "multiplier and one of its inlined calls was also subject to " 104 "this, the inlined call would have the original multiplier " 105 "multiplied by intra-scc-cost-multiplier). This is to prevent tons of " 106 "inlining through a child SCC which can cause terrible compile times")); 107 108 /// A flag for test, so we can print the content of the advisor when running it 109 /// as part of the default (e.g. -O3) pipeline. 110 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing", 111 cl::init(false), cl::Hidden); 112 113 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats; 114 115 static cl::opt<std::string> CGSCCInlineReplayFile( 116 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"), 117 cl::desc( 118 "Optimization remarks file containing inline remarks to be replayed " 119 "by cgscc inlining."), 120 cl::Hidden); 121 122 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope( 123 "cgscc-inline-replay-scope", 124 cl::init(ReplayInlinerSettings::Scope::Function), 125 cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", 126 "Replay on functions that have remarks associated " 127 "with them (default)"), 128 clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", 129 "Replay on the entire module")), 130 cl::desc("Whether inline replay should be applied to the entire " 131 "Module or just the Functions (default) that are present as " 132 "callers in remarks during cgscc inlining."), 133 cl::Hidden); 134 135 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback( 136 "cgscc-inline-replay-fallback", 137 cl::init(ReplayInlinerSettings::Fallback::Original), 138 cl::values( 139 clEnumValN( 140 ReplayInlinerSettings::Fallback::Original, "Original", 141 "All decisions not in replay send to original advisor (default)"), 142 clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, 143 "AlwaysInline", "All decisions not in replay are inlined"), 144 clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", 145 "All decisions not in replay are not inlined")), 146 cl::desc( 147 "How cgscc inline replay treats sites that don't come from the replay. " 148 "Original: defers to original advisor, AlwaysInline: inline all sites " 149 "not in replay, NeverInline: inline no sites not in replay"), 150 cl::Hidden); 151 152 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat( 153 "cgscc-inline-replay-format", 154 cl::init(CallSiteFormat::Format::LineColumnDiscriminator), 155 cl::values( 156 clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), 157 clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", 158 "<Line Number>:<Column Number>"), 159 clEnumValN(CallSiteFormat::Format::LineDiscriminator, 160 "LineDiscriminator", "<Line Number>.<Discriminator>"), 161 clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, 162 "LineColumnDiscriminator", 163 "<Line Number>:<Column Number>.<Discriminator> (default)")), 164 cl::desc("How cgscc inline replay file is formatted"), cl::Hidden); 165 166 static cl::opt<bool> InlineEnablePriorityOrder( 167 "inline-enable-priority-order", cl::Hidden, cl::init(false), 168 cl::desc("Enable the priority inline order for the inliner")); 169 170 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 171 172 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 173 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 174 175 /// For this class, we declare that we require and preserve the call graph. 176 /// If the derived class implements this method, it should 177 /// always explicitly call the implementation here. 178 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 179 AU.addRequired<AssumptionCacheTracker>(); 180 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 181 AU.addRequired<TargetLibraryInfoWrapperPass>(); 182 getAAResultsAnalysisUsage(AU); 183 CallGraphSCCPass::getAnalysisUsage(AU); 184 } 185 186 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 187 188 /// Look at all of the allocas that we inlined through this call site. If we 189 /// have already inlined other allocas through other calls into this function, 190 /// then we know that they have disjoint lifetimes and that we can merge them. 191 /// 192 /// There are many heuristics possible for merging these allocas, and the 193 /// different options have different tradeoffs. One thing that we *really* 194 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 195 /// longer address taken and so they can be promoted. 196 /// 197 /// Our "solution" for that is to only merge allocas whose outermost type is an 198 /// array type. These are usually not promoted because someone is using a 199 /// variable index into them. These are also often the most important ones to 200 /// merge. 201 /// 202 /// A better solution would be to have real memory lifetime markers in the IR 203 /// and not have the inliner do any merging of allocas at all. This would 204 /// allow the backend to do proper stack slot coloring of all allocas that 205 /// *actually make it to the backend*, which is really what we want. 206 /// 207 /// Because we don't have this information, we do this simple and useful hack. 208 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 209 InlinedArrayAllocasTy &InlinedArrayAllocas, 210 int InlineHistory) { 211 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 212 213 // When processing our SCC, check to see if the call site was inlined from 214 // some other call site. For example, if we're processing "A" in this code: 215 // A() { B() } 216 // B() { x = alloca ... C() } 217 // C() { y = alloca ... } 218 // Assume that C was not inlined into B initially, and so we're processing A 219 // and decide