1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include <optional> 28 #include <vector> 29 30 #define DEBUG_TYPE "iroutliner" 31 32 using namespace llvm; 33 using namespace IRSimilarity; 34 35 // A command flag to be used for debugging to exclude branches from similarity 36 // matching and outlining. 37 namespace llvm { 38 extern cl::opt<bool> DisableBranches; 39 40 // A command flag to be used for debugging to indirect calls from similarity 41 // matching and outlining. 42 extern cl::opt<bool> DisableIndirectCalls; 43 44 // A command flag to be used for debugging to exclude intrinsics from similarity 45 // matching and outlining. 46 extern cl::opt<bool> DisableIntrinsics; 47 48 } // namespace llvm 49 50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 51 // functions. This is false by default because the linker can dedupe linkonceodr 52 // functions. Since the outliner is confined to a single module (modulo LTO), 53 // this is off by default. It should, however, be the default behavior in 54 // LTO. 55 static cl::opt<bool> EnableLinkOnceODRIROutlining( 56 "enable-linkonceodr-ir-outlining", cl::Hidden, 57 cl::desc("Enable the IR outliner on linkonceodr functions"), 58 cl::init(false)); 59 60 // This is a debug option to test small pieces of code to ensure that outlining 61 // works correctly. 62 static cl::opt<bool> NoCostModel( 63 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 64 cl::desc("Debug option to outline greedily, without restriction that " 65 "calculated benefit outweighs cost")); 66 67 /// The OutlinableGroup holds all the overarching information for outlining 68 /// a set of regions that are structurally similar to one another, such as the 69 /// types of the overall function, the output blocks, the sets of stores needed 70 /// and a list of the different regions. This information is used in the 71 /// deduplication of extracted regions with the same structure. 72 struct OutlinableGroup { 73 /// The sections that could be outlined 74 std::vector<OutlinableRegion *> Regions; 75 76 /// The argument types for the function created as the overall function to 77 /// replace the extracted function for each region. 78 std::vector<Type *> ArgumentTypes; 79 /// The FunctionType for the overall function. 80 FunctionType *OutlinedFunctionType = nullptr; 81 /// The Function for the collective overall function. 82 Function *OutlinedFunction = nullptr; 83 84 /// Flag for whether we should not consider this group of OutlinableRegions 85 /// for extraction. 86 bool IgnoreGroup = false; 87 88 /// The return blocks for the overall function. 89 DenseMap<Value *, BasicBlock *> EndBBs; 90 91 /// The PHIBlocks with their corresponding return block based on the return 92 /// value as the key. 93 DenseMap<Value *, BasicBlock *> PHIBlocks; 94 95 /// A set containing the different GVN store sets needed. Each array contains 96 /// a sorted list of the different values that need to be stored into output 97 /// registers. 98 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 99 100 /// Flag for whether the \ref ArgumentTypes have been defined after the 101 /// extraction of the first region. 102 bool InputTypesSet = false; 103 104 /// The number of input values in \ref ArgumentTypes. Anything after this 105 /// index in ArgumentTypes is an output argument. 106 unsigned NumAggregateInputs = 0; 107 108 /// The mapping of the canonical numbering of the values in outlined sections 109 /// to specific arguments. 110 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 111 112 /// The number of branches in the region target a basic block that is outside 113 /// of the region. 114 unsigned BranchesToOutside = 0; 115 116 /// Tracker counting backwards from the highest unsigned value possible to 117 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 118 /// -2 and -1 are assigned by the DenseMap. 119 unsigned PHINodeGVNTracker = -3; 120 121 DenseMap<unsigned, 122 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 123 PHINodeGVNToGVNs; 124 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 125 126 /// The number of instructions that will be outlined by extracting \ref 127 /// Regions. 128 InstructionCost Benefit = 0; 129 /// The number of added instructions needed for the outlining of the \ref 130 /// Regions. 131 InstructionCost Cost = 0; 132 133 /// The argument that needs to be marked with the swifterr attribute. If not 134 /// needed, there is no value. 135 std::optional<unsigned> SwiftErrorArgument; 136 137 /// For the \ref Regions, we look at every Value. If it is a constant, 138 /// we check whether it is the same in Region. 139 /// 140 /// \param [in,out] NotSame contains the global value numbers where the 141 /// constant is not always the same, and must be passed in as an argument. 142 void findSameConstants(DenseSet<unsigned> &NotSame); 143 144 /// For the regions, look at each set of GVN stores needed and account for 145 /// each combination. Add an argument to the argument types if there is 146 /// more than one combination. 147 /// 148 /// \param [in] M - The module we are outlining from. 149 void collectGVNStoreSets(Module &M); 150 }; 151 152 /// Move the contents of \p SourceBB to before the last instruction of \p 153 /// TargetBB. 154 /// \param SourceBB - the BasicBlock to pull Instructions from. 155 /// \param TargetBB - the BasicBlock to put Instruction into. 156 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 157 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 158 I.moveBefore(TargetBB, TargetBB.end()); 159 } 160 161 /// A function to sort the keys of \p Map, which must be a mapping of constant 162 /// values to basic blocks and return it in \p SortedKeys 163 /// 164 /// \param SortedKeys - The vector the keys will be return in and sorted. 165 /// \param Map - The DenseMap containing keys to sort. 166 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 167 DenseMap<Value *, BasicBlock *> &Map) { 168 for (auto &VtoBB : Map) 169 SortedKeys.push_back(VtoBB.first); 170 171 // Here we expect to have either 1 value that is void (nullptr) or multiple 172 // values that are all constant integers. 173 if (SortedKeys.size() == 1) { 174 assert(!SortedKeys[0] && "Expected a single void value."); 175 return; 176 } 177 178 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 179 assert(LHS && RHS && "Expected non void values."); 180 const ConstantInt *LHSC = cast<ConstantInt>(LHS); 181 const ConstantInt *RHSC = cast<ConstantInt>(RHS); 182 183 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 184 }); 185 } 186 187 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 188 Value *V) { 189 std::optional<unsigned> GVN = Candidate->getGVN(V); 190 assert(GVN && "No GVN for incoming value"); 191 std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 192 std::optional<unsigned> FirstGVN = 193 Other.Candidate->fromCanonicalNum(*CanonNum); 194 std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 195 return FoundValueOpt.value_or(nullptr); 196 } 197 198 BasicBlock * 199 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other, 200 BasicBlock *BB) { 201 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 202 assert(FirstNonPHI && "block is empty?"); 203 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI); 204 if (!CorrespondingVal) 205 return nullptr; 206 BasicBlock *CorrespondingBlock = 207 cast<Instruction>(CorrespondingVal)->getParent(); 208 return CorrespondingBlock; 209 } 210 211 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 212 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 213 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 214 /// when PHINodes are included in outlined regions. 215 /// 216 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 217 /// checked. 218 /// \param Find - The successor block to be replaced. 219 /// \param Replace - The new succesor block to branch to. 220 /// \param Included - The set of blocks about to be outlined. 221 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 222 BasicBlock *Replace, 223 DenseSet<BasicBlock *> &Included) { 224 for (PHINode &PN : PHIBlock->phis()) { 225 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 226 ++Idx) { 227 // Check if the incoming block is included in the set of blocks being 228 // outlined. 229 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 230 if (!Included.contains(Incoming)) 231 continue; 232 233 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 234 assert(BI && "Not a branch instruction?"); 235 // Look over the branching instructions into this block to see if we 236 // used to branch to Find in this outlined block. 237 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 238 Succ++) { 239 // If we have found the block to replace, we do so here. 240 if (BI->getSuccessor(Succ) != Find) 241 continue; 242 BI->setSuccessor(Succ, Replace); 243 } 244 } 245 } 246 } 247 248 249 void OutlinableRegion::splitCandidate() { 250 assert(!CandidateSplit && "Candidate already split!"); 251 252 Instruction *BackInst = Candidate->backInstruction(); 253 254 Instruction *EndInst = nullptr; 255 // Check whether the last instruction is a terminator, if it is, we do 256 // not split on the following instruction. We leave the block as it is. We 257 // also check that this is not the last instruction in the Module, otherwise 258 // the check for whether the current following instruction matches the 259 // previously recorded instruction will be incorrect. 260 if (!BackInst->isTerminator() || 261 BackInst->getParent() != &BackInst->getFunction()->back()) { 262 EndInst = Candidate->end()->Inst; 263 assert(EndInst && "Expected an end instruction?"); 264 } 265 266 // We check if the current instruction following the last instruction in the 267 // region is the same as the recorded instruction following the last 268 // instruction. If they do not match, there could be problems in rewriting 269 // the program after outlining, so we ignore it. 270 if (!BackInst->isTerminator() && 271 EndInst != BackInst->getNextNonDebugInstruction()) 272 return; 273 274 Instruction *StartInst = (*Candidate->begin()).Inst; 275 assert(StartInst && "Expected a start instruction?"); 276 StartBB = StartInst->getParent(); 277 PrevBB = StartBB; 278 279 DenseSet<BasicBlock *> BBSet; 280 Candidate->getBasicBlocks(BBSet); 281 282 // We iterate over the instructions in the region, if we find a PHINode, we 283 // check if there are predecessors outside of the region, if there are, 284 // we ignore this region since we are unable to handle the severing of the 285 // phi node right now. 286 287 // TODO: Handle extraneous inputs for PHINodes through variable number of 288 // inputs, similar to how outputs are handled. 289 BasicBlock::iterator It = StartInst->getIterator(); 290 EndBB = BackInst->getParent(); 291 BasicBlock *IBlock; 292 BasicBlock *PHIPredBlock = nullptr; 293 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst; 294 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 295 unsigned NumPredsOutsideRegion = 0; 296 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 297 if (!BBSet.contains(PN->getIncomingBlock(i))) { 298 PHIPredBlock = PN->getIncomingBlock(i); 299 ++NumPredsOutsideRegion; 300 continue; 301 } 302 303 // We must consider the case there the incoming block to the PHINode is 304 // the same as the final block of the OutlinableRegion. If this is the 305 // case, the branch from this block must also be outlined to be valid. 306 IBlock = PN->getIncomingBlock(i); 307 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) { 308 PHIPredBlock = PN->getIncomingBlock(i); 309 ++NumPredsOutsideRegion; 310 } 311 } 312 313 if (NumPredsOutsideRegion > 1) 314 return; 315 316 It++; 317 } 318 319 // If the region starts with a PHINode, but is not the initial instruction of 320 // the BasicBlock, we ignore this region for now. 321 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 322 return; 323 324 // If the region ends with a PHINode, but does not contain all of the phi node 325 // instructions of the region, we ignore it for now. 326 if (isa<PHINode>(BackInst) && 327 BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 328 return; 329 330 // The basic block gets split like so: 331 // block: block: 332 // inst1 inst1 333 // inst2 inst2 334 // region1 br block_to_outline 335 // region2 block_to_outline: 336 // region3 -> region1 337 // region4 region2 338 // inst3 region3 339 // inst4 region4 340 // br block_after_outline 341 // block_after_outline: 342 // inst3 343 // inst4 344 345 std::string OriginalName = PrevBB->getName().str(); 346 347 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 348 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 349 // If there was a PHINode with an incoming block outside the region, 350 // make sure is correctly updated in the newly split block. 351 if (PHIPredBlock) 352 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB); 353 354 CandidateSplit = true; 355 if (!BackInst->isTerminator()) { 356 EndBB = EndInst->getParent(); 357 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 358 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 359 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 360 } else { 361 EndBB = BackInst->getParent(); 362 EndsInBranch = true; 363 FollowBB = nullptr; 364 } 365 366 // Refind the basic block set. 367 BBSet.clear(); 368 Candidate->getBasicBlocks(BBSet); 369 // For the phi nodes in the new starting basic block of the region, we 370 // reassign the targets of the basic blocks branching instructions. 371 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 372 if (FollowBB) 373 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 374 } 375 376 void OutlinableRegion::reattachCandidate() { 377 assert(CandidateSplit && "Candidate is not split!"); 378 379 // The basic block gets reattached like so: 380 // block: block: 381 // inst1 inst1 382 // inst2 inst2 383 // br block_to_outline region1 384 // block_to_outline: -> region2 385 // region1 region3 386 // region2 region4 387 // region3 inst3 388 // region4 inst4 389 // br block_after_outline 390 // block_after_outline: 391 // inst3 392 // inst4 393 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 394 395 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 396 // Make sure PHINode references to the block we are merging into are 397 // updated to be incoming blocks from the predecessor to the current block. 398 399 // NOTE: If this is updated such that the outlined block can have more than 400 // one incoming block to a PHINode, this logic will have to updated 401 // to handle multiple precessors instead. 402 403 // We only need to update this if the outlined section contains a PHINode, if 404 // it does not, then the incoming block was never changed in the first place. 405 // On the other hand, if PrevBB has no predecessors, it means that all 406 // incoming blocks to the first block are contained in the region, and there 407 // will be nothing to update. 