1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/PassManager.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Transforms/IPO.h" 24 #include <map> 25 #include <set> 26 #include <vector> 27 28 #define DEBUG_TYPE "iroutliner" 29 30 using namespace llvm; 31 using namespace IRSimilarity; 32 33 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 34 // functions. This is false by default because the linker can dedupe linkonceodr 35 // functions. Since the outliner is confined to a single module (modulo LTO), 36 // this is off by default. It should, however, be the default behavior in 37 // LTO. 38 static cl::opt<bool> EnableLinkOnceODRIROutlining( 39 "enable-linkonceodr-ir-outlining", cl::Hidden, 40 cl::desc("Enable the IR outliner on linkonceodr functions"), 41 cl::init(false)); 42 43 // This is a debug option to test small pieces of code to ensure that outlining 44 // works correctly. 45 static cl::opt<bool> NoCostModel( 46 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 47 cl::desc("Debug option to outline greedily, without restriction that " 48 "calculated benefit outweighs cost")); 49 50 /// The OutlinableGroup holds all the overarching information for outlining 51 /// a set of regions that are structurally similar to one another, such as the 52 /// types of the overall function, the output blocks, the sets of stores needed 53 /// and a list of the different regions. This information is used in the 54 /// deduplication of extracted regions with the same structure. 55 struct OutlinableGroup { 56 /// The sections that could be outlined 57 std::vector<OutlinableRegion *> Regions; 58 59 /// The argument types for the function created as the overall function to 60 /// replace the extracted function for each region. 61 std::vector<Type *> ArgumentTypes; 62 /// The FunctionType for the overall function. 63 FunctionType *OutlinedFunctionType = nullptr; 64 /// The Function for the collective overall function. 65 Function *OutlinedFunction = nullptr; 66 67 /// Flag for whether we should not consider this group of OutlinableRegions 68 /// for extraction. 69 bool IgnoreGroup = false; 70 71 /// The return block for the overall function. 72 BasicBlock *EndBB = nullptr; 73 74 /// A set containing the different GVN store sets needed. Each array contains 75 /// a sorted list of the different values that need to be stored into output 76 /// registers. 77 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 78 79 /// Flag for whether the \ref ArgumentTypes have been defined after the 80 /// extraction of the first region. 81 bool InputTypesSet = false; 82 83 /// The number of input values in \ref ArgumentTypes. Anything after this 84 /// index in ArgumentTypes is an output argument. 85 unsigned NumAggregateInputs = 0; 86 87 /// The number of instructions that will be outlined by extracting \ref 88 /// Regions. 89 InstructionCost Benefit = 0; 90 /// The number of added instructions needed for the outlining of the \ref 91 /// Regions. 92 InstructionCost Cost = 0; 93 94 /// The argument that needs to be marked with the swifterr attribute. If not 95 /// needed, there is no value. 96 Optional<unsigned> SwiftErrorArgument; 97 98 /// For the \ref Regions, we look at every Value. If it is a constant, 99 /// we check whether it is the same in Region. 100 /// 101 /// \param [in,out] NotSame contains the global value numbers where the 102 /// constant is not always the same, and must be passed in as an argument. 103 void findSameConstants(DenseSet<unsigned> &NotSame); 104 105 /// For the regions, look at each set of GVN stores needed and account for 106 /// each combination. Add an argument to the argument types if there is 107 /// more than one combination. 108 /// 109 /// \param [in] M - The module we are outlining from. 110 void collectGVNStoreSets(Module &M); 111 }; 112 113 /// Move the contents of \p SourceBB to before the last instruction of \p 114 /// TargetBB. 115 /// \param SourceBB - the BasicBlock to pull Instructions from. 116 /// \param TargetBB - the BasicBlock to put Instruction into. 117 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 118 BasicBlock::iterator BBCurr, BBEnd, BBNext; 119 for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd; 120 BBCurr = BBNext) { 121 BBNext = std::next(BBCurr); 122 BBCurr->moveBefore(TargetBB, TargetBB.end()); 123 } 124 } 125 126 void OutlinableRegion::splitCandidate() { 127 assert(!CandidateSplit && "Candidate already split!"); 128 129 Instruction *StartInst = (*Candidate->begin()).Inst; 130 Instruction *EndInst = (*Candidate->end()).Inst; 131 assert(StartInst && EndInst && "Expected a start and end instruction?"); 132 StartBB = StartInst->getParent(); 133 PrevBB = StartBB; 134 135 // The basic block gets split like so: 136 // block: block: 137 // inst1 inst1 138 // inst2 inst2 139 // region1 br block_to_outline 140 // region2 block_to_outline: 141 // region3 -> region1 142 // region4 region2 143 // inst3 region3 144 // inst4 region4 145 // br block_after_outline 146 // block_after_outline: 147 // inst3 148 // inst4 149 150 std::string OriginalName = PrevBB->getName().str(); 151 152 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 153 154 // This is the case for the inner block since we do not have to include 155 // multiple blocks. 