to inline B into A. Doing this makes an alloca available for 220 // reuse and makes a callsite (C) available for inlining. When we process 221 // the C call site we don't want to do any alloca merging between X and Y 222 // because their scopes are not disjoint. We could make this smarter by 223 // keeping track of the inline history for each alloca in the 224 // InlinedArrayAllocas but this isn't likely to be a significant win. 225 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 226 return; 227 228 // Loop over all the allocas we have so far and see if they can be merged with 229 // a previously inlined alloca. If not, remember that we had it. 230 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 231 ++AllocaNo) { 232 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 233 234 // Don't bother trying to merge array allocations (they will usually be 235 // canonicalized to be an allocation *of* an array), or allocations whose 236 // type is not itself an array (because we're afraid of pessimizing SRoA). 237 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 238 if (!ATy || AI->isArrayAllocation()) 239 continue; 240 241 // Get the list of all available allocas for this array type. 242 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 243 244 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 245 // that we have to be careful not to reuse the same "available" alloca for 246 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 247 // set to keep track of which "available" allocas are being used by this 248 // function. Also, AllocasForType can be empty of course! 249 bool MergedAwayAlloca = false; 250 for (AllocaInst *AvailableAlloca : AllocasForType) { 251 Align Align1 = AI->getAlign(); 252 Align Align2 = AvailableAlloca->getAlign(); 253 254 // The available alloca has to be in the right function, not in some other 255 // function in this SCC. 256 if (AvailableAlloca->getParent() != AI->getParent()) 257 continue; 258 259 // If the inlined function already uses this alloca then we can't reuse 260 // it. 261 if (!UsedAllocas.insert(AvailableAlloca).second) 262 continue; 263 264 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 265 // success! 266 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 267 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 268 269 // Move affected dbg.declare calls immediately after the new alloca to 270 // avoid the situation when a dbg.declare precedes its alloca. 271 if (auto *L = LocalAsMetadata::getIfExists(AI)) 272 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 273 for (User *U : MDV->users()) 274 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 275 DDI->moveBefore(AvailableAlloca->getNextNode()); 276 277 AI->replaceAllUsesWith(AvailableAlloca); 278 279 if (Align1 > Align2) 280 AvailableAlloca->setAlignment(AI->getAlign()); 281 282 AI->eraseFromParent(); 283 MergedAwayAlloca = true; 284 ++NumMergedAllocas; 285 IFI.StaticAllocas[AllocaNo] = nullptr; 286 break; 287 } 288 289 // If we already nuked the alloca, we're done with it. 290 if (MergedAwayAlloca) 291 continue; 292 293 // If we were unable to merge away the alloca either because there are no 294 // allocas of the right type available or because we reused them all 295 // already, remember that this alloca came from an inlined function and mark 296 // it used so we don't reuse it for other allocas from this inline 297 // operation. 298 AllocasForType.push_back(AI); 299 UsedAllocas.insert(AI); 300 } 301 } 302 303 /// If it is possible to inline the specified call site, 304 /// do so and update the CallGraph for this operation. 305 /// 306 /// This function also does some basic book-keeping to update the IR. The 307 /// InlinedArrayAllocas map keeps track of any allocas that are already 308 /// available from other functions inlined into the caller. If we are able to 309 /// inline this call site we attempt to reuse already available allocas or add 310 /// any new allocas to the set if not possible. 311 static InlineResult inlineCallIfPossible( 312 CallBase &CB, InlineFunctionInfo &IFI, 313 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 314 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 315 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 316 Function *Callee = CB.getCalledFunction(); 317 Function *Caller = CB.getCaller(); 318 319 AAResults &AAR = AARGetter(*Callee); 320 321 // Try to inline the function. Get the list of static allocas that were 322 // inlined. 323 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 324 if (!IR.isSuccess()) 325 return IR; 326 327 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 328 ImportedFunctionsStats.recordInline(*Caller, *Callee); 329 330 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 331 332 if (!DisableInlinedAllocaMerging) 333 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 334 335 return IR; // success 336 } 337 338 /// Return true if the specified inline history ID 339 /// indicates an inline history that includes the specified function. 340 static bool inlineHistoryIncludes( 341 Function *F, int InlineHistoryID, 342 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 343 while (InlineHistoryID != -1) { 344 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 345 "Invalid inline history ID"); 346 if (InlineHistory[InlineHistoryID].first == F) 347 return true; 348 InlineHistoryID = InlineHistory[InlineHistoryID].second; 349 } 350 return false; 351 } 352 353 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 354 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 355 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 356 return false; // No changes to CallGraph. 