408 Instruction *StartInst = (*Candidate->begin()).Inst; 409 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) { 410 assert(!PrevBB->hasNPredecessorsOrMore(2) && 411 "PrevBB has more than one predecessor. Should be 0 or 1."); 412 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor(); 413 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB); 414 } 415 PrevBB->getTerminator()->eraseFromParent(); 416 417 // If we reattaching after outlining, we iterate over the phi nodes to 418 // the initial block, and reassign the branch instructions of the incoming 419 // blocks to the block we are remerging into. 420 if (!ExtractedFunction) { 421 DenseSet<BasicBlock *> BBSet; 422 Candidate->getBasicBlocks(BBSet); 423 424 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 425 if (!EndsInBranch) 426 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 427 } 428 429 moveBBContents(*StartBB, *PrevBB); 430 431 BasicBlock *PlacementBB = PrevBB; 432 if (StartBB != EndBB) 433 PlacementBB = EndBB; 434 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 435 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 436 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 437 PlacementBB->getTerminator()->eraseFromParent(); 438 moveBBContents(*FollowBB, *PlacementBB); 439 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 440 FollowBB->eraseFromParent(); 441 } 442 443 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 444 StartBB->eraseFromParent(); 445 446 // Make sure to save changes back to the StartBB. 447 StartBB = PrevBB; 448 EndBB = nullptr; 449 PrevBB = nullptr; 450 FollowBB = nullptr; 451 452 CandidateSplit = false; 453 } 454 455 /// Find whether \p V matches the Constants previously found for the \p GVN. 456 /// 457 /// \param V - The value to check for consistency. 458 /// \param GVN - The global value number assigned to \p V. 459 /// \param GVNToConstant - The mapping of global value number to Constants. 460 /// \returns true if the Value matches the Constant mapped to by V and false if 461 /// it \p V is a Constant but does not match. 462 /// \returns std::nullopt if \p V is not a Constant. 463 static std::optional<bool> 464 constantMatches(Value *V, unsigned GVN, 465 DenseMap<unsigned, Constant *> &GVNToConstant) { 466 // See if we have a constants 467 Constant *CST = dyn_cast<Constant>(V); 468 if (!CST) 469 return std::nullopt; 470 471 // Holds a mapping from a global value number to a Constant. 472 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 473 bool Inserted; 474 475 476 // If we have a constant, try to make a new entry in the GVNToConstant. 477 std::tie(GVNToConstantIt, Inserted) = 478 GVNToConstant.insert(std::make_pair(GVN, CST)); 479 // If it was found and is not equal, it is not the same. We do not 480 // handle this case yet, and exit early. 481 if (Inserted || (GVNToConstantIt->second == CST)) 482 return true; 483 484 return false; 485 } 486 487 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 488 InstructionCost Benefit = 0; 489 490 // Estimate the benefit of outlining a specific sections of the program. We 491 // delegate mostly this task to the TargetTransformInfo so that if the target 492 // has specific changes, we can have a more accurate estimate. 493 494 // However, getInstructionCost delegates the code size calculation for 495 // arithmetic instructions to getArithmeticInstrCost in 496 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 497 // code size for a division and remainder instruction to be equal to 4, and 498 // everything else to 1. This is not an accurate representation of the 499 // division instruction for targets that have a native division instruction. 500 // To be overly conservative, we only add 1 to the number of instructions for 501 // each division instruction. 502 for (IRInstructionData &ID : *Candidate) { 503 Instruction *I = ID.Inst; 504 switch (I->getOpcode()) { 505 case Instruction::FDiv: 506 case Instruction::FRem: 507 case Instruction::SDiv: 508 case Instruction::SRem: 509 case Instruction::UDiv: 510 case Instruction::URem: 511 Benefit += 1; 512 break; 513 default: 514 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 515 break; 516 } 517 } 518 519 return Benefit; 520 } 521 522 /// Check the \p OutputMappings structure for value \p Input, if it exists 523 /// it has been used as an output for outlining, and has been renamed, and we 524 /// return the new value, otherwise, we return the same value. 525 /// 526 /// \param OutputMappings [in] - The mapping of values to their renamed value 527 /// after being used as an output for an outlined region. 528 /// \param Input [in] - The value to find the remapped value of, if it exists. 529 /// \return The remapped value if it has been renamed, and the same value if has 530 /// not. 531 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 532 Value *Input) { 533 DenseMap<Value *, Value *>::const_iterator OutputMapping = 534 OutputMappings.find(Input); 535 if (OutputMapping != OutputMappings.end()) 536 return OutputMapping->second; 537 return Input; 538 } 539 540 /// Find whether \p Region matches the global value numbering to Constant 541 /// mapping found so far. 542 /// 543 /// \param Region - The OutlinableRegion we are checking for constants 544 /// \param GVNToConstant - The mapping of global value number to Constants. 545 /// \param NotSame - The set of global value numbers that do not have the same 546 /// constant in each region. 547 /// \returns true if all Constants are the same in every use of a Constant in \p 548 /// Region and false if not 549 static bool 550 collectRegionsConstants(OutlinableRegion &Region, 551 DenseMap<unsigned, Constant *> &GVNToConstant, 552 DenseSet<unsigned> &NotSame) { 553 bool ConstantsTheSame = true; 554 555 IRSimilarityCandidate &C = *Region.Candidate; 556 for (IRInstructionData &ID : C) { 557 558 // Iterate over the operands in an instruction. If the global value number, 559 // assigned by the IRSimilarityCandidate, has been seen before, we check if 560 // the the number has been found to be not the same value in each instance. 561 for (Value *V : ID.OperVals) { 562 std::optional<unsigned> GVNOpt = C.getGVN(V); 563 assert(GVNOpt && "Expected a GVN for operand?"); 564 unsigned GVN = *GVNOpt; 565 566 // Check if this global value has been found to not be the same already. 567 if (NotSame.contains(GVN)) { 568 if (isa<Constant>(V)) 569 ConstantsTheSame = false; 570 continue; 571 } 572 573 // If it has been the same so far, we check the value for if the 574 // associated Constant value match the previous instances of the same 575 // global value number. If the global value does not map to a Constant, 576 // it is considered to not be the same value. 577 std::optional<bool> ConstantMatches = 578 constantMatches(V, GVN, GVNToConstant); 579 if (ConstantMatches) { 580 if (*ConstantMatches) 581 continue; 582 else 583 ConstantsTheSame = false; 584 } 585 586 // While this value is a register, it might not have been previously, 587 // make sure we don't already have a constant mapped to this global value 588 // number. 589 if (GVNToConstant.contains(GVN)) 590 ConstantsTheSame = false; 591 592 NotSame.insert(GVN); 593 } 594 } 595 596 return ConstantsTheSame; 597 } 598 599 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 600 DenseMap<unsigned, Constant *> GVNToConstant; 601 602 for (OutlinableRegion *Region : Regions) 603 collectRegionsConstants(*Region, GVNToConstant, NotSame); 604 } 605 606 void OutlinableGroup::collectGVNStoreSets(Module &M) { 607 for (OutlinableRegion *OS : Regions) 608 OutputGVNCombinations.insert(OS->GVNStores); 609 610 // We are adding an extracted argument to decide between which output path 611 // to use in the basic block. It is used in a switch statement and only 612 // needs to be an integer. 613 if (OutputGVNCombinations.size() > 1) 614 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 615 } 616 617 /// Get the subprogram if it exists for one of the outlined regions. 618 /// 619 /// \param [in] Group - The set of regions to find a subprogram for. 620 /// \returns the subprogram if it exists, or nullptr. 621 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 622 for (OutlinableRegion *OS : Group.Regions) 623 if (Function *F = OS->Call->getFunction()) 624 if (DISubprogram *SP = F->getSubprogram()) 625 return SP; 626 627 return nullptr; 628 } 629 630 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 631 unsigned FunctionNameSuffix) { 632 assert(!Group.OutlinedFunction && "Function is already defined!"); 633 634 Type *RetTy = Type::getVoidTy(M.getContext()); 635 // All extracted functions _should_ have the same return type at this point 636 // since the similarity identifier ensures that all branches outside of the 637 // region occur in the same place. 638 639 // NOTE: Should we ever move to the model that uses a switch at every point 640 // needed, meaning that we could branch within the region or out, it is 641 // possible that we will need to switch to using the most general case all of 642 // the time. 643 for (OutlinableRegion *R : Group.Regions) { 644 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 645 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 646 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 647 RetTy = ExtractedFuncType; 648 } 649 650 Group.OutlinedFunctionType = FunctionType::get( 651 RetTy, Group.ArgumentTypes, false); 652 653 // These functions will only be called from within the same module, so 654 // we can set an internal linkage. 655 Group.OutlinedFunction = Function::Create( 656 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 657 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 658 659 // Transfer the swifterr attribute to the correct function parameter. 660 if (Group.SwiftErrorArgument) 661 Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument, 662 Attribute::SwiftError); 663 664 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 665 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 666 667 // If there's a DISubprogram associated with this outlined function, then 668 // emit debug info for the outlined function. 669 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 670 Function *F = Group.OutlinedFunction; 671 // We have a DISubprogram. Get its DICompileUnit. 672 DICompileUnit *CU = SP->getUnit(); 673 DIBuilder DB(M, true, CU); 674 DIFile *Unit = SP->getFile(); 675 Mangler Mg; 676 // Get the mangled name of the function for the linkage name. 677 std::string Dummy; 678 llvm::raw_string_ostream MangledNameStream(Dummy); 679 Mg.getNameWithPrefix(MangledNameStream, F, false); 680 681 DISubprogram *OutlinedSP = DB.createFunction( 682 Unit /* Context */, F->getName(), MangledNameStream.str(), 683 Unit /* File */, 684 0 /* Line 0 is reserved for compiler-generated code. */, 685 DB.createSubroutineType( 686 DB.getOrCreateTypeArray(std::nullopt)), /* void type */ 687 0, /* Line 0 is reserved for compiler-generated code. */ 688 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 689 /* Outlined code is optimized code by definition. */ 690 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 691 692 // Don't add any new variables to the subprogram. 693 DB.finalizeSubprogram(OutlinedSP); 694 695 // Attach subprogram to the function. 696 F->setSubprogram(OutlinedSP); 697 // We're done with the DIBuilder. 698 DB.finalize(); 699 } 700 701 return Group.OutlinedFunction; 702 } 703 704 /// Move each BasicBlock in \p Old to \p New. 705 /// 706 /// \param [in] Old - The function to move the basic blocks from. 707 /// \param [in] New - The function to move the basic blocks to. 708 /// \param [out] NewEnds - The return blocks of the new overall function. 709 static void moveFunctionData(Function &Old, Function &New, 710 DenseMap<Value *, BasicBlock *> &NewEnds) { 711 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 712 CurrBB.removeFromParent(); 713 CurrBB.insertInto(&New); 714 Instruction *I = CurrBB.getTerminator(); 715 716 // For each block we find a return instruction is, it is a potential exit 717 // path for the function. We keep track of each block based on the return 718 // value here. 719 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 720 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 721 722 std::vector<Instruction *> DebugInsts; 723 724 for (Instruction &Val : CurrBB) { 725 // We must handle the scoping of called functions differently than 726 // other outlined instructions. 727 if (!isa<CallInst>(&Val)) { 728 // Remove the debug information for outlined functions. 729 Val.setDebugLoc(DebugLoc()); 730 731 // Loop info metadata may contain line locations. Update them to have no 732 // value in the new subprogram since the outlined code could be from 733 // several locations. 734 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * { 735 if (DISubprogram *SP = New.getSubprogram()) 736 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 737 return DILocation::get(New.getContext(), Loc->getLine(), 738 Loc->getColumn(), SP, nullptr); 739 return MD; 740 }; 741 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc); 742 continue; 743 } 744 745 // From this point we are only handling call instructions. 746 CallInst *CI = cast<CallInst>(&Val); 747 748 // We add any debug statements here, to be removed after. Since the 749 // instructions originate from many different locations in the program, 750 // it will cause incorrect reporting from a debugger if we keep the 751 // same debug instructions. 752 if (isa<DbgInfoIntrinsic>(CI)) { 753 DebugInsts.push_back(&Val); 754 continue; 755 } 756 757 // Edit the scope of called functions inside of outlined functions. 758 if (DISubprogram *SP = New.getSubprogram()) { 759 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 760 Val.setDebugLoc(DI); 761 } 762 } 763 764 for (Instruction *I : DebugInsts) 765 I->eraseFromParent(); 766 } 767 } 768 769 /// Find the the constants that will need to be lifted into arguments 770 /// as they are not the same in each instance of the region. 771 /// 772 /// \param [in] C - The IRSimilarityCandidate containing the region we are 773 /// analyzing. 774 /// \param [in] NotSame - The set of global value numbers that do not have a 775 /// single Constant across all OutlinableRegions similar to \p C. 776 /// \param [out] Inputs - The list containing the global value numbers of the 777 /// arguments needed for the region of code. 778 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 779 std::vector<unsigned> &Inputs) { 780 DenseSet<unsigned> Seen; 781 // Iterate over the instructions, and find what constants will need to be 782 // extracted into arguments. 783 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 784 IDIt != EndIDIt; IDIt++) { 785 for (Value *V : (*IDIt).OperVals) { 786 // Since these are stored before any outlining, they will be in the 787 // global value numbering. 788 unsigned GVN = *C.getGVN(V); 789 if (isa<Constant>(V)) 790 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 791 Inputs.push_back(GVN); 792 Seen.insert(GVN); 793 } 794 } 795 } 796 } 797 798 /// Find the GVN for the inputs that have been found by the CodeExtractor. 799 /// 800 /// \param [in] C - The IRSimilarityCandidate containing the region we are 801 /// analyzing. 802 /// \param [in] CurrentInputs - The set of inputs found by the 803 /// CodeExtractor. 804 /// \param [in] OutputMappings - The mapping of values that have been replaced 805 /// by a new output value. 806 /// \param [out] EndInputNumbers - The global value numbers for the extracted 807 /// arguments. 808 static void mapInputsToGVNs(IRSimilarityCandidate &C, 809 SetVector<Value *> &CurrentInputs, 810 const DenseMap<Value *, Value *> &OutputMappings, 811 std::vector<unsigned> &EndInputNumbers) { 812 // Get the Global Value Number for each input. We check if the Value has been 813 // replaced by a different value at output, and use the original value before 814 // replacement. 