156 EndBB = StartBB; 157 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 158 159 CandidateSplit = true; 160 } 161 162 void OutlinableRegion::reattachCandidate() { 163 assert(CandidateSplit && "Candidate is not split!"); 164 165 // The basic block gets reattached like so: 166 // block: block: 167 // inst1 inst1 168 // inst2 inst2 169 // br block_to_outline region1 170 // block_to_outline: -> region2 171 // region1 region3 172 // region2 region4 173 // region3 inst3 174 // region4 inst4 175 // br block_after_outline 176 // block_after_outline: 177 // inst3 178 // inst4 179 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 180 assert(FollowBB != nullptr && "StartBB for Candidate is not defined!"); 181 182 // StartBB should only have one predecessor since we put an unconditional 183 // branch at the end of PrevBB when we split the BasicBlock. 184 PrevBB = StartBB->getSinglePredecessor(); 185 assert(PrevBB != nullptr && 186 "No Predecessor for the region start basic block!"); 187 188 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 189 assert(EndBB->getTerminator() && "Terminator removed from EndBB!"); 190 PrevBB->getTerminator()->eraseFromParent(); 191 EndBB->getTerminator()->eraseFromParent(); 192 193 moveBBContents(*StartBB, *PrevBB); 194 195 BasicBlock *PlacementBB = PrevBB; 196 if (StartBB != EndBB) 197 PlacementBB = EndBB; 198 moveBBContents(*FollowBB, *PlacementBB); 199 200 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 201 PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 202 StartBB->eraseFromParent(); 203 FollowBB->eraseFromParent(); 204 205 // Make sure to save changes back to the StartBB. 206 StartBB = PrevBB; 207 EndBB = nullptr; 208 PrevBB = nullptr; 209 FollowBB = nullptr; 210 211 CandidateSplit = false; 212 } 213 214 /// Find whether \p V matches the Constants previously found for the \p GVN. 215 /// 216 /// \param V - The value to check for consistency. 217 /// \param GVN - The global value number assigned to \p V. 218 /// \param GVNToConstant - The mapping of global value number to Constants. 219 /// \returns true if the Value matches the Constant mapped to by V and false if 220 /// it \p V is a Constant but does not match. 221 /// \returns None if \p V is not a Constant. 222 static Optional<bool> 223 constantMatches(Value *V, unsigned GVN, 224 DenseMap<unsigned, Constant *> &GVNToConstant) { 225 // See if we have a constants 226 Constant *CST = dyn_cast<Constant>(V); 227 if (!CST) 228 return None; 229 230 // Holds a mapping from a global value number to a Constant. 231 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 232 bool Inserted; 233 234 235 // If we have a constant, try to make a new entry in the GVNToConstant. 236 std::tie(GVNToConstantIt, Inserted) = 237 GVNToConstant.insert(std::make_pair(GVN, CST)); 238 // If it was found and is not equal, it is not the same. We do not 239 // handle this case yet, and exit early. 240 if (Inserted || (GVNToConstantIt->second == CST)) 241 return true; 242 243 return false; 244 } 245 246 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 247 InstructionCost Benefit = 0; 248 249 // Estimate the benefit of outlining a specific sections of the program. We 250 // delegate mostly this task to the TargetTransformInfo so that if the target 251 // has specific changes, we can have a more accurate estimate. 252 253 // However, getInstructionCost delegates the code size calculation for 254 // arithmetic instructions to getArithmeticInstrCost in 255 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 256 // code size for a division and remainder instruction to be equal to 4, and 257 // everything else to 1. This is not an accurate representation of the 258 // division instruction for targets that have a native division instruction. 259 // To be overly conservative, we only add 1 to the number of instructions for 260 // each division instruction. 261 for (Instruction &I : *StartBB) { 262 switch (I.getOpcode()) { 263 case Instruction::FDiv: 264 case Instruction::FRem: 265 case Instruction::SDiv: 266 case Instruction::SRem: 267 case Instruction::UDiv: 268 case Instruction::URem: 269 Benefit += 1; 270 break; 271 default: 272 Benefit += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 273 break; 274 } 275 } 276 277 return Benefit; 278 } 279 280 /// Find whether \p Region matches the global value numbering to Constant 281 /// mapping found so far. 282 /// 283 /// \param Region - The OutlinableRegion we are checking for constants 284 /// \param GVNToConstant - The mapping of global value number to Constants. 285 /// \param NotSame - The set of global value numbers that do not have the same 286 /// constant in each region. 287 /// \returns true if all Constants are the same in every use of a Constant in \p 288 /// Region and false if not 289 static bool 290 collectRegionsConstants(OutlinableRegion &Region, 291 DenseMap<unsigned, Constant *> &GVNToConstant, 292 DenseSet<unsigned> &NotSame) { 293 bool ConstantsTheSame = true; 294 295 IRSimilarityCandidate &C = *Region.Candidate; 296 for (IRInstructionData &ID : C) { 297 298 // Iterate over the operands in an instruction. If the global value number, 299 // assigned by the IRSimilarityCandidate, has been seen before, we check if 300 // the the number has been found to be not the same value in each instance. 301 for (Value *V : ID.OperVals) { 302 Optional<unsigned> GVNOpt = C.getGVN(V); 303 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 304 unsigned GVN = GVNOpt.getValue(); 305 306 // Check if this global value has been found to not be the same already. 