357 } 358 359 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 360 if (skipSCC(SCC)) 361 return false; 362 return inlineCalls(SCC); 363 } 364 365 static bool 366 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 367 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 368 ProfileSummaryInfo *PSI, 369 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 370 bool InsertLifetime, 371 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 372 function_ref<AAResults &(Function &)> AARGetter, 373 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 374 SmallPtrSet<Function *, 8> SCCFunctions; 375 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 376 for (CallGraphNode *Node : SCC) { 377 Function *F = Node->getFunction(); 378 if (F) 379 SCCFunctions.insert(F); 380 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 381 } 382 383 // Scan through and identify all call sites ahead of time so that we only 384 // inline call sites in the original functions, not call sites that result 385 // from inlining other functions. 386 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 387 388 // When inlining a callee produces new call sites, we want to keep track of 389 // the fact that they were inlined from the callee. This allows us to avoid 390 // infinite inlining in some obscure cases. To represent this, we use an 391 // index into the InlineHistory vector. 392 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 393 394 for (CallGraphNode *Node : SCC) { 395 Function *F = Node->getFunction(); 396 if (!F || F->isDeclaration()) 397 continue; 398 399 OptimizationRemarkEmitter ORE(F); 400 for (BasicBlock &BB : *F) 401 for (Instruction &I : BB) { 402 auto *CB = dyn_cast<CallBase>(&I); 403 // If this isn't a call, or it is a call to an intrinsic, it can 404 // never be inlined. 405 if (!CB || isa<IntrinsicInst>(I)) 406 continue; 407 408 // If this is a direct call to an external function, we can never inline 409 // it. If it is an indirect call, inlining may resolve it to be a 410 // direct call, so we keep it. 411 if (Function *Callee = CB->getCalledFunction()) 412 if (Callee->isDeclaration()) { 413 using namespace ore; 414 415 setInlineRemark(*CB, "unavailable definition"); 416 ORE.emit([&]() { 417 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 418 << NV("Callee", Callee) << " will not be inlined into " 419 << NV("Caller", CB->getCaller()) 420 << " because its definition is unavailable" 421 << setIsVerbose(); 422 }); 423 continue; 424 } 425 426 CallSites.push_back(std::make_pair(CB, -1)); 427 } 428 } 429 430 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 431 432 // If there are no calls in this function, exit early. 433 if (CallSites.empty()) 434 return false; 435 436 // Now that we have all of the call sites, move the ones to functions in the 437 // current SCC to the end of the list. 438 unsigned FirstCallInSCC = CallSites.size(); 439 for (unsigned I = 0; I < FirstCallInSCC; ++I) 440 if (Function *F = CallSites[I].first->getCalledFunction()) 441 if (SCCFunctions.count(F)) 442 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 443 444 InlinedArrayAllocasTy InlinedArrayAllocas; 445 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 446 447 // Now that we have all of the call sites, loop over them and inline them if 448 // it looks profitable to do so. 449 bool Changed = false; 450 bool LocalChange; 451 do { 452 LocalChange = false; 453 // Iterate over the outer loop because inlining functions can cause indirect 454 // calls to become direct calls. 455 // CallSites may be modified inside so ranged for loop can not be used. 456 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 457 auto &P = CallSites[CSi]; 458 CallBase &CB = *P.first; 459 const int InlineHistoryID = P.second; 460 461 Function *Caller = CB.getCaller(); 462 Function *Callee = CB.getCalledFunction(); 463 464 // We can only inline direct calls to non-declarations. 465 if (!Callee || Callee->isDeclaration()) 466 continue; 467 468 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 469 470 if (!IsTriviallyDead) { 471 // If this call site was obtained by inlining another function, verify 472 // that the include path for the function did not include the callee 473 // itself. If so, we'd be recursively inlining the same function, 474 // which would provide the same callsites, which would cause us to 475 // infinitely inline. 476 if (InlineHistoryID != -1 && 477 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 478 setInlineRemark(CB, "recursive"); 479 continue; 480 } 481 } 482 483 // FIXME for new PM: because of the old PM we currently generate ORE and 484 // in turn BFI on demand. With the new PM, the ORE dependency should 485 // just become a regular analysis dependency. 486 OptimizationRemarkEmitter ORE(Caller); 487 488 auto OIC = shouldInline(CB, GetInlineCost, ORE); 489 // If the policy determines that we should inline this function, 490 // delete the call instead. 491 if (!OIC) 492 continue; 493 494 // If this call site is dead and it is to a readonly function, we should 495 // just delete the call instead of trying to inline it, regardless of 496 // size. This happens because IPSCCP propagates the result out of the 497 // call and then we're left with the dead call. 498 if (IsTriviallyDead) { 499 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 500 // Update the call graph by deleting the edge from Callee to Caller. 501 setInlineRemark(CB, "trivially dead"); 502 CG[Caller]->removeCallEdgeFor(CB); 503 CB.eraseFromParent(); 504 ++NumCallsDeleted; 505 } else { 506 // Get DebugLoc to report. CB will be invalid after Inliner. 