815 for (Value *Input : CurrentInputs) { 816 assert(Input && "Have a nullptr as an input"); 817 if (OutputMappings.contains(Input)) 818 Input = OutputMappings.find(Input)->second; 819 assert(C.getGVN(Input) && "Could not find a numbering for the given input"); 820 EndInputNumbers.push_back(*C.getGVN(Input)); 821 } 822 } 823 824 /// Find the original value for the \p ArgInput values if any one of them was 825 /// replaced during a previous extraction. 826 /// 827 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 828 /// \param [in] OutputMappings - The mapping of values that have been replaced 829 /// by a new output value. 830 /// \param [out] RemappedArgInputs - The remapped values according to 831 /// \p OutputMappings that will be extracted. 832 static void 833 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 834 const DenseMap<Value *, Value *> &OutputMappings, 835 SetVector<Value *> &RemappedArgInputs) { 836 // Get the global value number for each input that will be extracted as an 837 // argument by the code extractor, remapping if needed for reloaded values. 838 for (Value *Input : ArgInputs) { 839 if (OutputMappings.contains(Input)) 840 Input = OutputMappings.find(Input)->second; 841 RemappedArgInputs.insert(Input); 842 } 843 } 844 845 /// Find the input GVNs and the output values for a region of Instructions. 846 /// Using the code extractor, we collect the inputs to the extracted function. 847 /// 848 /// The \p Region can be identified as needing to be ignored in this function. 849 /// It should be checked whether it should be ignored after a call to this 850 /// function. 851 /// 852 /// \param [in,out] Region - The region of code to be analyzed. 853 /// \param [out] InputGVNs - The global value numbers for the extracted 854 /// arguments. 855 /// \param [in] NotSame - The global value numbers in the region that do not 856 /// have the same constant value in the regions structurally similar to 857 /// \p Region. 858 /// \param [in] OutputMappings - The mapping of values that have been replaced 859 /// by a new output value after extraction. 860 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 861 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 862 /// as outputs. 863 static void getCodeExtractorArguments( 864 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 865 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 866 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 867 IRSimilarityCandidate &C = *Region.Candidate; 868 869 // OverallInputs are the inputs to the region found by the CodeExtractor, 870 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 871 // allocas of values whose lifetimes are contained completely within the 872 // outlined region. PremappedInputs are the arguments found by the 873 // CodeExtractor, removing conditions such as sunken allocas, but that 874 // may need to be remapped due to the extracted output values replacing 875 // the original values. We use DummyOutputs for this first run of finding 876 // inputs and outputs since the outputs could change during findAllocas, 877 // the correct set of extracted outputs will be in the final Outputs ValueSet. 878 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 879 DummyOutputs; 880 881 // Use the code extractor to get the inputs and outputs, without sunken 882 // allocas or removing llvm.assumes. 883 CodeExtractor *CE = Region.CE; 884 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 885 assert(Region.StartBB && "Region must have a start BasicBlock!"); 886 Function *OrigF = Region.StartBB->getParent(); 887 CodeExtractorAnalysisCache CEAC(*OrigF); 888 BasicBlock *Dummy = nullptr; 889 890 // The region may be ineligible due to VarArgs in the parent function. In this 891 // case we ignore the region. 892 if (!CE->isEligible()) { 893 Region.IgnoreRegion = true; 894 return; 895 } 896 897 // Find if any values are going to be sunk into the function when extracted 898 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 899 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 900 901 // TODO: Support regions with sunken allocas: values whose lifetimes are 902 // contained completely within the outlined region. These are not guaranteed 903 // to be the same in every region, so we must elevate them all to arguments 904 // when they appear. If these values are not equal, it means there is some 905 // Input in OverallInputs that was removed for ArgInputs. 906 if (OverallInputs.size() != PremappedInputs.size()) { 907 Region.IgnoreRegion = true; 908 return; 909 } 910 911 findConstants(C, NotSame, InputGVNs); 912 913 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 914 915 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 916 ArgInputs); 917 918 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 919 // we need to make sure they are in a deterministic order. 920 stable_sort(InputGVNs); 921 } 922 923 /// Look over the inputs and map each input argument to an argument in the 924 /// overall function for the OutlinableRegions. This creates a way to replace 925 /// the arguments of the extracted function with the arguments of the new 926 /// overall function. 927 /// 928 /// \param [in,out] Region - The region of code to be analyzed. 929 /// \param [in] InputGVNs - The global value numbering of the input values 930 /// collected. 931 /// \param [in] ArgInputs - The values of the arguments to the extracted 932 /// function. 933 static void 934 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 935 std::vector<unsigned> &InputGVNs, 936 SetVector<Value *> &ArgInputs) { 937 938 IRSimilarityCandidate &C = *Region.Candidate; 939 OutlinableGroup &Group = *Region.Parent; 940 941 // This counts the argument number in the overall function. 942 unsigned TypeIndex = 0; 943 944 // This counts the argument number in the extracted function. 945 unsigned OriginalIndex = 0; 946 947 // Find the mapping of the extracted arguments to the arguments for the 948 // overall function. Since there may be extra arguments in the overall 949 // function to account for the extracted constants, we have two different 950 // counters as we find extracted arguments, and as we come across overall 951 // arguments. 952 953 // Additionally, in our first pass, for the first extracted function, 954 // we find argument locations for the canonical value numbering. This 955 // numbering overrides any discovered location for the extracted code. 956 for (unsigned InputVal : InputGVNs) { 957 std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 958 assert(CanonicalNumberOpt && "Canonical number not found?"); 959 unsigned CanonicalNumber = *CanonicalNumberOpt; 960 961 std::optional<Value *> InputOpt = C.fromGVN(InputVal); 962 assert(InputOpt && "Global value number not found?"); 963 Value *Input = *InputOpt; 964 965 DenseMap<unsigned, unsigned>::iterator AggArgIt = 966 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 967 968 if (!Group.InputTypesSet) { 969 Group.ArgumentTypes.push_back(Input->getType()); 970 // If the input value has a swifterr attribute, make sure to mark the 971 // argument in the overall function. 972 if (Input->isSwiftError()) { 973 assert( 974 !Group.SwiftErrorArgument && 975 "Argument already marked with swifterr for this OutlinableGroup!"); 976 Group.SwiftErrorArgument = TypeIndex; 977 } 978 } 979 980 // Check if we have a constant. If we do add it to the overall argument 981 // number to Constant map for the region, and continue to the next input. 982 if (Constant *CST = dyn_cast<Constant>(Input)) { 983 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 984 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 985 else { 986 Group.CanonicalNumberToAggArg.insert( 987 std::make_pair(CanonicalNumber, TypeIndex)); 988 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 989 } 990 TypeIndex++; 991 continue; 992 } 993 994 // It is not a constant, we create the mapping from extracted argument list 995 // to the overall argument list, using the canonical location, if it exists. 996 assert(ArgInputs.count(Input) && "Input cannot be found!"); 997 998 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 999 if (OriginalIndex != AggArgIt->second) 1000 Region.ChangedArgOrder = true; 1001 Region.ExtractedArgToAgg.insert( 1002 std::make_pair(OriginalIndex, AggArgIt->second)); 1003 Region.AggArgToExtracted.insert( 1004 std::make_pair(AggArgIt->second, OriginalIndex)); 1005 } else { 1006 Group.CanonicalNumberToAggArg.insert( 1007 std::make_pair(CanonicalNumber, TypeIndex)); 1008 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 1009 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 1010 } 1011 OriginalIndex++; 1012 TypeIndex++; 1013 } 1014 1015 // If the function type definitions for the OutlinableGroup holding the region 1016 // have not been set, set the length of the inputs here. We should have the 1017 // same inputs for all of the different regions contained in the 1018 // OutlinableGroup since they are all structurally similar to one another. 1019 if (!Group.InputTypesSet) { 1020 Group.NumAggregateInputs = TypeIndex; 1021 Group.InputTypesSet = true; 1022 } 1023 1024 Region.NumExtractedInputs = OriginalIndex; 1025 } 1026 1027 /// Check if the \p V has any uses outside of the region other than \p PN. 1028 /// 1029 /// \param V [in] - The value to check. 1030 /// \param PHILoc [in] - The location in the PHINode of \p V. 1031 /// \param PN [in] - The PHINode using \p V. 1032 /// \param Exits [in] - The potential blocks we exit to from the outlined 1033 /// region. 1034 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 1035 /// \returns true if \p V has any use soutside its region other than \p PN. 1036 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 1037 SmallPtrSet<BasicBlock *, 1> &Exits, 1038 DenseSet<BasicBlock *> &BlocksInRegion) { 1039 // We check to see if the value is used by the PHINode from some other 1040 // predecessor not included in the region. If it is, we make sure 1041 // to keep it as an output. 1042 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 1043 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 1044 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 1045 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 1046 })) 1047 return true; 1048 1049 // Check if the value is used by any other instructions outside the region. 1050 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 1051 Instruction *I = dyn_cast<Instruction>(U); 1052 if (!I) 1053 return false; 1054 1055 // If the use of the item is inside the region, we skip it. Uses 1056 // inside the region give us useful information about how the item could be 1057 // used as an output. 1058 BasicBlock *Parent = I->getParent(); 1059 if (BlocksInRegion.contains(Parent)) 1060 return false; 1061 1062 // If it's not a PHINode then we definitely know the use matters. This 1063 // output value will not completely combined with another item in a PHINode 1064 // as it is directly reference by another non-phi instruction 1065 if (!isa<PHINode>(I)) 1066 return true; 1067 1068 // If we have a PHINode outside one of the exit locations, then it 1069 // can be considered an outside use as well. If there is a PHINode 1070 // contained in the Exit where this values use matters, it will be 1071 // caught when we analyze that PHINode. 1072 if (!Exits.contains(Parent)) 1073 return true; 1074 1075 return false; 1076 }); 1077 } 1078 1079 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1080 /// considered outputs. A PHINodes is an output when more than one incoming 1081 /// value has been marked by the CodeExtractor as an output. 1082 /// 1083 /// \param CurrentExitFromRegion [in] - The block to analyze. 1084 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1085 /// region. 1086 /// \param RegionBlocks [in] - The basic blocks in the region. 1087 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1088 /// PHINodes to this as we find that they replace output values. 1089 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1090 /// totally replaced by a PHINode. 1091 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1092 /// in PHINodes, but have other uses, and should still be considered outputs. 1093 static void analyzeExitPHIsForOutputUses( 1094 BasicBlock *CurrentExitFromRegion, 1095 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1096 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1097 DenseSet<Value *> &OutputsReplacedByPHINode, 1098 DenseSet<Value *> &OutputsWithNonPhiUses) { 1099 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1100 // Find all incoming values from the outlining region. 1101 SmallVector<unsigned, 2> IncomingVals; 1102 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1103 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1104 IncomingVals.push_back(I); 1105 1106 // Do not process PHI if there are no predecessors from region. 1107 unsigned NumIncomingVals = IncomingVals.size(); 1108 if (NumIncomingVals == 0) 1109 continue; 1110 1111 // If there is one predecessor, we mark it as a value that needs to be kept 1112 // as an output. 1113 if (NumIncomingVals == 1) { 1114 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1115 OutputsWithNonPhiUses.insert(V); 1116 OutputsReplacedByPHINode.erase(V); 1117 continue; 1118 } 1119 1120 // This PHINode will be used as an output value, so we add it to our list. 1121 Outputs.insert(&PN); 1122 1123 // Not all of the incoming values should be ignored as other inputs and 1124 // outputs may have uses in outlined region. If they have other uses 1125 // outside of the single PHINode we should not skip over it. 1126 for (unsigned Idx : IncomingVals) { 1127 Value *V = PN.getIncomingValue(Idx); 1128 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1129 OutputsWithNonPhiUses.insert(V); 1130 OutputsReplacedByPHINode.erase(V); 1131 continue; 1132 } 1133 if (!OutputsWithNonPhiUses.contains(V)) 1134 OutputsReplacedByPHINode.insert(V); 1135 } 1136 } 1137 } 1138 1139 // Represents the type for the unsigned number denoting the output number for 1140 // phi node, along with the canonical number for the exit block. 1141 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1142 // The list of canonical numbers for the incoming values to a PHINode. 1143 using CanonList = SmallVector<unsigned, 2>; 1144 // The pair type representing the set of canonical values being combined in the 1145 // PHINode, along with the location data for the PHINode. 1146 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1147 1148 /// Encode \p PND as an integer for easy lookup based on the argument location, 1149 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1150 /// the values stored in the PHINode. 1151 /// 1152 /// \param PND - The data to hash. 1153 /// \returns The hash code of \p PND. 1154 static hash_code encodePHINodeData(PHINodeData &PND) { 1155 return llvm::hash_combine( 1156 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1157 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1158 } 1159 1160 /// Create a special GVN for PHINodes that will be used outside of 1161 /// the region. We create a hash code based on the Canonical number of the 1162 /// parent BasicBlock, the canonical numbering of the values stored in the 1163 /// PHINode and the aggregate argument location. This is used to find whether 1164 /// this PHINode type has been given a canonical numbering already. If not, we 1165 /// assign it a value and store it for later use. The value is returned to 1166 /// identify different output schemes for the set of regions. 