307 if (NotSame.contains(GVN)) { 308 if (isa<Constant>(V)) 309 ConstantsTheSame = false; 310 continue; 311 } 312 313 // If it has been the same so far, we check the value for if the 314 // associated Constant value match the previous instances of the same 315 // global value number. If the global value does not map to a Constant, 316 // it is considered to not be the same value. 317 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 318 if (ConstantMatches.hasValue()) { 319 if (ConstantMatches.getValue()) 320 continue; 321 else 322 ConstantsTheSame = false; 323 } 324 325 // While this value is a register, it might not have been previously, 326 // make sure we don't already have a constant mapped to this global value 327 // number. 328 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 329 ConstantsTheSame = false; 330 331 NotSame.insert(GVN); 332 } 333 } 334 335 return ConstantsTheSame; 336 } 337 338 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 339 DenseMap<unsigned, Constant *> GVNToConstant; 340 341 for (OutlinableRegion *Region : Regions) 342 collectRegionsConstants(*Region, GVNToConstant, NotSame); 343 } 344 345 void OutlinableGroup::collectGVNStoreSets(Module &M) { 346 for (OutlinableRegion *OS : Regions) 347 OutputGVNCombinations.insert(OS->GVNStores); 348 349 // We are adding an extracted argument to decide between which output path 350 // to use in the basic block. It is used in a switch statement and only 351 // needs to be an integer. 352 if (OutputGVNCombinations.size() > 1) 353 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 354 } 355 356 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 357 unsigned FunctionNameSuffix) { 358 assert(!Group.OutlinedFunction && "Function is already defined!"); 359 360 Group.OutlinedFunctionType = FunctionType::get( 361 Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false); 362 363 // These functions will only be called from within the same module, so 364 // we can set an internal linkage. 365 Group.OutlinedFunction = Function::Create( 366 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 367 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 368 369 // Transfer the swifterr attribute to the correct function parameter. 370 if (Group.SwiftErrorArgument.hasValue()) 371 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 372 Attribute::SwiftError); 373 374 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 375 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 376 377 return Group.OutlinedFunction; 378 } 379 380 /// Move each BasicBlock in \p Old to \p New. 381 /// 382 /// \param [in] Old - the function to move the basic blocks from. 383 /// \param [in] New - The function to move the basic blocks to. 384 /// \returns the first return block for the function in New. 385 static BasicBlock *moveFunctionData(Function &Old, Function &New) { 386 Function::iterator CurrBB, NextBB, FinalBB; 387 BasicBlock *NewEnd = nullptr; 388 std::vector<Instruction *> DebugInsts; 389 for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB; 390 CurrBB = NextBB) { 391 NextBB = std::next(CurrBB); 392 CurrBB->removeFromParent(); 393 CurrBB->insertInto(&New); 394 Instruction *I = CurrBB->getTerminator(); 395 if (isa<ReturnInst>(I)) 396 NewEnd = &(*CurrBB); 397 } 398 399 assert(NewEnd && "No return instruction for new function?"); 400 return NewEnd; 401 } 402 403 /// Find the the constants that will need to be lifted into arguments 404 /// as they are not the same in each instance of the region. 405 /// 406 /// \param [in] C - The IRSimilarityCandidate containing the region we are 407 /// analyzing. 408 /// \param [in] NotSame - The set of global value numbers that do not have a 409 /// single Constant across all OutlinableRegions similar to \p C. 410 /// \param [out] Inputs - The list containing the global value numbers of the 411 /// arguments needed for the region of code. 412 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 413 std::vector<unsigned> &Inputs) { 414 DenseSet<unsigned> Seen; 415 // Iterate over the instructions, and find what constants will need to be 416 // extracted into arguments. 417 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 418 IDIt != EndIDIt; IDIt++) { 419 for (Value *V : (*IDIt).OperVals) { 420 // Since these are stored before any outlining, they will be in the 421 // global value numbering. 422 unsigned GVN = C.getGVN(V).getValue(); 423 if (isa<Constant>(V)) 424 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 425 Inputs.push_back(GVN); 426 Seen.insert(GVN); 427 } 428 } 429 } 430 } 431 432 /// Find the GVN for the inputs that have been found by the CodeExtractor. 433 /// 434 /// \param [in] C - The IRSimilarityCandidate containing the region we are 435 /// analyzing. 436 /// \param [in] CurrentInputs - The set of inputs found by the 437 /// CodeExtractor. 438 /// \param [out] EndInputNumbers - The global value numbers for the extracted 439 /// arguments. 440 /// \param [in] OutputMappings - The mapping of values that have been replaced 441 /// by a new output value. 442 /// \param [out] EndInputs - The global value numbers for the extracted 443 /// arguments. 444 static void mapInputsToGVNs(IRSimilarityCandidate &C, 445 SetVector<Value *> &CurrentInputs, 446 const DenseMap<Value *, Value *> &OutputMappings, 447 std::vector<unsigned> &EndInputNumbers) { 448 // Get the Global Value Number for each input. We check if the Value has been 449 // replaced by a different value at output, and use the original value before 450 // replacement. 