507 DebugLoc DLoc = CB.getDebugLoc(); 508 BasicBlock *Block = CB.getParent(); 509 510 // Attempt to inline the function. 511 using namespace ore; 512 513 InlineResult IR = inlineCallIfPossible( 514 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 515 InsertLifetime, AARGetter, ImportedFunctionsStats); 516 if (!IR.isSuccess()) { 517 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 518 inlineCostStr(*OIC)); 519 ORE.emit([&]() { 520 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 521 Block) 522 << NV("Callee", Callee) << " will not be inlined into " 523 << NV("Caller", Caller) << ": " 524 << NV("Reason", IR.getFailureReason()); 525 }); 526 continue; 527 } 528 ++NumInlined; 529 530 emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC); 531 532 // If inlining this function gave us any new call sites, throw them 533 // onto our worklist to process. They are useful inline candidates. 534 if (!InlineInfo.InlinedCalls.empty()) { 535 // Create a new inline history entry for this, so that we remember 536 // that these new callsites came about due to inlining Callee. 537 int NewHistoryID = InlineHistory.size(); 538 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 539 540 #ifndef NDEBUG 541 // Make sure no dupplicates in the inline candidates. This could 542 // happen when a callsite is simpilfied to reusing the return value 543 // of another callsite during function cloning, thus the other 544 // callsite will be reconsidered here. 545 DenseSet<CallBase *> DbgCallSites; 546 for (auto &II : CallSites) 547 DbgCallSites.insert(II.first); 548 #endif 549 550 for (Value *Ptr : InlineInfo.InlinedCalls) { 551 #ifndef NDEBUG 552 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 553 #endif 554 CallSites.push_back( 555 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 556 } 557 } 558 } 559 560 // If we inlined or deleted the last possible call site to the function, 561 // delete the function body now. 562 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 563 // TODO: Can remove if in SCC now. 564 !SCCFunctions.count(Callee) && 565 // The function may be apparently dead, but if there are indirect 566 // callgraph references to the node, we cannot delete it yet, this 567 // could invalidate the CGSCC iterator. 568 CG[Callee]->getNumReferences() == 0) { 569 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 570 << Callee->getName() << "\n"); 571 CallGraphNode *CalleeNode = CG[Callee]; 572 573 // Remove any call graph edges from the callee to its callees. 574 CalleeNode->removeAllCalledFunctions(); 575 576 // Removing the node for callee from the call graph and delete it. 577 delete CG.removeFunctionFromModule(CalleeNode); 578 ++NumDeleted; 579 } 580 581 // Remove this call site from the list. If possible, use 582 // swap/pop_back for efficiency, but do not use it if doing so would 583 // move a call site to a function in this SCC before the 584 // 'FirstCallInSCC' barrier. 585 if (SCC.isSingular()) { 586 CallSites[CSi] = CallSites.back(); 587 CallSites.pop_back(); 588 } else { 589 CallSites.erase(CallSites.begin() + CSi); 590 } 591 --CSi; 592 593 Changed = true; 594 LocalChange = true; 595 } 596 } while (LocalChange); 597 598 return Changed; 599 } 600 601 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 602 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 603 ACT = &getAnalysis<AssumptionCacheTracker>(); 604 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 605 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 606 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 607 }; 608 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 609 return ACT->getAssumptionCache(F); 610 }; 611 return inlineCallsImpl( 612 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 613 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 614 ImportedFunctionsStats); 615 } 616 617 /// Remove now-dead linkonce functions at the end of 618 /// processing to avoid breaking the SCC traversal. 619 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 620 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 621 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 622 InlinerFunctionImportStatsOpts::Verbose); 623 return removeDeadFunctions(CG); 624 } 625 626 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 627 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 628 bool AlwaysInlineOnly) { 629 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 630 SmallVector<Function *, 16> DeadFunctionsInComdats; 631 632 auto RemoveCGN = [&](CallGraphNode *CGN) { 633 // Remove any call graph edges from the function to its callees. 634 CGN->removeAllCalledFunctions(); 635 636 // Remove any edges from the external node to the function's call graph 637 // node. These edges might have been made irrelegant due to 638 // optimization of the program. 639 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 640 641 // Removing the node for callee from the call graph and delete it. 642 FunctionsToRemove.push_back(CGN); 643 }; 644 645 // Scan for all of the functions, looking for ones that should now be removed 646 // from the program. Insert the dead ones in the FunctionsToRemove set. 647 for (const auto &I : CG) { 648 CallGraphNode *CGN = I.second.get(); 649 Function *F = CGN->getFunction(); 650 if (!F || F->isDeclaration()) 651 continue; 652 653 // Handle the case when this function is called and we only want to care 654 // about always-inline functions. This is a bit of a hack to share code 655 // between here and the InlineAlways pass. 656 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 657 continue; 658 659 // If the only remaining users of the function are dead constants, remove 660 // them. 661 F->removeDeadConstantUsers(); 662 663 if (!F->isDefTriviallyDead()) 664 continue; 665 666 // It is unsafe to drop a function with discardable linkage from a COMDAT 667 // without also dropping the other members of the COMDAT. 