1167 /// 1168 /// \param Region - The region that \p PN is an output for. 1169 /// \param PN - The PHINode we are analyzing. 1170 /// \param Blocks - The blocks for the region we are analyzing. 1171 /// \param AggArgIdx - The argument \p PN will be stored into. 1172 /// \returns An optional holding the assigned canonical number, or std::nullopt 1173 /// if there is some attribute of the PHINode blocking it from being used. 1174 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1175 PHINode *PN, 1176 DenseSet<BasicBlock *> &Blocks, 1177 unsigned AggArgIdx) { 1178 OutlinableGroup &Group = *Region.Parent; 1179 IRSimilarityCandidate &Cand = *Region.Candidate; 1180 BasicBlock *PHIBB = PN->getParent(); 1181 CanonList PHIGVNs; 1182 Value *Incoming; 1183 BasicBlock *IncomingBlock; 1184 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1185 Incoming = PN->getIncomingValue(Idx); 1186 IncomingBlock = PN->getIncomingBlock(Idx); 1187 // If we cannot find a GVN, and the incoming block is included in the region 1188 // this means that the input to the PHINode is not included in the region we 1189 // are trying to analyze, meaning, that if it was outlined, we would be 1190 // adding an extra input. We ignore this case for now, and so ignore the 1191 // region. 1192 std::optional<unsigned> OGVN = Cand.getGVN(Incoming); 1193 if (!OGVN && Blocks.contains(IncomingBlock)) { 1194 Region.IgnoreRegion = true; 1195 return std::nullopt; 1196 } 1197 1198 // If the incoming block isn't in the region, we don't have to worry about 1199 // this incoming value. 1200 if (!Blocks.contains(IncomingBlock)) 1201 continue; 1202 1203 // Collect the canonical numbers of the values in the PHINode. 1204 unsigned GVN = *OGVN; 1205 OGVN = Cand.getCanonicalNum(GVN); 1206 assert(OGVN && "No GVN found for incoming value?"); 1207 PHIGVNs.push_back(*OGVN); 1208 1209 // Find the incoming block and use the canonical numbering as well to define 1210 // the hash for the PHINode. 1211 OGVN = Cand.getGVN(IncomingBlock); 1212 1213 // If there is no number for the incoming block, it is because we have 1214 // split the candidate basic blocks. So we use the previous block that it 1215 // was split from to find the valid global value numbering for the PHINode. 1216 if (!OGVN) { 1217 assert(Cand.getStartBB() == IncomingBlock && 1218 "Unknown basic block used in exit path PHINode."); 1219 1220 BasicBlock *PrevBlock = nullptr; 1221 // Iterate over the predecessors to the incoming block of the 1222 // PHINode, when we find a block that is not contained in the region 1223 // we know that this is the first block that we split from, and should 1224 // have a valid global value numbering. 1225 for (BasicBlock *Pred : predecessors(IncomingBlock)) 1226 if (!Blocks.contains(Pred)) { 1227 PrevBlock = Pred; 1228 break; 1229 } 1230 assert(PrevBlock && "Expected a predecessor not in the reigon!"); 1231 OGVN = Cand.getGVN(PrevBlock); 1232 } 1233 GVN = *OGVN; 1234 OGVN = Cand.getCanonicalNum(GVN); 1235 assert(OGVN && "No GVN found for incoming block?"); 1236 PHIGVNs.push_back(*OGVN); 1237 } 1238 1239 // Now that we have the GVNs for the incoming values, we are going to combine 1240 // them with the GVN of the incoming bock, and the output location of the 1241 // PHINode to generate a hash value representing this instance of the PHINode. 1242 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1243 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1244 std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1245 assert(BBGVN && "Could not find GVN for the incoming block!"); 1246 1247 BBGVN = Cand.getCanonicalNum(*BBGVN); 1248 assert(BBGVN && "Could not find canonical number for the incoming block!"); 1249 // Create a pair of the exit block canonical value, and the aggregate 1250 // argument location, connected to the canonical numbers stored in the 1251 // PHINode. 1252 PHINodeData TemporaryPair = 1253 std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs); 1254 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1255 1256 // Look for and create a new entry in our connection between canonical 1257 // numbers for PHINodes, and the set of objects we just created. 1258 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1259 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1260 bool Inserted = false; 1261 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1262 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1263 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1264 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1265 } 1266 1267 return GVNToPHIIt->second; 1268 } 1269 1270 /// Create a mapping of the output arguments for the \p Region to the output 1271 /// arguments of the overall outlined function. 1272 /// 1273 /// \param [in,out] Region - The region of code to be analyzed. 1274 /// \param [in] Outputs - The values found by the code extractor. 1275 static void 1276 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region, 1277 SetVector<Value *> &Outputs) { 1278 OutlinableGroup &Group = *Region.Parent; 1279 IRSimilarityCandidate &C = *Region.Candidate; 1280 1281 SmallVector<BasicBlock *> BE; 1282 DenseSet<BasicBlock *> BlocksInRegion; 1283 C.getBasicBlocks(BlocksInRegion, BE); 1284 1285 // Find the exits to the region. 1286 SmallPtrSet<BasicBlock *, 1> Exits; 1287 for (BasicBlock *Block : BE) 1288 for (BasicBlock *Succ : successors(Block)) 1289 if (!BlocksInRegion.contains(Succ)) 1290 Exits.insert(Succ); 1291 1292 // After determining which blocks exit to PHINodes, we add these PHINodes to 1293 // the set of outputs to be processed. We also check the incoming values of 1294 // the PHINodes for whether they should no longer be considered outputs. 1295 DenseSet<Value *> OutputsReplacedByPHINode; 1296 DenseSet<Value *> OutputsWithNonPhiUses; 1297 for (BasicBlock *ExitBB : Exits) 1298 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1299 OutputsReplacedByPHINode, 1300 OutputsWithNonPhiUses); 1301 1302 // This counts the argument number in the extracted function. 1303 unsigned OriginalIndex = Region.NumExtractedInputs; 1304 1305 // This counts the argument number in the overall function. 1306 unsigned TypeIndex = Group.NumAggregateInputs; 1307 bool TypeFound; 1308 DenseSet<unsigned> AggArgsUsed; 1309 1310 // Iterate over the output types and identify if there is an aggregate pointer 1311 // type whose base type matches the current output type. If there is, we mark 1312 // that we will use this output register for this value. If not we add another 1313 // type to the overall argument type list. We also store the GVNs used for 1314 // stores to identify which values will need to be moved into an special 1315 // block that holds the stores to the output registers. 1316 for (Value *Output : Outputs) { 1317 TypeFound = false; 1318 // We can do this since it is a result value, and will have a number 1319 // that is necessarily the same. BUT if in the future, the instructions 1320 // do not have to be in same order, but are functionally the same, we will 1321 // have to use a different scheme, as one-to-one correspondence is not 1322 // guaranteed. 1323 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1324 1325 // If the output is combined in a PHINode, we make sure to skip over it. 1326 if (OutputsReplacedByPHINode.contains(Output)) 1327 continue; 1328 1329 unsigned AggArgIdx = 0; 1330 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1331 if (!isa<PointerType>(Group.ArgumentTypes[Jdx])) 1332 continue; 1333 1334 if (AggArgsUsed.contains(Jdx)) 1335 continue; 1336 1337 TypeFound = true; 1338 AggArgsUsed.insert(Jdx); 1339 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1340 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1341 AggArgIdx = Jdx; 1342 break; 1343 } 1344 1345 // We were unable to find an unused type in the output type set that matches 1346 // the output, so we add a pointer type to the argument types of the overall 1347 // function to handle this output and create a mapping to it. 1348 if (!TypeFound) { 1349 Group.ArgumentTypes.push_back(Output->getType()->getPointerTo( 1350 M.getDataLayout().getAllocaAddrSpace())); 1351 // Mark the new pointer type as the last value in the aggregate argument 1352 // list. 1353 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1354 AggArgsUsed.insert(ArgTypeIdx); 1355 Region.ExtractedArgToAgg.insert( 1356 std::make_pair(OriginalIndex, ArgTypeIdx)); 1357 Region.AggArgToExtracted.insert( 1358 std::make_pair(ArgTypeIdx, OriginalIndex)); 1359 AggArgIdx = ArgTypeIdx; 1360 } 1361 1362 // TODO: Adapt to the extra input from the PHINode. 1363 PHINode *PN = dyn_cast<PHINode>(Output); 1364 1365 std::optional<unsigned> GVN; 1366 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1367 // Values outside the region can be combined into PHINode when we 1368 // have multiple exits. We collect both of these into a list to identify 1369 // which values are being used in the PHINode. Each list identifies a 1370 // different PHINode, and a different output. We store the PHINode as it's 1371 // own canonical value. These canonical values are also dependent on the 1372 // output argument it is saved to. 1373 1374 // If two PHINodes have the same canonical values, but different aggregate 1375 // argument locations, then they will have distinct Canonical Values. 1376 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx); 1377 if (!GVN) 1378 return; 1379 } else { 1380 // If we do not have a PHINode we use the global value numbering for the 1381 // output value, to find the canonical number to add to the set of stored 1382 // values. 1383 GVN = C.getGVN(Output); 1384 GVN = C.getCanonicalNum(*GVN); 1385 } 1386 1387 // Each region has a potentially unique set of outputs. We save which 1388 // values are output in a list of canonical values so we can differentiate 1389 // among the different store schemes. 1390 Region.GVNStores.push_back(*GVN); 1391 1392 OriginalIndex++; 1393 TypeIndex++; 1394 } 1395 1396 // We sort the stored values to make sure that we are not affected by analysis 1397 // order when determining what combination of items were stored. 1398 stable_sort(Region.GVNStores); 1399 } 1400 1401 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1402 DenseSet<unsigned> &NotSame) { 1403 std::vector<unsigned> Inputs; 1404 SetVector<Value *> ArgInputs, Outputs; 1405 1406 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1407 Outputs); 1408 1409 if (Region.IgnoreRegion) 1410 return; 1411 1412 // Map the inputs found by the CodeExtractor to the arguments found for 1413 // the overall function. 1414 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1415 1416 // Map the outputs found by the CodeExtractor to the arguments found for 1417 // the overall function. 1418 findExtractedOutputToOverallOutputMapping(M, Region, Outputs); 1419 } 1420 1421 /// Replace the extracted function in the Region with a call to the overall 1422 /// function constructed from the deduplicated similar regions, replacing and 1423 /// remapping the values passed to the extracted function as arguments to the 1424 /// new arguments of the overall function. 1425 /// 1426 /// \param [in] M - The module to outline from. 1427 /// \param [in] Region - The regions of extracted code to be replaced with a new 1428 /// function. 1429 /// \returns a call instruction with the replaced function. 1430 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1431 std::vector<Value *> NewCallArgs; 1432 DenseMap<unsigned, unsigned>::iterator ArgPair; 1433 1434 OutlinableGroup &Group = *Region.Parent; 1435 CallInst *Call = Region.Call; 1436 assert(Call && "Call to replace is nullptr?"); 1437 Function *AggFunc = Group.OutlinedFunction; 1438 assert(AggFunc && "Function to replace with is nullptr?"); 1439 1440 // If the arguments are the same size, there are not values that need to be 1441 // made into an argument, the argument ordering has not been change, or 1442 // different output registers to handle. We can simply replace the called 1443 // function in this case. 1444 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1445 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1446 << *AggFunc << " with same number of arguments\n"); 1447 Call->setCalledFunction(AggFunc); 1448 return Call; 1449 } 1450 1451 // We have a different number of arguments than the new function, so 1452 // we need to use our previously mappings off extracted argument to overall 1453 // function argument, and constants to overall function argument to create the 1454 // new argument list. 1455 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1456 1457 if (AggArgIdx == AggFunc->arg_size() - 1 && 1458 Group.OutputGVNCombinations.size() > 1) { 1459 // If we are on the last argument, and we need to differentiate between 1460 // output blocks, add an integer to the argument list to determine 1461 // what block to take 1462 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1463 << Region.OutputBlockNum << "\n"); 1464 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1465 Region.OutputBlockNum)); 1466 continue; 1467 } 1468 1469 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1470 if (ArgPair != Region.AggArgToExtracted.end()) { 1471 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1472 // If we found the mapping from the extracted function to the overall 1473 // function, we simply add it to the argument list. We use the same 1474 // value, it just needs to honor the new order of arguments. 1475 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1476 << *ArgumentValue << "\n"); 1477 NewCallArgs.push_back(ArgumentValue); 1478 continue; 1479 } 1480 1481 // If it is a constant, we simply add it to the argument list as a value. 1482 if (Region.AggArgToConstant.contains(AggArgIdx)) { 1483 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1484 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1485 << *CST << "\n"); 1486 NewCallArgs.push_back(CST); 1487 continue; 1488 } 1489 1490 // Add a nullptr value if the argument is not found in the extracted 1491 // function. If we cannot find a value, it means it is not in use 1492 // for the region, so we should not pass anything to it. 1493 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1494 NewCallArgs.push_back(ConstantPointerNull::get( 1495 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1496 } 1497 1498 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1499 << *AggFunc << " with new set of arguments\n"); 1500 // Create the new call instruction and erase the old one. 1501 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1502 Call); 1503 1504 // It is possible that the call to the outlined function is either the first 1505 // instruction is in the new block, the last instruction, or both. If either 1506 // of these is the case, we need to make sure that we replace the instruction 1507 // in the IRInstructionData struct with the new call. 1508 CallInst *OldCall = Region.Call; 1509 if (Region.NewFront->Inst == OldCall) 1510 Region.NewFront->Inst = Call; 1511 if (Region.NewBack->Inst == OldCall) 1512 Region.NewBack->Inst = Call; 1513 1514 // Transfer any debug information. 