451 for (Value *Input : CurrentInputs) { 452 assert(Input && "Have a nullptr as an input"); 453 if (OutputMappings.find(Input) != OutputMappings.end()) 454 Input = OutputMappings.find(Input)->second; 455 assert(C.getGVN(Input).hasValue() && 456 "Could not find a numbering for the given input"); 457 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 458 } 459 } 460 461 /// Find the original value for the \p ArgInput values if any one of them was 462 /// replaced during a previous extraction. 463 /// 464 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 465 /// \param [in] OutputMappings - The mapping of values that have been replaced 466 /// by a new output value. 467 /// \param [out] RemappedArgInputs - The remapped values according to 468 /// \p OutputMappings that will be extracted. 469 static void 470 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 471 const DenseMap<Value *, Value *> &OutputMappings, 472 SetVector<Value *> &RemappedArgInputs) { 473 // Get the global value number for each input that will be extracted as an 474 // argument by the code extractor, remapping if needed for reloaded values. 475 for (Value *Input : ArgInputs) { 476 if (OutputMappings.find(Input) != OutputMappings.end()) 477 Input = OutputMappings.find(Input)->second; 478 RemappedArgInputs.insert(Input); 479 } 480 } 481 482 /// Find the input GVNs and the output values for a region of Instructions. 483 /// Using the code extractor, we collect the inputs to the extracted function. 484 /// 485 /// The \p Region can be identified as needing to be ignored in this function. 486 /// It should be checked whether it should be ignored after a call to this 487 /// function. 488 /// 489 /// \param [in,out] Region - The region of code to be analyzed. 490 /// \param [out] InputGVNs - The global value numbers for the extracted 491 /// arguments. 492 /// \param [in] NotSame - The global value numbers in the region that do not 493 /// have the same constant value in the regions structurally similar to 494 /// \p Region. 495 /// \param [in] OutputMappings - The mapping of values that have been replaced 496 /// by a new output value after extraction. 497 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 498 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 499 /// as outputs. 500 static void getCodeExtractorArguments( 501 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 502 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 503 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 504 IRSimilarityCandidate &C = *Region.Candidate; 505 506 // OverallInputs are the inputs to the region found by the CodeExtractor, 507 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 508 // allocas of values whose lifetimes are contained completely within the 509 // outlined region. PremappedInputs are the arguments found by the 510 // CodeExtractor, removing conditions such as sunken allocas, but that 511 // may need to be remapped due to the extracted output values replacing 512 // the original values. We use DummyOutputs for this first run of finding 513 // inputs and outputs since the outputs could change during findAllocas, 514 // the correct set of extracted outputs will be in the final Outputs ValueSet. 515 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 516 DummyOutputs; 517 518 // Use the code extractor to get the inputs and outputs, without sunken 519 // allocas or removing llvm.assumes. 520 CodeExtractor *CE = Region.CE; 521 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 522 assert(Region.StartBB && "Region must have a start BasicBlock!"); 523 Function *OrigF = Region.StartBB->getParent(); 524 CodeExtractorAnalysisCache CEAC(*OrigF); 525 BasicBlock *Dummy = nullptr; 526 527 // The region may be ineligible due to VarArgs in the parent function. In this 528 // case we ignore the region. 529 if (!CE->isEligible()) { 530 Region.IgnoreRegion = true; 531 return; 532 } 533 534 // Find if any values are going to be sunk into the function when extracted 535 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 536 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 537 538 // TODO: Support regions with sunken allocas: values whose lifetimes are 539 // contained completely within the outlined region. These are not guaranteed 540 // to be the same in every region, so we must elevate them all to arguments 541 // when they appear. If these values are not equal, it means there is some 542 // Input in OverallInputs that was removed for ArgInputs. 543 if (OverallInputs.size() != PremappedInputs.size()) { 544 Region.IgnoreRegion = true; 545 return; 546 } 547 548 findConstants(C, NotSame, InputGVNs); 549 550 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 551 552 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 553 ArgInputs); 554 555 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 556 // we need to make sure they are in a deterministic order. 557 stable_sort(InputGVNs); 558 } 559 560 /// Look over the inputs and map each input argument to an argument in the 561 /// overall function for the OutlinableRegions. This creates a way to replace 562 /// the arguments of the extracted function with the arguments of the new 563 /// overall function. 