668 // The inliner doesn't visit non-function entities which are in COMDAT 669 // groups so it is unsafe to do so *unless* the linkage is local. 670 if (!F->hasLocalLinkage()) { 671 if (F->hasComdat()) { 672 DeadFunctionsInComdats.push_back(F); 673 continue; 674 } 675 } 676 677 RemoveCGN(CGN); 678 } 679 if (!DeadFunctionsInComdats.empty()) { 680 // Filter out the functions whose comdats remain alive. 681 filterDeadComdatFunctions(DeadFunctionsInComdats); 682 // Remove the rest. 683 for (Function *F : DeadFunctionsInComdats) 684 RemoveCGN(CG[F]); 685 } 686 687 if (FunctionsToRemove.empty()) 688 return false; 689 690 // Now that we know which functions to delete, do so. We didn't want to do 691 // this inline, because that would invalidate our CallGraph::iterator 692 // objects. :( 693 // 694 // Note that it doesn't matter that we are iterating over a non-stable order 695 // here to do this, it doesn't matter which order the functions are deleted 696 // in. 697 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 698 FunctionsToRemove.erase( 699 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 700 FunctionsToRemove.end()); 701 for (CallGraphNode *CGN : FunctionsToRemove) { 702 delete CG.removeFunctionFromModule(CGN); 703 ++NumDeleted; 704 } 705 return true; 706 } 707 708 InlineAdvisor & 709 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 710 FunctionAnalysisManager &FAM, Module &M) { 711 if (OwnedAdvisor) 712 return *OwnedAdvisor; 713 714 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 715 if (!IAA) { 716 // It should still be possible to run the inliner as a stand-alone SCC pass, 717 // for test scenarios. In that case, we default to the 718 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 719 // runs. It also uses just the default InlineParams. 720 // In this case, we need to use the provided FAM, which is valid for the 721 // duration of the inliner pass, and thus the lifetime of the owned advisor. 722 // The one we would get from the MAM can be invalidated as a result of the 723 // inliner's activity. 724 OwnedAdvisor = 725 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams()); 726 727 if (!CGSCCInlineReplayFile.empty()) 728 OwnedAdvisor = getReplayInlineAdvisor( 729 M, FAM, M.getContext(), std::move(OwnedAdvisor), 730 ReplayInlinerSettings{CGSCCInlineReplayFile, 731 CGSCCInlineReplayScope, 732 CGSCCInlineReplayFallback, 733 {CGSCCInlineReplayFormat}}, 734 /*EmitRemarks=*/true); 735 736 return *OwnedAdvisor; 737 } 738 assert(IAA->getAdvisor() && 739 "Expected a present InlineAdvisorAnalysis also have an " 740 "InlineAdvisor initialized"); 741 return *IAA->getAdvisor(); 742 } 743 744 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 745 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 746 CGSCCUpdateResult &UR) { 747 const auto &MAMProxy = 748 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 749 bool Changed = false; 750 751 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 752 Module &M = *InitialC.begin()->getFunction().getParent(); 753 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 754 755 FunctionAnalysisManager &FAM = 756 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 757 .getManager(); 758 759 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 760 Advisor.onPassEntry(); 761 762 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); }); 763 764 // We use a single common worklist for calls across the entire SCC. We 765 // process these in-order and append new calls introduced during inlining to 766 // the end. The PriorityInlineOrder is optional here, in which the smaller 767 // callee would have a higher priority to inline. 768 // 769 // Note that this particular order of processing is actually critical to 770 // avoid very bad behaviors. Consider *highly connected* call graphs where 771 // each function contains a small amount of code and a couple of calls to 772 // other functions. Because the LLVM inliner is fundamentally a bottom-up 773 // inliner, it can handle gracefully the fact that these all appear to be 774 // reasonable inlining candidates as it will flatten things until they become 775 // too big to inline, and then move on and flatten another batch. 776 // 777 // However, when processing call edges *within* an SCC we cannot rely on this 778 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 779 // functions we can end up incrementally inlining N calls into each of 780 // N functions because each incremental inlining decision looks good and we 781 // don't have a topological ordering to prevent explosions. 782 // 783 // To compensate for this, we don't process transitive edges made immediate 784 // by inlining until we've done one pass of inlining across the entire SCC. 785 // Large, highly connected SCCs still lead to some amount of code bloat in 786 // this model, but it is uniformly spread across all the functions in the SCC 787 // and eventually they all become too large to inline, rather than 788 // incrementally maknig a single function grow in a super linear fashion. 