1515 Call->setDebugLoc(Region.Call->getDebugLoc()); 1516 // Since our output may determine which branch we go to, we make sure to 1517 // propogate this new call value through the module. 1518 OldCall->replaceAllUsesWith(Call); 1519 1520 // Remove the old instruction. 1521 OldCall->eraseFromParent(); 1522 Region.Call = Call; 1523 1524 // Make sure that the argument in the new function has the SwiftError 1525 // argument. 1526 if (Group.SwiftErrorArgument) 1527 Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError); 1528 1529 return Call; 1530 } 1531 1532 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1533 /// for \p RetVal. 1534 /// 1535 /// \param Group - The OutlinableGroup containing the information about the 1536 /// overall outlined function. 1537 /// \param RetVal - The return value or exit option that we are currently 1538 /// evaluating. 1539 /// \returns The found or newly created BasicBlock to contain the needed 1540 /// PHINodes to be used as outputs. 1541 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1542 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1543 ReturnBlockForRetVal; 1544 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1545 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1546 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1547 "Could not find output value!"); 1548 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1549 1550 // Find if a PHIBlock exists for this return value already. If it is 1551 // the first time we are analyzing this, we will not, so we record it. 1552 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1553 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1554 return PhiBlockForRetVal->second; 1555 1556 // If we did not find a block, we create one, and insert it into the 1557 // overall function and record it. 1558 bool Inserted = false; 1559 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1560 ReturnBB->getParent()); 1561 std::tie(PhiBlockForRetVal, Inserted) = 1562 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1563 1564 // We find the predecessors of the return block in the newly created outlined 1565 // function in order to point them to the new PHIBlock rather than the already 1566 // existing return block. 1567 SmallVector<BranchInst *, 2> BranchesToChange; 1568 for (BasicBlock *Pred : predecessors(ReturnBB)) 1569 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1570 1571 // Now we mark the branch instructions found, and change the references of the 1572 // return block to the newly created PHIBlock. 1573 for (BranchInst *BI : BranchesToChange) 1574 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1575 if (BI->getSuccessor(Succ) != ReturnBB) 1576 continue; 1577 BI->setSuccessor(Succ, PHIBlock); 1578 } 1579 1580 BranchInst::Create(ReturnBB, PHIBlock); 1581 1582 return PhiBlockForRetVal->second; 1583 } 1584 1585 /// For the function call now representing the \p Region, find the passed value 1586 /// to that call that represents Argument \p A at the call location if the 1587 /// call has already been replaced with a call to the overall, aggregate 1588 /// function. 1589 /// 1590 /// \param A - The Argument to get the passed value for. 1591 /// \param Region - The extracted Region corresponding to the outlined function. 1592 /// \returns The Value representing \p A at the call site. 1593 static Value * 1594 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1595 const OutlinableRegion &Region) { 1596 // If we don't need to adjust the argument number at all (since the call 1597 // has already been replaced by a call to the overall outlined function) 1598 // we can just get the specified argument. 1599 return Region.Call->getArgOperand(A->getArgNo()); 1600 } 1601 1602 /// For the function call now representing the \p Region, find the passed value 1603 /// to that call that represents Argument \p A at the call location if the 1604 /// call has only been replaced by the call to the aggregate function. 1605 /// 1606 /// \param A - The Argument to get the passed value for. 1607 /// \param Region - The extracted Region corresponding to the outlined function. 1608 /// \returns The Value representing \p A at the call site. 1609 static Value * 1610 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1611 const OutlinableRegion &Region) { 1612 unsigned ArgNum = A->getArgNo(); 1613 1614 // If it is a constant, we can look at our mapping from when we created 1615 // the outputs to figure out what the constant value is. 1616 if (Region.AggArgToConstant.count(ArgNum)) 1617 return Region.AggArgToConstant.find(ArgNum)->second; 1618 1619 // If it is not a constant, and we are not looking at the overall function, we 1620 // need to adjust which argument we are looking at. 1621 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1622 return Region.Call->getArgOperand(ArgNum); 1623 } 1624 1625 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1626 /// 1627 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1628 /// \param Region [in] - The OutlinableRegion containing \p PN. 1629 /// \param OutputMappings [in] - The mapping of output values from outlined 1630 /// region to their original values. 1631 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1632 /// \p PN paired with their incoming block. 1633 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1634 /// of \p Region rather than the overall function's call. 1635 static void findCanonNumsForPHI( 1636 PHINode *PN, OutlinableRegion &Region, 1637 const DenseMap<Value *, Value *> &OutputMappings, 1638 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums, 1639 bool ReplacedWithOutlinedCall = true) { 1640 // Iterate over the incoming values. 1641 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1642 Value *IVal = PN->getIncomingValue(Idx); 1643 BasicBlock *IBlock = PN->getIncomingBlock(Idx); 1644 // If we have an argument as incoming value, we need to grab the passed 1645 // value from the call itself. 1646 if (Argument *A = dyn_cast<Argument>(IVal)) { 1647 if (ReplacedWithOutlinedCall) 1648 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1649 else 1650 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1651 } 1652 1653 // Get the original value if it has been replaced by an output value. 1654 IVal = findOutputMapping(OutputMappings, IVal); 1655 1656 // Find and add the canonical number for the incoming value. 1657 std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1658 assert(GVN && "No GVN for incoming value"); 1659 std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1660 assert(CanonNum && "No Canonical Number for GVN"); 1661 CanonNums.push_back(std::make_pair(*CanonNum, IBlock)); 1662 } 1663 } 1664 1665 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1666 /// in order to condense the number of instructions added to the outlined 1667 /// function. 1668 /// 1669 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1670 /// \param Region [in] - The OutlinableRegion containing \p PN. 1671 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1672 /// \p PN in. 1673 /// \param OutputMappings [in] - The mapping of output values from outlined 1674 /// region to their original values. 1675 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been 1676 /// matched. 1677 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1678 static PHINode* 1679 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1680 BasicBlock *OverallPhiBlock, 1681 const DenseMap<Value *, Value *> &OutputMappings, 1682 DenseSet<PHINode *> &UsedPHIs) { 1683 OutlinableGroup &Group = *Region.Parent; 1684 1685 1686 // A list of the canonical numbering assigned to each incoming value, paired 1687 // with the incoming block for the PHINode passed into this function. 1688 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums; 1689 1690 // We have to use the extracted function since we have merged this region into 1691 // the overall function yet. We make sure to reassign the argument numbering 1692 // since it is possible that the argument ordering is different between the 1693 // functions. 1694 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1695 /* ReplacedWithOutlinedCall = */ false); 1696 1697 OutlinableRegion *FirstRegion = Group.Regions[0]; 1698 1699 // A list of the canonical numbering assigned to each incoming value, paired 1700 // with the incoming block for the PHINode that we are currently comparing 1701 // the passed PHINode to. 1702 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums; 1703 1704 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1705 // the uses of the PHINode we are searching for, with the found PHINode. 1706 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1707 // If this PHINode has already been matched to another PHINode to be merged, 1708 // we skip it. 1709 if (UsedPHIs.contains(&CurrPN)) 1710 continue; 1711 1712 CurrentCanonNums.clear(); 1713 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1714 /* ReplacedWithOutlinedCall = */ true); 1715 1716 // If the list of incoming values is not the same length, then they cannot 1717 // match since there is not an analogue for each incoming value. 1718 if (PNCanonNums.size() != CurrentCanonNums.size()) 1719 continue; 1720 1721 bool FoundMatch = true; 1722 1723 // We compare the canonical value for each incoming value in the passed 1724 // in PHINode to one already present in the outlined region. If the 1725 // incoming values do not match, then the PHINodes do not match. 1726 1727 // We also check to make sure that the incoming block matches as well by 1728 // finding the corresponding incoming block in the combined outlined region 1729 // for the current outlined region. 1730 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) { 1731 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx]; 1732 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx]; 1733 if (ToCompareTo.first != ToAdd.first) { 1734 FoundMatch = false; 1735 break; 1736 } 1737 1738 BasicBlock *CorrespondingBlock = 1739 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second); 1740 assert(CorrespondingBlock && "Found block is nullptr"); 1741 if (CorrespondingBlock != ToCompareTo.second) { 1742 FoundMatch = false; 1743 break; 1744 } 1745 } 1746 1747 // If all incoming values and branches matched, then we can merge 1748 // into the found PHINode. 1749 if (FoundMatch) { 1750 UsedPHIs.insert(&CurrPN); 1751 return &CurrPN; 1752 } 1753 } 1754 1755 // If we've made it here, it means we weren't able to replace the PHINode, so 1756 // we must insert it ourselves. 1757 PHINode *NewPN = cast<PHINode>(PN.clone()); 1758 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1759 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1760 Idx++) { 1761 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1762 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1763 1764 // Find corresponding basic block in the overall function for the incoming 1765 // block. 1766 BasicBlock *BlockToUse = 1767 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock); 1768 NewPN->setIncomingBlock(Idx, BlockToUse); 1769 1770 // If we have an argument we make sure we replace using the argument from 1771 // the correct function. 1772 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1773 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1774 NewPN->setIncomingValue(Idx, Val); 1775 continue; 1776 } 1777 1778 // Find the corresponding value in the overall function. 1779 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1780 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1781 assert(Val && "Value is nullptr?"); 1782 DenseMap<Value *, Value *>::iterator RemappedIt = 1783 FirstRegion->RemappedArguments.find(Val); 1784 if (RemappedIt != FirstRegion->RemappedArguments.end()) 1785 Val = RemappedIt->second; 1786 NewPN->setIncomingValue(Idx, Val); 1787 } 1788 return NewPN; 1789 } 1790 1791 // Within an extracted function, replace the argument uses of the extracted 1792 // region with the arguments of the function for an OutlinableGroup. 1793 // 1794 /// \param [in] Region - The region of extracted code to be changed. 1795 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1796 /// region. 1797 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1798 /// function to define the overall outlined function for all the regions, or 1799 /// if we are operating on one of the following regions. 1800 static void 1801 replaceArgumentUses(OutlinableRegion &Region, 1802 DenseMap<Value *, BasicBlock *> &OutputBBs, 1803 const DenseMap<Value *, Value *> &OutputMappings, 1804 bool FirstFunction = false) { 1805 OutlinableGroup &Group = *Region.Parent; 1806 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1807 1808 Function *DominatingFunction = Region.ExtractedFunction; 1809 if (FirstFunction) 1810 DominatingFunction = Group.OutlinedFunction; 1811 DominatorTree DT(*DominatingFunction); 1812 DenseSet<PHINode *> UsedPHIs; 1813 1814 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1815 ArgIdx++) { 1816 assert(Region.ExtractedArgToAgg.contains(ArgIdx) && 1817 "No mapping from extracted to outlined?"); 1818 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1819 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1820 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1821 // The argument is an input, so we can simply replace it with the overall 1822 // argument value 1823 if (ArgIdx < Region.NumExtractedInputs) { 1824 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1825 << *Region.ExtractedFunction << " with " << *AggArg 1826 << " in function " << *Group.OutlinedFunction << "\n"); 1827 Arg->replaceAllUsesWith(AggArg); 1828 Value *V = Region.Call->getArgOperand(ArgIdx); 1829 Region.RemappedArguments.insert(std::make_pair(V, AggArg)); 1830 continue; 1831 } 1832 1833 // If we are replacing an output, we place the store value in its own 1834 // block inside the overall function before replacing the use of the output 1835 // in the function. 1836 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1837 User *InstAsUser = Arg->user_back(); 1838 assert(InstAsUser && "User is nullptr!"); 1839 1840 Instruction *I = cast<Instruction>(InstAsUser); 1841 BasicBlock *BB = I->getParent(); 1842 SmallVector<BasicBlock *, 4> Descendants; 1843 DT.getDescendants(BB, Descendants); 1844 bool EdgeAdded = false; 1845 if (Descendants.size() == 0) { 1846 EdgeAdded = true; 1847 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1848 DT.getDescendants(BB, Descendants); 1849 } 1850 1851 // Iterate over the following blocks, looking for return instructions, 1852 // if we find one, find the corresponding output block for the return value 1853 // and move our store instruction there. 1854 for (BasicBlock *DescendBB : Descendants) { 1855 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1856 if (!RI) 1857 continue; 1858 Value *RetVal = RI->getReturnValue(); 1859 auto VBBIt = OutputBBs.find(RetVal); 1860 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1861 1862 // If this is storing a PHINode, we must make sure it is included in the 1863 // overall function. 