564 /// 565 /// \param [in,out] Region - The region of code to be analyzed. 566 /// \param [in] InputsGVNs - The global value numbering of the input values 567 /// collected. 568 /// \param [in] ArgInputs - The values of the arguments to the extracted 569 /// function. 570 static void 571 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 572 std::vector<unsigned> &InputGVNs, 573 SetVector<Value *> &ArgInputs) { 574 575 IRSimilarityCandidate &C = *Region.Candidate; 576 OutlinableGroup &Group = *Region.Parent; 577 578 // This counts the argument number in the overall function. 579 unsigned TypeIndex = 0; 580 581 // This counts the argument number in the extracted function. 582 unsigned OriginalIndex = 0; 583 584 // Find the mapping of the extracted arguments to the arguments for the 585 // overall function. Since there may be extra arguments in the overall 586 // function to account for the extracted constants, we have two different 587 // counters as we find extracted arguments, and as we come across overall 588 // arguments. 589 for (unsigned InputVal : InputGVNs) { 590 Optional<Value *> InputOpt = C.fromGVN(InputVal); 591 assert(InputOpt.hasValue() && "Global value number not found?"); 592 Value *Input = InputOpt.getValue(); 593 594 if (!Group.InputTypesSet) { 595 Group.ArgumentTypes.push_back(Input->getType()); 596 // If the input value has a swifterr attribute, make sure to mark the 597 // argument in the overall function. 598 if (Input->isSwiftError()) { 599 assert( 600 !Group.SwiftErrorArgument.hasValue() && 601 "Argument already marked with swifterr for this OutlinableGroup!"); 602 Group.SwiftErrorArgument = TypeIndex; 603 } 604 } 605 606 // Check if we have a constant. If we do add it to the overall argument 607 // number to Constant map for the region, and continue to the next input. 608 if (Constant *CST = dyn_cast<Constant>(Input)) { 609 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 610 TypeIndex++; 611 continue; 612 } 613 614 // It is not a constant, we create the mapping from extracted argument list 615 // to the overall argument list. 616 assert(ArgInputs.count(Input) && "Input cannot be found!"); 617 618 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 619 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 620 OriginalIndex++; 621 TypeIndex++; 622 } 623 624 // If the function type definitions for the OutlinableGroup holding the region 625 // have not been set, set the length of the inputs here. We should have the 626 // same inputs for all of the different regions contained in the 627 // OutlinableGroup since they are all structurally similar to one another. 628 if (!Group.InputTypesSet) { 629 Group.NumAggregateInputs = TypeIndex; 630 Group.InputTypesSet = true; 631 } 632 633 Region.NumExtractedInputs = OriginalIndex; 634 } 635 636 /// Create a mapping of the output arguments for the \p Region to the output 637 /// arguments of the overall outlined function. 638 /// 639 /// \param [in,out] Region - The region of code to be analyzed. 640 /// \param [in] Outputs - The values found by the code extractor. 641 static void 642 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 643 ArrayRef<Value *> Outputs) { 644 OutlinableGroup &Group = *Region.Parent; 645 IRSimilarityCandidate &C = *Region.Candidate; 646 647 // This counts the argument number in the extracted function. 648 unsigned OriginalIndex = Region.NumExtractedInputs; 649 650 // This counts the argument number in the overall function. 651 unsigned TypeIndex = Group.NumAggregateInputs; 652 bool TypeFound; 653 DenseSet<unsigned> AggArgsUsed; 654 655 // Iterate over the output types and identify if there is an aggregate pointer 656 // type whose base type matches the current output type. If there is, we mark 657 // that we will use this output register for this value. If not we add another 658 // type to the overall argument type list. We also store the GVNs used for 659 // stores to identify which values will need to be moved into an special 660 // block that holds the stores to the output registers. 661 for (Value *Output : Outputs) { 662 TypeFound = false; 663 // We can do this since it is a result value, and will have a number 664 // that is necessarily the same. BUT if in the future, the instructions 665 // do not have to be in same order, but are functionally the same, we will 666 // have to use a different scheme, as one-to-one correspondence is not 667 // guaranteed. 668 unsigned GlobalValue = C.getGVN(Output).getValue(); 669 unsigned ArgumentSize = Group.ArgumentTypes.size(); 670 671 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 672 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 673 continue; 674 675 if (AggArgsUsed.contains(Jdx)) 676 continue; 677 678 TypeFound = true; 679 AggArgsUsed.insert(Jdx); 680 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 681 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 682 Region.GVNStores.push_back(GlobalValue); 683 break; 684 } 685 686 // We were unable to find an unused type in the output type set that matches 687 // the output, so we add a pointer type to the argument types of the overall 688 // function to handle this output and create a mapping to it. 689 if (!TypeFound) { 690 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 691 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); 692 Region.ExtractedArgToAgg.insert( 693 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); 694 Region.AggArgToExtracted.insert( 695 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); 696 Region.GVNStores.push_back(GlobalValue); 697 } 698 699 stable_sort(Region.GVNStores); 700 OriginalIndex++; 701 TypeIndex++; 702 } 703 } 704 705 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 706 DenseSet<unsigned> &NotSame) { 707 std::vector<unsigned> Inputs; 708 SetVector<Value *> ArgInputs, Outputs; 709 710 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 711 Outputs); 712 713 if (Region.IgnoreRegion) 714 return; 715 716 // Map the inputs found by the CodeExtractor to the arguments found for 717 // the overall function. 