789 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls; 790 if (InlineEnablePriorityOrder) 791 Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>(); 792 else 793 Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>(); 794 assert(Calls != nullptr && "Expected an initialized InlineOrder"); 795 796 // Populate the initial list of calls in this SCC. 797 for (auto &N : InitialC) { 798 auto &ORE = 799 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 800 // We want to generally process call sites top-down in order for 801 // simplifications stemming from replacing the call with the returned value 802 // after inlining to be visible to subsequent inlining decisions. 803 // FIXME: Using instructions sequence is a really bad way to do this. 804 // Instead we should do an actual RPO walk of the function body. 805 for (Instruction &I : instructions(N.getFunction())) 806 if (auto *CB = dyn_cast<CallBase>(&I)) 807 if (Function *Callee = CB->getCalledFunction()) { 808 if (!Callee->isDeclaration()) 809 Calls->push({CB, -1}); 810 else if (!isa<IntrinsicInst>(I)) { 811 using namespace ore; 812 setInlineRemark(*CB, "unavailable definition"); 813 ORE.emit([&]() { 814 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 815 << NV("Callee", Callee) << " will not be inlined into " 816 << NV("Caller", CB->getCaller()) 817 << " because its definition is unavailable" 818 << setIsVerbose(); 819 }); 820 } 821 } 822 } 823 if (Calls->empty()) 824 return PreservedAnalyses::all(); 825 826 // Capture updatable variable for the current SCC. 827 auto *C = &InitialC; 828 829 // When inlining a callee produces new call sites, we want to keep track of 830 // the fact that they were inlined from the callee. This allows us to avoid 831 // infinite inlining in some obscure cases. To represent this, we use an 832 // index into the InlineHistory vector. 833 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 834 835 // Track a set vector of inlined callees so that we can augment the caller 836 // with all of their edges in the call graph before pruning out the ones that 837 // got simplified away. 838 SmallSetVector<Function *, 4> InlinedCallees; 839 840 // Track the dead functions to delete once finished with inlining calls. We 841 // defer deleting these to make it easier to handle the call graph updates. 842 SmallVector<Function *, 4> DeadFunctions; 843 844 // Track potentially dead non-local functions with comdats to see if they can 845 // be deleted as a batch after inlining. 846 SmallVector<Function *, 4> DeadFunctionsInComdats; 847 848 // Loop forward over all of the calls. 849 while (!Calls->empty()) { 850 // We expect the calls to typically be batched with sequences of calls that 851 // have the same caller, so we first set up some shared infrastructure for 852 // this caller. We also do any pruning we can at this layer on the caller 853 // alone. 854 Function &F = *Calls->front().first->getCaller(); 855 LazyCallGraph::Node &N = *CG.lookup(F); 856 if (CG.lookupSCC(N) != C) { 857 Calls->pop(); 858 continue; 859 } 860 861 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" 862 << " Function size: " << F.getInstructionCount() 863 << "\n"); 864 865 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 866 return FAM.getResult<AssumptionAnalysis>(F); 867 }; 868 869 // Now process as many calls as we have within this caller in the sequence. 870 // We bail out as soon as the caller has to change so we can update the 871 // call graph and prepare the context of that new caller. 872 bool DidInline = false; 873 while (!Calls->empty() && Calls->front().first->getCaller() == &F) { 874 auto P = Calls->pop(); 875 CallBase *CB = P.first; 876 const int InlineHistoryID = P.second; 877 Function &Callee = *CB->getCalledFunction(); 878 879 if (InlineHistoryID != -1 && 880 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 881 LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " 882 << F.getName() << " -> " << Callee.getName() << "\n"); 883 setInlineRemark(*CB, "recursive"); 884 continue; 885 } 886 887 // Check if this inlining may repeat breaking an SCC apart that has 888 // already been split once before. In that case, inlining here may 889 // trigger infinite inlining, much like is prevented within the inliner 890 // itself by the InlineHistory above, but spread across CGSCC iterations 891 // and thus hidden from the full inline history. 892 LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee)); 893 if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) { 894 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 895 "previously split out of this SCC by inlining: " 896 << F.getName() << " -> " << Callee.getName() << "\n"); 897 setInlineRemark(*CB, "recursive SCC split"); 898 continue; 899 } 900 901 std::unique_ptr<InlineAdvice> Advice = 902 Advisor.getAdvice(*CB, OnlyMandatory); 903 904 // Check whether we want to inline this callsite. 905 if (!Advice) 906 continue; 907 908 if (!Advice->isInliningRecommended()) { 909 Advice->recordUnattemptedInlining(); 910 continue; 911 } 912 913 int CBCostMult = 914 getStringFnAttrAsInt( 915 *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName) 916 .getValueOr(1); 917 918 // Setup the data structure used to plumb customization into the 919 // `InlineFunction` routine. 920 InlineFunctionInfo IFI( 921 /*cg=*/nullptr, GetAssumptionCache, PSI, 922 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 923 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 924 925 InlineResult IR = 926 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 927 if (!IR.isSuccess()) { 928 Advice->recordUnsuccessfulInlining(IR); 929 continue; 930 } 931 932 DidInline = true; 933 InlinedCallees.insert(&Callee); 934 ++NumInlined; 935 936 LLVM_DEBUG(dbgs() << " Size after inlining: " 937 << F.getInstructionCount() << "\n"); 938 939 // Add any new callsites to defined functions to the worklist. 