1864 StoreInst *SI = cast<StoreInst>(I); 1865 1866 Value *ValueOperand = SI->getValueOperand(); 1867 1868 StoreInst *NewI = cast<StoreInst>(I->clone()); 1869 NewI->setDebugLoc(DebugLoc()); 1870 BasicBlock *OutputBB = VBBIt->second; 1871 NewI->insertInto(OutputBB, OutputBB->end()); 1872 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1873 << *OutputBB << "\n"); 1874 1875 // If this is storing a PHINode, we must make sure it is included in the 1876 // overall function. 1877 if (!isa<PHINode>(ValueOperand) || 1878 Region.Candidate->getGVN(ValueOperand).has_value()) { 1879 if (FirstFunction) 1880 continue; 1881 Value *CorrVal = 1882 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1883 assert(CorrVal && "Value is nullptr?"); 1884 NewI->setOperand(0, CorrVal); 1885 continue; 1886 } 1887 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1888 // If it has a value, it was not split by the code extractor, which 1889 // is what we are looking for. 1890 if (Region.Candidate->getGVN(PN)) 1891 continue; 1892 1893 // We record the parent block for the PHINode in the Region so that 1894 // we can exclude it from checks later on. 1895 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1896 1897 // If this is the first function, we do not need to worry about mergiing 1898 // this with any other block in the overall outlined function, so we can 1899 // just continue. 1900 if (FirstFunction) { 1901 BasicBlock *PHIBlock = PN->getParent(); 1902 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1903 continue; 1904 } 1905 1906 // We look for the aggregate block that contains the PHINodes leading into 1907 // this exit path. If we can't find one, we create one. 1908 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1909 1910 // For our PHINode, we find the combined canonical numbering, and 1911 // attempt to find a matching PHINode in the overall PHIBlock. If we 1912 // cannot, we copy the PHINode and move it into this new block. 1913 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, 1914 OutputMappings, UsedPHIs); 1915 NewI->setOperand(0, NewPN); 1916 } 1917 1918 // If we added an edge for basic blocks without a predecessor, we remove it 1919 // here. 1920 if (EdgeAdded) 1921 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1922 I->eraseFromParent(); 1923 1924 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1925 << *Region.ExtractedFunction << " with " << *AggArg 1926 << " in function " << *Group.OutlinedFunction << "\n"); 1927 Arg->replaceAllUsesWith(AggArg); 1928 } 1929 } 1930 1931 /// Within an extracted function, replace the constants that need to be lifted 1932 /// into arguments with the actual argument. 1933 /// 1934 /// \param Region [in] - The region of extracted code to be changed. 1935 void replaceConstants(OutlinableRegion &Region) { 1936 OutlinableGroup &Group = *Region.Parent; 1937 // Iterate over the constants that need to be elevated into arguments 1938 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1939 unsigned AggArgIdx = Const.first; 1940 Function *OutlinedFunction = Group.OutlinedFunction; 1941 assert(OutlinedFunction && "Overall Function is not defined?"); 1942 Constant *CST = Const.second; 1943 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1944 // Identify the argument it will be elevated to, and replace instances of 1945 // that constant in the function. 1946 1947 // TODO: If in the future constants do not have one global value number, 1948 // i.e. a constant 1 could be mapped to several values, this check will 1949 // have to be more strict. It cannot be using only replaceUsesWithIf. 1950 1951 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1952 << " in function " << *OutlinedFunction << " with " 1953 << *Arg << "\n"); 1954 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1955 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1956 return I->getFunction() == OutlinedFunction; 1957 return false; 1958 }); 1959 } 1960 } 1961 1962 /// It is possible that there is a basic block that already performs the same 1963 /// stores. This returns a duplicate block, if it exists 1964 /// 1965 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1966 /// \param OutputStoreBBs [in] The existing output blocks. 1967 /// \returns an optional value with the number output block if there is a match. 1968 std::optional<unsigned> findDuplicateOutputBlock( 1969 DenseMap<Value *, BasicBlock *> &OutputBBs, 1970 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1971 1972 bool Mismatch = false; 1973 unsigned MatchingNum = 0; 1974 // We compare the new set output blocks to the other sets of output blocks. 1975 // If they are the same number, and have identical instructions, they are 1976 // considered to be the same. 1977 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1978 Mismatch = false; 1979 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1980 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1981 OutputBBs.find(VToB.first); 1982 if (OutputBBIt == OutputBBs.end()) { 1983 Mismatch = true; 1984 break; 1985 } 1986 1987 BasicBlock *CompBB = VToB.second; 1988 BasicBlock *OutputBB = OutputBBIt->second; 1989 if (CompBB->size() - 1 != OutputBB->size()) { 1990 Mismatch = true; 1991 break; 1992 } 1993 1994 BasicBlock::iterator NIt = OutputBB->begin(); 1995 for (Instruction &I : *CompBB) { 1996 if (isa<BranchInst>(&I)) 1997 continue; 1998 1999 if (!I.isIdenticalTo(&(*NIt))) { 2000 Mismatch = true; 2001 break; 2002 } 2003 2004 NIt++; 2005 } 2006 } 2007 2008 if (!Mismatch) 2009 return MatchingNum; 2010 2011 MatchingNum++; 2012 } 2013 2014 return std::nullopt; 2015 } 2016 2017 /// Remove empty output blocks from the outlined region. 2018 /// 2019 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 2020 /// Region. 2021 /// \param Region - The OutlinableRegion we are analyzing. 2022 static bool 2023 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 2024 OutlinableRegion &Region) { 2025 bool AllRemoved = true; 2026 Value *RetValueForBB; 2027 BasicBlock *NewBB; 2028 SmallVector<Value *, 4> ToRemove; 2029 // Iterate over the output blocks created in the outlined section. 2030 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 2031 RetValueForBB = VtoBB.first; 2032 NewBB = VtoBB.second; 2033 2034 // If there are no instructions, we remove it from the module, and also 2035 // mark the value for removal from the return value to output block mapping. 2036 if (NewBB->size() == 0) { 2037 NewBB->eraseFromParent(); 2038 ToRemove.push_back(RetValueForBB); 2039 continue; 2040 } 2041 2042 // Mark that we could not remove all the blocks since they were not all 2043 // empty. 2044 AllRemoved = false; 2045 } 2046 2047 // Remove the return value from the mapping. 2048 for (Value *V : ToRemove) 2049 BlocksToPrune.erase(V); 2050 2051 // Mark the region as having the no output scheme. 2052 if (AllRemoved) 2053 Region.OutputBlockNum = -1; 2054 2055 return AllRemoved; 2056 } 2057 2058 /// For the outlined section, move needed the StoreInsts for the output 2059 /// registers into their own block. Then, determine if there is a duplicate 2060 /// output block already created. 2061 /// 2062 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 2063 /// \param [in] Region - The OutlinableRegion that is being analyzed. 2064 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 2065 /// placed in. 2066 /// \param [in] EndBBs - the final blocks of the extracted function. 2067 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 2068 /// been replaced by a new output value. 2069 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2070 static void alignOutputBlockWithAggFunc( 2071 OutlinableGroup &OG, OutlinableRegion &Region, 2072 DenseMap<Value *, BasicBlock *> &OutputBBs, 2073 DenseMap<Value *, BasicBlock *> &EndBBs, 2074 const DenseMap<Value *, Value *> &OutputMappings, 2075 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2076 // If none of the output blocks have any instructions, this means that we do 2077 // not have to determine if it matches any of the other output schemes, and we 2078 // don't have to do anything else. 2079 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 2080 return; 2081 2082 // Determine is there is a duplicate set of blocks. 2083 std::optional<unsigned> MatchingBB = 2084 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 2085 2086 // If there is, we remove the new output blocks. If it does not, 2087 // we add it to our list of sets of output blocks. 2088 if (MatchingBB) { 2089 LLVM_DEBUG(dbgs() << "Set output block for region in function" 2090 << Region.ExtractedFunction << " to " << *MatchingBB); 2091 2092 Region.OutputBlockNum = *MatchingBB; 2093 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 2094 VtoBB.second->eraseFromParent(); 2095 return; 2096 } 2097 2098 Region.OutputBlockNum = OutputStoreBBs.size(); 2099 2100 Value *RetValueForBB; 2101 BasicBlock *NewBB; 2102 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2103 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 2104 RetValueForBB = VtoBB.first; 2105 NewBB = VtoBB.second; 2106 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2107 EndBBs.find(RetValueForBB); 2108 LLVM_DEBUG(dbgs() << "Create output block for region in" 2109 << Region.ExtractedFunction << " to " 2110 << *NewBB); 2111 BranchInst::Create(VBBIt->second, NewBB); 2112 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 2113 } 2114 } 2115 2116 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 2117 /// before creating a basic block for each \p NewMap, and inserting into the new 2118 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 2119 /// 2120 /// \param OldMap [in] - The mapping to base the new mapping off of. 2121 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 2122 /// \param ParentFunc [in] - The function to put the new basic block in. 2123 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 2124 /// by an index value. 2125 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 2126 DenseMap<Value *, BasicBlock *> &NewMap, 2127 Function *ParentFunc, Twine BaseName) { 2128 unsigned Idx = 0; 2129 std::vector<Value *> SortedKeys; 2130 2131 getSortedConstantKeys(SortedKeys, OldMap); 2132 2133 for (Value *RetVal : SortedKeys) { 2134 BasicBlock *NewBB = BasicBlock::Create( 2135 ParentFunc->getContext(), 2136 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 2137 ParentFunc); 2138 NewMap.insert(std::make_pair(RetVal, NewBB)); 2139 } 2140 } 2141 2142 /// Create the switch statement for outlined function to differentiate between 2143 /// all the output blocks. 2144 /// 2145 /// For the outlined section, determine if an outlined block already exists that 2146 /// matches the needed stores for the extracted section. 2147 /// \param [in] M - The module we are outlining from. 2148 /// \param [in] OG - The group of regions to be outlined. 2149 /// \param [in] EndBBs - The final blocks of the extracted function. 2150 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2151 void createSwitchStatement( 2152 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 2153 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2154 // We only need the switch statement if there is more than one store 2155 // combination, or there is more than one set of output blocks. The first 2156 // will occur when we store different sets of values for two different 2157 // regions. The second will occur when we have two outputs that are combined 2158 // in a PHINode outside of the region in one outlined instance, and are used 2159 // seaparately in another. This will create the same set of OutputGVNs, but 2160 // will generate two different output schemes. 2161 if (OG.OutputGVNCombinations.size() > 1) { 2162 Function *AggFunc = OG.OutlinedFunction; 2163 // Create a final block for each different return block. 2164 DenseMap<Value *, BasicBlock *> ReturnBBs; 2165 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2166 2167 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2168 std::pair<Value *, BasicBlock *> &OutputBlock = 2169 *OG.EndBBs.find(RetBlockPair.first); 2170 BasicBlock *ReturnBlock = RetBlockPair.second; 2171 BasicBlock *EndBB = OutputBlock.second; 2172 Instruction *Term = EndBB->getTerminator(); 2173 // Move the return value to the final block instead of the original exit 2174 // stub. 2175 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2176 // Put the switch statement in the old end basic block for the function 2177 // with a fall through to the new return block. 2178 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2179 << OutputStoreBBs.size() << "\n"); 2180 SwitchInst *SwitchI = 2181 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2182 ReturnBlock, OutputStoreBBs.size(), EndBB); 2183 2184 unsigned Idx = 0; 2185 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2186 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2187 OutputStoreBB.find(OutputBlock.first); 2188 2189 if (OSBBIt == OutputStoreBB.end()) 2190 continue; 2191 2192 BasicBlock *BB = OSBBIt->second; 2193 SwitchI->addCase( 2194 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2195 Term = BB->getTerminator(); 2196 Term->setSuccessor(0, ReturnBlock); 2197 Idx++; 2198 } 2199 } 2200 return; 2201 } 2202 2203 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2204 2205 // If there needs to be stores, move them from the output blocks to their 2206 // corresponding ending block. We do not check that the OutputGVNCombinations 2207 // is equal to 1 here since that could just been the case where there are 0 2208 // outputs. Instead, we check whether there is more than one set of output 2209 // blocks since this is the only case where we would have to move the 2210 // stores, and erase the extraneous blocks. 2211 if (OutputStoreBBs.size() == 1) { 2212 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2213 << *OG.OutlinedFunction << "\n"); 2214 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2215 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2216 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2217 EndBBs.find(VBPair.first); 2218 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2219 BasicBlock *EndBB = EndBBIt->second; 2220 BasicBlock *OutputBB = VBPair.second; 2221 Instruction *Term = OutputBB->getTerminator(); 2222 Term->eraseFromParent(); 2223 Term = EndBB->getTerminator(); 2224 moveBBContents(*OutputBB, *EndBB); 2225 Term->moveBefore(*EndBB, EndBB->end()); 2226 OutputBB->eraseFromParent(); 2227 } 2228 } 2229 } 2230 2231 /// Fill the new function that will serve as the replacement function for all of 2232 /// the extracted regions of a certain structure from the first region in the 2233 /// list of regions. Replace this first region's extracted function with the 2234 /// new overall function. 2235 /// 2236 /// \param [in] M - The module we are outlining from. 2237 /// \param [in] CurrentGroup - The group of regions to be outlined. 2238 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2239 /// set of stores needed for the different functions. 2240 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2241 /// once outlining is complete. 2242 /// \param [in] OutputMappings - Extracted functions to erase from module 2243 /// once outlining is complete. 2244 static void fillOverallFunction( 2245 Module &M, OutlinableGroup &CurrentGroup, 2246 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2247 std::vector<Function *> &FuncsToRemove, 2248 const DenseMap<Value *, Value *> &OutputMappings) { 2249 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2250 2251 // Move first extracted function's instructions into new function. 