718 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 719 720 // Map the outputs found by the CodeExtractor to the arguments found for 721 // the overall function. 722 findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef()); 723 } 724 725 /// Replace the extracted function in the Region with a call to the overall 726 /// function constructed from the deduplicated similar regions, replacing and 727 /// remapping the values passed to the extracted function as arguments to the 728 /// new arguments of the overall function. 729 /// 730 /// \param [in] M - The module to outline from. 731 /// \param [in] Region - The regions of extracted code to be replaced with a new 732 /// function. 733 /// \returns a call instruction with the replaced function. 734 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 735 std::vector<Value *> NewCallArgs; 736 DenseMap<unsigned, unsigned>::iterator ArgPair; 737 738 OutlinableGroup &Group = *Region.Parent; 739 CallInst *Call = Region.Call; 740 assert(Call && "Call to replace is nullptr?"); 741 Function *AggFunc = Group.OutlinedFunction; 742 assert(AggFunc && "Function to replace with is nullptr?"); 743 744 // If the arguments are the same size, there are not values that need to be 745 // made argument, or different output registers to handle. We can simply 746 // replace the called function in this case. 747 if (AggFunc->arg_size() == Call->arg_size()) { 748 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 749 << *AggFunc << " with same number of arguments\n"); 750 Call->setCalledFunction(AggFunc); 751 return Call; 752 } 753 754 // We have a different number of arguments than the new function, so 755 // we need to use our previously mappings off extracted argument to overall 756 // function argument, and constants to overall function argument to create the 757 // new argument list. 758 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 759 760 if (AggArgIdx == AggFunc->arg_size() - 1 && 761 Group.OutputGVNCombinations.size() > 1) { 762 // If we are on the last argument, and we need to differentiate between 763 // output blocks, add an integer to the argument list to determine 764 // what block to take 765 LLVM_DEBUG(dbgs() << "Set switch block argument to " 766 << Region.OutputBlockNum << "\n"); 767 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 768 Region.OutputBlockNum)); 769 continue; 770 } 771 772 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 773 if (ArgPair != Region.AggArgToExtracted.end()) { 774 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 775 // If we found the mapping from the extracted function to the overall 776 // function, we simply add it to the argument list. We use the same 777 // value, it just needs to honor the new order of arguments. 778 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 779 << *ArgumentValue << "\n"); 780 NewCallArgs.push_back(ArgumentValue); 781 continue; 782 } 783 784 // If it is a constant, we simply add it to the argument list as a value. 785 if (Region.AggArgToConstant.find(AggArgIdx) != 786 Region.AggArgToConstant.end()) { 787 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 788 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 789 << *CST << "\n"); 790 NewCallArgs.push_back(CST); 791 continue; 792 } 793 794 // Add a nullptr value if the argument is not found in the extracted 795 // function. If we cannot find a value, it means it is not in use 796 // for the region, so we should not pass anything to it. 797 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 798 NewCallArgs.push_back(ConstantPointerNull::get( 799 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 800 } 801 802 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 803 << *AggFunc << " with new set of arguments\n"); 804 // Create the new call instruction and erase the old one. 805 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 806 Call); 807 808 // It is possible that the call to the outlined function is either the first 809 // instruction is in the new block, the last instruction, or both. If either 810 // of these is the case, we need to make sure that we replace the instruction 811 // in the IRInstructionData struct with the new call. 812 CallInst *OldCall = Region.Call; 813 if (Region.NewFront->Inst == OldCall) 814 Region.NewFront->Inst = Call; 815 if (Region.NewBack->Inst == OldCall) 816 Region.NewBack->Inst = Call; 817 818 // Transfer any debug information. 819 Call->setDebugLoc(Region.Call->getDebugLoc()); 820 821 // Remove the old instruction. 822 OldCall->eraseFromParent(); 823 Region.Call = Call; 824 825 // Make sure that the argument in the new function has the SwiftError 826 // argument. 