940 if (!IFI.InlinedCallSites.empty()) { 941 int NewHistoryID = InlineHistory.size(); 942 InlineHistory.push_back({&Callee, InlineHistoryID}); 943 944 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 945 Function *NewCallee = ICB->getCalledFunction(); 946 assert(!(NewCallee && NewCallee->isIntrinsic()) && 947 "Intrinsic calls should not be tracked."); 948 if (!NewCallee) { 949 // Try to promote an indirect (virtual) call without waiting for 950 // the post-inline cleanup and the next DevirtSCCRepeatedPass 951 // iteration because the next iteration may not happen and we may 952 // miss inlining it. 953 if (tryPromoteCall(*ICB)) 954 NewCallee = ICB->getCalledFunction(); 955 } 956 if (NewCallee) { 957 if (!NewCallee->isDeclaration()) { 958 Calls->push({ICB, NewHistoryID}); 959 // Continually inlining through an SCC can result in huge compile 960 // times and bloated code since we arbitrarily stop at some point 961 // when the inliner decides it's not profitable to inline anymore. 962 // We attempt to mitigate this by making these calls exponentially 963 // more expensive. 964 // This doesn't apply to calls in the same SCC since if we do 965 // inline through the SCC the function will end up being 966 // self-recursive which the inliner bails out on, and inlining 967 // within an SCC is necessary for performance. 968 if (CalleeSCC != C && 969 CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) { 970 Attribute NewCBCostMult = Attribute::get( 971 M.getContext(), 972 InlineConstants::FunctionInlineCostMultiplierAttributeName, 973 itostr(CBCostMult * IntraSCCCostMultiplier)); 974 ICB->addFnAttr(NewCBCostMult); 975 } 976 } 977 } 978 } 979 } 980 981 // Merge the attributes based on the inlining. 982 AttributeFuncs::mergeAttributesForInlining(F, Callee); 983 984 // For local functions or discardable functions without comdats, check 985 // whether this makes the callee trivially dead. In that case, we can drop 986 // the body of the function eagerly which may reduce the number of callers 987 // of other functions to one, changing inline cost thresholds. Non-local 988 // discardable functions with comdats are checked later on. 989 bool CalleeWasDeleted = false; 990 if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() && 991 !CG.isLibFunction(Callee)) { 992 if (Callee.hasLocalLinkage() || !Callee.hasComdat()) { 993 Calls->erase_if([&](const std::pair<CallBase *, int> &Call) { 994 return Call.first->getCaller() == &Callee; 995 }); 996 // Clear the body and queue the function itself for deletion when we 997 // finish inlining and call graph updates. 998 // Note that after this point, it is an error to do anything other 999 // than use the callee's address or delete it. 1000 Callee.dropAllReferences(); 1001 assert(!is_contained(DeadFunctions, &Callee) && 1002 "Cannot put cause a function to become dead twice!"); 1003 DeadFunctions.push_back(&Callee); 1004 CalleeWasDeleted = true; 1005 } else { 1006 DeadFunctionsInComdats.push_back(&Callee); 1007 } 1008 } 1009 if (CalleeWasDeleted) 1010 Advice->recordInliningWithCalleeDeleted(); 1011 else 1012 Advice->recordInlining(); 1013 } 1014 1015 if (!DidInline) 1016 continue; 1017 Changed = true; 1018 1019 // At this point, since we have made changes we have at least removed 1020 // a call instruction. However, in the process we do some incremental 1021 // simplification of the surrounding code. This simplification can 1022 // essentially do all of the same things as a function pass and we can 1023 // re-use the exact same logic for updating the call graph to reflect the 1024 // change. 1025 1026 // Inside the update, we also update the FunctionAnalysisManager in the 1027 // proxy for this particular SCC. We do this as the SCC may have changed and 1028 // as we're going to mutate this particular function we want to make sure 1029 // the proxy is in place to forward any invalidation events. 1030 LazyCallGraph::SCC *OldC = C; 1031 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 1032 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1033 1034 // If this causes an SCC to split apart into multiple smaller SCCs, there 1035 // is a subtle risk we need to prepare for. Other transformations may 1036 // expose an "infinite inlining" opportunity later, and because of the SCC 1037 // mutation, we will revisit this function and potentially re-inline. If we 1038 // do, and that re-inlining also has the potentially to mutate the SCC 1039 // structure, the infinite inlining problem can manifest through infinite 1040 // SCC splits and merges. To avoid this, we capture the originating caller 1041 // node and the SCC containing the call edge. This is a slight over 1042 // approximation of the possible inlining decisions that must be avoided, 1043 // but is relatively efficient to store. We use C != OldC to know when 1044 // a new SCC is generated and the original SCC may be generated via merge 1045 // in later iterations. 1046 // 1047 // It is also possible that even if no new SCC is generated 1048 // (i.e., C == OldC), the original SCC could be split and then merged 1049 // into the same one as itself. and the original SCC will be added into 1050 // UR.CWorklist again, we want to catch such cases too. 1051 // 1052 // FIXME: This seems like a very heavyweight way of retaining the inline 1053 // history, we should look for a more efficient way of tracking it. 1054 if ((C != OldC || UR.CWorklist.count(OldC)) && 1055 llvm::any_of(InlinedCallees, [&](Function *Callee) { 1056 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1057 })) { 1058 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1059 "retaining this to avoid infinite inlining.