2252 LLVM_DEBUG(dbgs() << "Move instructions from " 2253 << *CurrentOS->ExtractedFunction << " to instruction " 2254 << *CurrentGroup.OutlinedFunction << "\n"); 2255 moveFunctionData(*CurrentOS->ExtractedFunction, 2256 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2257 2258 // Transfer the attributes from the function to the new function. 2259 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2260 CurrentGroup.OutlinedFunction->addFnAttr(A); 2261 2262 // Create a new set of output blocks for the first extracted function. 2263 DenseMap<Value *, BasicBlock *> NewBBs; 2264 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2265 CurrentGroup.OutlinedFunction, "output_block_0"); 2266 CurrentOS->OutputBlockNum = 0; 2267 2268 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2269 replaceConstants(*CurrentOS); 2270 2271 // We first identify if any output blocks are empty, if they are we remove 2272 // them. We then create a branch instruction to the basic block to the return 2273 // block for the function for each non empty output block. 2274 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2275 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2276 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2277 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2278 CurrentGroup.EndBBs.find(VToBB.first); 2279 BasicBlock *EndBB = VBBIt->second; 2280 BranchInst::Create(EndBB, VToBB.second); 2281 OutputStoreBBs.back().insert(VToBB); 2282 } 2283 } 2284 2285 // Replace the call to the extracted function with the outlined function. 2286 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2287 2288 // We only delete the extracted functions at the end since we may need to 2289 // reference instructions contained in them for mapping purposes. 2290 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2291 } 2292 2293 void IROutliner::deduplicateExtractedSections( 2294 Module &M, OutlinableGroup &CurrentGroup, 2295 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2296 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2297 2298 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2299 2300 OutlinableRegion *CurrentOS; 2301 2302 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2303 OutputMappings); 2304 2305 std::vector<Value *> SortedKeys; 2306 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2307 CurrentOS = CurrentGroup.Regions[Idx]; 2308 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2309 *CurrentOS->ExtractedFunction); 2310 2311 // Create a set of BasicBlocks, one for each return block, to hold the 2312 // needed store instructions. 2313 DenseMap<Value *, BasicBlock *> NewBBs; 2314 createAndInsertBasicBlocks( 2315 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2316 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2317 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2318 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2319 CurrentGroup.EndBBs, OutputMappings, 2320 OutputStoreBBs); 2321 2322 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2323 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2324 } 2325 2326 // Create a switch statement to handle the different output schemes. 2327 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2328 2329 OutlinedFunctionNum++; 2330 } 2331 2332 /// Checks that the next instruction in the InstructionDataList matches the 2333 /// next instruction in the module. If they do not, there could be the 2334 /// possibility that extra code has been inserted, and we must ignore it. 2335 /// 2336 /// \param ID - The IRInstructionData to check the next instruction of. 2337 /// \returns true if the InstructionDataList and actual instruction match. 2338 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2339 // We check if there is a discrepancy between the InstructionDataList 2340 // and the actual next instruction in the module. If there is, it means 2341 // that an extra instruction was added, likely by the CodeExtractor. 2342 2343 // Since we do not have any similarity data about this particular 2344 // instruction, we cannot confidently outline it, and must discard this 2345 // candidate. 2346 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2347 Instruction *NextIDLInst = NextIDIt->Inst; 2348 Instruction *NextModuleInst = nullptr; 2349 if (!ID.Inst->isTerminator()) 2350 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2351 else if (NextIDLInst != nullptr) 2352 NextModuleInst = 2353 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2354 2355 if (NextIDLInst && NextIDLInst != NextModuleInst) 2356 return false; 2357 2358 return true; 2359 } 2360 2361 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2362 const OutlinableRegion &Region) { 2363 IRSimilarityCandidate *IRSC = Region.Candidate; 2364 unsigned StartIdx = IRSC->getStartIdx(); 2365 unsigned EndIdx = IRSC->getEndIdx(); 2366 2367 // A check to make sure that we are not about to attempt to outline something 2368 // that has already been outlined. 2369 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2370 if (Outlined.contains(Idx)) 2371 return false; 2372 2373 // We check if the recorded instruction matches the actual next instruction, 2374 // if it does not, we fix it in the InstructionDataList. 2375 if (!Region.Candidate->backInstruction()->isTerminator()) { 2376 Instruction *NewEndInst = 2377 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2378 assert(NewEndInst && "Next instruction is a nullptr?"); 2379 if (Region.Candidate->end()->Inst != NewEndInst) { 2380 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2381 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2382 IRInstructionData(*NewEndInst, 2383 InstructionClassifier.visit(*NewEndInst), *IDL); 2384 2385 // Insert the first IRInstructionData of the new region after the 2386 // last IRInstructionData of the IRSimilarityCandidate. 2387 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2388 } 2389 } 2390 2391 return none_of(*IRSC, [this](IRInstructionData &ID) { 2392 if (!nextIRInstructionDataMatchesNextInst(ID)) 2393 return true; 2394 2395 return !this->InstructionClassifier.visit(ID.Inst); 2396 }); 2397 } 2398 2399 void IROutliner::pruneIncompatibleRegions( 2400 std::vector<IRSimilarityCandidate> &CandidateVec, 2401 OutlinableGroup &CurrentGroup) { 2402 bool PreviouslyOutlined; 2403 2404 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2405 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2406 const IRSimilarityCandidate &RHS) { 2407 return LHS.getStartIdx() < RHS.getStartIdx(); 2408 }); 2409 2410 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2411 // Since outlining a call and a branch instruction will be the same as only 2412 // outlinining a call instruction, we ignore it as a space saving. 2413 if (FirstCandidate.getLength() == 2) { 2414 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2415 isa<BranchInst>(FirstCandidate.back()->Inst)) 2416 return; 2417 } 2418 2419 unsigned CurrentEndIdx = 0; 2420 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2421 PreviouslyOutlined = false; 2422 unsigned StartIdx = IRSC.getStartIdx(); 2423 unsigned EndIdx = IRSC.getEndIdx(); 2424 const Function &FnForCurrCand = *IRSC.getFunction(); 2425 2426 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2427 if (Outlined.contains(Idx)) { 2428 PreviouslyOutlined = true; 2429 break; 2430 } 2431 2432 if (PreviouslyOutlined) 2433 continue; 2434 2435 // Check over the instructions, and if the basic block has its address 2436 // taken for use somewhere else, we do not outline that block. 2437 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2438 return ID.Inst->getParent()->hasAddressTaken(); 2439 }); 2440 2441 if (BBHasAddressTaken) 2442 continue; 2443 2444 if (FnForCurrCand.hasOptNone()) 2445 continue; 2446 2447 if (FnForCurrCand.hasFnAttribute("nooutline")) { 2448 LLVM_DEBUG({ 2449 dbgs() << "... Skipping function with nooutline attribute: " 2450 << FnForCurrCand.getName() << "\n"; 2451 }); 2452 continue; 2453 } 2454 2455 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2456 !OutlineFromLinkODRs) 2457 continue; 2458 2459 // Greedily prune out any regions that will overlap with already chosen 2460 // regions. 2461 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2462 continue; 2463 2464 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2465 if (!nextIRInstructionDataMatchesNextInst(ID)) 2466 return true; 2467 2468 return !this->InstructionClassifier.visit(ID.Inst); 2469 }); 2470 2471 if (BadInst) 2472 continue; 2473 2474 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2475 OutlinableRegion(IRSC, CurrentGroup); 2476 CurrentGroup.Regions.push_back(OS); 2477 2478 CurrentEndIdx = EndIdx; 2479 } 2480 } 2481 2482 InstructionCost 2483 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2484 InstructionCost RegionBenefit = 0; 2485 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2486 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2487 // We add the number of instructions in the region to the benefit as an 2488 // estimate as to how much will be removed. 2489 RegionBenefit += Region->getBenefit(TTI); 2490 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2491 << " saved instructions to overfall benefit.\n"); 2492 } 2493 2494 return RegionBenefit; 2495 } 2496 2497 /// For the \p OutputCanon number passed in find the value represented by this 2498 /// canonical number. If it is from a PHINode, we pick the first incoming 2499 /// value and return that Value instead. 2500 /// 2501 /// \param Region - The OutlinableRegion to get the Value from. 2502 /// \param OutputCanon - The canonical number to find the Value from. 2503 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2504 /// Region. 2505 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2506 unsigned OutputCanon) { 2507 OutlinableGroup &CurrentGroup = *Region.Parent; 2508 // If the value is greater than the value in the tracker, we have a 2509 // PHINode and will instead use one of the incoming values to find the 2510 // type. 2511 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2512 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2513 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2514 "Could not find GVN set for PHINode number!"); 2515 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2516 OutputCanon = *It->second.second.begin(); 2517 } 2518 std::optional<unsigned> OGVN = 2519 Region.Candidate->fromCanonicalNum(OutputCanon); 2520 assert(OGVN && "Could not find GVN for Canonical Number?"); 2521 std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2522 assert(OV && "Could not find value for GVN?"); 2523 return *OV; 2524 } 2525 2526 InstructionCost 2527 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2528 InstructionCost OverallCost = 0; 2529 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2530 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2531 2532 // Each output incurs a load after the call, so we add that to the cost. 2533 for (unsigned OutputCanon : Region->GVNStores) { 2534 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2535 InstructionCost LoadCost = 2536 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2537 TargetTransformInfo::TCK_CodeSize); 2538 2539 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2540 << " instructions to cost for output of type " 2541 << *V->getType() << "\n"); 2542 OverallCost += LoadCost; 2543 } 2544 } 2545 2546 return OverallCost; 2547 } 2548 2549 /// Find the extra instructions needed to handle any output values for the 2550 /// region. 2551 /// 2552 /// \param [in] M - The Module to outline from. 2553 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2554 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2555 /// new instruction costs. 2556 /// \returns the additional cost to handle the outputs. 2557 static InstructionCost findCostForOutputBlocks(Module &M, 2558 OutlinableGroup &CurrentGroup, 2559 TargetTransformInfo &TTI) { 2560 InstructionCost OutputCost = 0; 2561 unsigned NumOutputBranches = 0; 2562 2563 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2564 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2565 DenseSet<BasicBlock *> CandidateBlocks; 2566 Candidate.getBasicBlocks(CandidateBlocks); 2567 2568 // Count the number of different output branches that point to blocks outside 2569 // of the region. 2570 DenseSet<BasicBlock *> FoundBlocks; 2571 for (IRInstructionData &ID : Candidate) { 2572 if (!isa<BranchInst>(ID.Inst)) 2573 continue; 2574 2575 for (Value *V : ID.OperVals) { 2576 BasicBlock *BB = static_cast<BasicBlock *>(V); 2577 if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second) 2578 NumOutputBranches++; 2579 } 2580 } 2581 2582 CurrentGroup.BranchesToOutside = NumOutputBranches; 2583 2584 for (const ArrayRef<unsigned> &OutputUse : 2585 CurrentGroup.OutputGVNCombinations) { 2586 for (unsigned OutputCanon : OutputUse) { 2587 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2588 InstructionCost StoreCost = 2589 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2590 TargetTransformInfo::TCK_CodeSize); 2591 2592 // An instruction cost is added for each store set that needs to occur for 2593 // various output combinations inside the function, plus a branch to 2594 // return to the exit block. 2595 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2596 << " instructions to cost for output of type " 2597 << *V->getType() << "\n"); 2598 OutputCost += StoreCost * NumOutputBranches; 2599 } 2600 2601 InstructionCost BranchCost = 2602 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2603 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2604 << " a branch instruction\n"); 2605 OutputCost += BranchCost * NumOutputBranches; 2606 } 2607 2608 // If there is more than one output scheme, we must have a comparison and 2609 // branch for each different item in the switch statement. 2610 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2611 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2612 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2613 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2614 TargetTransformInfo::TCK_CodeSize); 2615 InstructionCost BranchCost = 2616 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2617 2618 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2619 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2620 2621 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2622 << " instructions for each switch case for each different" 2623 << " output path in a function\n"); 2624 OutputCost += TotalCost * NumOutputBranches; 2625 } 2626 2627 return OutputCost; 2628 } 2629 2630 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2631 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2632 CurrentGroup.Benefit += RegionBenefit; 2633 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2634 2635 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2636 CurrentGroup.Cost += OutputReloadCost; 2637 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2638 2639 InstructionCost AverageRegionBenefit = 2640 RegionBenefit / CurrentGroup.Regions.size(); 2641 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2642 unsigned NumRegions = CurrentGroup.Regions.size(); 2643 TargetTransformInfo &TTI = 2644 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2645 2646 // We add one region to the cost once, to account for the instructions added 2647 // inside of the newly created function. 