827 if (Group.SwiftErrorArgument.hasValue()) 828 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 829 Attribute::SwiftError); 830 831 return Call; 832 } 833 834 // Within an extracted function, replace the argument uses of the extracted 835 // region with the arguments of the function for an OutlinableGroup. 836 // 837 /// \param [in] Region - The region of extracted code to be changed. 838 /// \param [in,out] OutputBB - The BasicBlock for the output stores for this 839 /// region. 840 static void replaceArgumentUses(OutlinableRegion &Region, 841 BasicBlock *OutputBB) { 842 OutlinableGroup &Group = *Region.Parent; 843 assert(Region.ExtractedFunction && "Region has no extracted function?"); 844 845 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 846 ArgIdx++) { 847 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 848 Region.ExtractedArgToAgg.end() && 849 "No mapping from extracted to outlined?"); 850 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 851 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 852 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 853 // The argument is an input, so we can simply replace it with the overall 854 // argument value 855 if (ArgIdx < Region.NumExtractedInputs) { 856 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 857 << *Region.ExtractedFunction << " with " << *AggArg 858 << " in function " << *Group.OutlinedFunction << "\n"); 859 Arg->replaceAllUsesWith(AggArg); 860 continue; 861 } 862 863 // If we are replacing an output, we place the store value in its own 864 // block inside the overall function before replacing the use of the output 865 // in the function. 866 assert(Arg->hasOneUse() && "Output argument can only have one use"); 867 User *InstAsUser = Arg->user_back(); 868 assert(InstAsUser && "User is nullptr!"); 869 870 Instruction *I = cast<Instruction>(InstAsUser); 871 I->setDebugLoc(DebugLoc()); 872 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 873 << *OutputBB << "\n"); 874 875 I->moveBefore(*OutputBB, OutputBB->end()); 876 877 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 878 << *Region.ExtractedFunction << " with " << *AggArg 879 << " in function " << *Group.OutlinedFunction << "\n"); 880 Arg->replaceAllUsesWith(AggArg); 881 } 882 } 883 884 /// Within an extracted function, replace the constants that need to be lifted 885 /// into arguments with the actual argument. 886 /// 887 /// \param Region [in] - The region of extracted code to be changed. 888 void replaceConstants(OutlinableRegion &Region) { 889 OutlinableGroup &Group = *Region.Parent; 890 // Iterate over the constants that need to be elevated into arguments 891 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 892 unsigned AggArgIdx = Const.first; 893 Function *OutlinedFunction = Group.OutlinedFunction; 894 assert(OutlinedFunction && "Overall Function is not defined?"); 895 Constant *CST = Const.second; 896 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 897 // Identify the argument it will be elevated to, and replace instances of 898 // that constant in the function. 899 900 // TODO: If in the future constants do not have one global value number, 901 // i.e. a constant 1 could be mapped to several values, this check will 902 // have to be more strict. It cannot be using only replaceUsesWithIf. 903 904 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 905 << " in function " << *OutlinedFunction << " with " 906 << *Arg << "\n"); 907 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 908 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 909 return I->getFunction() == OutlinedFunction; 910 return false; 911 }); 912 } 913 } 914 915 /// For the given function, find all the nondebug or lifetime instructions, 916 /// and return them as a vector. Exclude any blocks in \p ExludeBlocks. 917 /// 918 /// \param [in] F - The function we collect the instructions from. 919 /// \param [in] ExcludeBlocks - BasicBlocks to ignore. 920 /// \returns the list of instructions extracted. 921 static std::vector<Instruction *> 922 collectRelevantInstructions(Function &F, 923 DenseSet<BasicBlock *> &ExcludeBlocks) { 924 std::vector<Instruction *> RelevantInstructions; 925 926 for (BasicBlock &BB : F) { 927 if (ExcludeBlocks.contains(&BB)) 928 continue; 929 930 for (Instruction &Inst : BB) { 931 if (Inst.isLifetimeStartOrEnd()) 932 continue; 933 if (isa<DbgInfoIntrinsic>(Inst)) 934 continue; 935 936 RelevantInstructions.push_back(&Inst); 937 } 938 } 939 940 return RelevantInstructions; 941 } 942 943 /// It is possible that there is a basic block that already performs the same 944 /// stores. This returns a duplicate block, if it exists 945 /// 946 /// \param OutputBB [in] the block we are looking for a duplicate of. 947 /// \param OutputStoreBBs [in] The existing output blocks. 948 /// \returns an optional value with the number output block if there is a match. 949 Optional<unsigned> 950 findDuplicateOutputBlock(BasicBlock *OutputBB, 951 ArrayRef<BasicBlock *> OutputStoreBBs) { 952 953 bool WrongInst = false; 954 bool WrongSize = false; 955 unsigned MatchingNum = 0; 956 for (BasicBlock *CompBB : OutputStoreBBs) { 957 WrongInst = false; 958 if (CompBB->size() - 1 != OutputBB->size()) { 959 WrongSize = true; 960 MatchingNum++; 961 continue; 962 } 963 964 WrongSize = false; 965 BasicBlock::iterator NIt = OutputBB->begin(); 966 for (Instruction &I : *CompBB) { 967 if (isa<BranchInst>(&I)) 968 continue; 969 970 if (!I.isIdenticalTo(&(*NIt))) { 971 WrongInst = true; 972 break; 973 } 974 975 NIt++; 976 } 977 if (!WrongInst && !WrongSize) 978 return MatchingNum; 979 980 MatchingNum++; 981 } 982 983 return None; 984 } 985 986 /// For the outlined section, move needed the StoreInsts for the output 987 /// registers into their own block. Then, determine if there is a duplicate 988 /// output block already created. 