\n"); 1060 UR.InlinedInternalEdges.insert({&N, OldC}); 1061 } 1062 InlinedCallees.clear(); 1063 1064 // Invalidate analyses for this function now so that we don't have to 1065 // invalidate analyses for all functions in this SCC later. 1066 FAM.invalidate(F, PreservedAnalyses::none()); 1067 } 1068 1069 // We must ensure that we only delete functions with comdats if every function 1070 // in the comdat is going to be deleted. 1071 if (!DeadFunctionsInComdats.empty()) { 1072 filterDeadComdatFunctions(DeadFunctionsInComdats); 1073 for (auto *Callee : DeadFunctionsInComdats) 1074 Callee->dropAllReferences(); 1075 DeadFunctions.append(DeadFunctionsInComdats); 1076 } 1077 1078 // Now that we've finished inlining all of the calls across this SCC, delete 1079 // all of the trivially dead functions, updating the call graph and the CGSCC 1080 // pass manager in the process. 1081 // 1082 // Note that this walks a pointer set which has non-deterministic order but 1083 // that is OK as all we do is delete things and add pointers to unordered 1084 // sets. 1085 for (Function *DeadF : DeadFunctions) { 1086 // Get the necessary information out of the call graph and nuke the 1087 // function there. Also, clear out any cached analyses. 1088 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1089 FAM.clear(*DeadF, DeadF->getName()); 1090 AM.clear(DeadC, DeadC.getName()); 1091 auto &DeadRC = DeadC.getOuterRefSCC(); 1092 CG.removeDeadFunction(*DeadF); 1093 1094 // Mark the relevant parts of the call graph as invalid so we don't visit 1095 // them. 1096 UR.InvalidatedSCCs.insert(&DeadC); 1097 UR.InvalidatedRefSCCs.insert(&DeadRC); 1098 1099 // If the updated SCC was the one containing the deleted function, clear it. 1100 if (&DeadC == UR.UpdatedC) 1101 UR.UpdatedC = nullptr; 1102 1103 // And delete the actual function from the module. 1104 M.getFunctionList().erase(DeadF); 1105 1106 ++NumDeleted; 1107 } 1108 1109 if (!Changed) 1110 return PreservedAnalyses::all(); 1111 1112 PreservedAnalyses PA; 1113 // Even if we change the IR, we update the core CGSCC data structures and so 1114 // can preserve the proxy to the function analysis manager. 1115 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1116 // We have already invalidated all analyses on modified functions. 1117 PA.preserveSet<AllAnalysesOn<Function>>(); 1118 return PA; 1119 } 1120 1121 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 1122 bool MandatoryFirst, 1123 InliningAdvisorMode Mode, 1124 unsigned MaxDevirtIterations) 1125 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations) { 1126 // Run the inliner first. The theory is that we are walking bottom-up and so 1127 // the callees have already been fully optimized, and we want to inline them 1128 // into the callers so that our optimizations can reflect that. 1129 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 1130 // because it makes profile annotation in the backend inaccurate. 1131 if (MandatoryFirst) 1132 PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); 1133 PM.addPass(InlinerPass()); 1134 } 1135 1136 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 1137 ModuleAnalysisManager &MAM) { 1138 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1139 if (!IAA.tryCreate(Params, Mode, 1140 {CGSCCInlineReplayFile, 1141 CGSCCInlineReplayScope, 1142 CGSCCInlineReplayFallback, 1143 {CGSCCInlineReplayFormat}})) { 1144 M.getContext().emitError( 1145 "Could not setup Inlining Advisor for the requested " 1146 "mode and/or options"); 1147 return PreservedAnalyses::all(); 1148 } 1149 1150 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1151 // to detect when we devirtualize indirect calls and iterate the SCC passes 1152 // in that case to try and catch knock-on inlining or function attrs 1153 // opportunities. Then we add it to the module pipeline by walking the SCCs 1154 // in postorder (or bottom-up). 1155 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1156 // wrapper. 1157 if (MaxDevirtIterations == 0) 1158 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1159 else 1160 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1161 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1162 1163 MPM.addPass(std::move(AfterCGMPM)); 1164 MPM.run(M, MAM); 1165 1166 // Discard the InlineAdvisor, a subsequent inlining session should construct 1167 // its own. 1168 auto PA = PreservedAnalyses::all(); 1169 if (!KeepAdvisorForPrinting) 1170 PA.abandon<InlineAdvisorAnalysis>(); 1171 return PA; 1172 } 1173 1174 void InlinerPass::printPipeline( 1175 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1176 static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline( 1177 OS, MapClassName2PassName); 1178 if (OnlyMandatory) 1179 OS << "<only-mandatory>"; 1180 } 1181 1182 void ModuleInlinerWrapperPass::printPipeline( 1183 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1184 // Print some info about passes added to the wrapper. This is however 1185 // incomplete as InlineAdvisorAnalysis part isn't included (which also depends 1186 // on Params and Mode). 1187 if (!MPM.isEmpty()) { 1188 MPM.printPipeline(OS, MapClassName2PassName); 1189 OS << ","; 1190 } 1191 OS << "cgscc("; 1192 if (MaxDevirtIterations != 0) 1193 OS << "devirt<" << MaxDevirtIterations << ">("; 1194 PM.printPipeline(OS, MapClassName2PassName); 1195 if (MaxDevirtIterations != 0) 1196 OS << ")"; 1197 OS << ")"; 1198 } 1199