2648 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2649 << " instructions to cost for body of new function.\n"); 2650 CurrentGroup.Cost += AverageRegionBenefit; 2651 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2652 2653 // For each argument, we must add an instruction for loading the argument 2654 // out of the register and into a value inside of the newly outlined function. 2655 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2656 << " instructions to cost for each argument in the new" 2657 << " function.\n"); 2658 CurrentGroup.Cost += 2659 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2660 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2661 2662 // Each argument needs to either be loaded into a register or onto the stack. 2663 // Some arguments will only be loaded into the stack once the argument 2664 // registers are filled. 2665 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2666 << " instructions to cost for each argument in the new" 2667 << " function " << NumRegions << " times for the " 2668 << "needed argument handling at the call site.\n"); 2669 CurrentGroup.Cost += 2670 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2671 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2672 2673 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2674 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2675 } 2676 2677 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2678 ArrayRef<Value *> Outputs, 2679 LoadInst *LI) { 2680 // For and load instructions following the call 2681 Value *Operand = LI->getPointerOperand(); 2682 std::optional<unsigned> OutputIdx; 2683 // Find if the operand it is an output register. 2684 for (unsigned ArgIdx = Region.NumExtractedInputs; 2685 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2686 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2687 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2688 break; 2689 } 2690 } 2691 2692 // If we found an output register, place a mapping of the new value 2693 // to the original in the mapping. 2694 if (!OutputIdx) 2695 return; 2696 2697 if (!OutputMappings.contains(Outputs[*OutputIdx])) { 2698 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2699 << *Outputs[*OutputIdx] << "\n"); 2700 OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx])); 2701 } else { 2702 Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second; 2703 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2704 << *Outputs[*OutputIdx] << "\n"); 2705 OutputMappings.insert(std::make_pair(LI, Orig)); 2706 } 2707 } 2708 2709 bool IROutliner::extractSection(OutlinableRegion &Region) { 2710 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2711 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2712 BasicBlock *InitialStart = Region.StartBB; 2713 Function *OrigF = Region.StartBB->getParent(); 2714 CodeExtractorAnalysisCache CEAC(*OrigF); 2715 Region.ExtractedFunction = 2716 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2717 2718 // If the extraction was successful, find the BasicBlock, and reassign the 2719 // OutlinableRegion blocks 2720 if (!Region.ExtractedFunction) { 2721 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2722 << "\n"); 2723 Region.reattachCandidate(); 2724 return false; 2725 } 2726 2727 // Get the block containing the called branch, and reassign the blocks as 2728 // necessary. If the original block still exists, it is because we ended on 2729 // a branch instruction, and so we move the contents into the block before 2730 // and assign the previous block correctly. 2731 User *InstAsUser = Region.ExtractedFunction->user_back(); 2732 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2733 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2734 assert(Region.PrevBB && "PrevBB is nullptr?"); 2735 if (Region.PrevBB == InitialStart) { 2736 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2737 Instruction *BI = NewPrev->getTerminator(); 2738 BI->eraseFromParent(); 2739 moveBBContents(*InitialStart, *NewPrev); 2740 Region.PrevBB = NewPrev; 2741 InitialStart->eraseFromParent(); 2742 } 2743 2744 Region.StartBB = RewrittenBB; 2745 Region.EndBB = RewrittenBB; 2746 2747 // The sequences of outlinable regions has now changed. We must fix the 2748 // IRInstructionDataList for consistency. Although they may not be illegal 2749 // instructions, they should not be compared with anything else as they 2750 // should not be outlined in this round. So marking these as illegal is 2751 // allowed. 2752 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2753 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2754 Instruction *EndRewritten = &*RewrittenBB->begin(); 2755 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2756 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2757 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2758 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2759 2760 // Insert the first IRInstructionData of the new region in front of the 2761 // first IRInstructionData of the IRSimilarityCandidate. 2762 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2763 // Insert the first IRInstructionData of the new region after the 2764 // last IRInstructionData of the IRSimilarityCandidate. 2765 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2766 // Remove the IRInstructionData from the IRSimilarityCandidate. 2767 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2768 2769 assert(RewrittenBB != nullptr && 2770 "Could not find a predecessor after extraction!"); 2771 2772 // Iterate over the new set of instructions to find the new call 2773 // instruction. 2774 for (Instruction &I : *RewrittenBB) 2775 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2776 if (Region.ExtractedFunction == CI->getCalledFunction()) 2777 Region.Call = CI; 2778 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2779 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2780 Region.reattachCandidate(); 2781 return true; 2782 } 2783 2784 unsigned IROutliner::doOutline(Module &M) { 2785 // Find the possible similarity sections. 2786 InstructionClassifier.EnableBranches = !DisableBranches; 2787 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2788 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2789 2790 IRSimilarityIdentifier &Identifier = getIRSI(M); 2791 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2792 2793 // Sort them by size of extracted sections 2794 unsigned OutlinedFunctionNum = 0; 2795 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2796 // to sort them by the potential number of instructions to be outlined 2797 if (SimilarityCandidates.size() > 1) 2798 llvm::stable_sort(SimilarityCandidates, 2799 [](const std::vector<IRSimilarityCandidate> &LHS, 2800 const std::vector<IRSimilarityCandidate> &RHS) { 2801 return LHS[0].getLength() * LHS.size() > 2802 RHS[0].getLength() * RHS.size(); 2803 }); 2804 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2805 // each of the following for loops to avoid making an allocator. 2806 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2807 2808 DenseSet<unsigned> NotSame; 2809 std::vector<OutlinableGroup *> NegativeCostGroups; 2810 std::vector<OutlinableRegion *> OutlinedRegions; 2811 // Iterate over the possible sets of similarity. 2812 unsigned PotentialGroupIdx = 0; 2813 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2814 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2815 2816 // Remove entries that were previously outlined 2817 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2818 2819 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2820 // trying to outlined since there is no compatible similar instance of this 2821 // code. 2822 if (CurrentGroup.Regions.size() < 2) 2823 continue; 2824 2825 // Determine if there are any values that are the same constant throughout 2826 // each section in the set. 2827 NotSame.clear(); 2828 CurrentGroup.findSameConstants(NotSame); 2829 2830 if (CurrentGroup.IgnoreGroup) 2831 continue; 2832 2833 // Create a CodeExtractor for each outlinable region. Identify inputs and 2834 // outputs for each section using the code extractor and create the argument 2835 // types for the Aggregate Outlining Function. 2836 OutlinedRegions.clear(); 2837 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2838 // Break the outlinable region out of its parent BasicBlock into its own 2839 // BasicBlocks (see function implementation). 2840 OS->splitCandidate(); 2841 2842 // There's a chance that when the region is split, extra instructions are 2843 // added to the region. This makes the region no longer viable 2844 // to be split, so we ignore it for outlining. 2845 if (!OS->CandidateSplit) 2846 continue; 2847 2848 SmallVector<BasicBlock *> BE; 2849 DenseSet<BasicBlock *> BlocksInRegion; 2850 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2851 OS->CE = new (ExtractorAllocator.Allocate()) 2852 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2853 false, nullptr, "outlined"); 2854 findAddInputsOutputs(M, *OS, NotSame); 2855 if (!OS->IgnoreRegion) 2856 OutlinedRegions.push_back(OS); 2857 2858 // We recombine the blocks together now that we have gathered all the 2859 // needed information. 2860 OS->reattachCandidate(); 2861 } 2862 2863 CurrentGroup.Regions = std::move(OutlinedRegions); 2864 2865 if (CurrentGroup.Regions.empty()) 2866 continue; 2867 2868 CurrentGroup.collectGVNStoreSets(M); 2869 2870 if (CostModel) 2871 findCostBenefit(M, CurrentGroup); 2872 2873 // If we are adhering to the cost model, skip those groups where the cost 2874 // outweighs the benefits. 2875 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2876 OptimizationRemarkEmitter &ORE = 2877 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2878 ORE.emit([&]() { 2879 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2880 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2881 C->frontInstruction()); 2882 R << "did not outline " 2883 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2884 << " regions due to estimated increase of " 2885 << ore::NV("InstructionIncrease", 2886 CurrentGroup.Cost - CurrentGroup.Benefit) 2887 << " instructions at locations "; 2888 interleave( 2889 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2890 [&R](OutlinableRegion *Region) { 2891 R << ore::NV( 2892 "DebugLoc", 2893 Region->Candidate->frontInstruction()->getDebugLoc()); 2894 }, 2895 [&R]() { R << " "; }); 2896 return R; 2897 }); 2898 continue; 2899 } 2900 2901 NegativeCostGroups.push_back(&CurrentGroup); 2902 } 2903 2904 ExtractorAllocator.DestroyAll(); 2905 2906 if (NegativeCostGroups.size() > 1) 2907 stable_sort(NegativeCostGroups, 2908 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2909 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2910 }); 2911 2912 std::vector<Function *> FuncsToRemove; 2913 for (OutlinableGroup *CG : NegativeCostGroups) { 2914 OutlinableGroup &CurrentGroup = *CG; 2915 2916 OutlinedRegions.clear(); 2917 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2918 // We check whether our region is compatible with what has already been 2919 // outlined, and whether we need to ignore this item. 2920 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2921 continue; 2922 OutlinedRegions.push_back(Region); 2923 } 2924 2925 if (OutlinedRegions.size() < 2) 2926 continue; 2927 2928 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2929 // we are still outlining enough regions to make up for the added cost. 2930 CurrentGroup.Regions = std::move(OutlinedRegions); 2931 if (CostModel) { 2932 CurrentGroup.Benefit = 0; 2933 CurrentGroup.Cost = 0; 2934 findCostBenefit(M, CurrentGroup); 2935 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2936 continue; 2937 } 2938 OutlinedRegions.clear(); 2939 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2940 Region->splitCandidate(); 2941 if (!Region->CandidateSplit) 2942 continue; 2943 OutlinedRegions.push_back(Region); 2944 } 2945 2946 CurrentGroup.Regions = std::move(OutlinedRegions); 2947 if (CurrentGroup.Regions.size() < 2) { 2948 for (OutlinableRegion *R : CurrentGroup.Regions) 2949 R->reattachCandidate(); 2950 continue; 2951 } 2952 2953 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2954 << " and benefit " << CurrentGroup.Benefit << "\n"); 2955 2956 // Create functions out of all the sections, and mark them as outlined. 2957 OutlinedRegions.clear(); 2958 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2959 SmallVector<BasicBlock *> BE; 2960 DenseSet<BasicBlock *> BlocksInRegion; 2961 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2962 OS->CE = new (ExtractorAllocator.Allocate()) 2963 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2964 false, nullptr, "outlined"); 2965 bool FunctionOutlined = extractSection(*OS); 2966 if (FunctionOutlined) { 2967 unsigned StartIdx = OS->Candidate->getStartIdx(); 2968 unsigned EndIdx = OS->Candidate->getEndIdx(); 2969 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2970 Outlined.insert(Idx); 2971 2972 OutlinedRegions.push_back(OS); 2973 } 2974 } 2975 2976 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2977 << " with benefit " << CurrentGroup.Benefit 2978 << " and cost " << CurrentGroup.Cost << "\n"); 2979 2980 CurrentGroup.Regions = std::move(OutlinedRegions); 2981 2982 if (CurrentGroup.Regions.empty()) 2983 continue; 2984 2985 OptimizationRemarkEmitter &ORE = 2986 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2987 ORE.emit([&]() { 2988 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2989 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2990 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2991 << " regions with decrease of " 2992 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2993 << " instructions at locations "; 2994 interleave( 2995 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2996 [&R](OutlinableRegion *Region) { 2997 R << ore::NV("DebugLoc", 2998 Region->Candidate->frontInstruction()->getDebugLoc()); 2999 }, 3000 [&R]() { R << " "; }); 3001 return R; 3002 }); 3003 3004 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 3005 OutlinedFunctionNum); 3006 } 3007 3008 for (Function *F : FuncsToRemove) 3009 F->eraseFromParent(); 3010 3011 return OutlinedFunctionNum; 3012 } 3013 3014 bool IROutliner::run(Module &M) { 3015 CostModel = !NoCostModel; 3016 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 3017 3018 return doOutline(M) > 0; 3019 } 3020 3021 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 3022 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3023 3024 std::function<TargetTransformInfo &(Function &)> GTTI = 3025 [&FAM](Function &F) -> TargetTransformInfo & { 3026 return FAM.getResult<TargetIRAnalysis>(F); 3027 }; 3028 3029 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 3030 [&AM](Module &M) -> IRSimilarityIdentifier & { 3031 return AM.getResult<IRSimilarityAnalysis>(M); 3032 }; 3033 3034 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3035 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 3036 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3037 ORE.reset(new OptimizationRemarkEmitter(&F)); 3038 return *ORE; 3039 }; 3040 3041 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 3042 return PreservedAnalyses::none(); 3043 return PreservedAnalyses::all(); 3044 } 3045