989 /// 990 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 991 /// \param [in] Region - The OutlinableRegion that is being analyzed. 992 /// \param [in,out] OutputBB - the block that stores for this region will be 993 /// placed in. 994 /// \param [in] EndBB - the final block of the extracted function. 995 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 996 /// been replaced by a new output value. 997 /// \param [in,out] OutputStoreBBs - The existing output blocks. 998 static void 999 alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region, 1000 BasicBlock *OutputBB, BasicBlock *EndBB, 1001 const DenseMap<Value *, Value *> &OutputMappings, 1002 std::vector<BasicBlock *> &OutputStoreBBs) { 1003 DenseSet<unsigned> ValuesToFind(Region.GVNStores.begin(), 1004 Region.GVNStores.end()); 1005 1006 // We iterate over the instructions in the extracted function, and find the 1007 // global value number of the instructions. If we find a value that should 1008 // be contained in a store, we replace the uses of the value with the value 1009 // from the overall function, so that the store is storing the correct 1010 // value from the overall function. 1011 DenseSet<BasicBlock *> ExcludeBBs(OutputStoreBBs.begin(), 1012 OutputStoreBBs.end()); 1013 ExcludeBBs.insert(OutputBB); 1014 std::vector<Instruction *> ExtractedFunctionInsts = 1015 collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs); 1016 std::vector<Instruction *> OverallFunctionInsts = 1017 collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs); 1018 1019 assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() && 1020 "Number of relevant instructions not equal!"); 1021 1022 unsigned NumInstructions = ExtractedFunctionInsts.size(); 1023 for (unsigned Idx = 0; Idx < NumInstructions; Idx++) { 1024 Value *V = ExtractedFunctionInsts[Idx]; 1025 1026 if (OutputMappings.find(V) != OutputMappings.end()) 1027 V = OutputMappings.find(V)->second; 1028 Optional<unsigned> GVN = Region.Candidate->getGVN(V); 1029 1030 // If we have found one of the stored values for output, replace the value 1031 // with the corresponding one from the overall function. 1032 if (GVN.hasValue() && ValuesToFind.erase(GVN.getValue())) { 1033 V->replaceAllUsesWith(OverallFunctionInsts[Idx]); 1034 if (ValuesToFind.size() == 0) 1035 break; 1036 } 1037 1038 if (ValuesToFind.size() == 0) 1039 break; 1040 } 1041 1042 assert(ValuesToFind.size() == 0 && "Not all store values were handled!"); 1043 1044 // If the size of the block is 0, then there are no stores, and we do not 1045 // need to save this block. 1046 if (OutputBB->size() == 0) { 1047 Region.OutputBlockNum = -1; 1048 OutputBB->eraseFromParent(); 1049 return; 1050 } 1051 1052 // Determine is there is a duplicate block. 1053 Optional<unsigned> MatchingBB = 1054 findDuplicateOutputBlock(OutputBB, OutputStoreBBs); 1055 1056 // If there is, we remove the new output block. If it does not, 1057 // we add it to our list of output blocks. 1058 if (MatchingBB.hasValue()) { 1059 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1060 << Region.ExtractedFunction << " to " 1061 << MatchingBB.getValue()); 1062 1063 Region.OutputBlockNum = MatchingBB.getValue(); 1064 OutputBB->eraseFromParent(); 1065 return; 1066 } 1067 1068 Region.OutputBlockNum = OutputStoreBBs.size(); 1069 1070 LLVM_DEBUG(dbgs() << "Create output block for region in" 1071 << Region.ExtractedFunction << " to " 1072 << *OutputBB); 1073 OutputStoreBBs.push_back(OutputBB); 1074 BranchInst::Create(EndBB, OutputBB); 1075 } 1076 1077 /// Create the switch statement for outlined function to differentiate between 1078 /// all the output blocks. 1079 /// 1080 /// For the outlined section, determine if an outlined block already exists that 1081 /// matches the needed stores for the extracted section. 1082 /// \param [in] M - The module we are outlining from. 1083 /// \param [in] OG - The group of regions to be outlined. 1084 /// \param [in] OS - The region that is being analyzed. 1085 /// \param [in] EndBB - The final block of the extracted function. 1086 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1087 void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB, 1088 ArrayRef<BasicBlock *> OutputStoreBBs) { 1089 // We only need the switch statement if there is more than one store 1090 // combination. 1091 if (OG.OutputGVNCombinations.size() > 1) { 1092 Function *AggFunc = OG.OutlinedFunction; 1093 // Create a final block 1094 BasicBlock *ReturnBlock = 1095 BasicBlock::Create(M.getContext(), "final_block", AggFunc); 1096 Instruction *Term = EndBB->getTerminator(); 1097 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 1098 // Put the switch statement in the old end basic block for the function with 1099 // a fall through to the new return block 1100 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 1101 << OutputStoreBBs.size() << "\n"); 1102 SwitchInst *SwitchI = 1103 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 1104 ReturnBlock, OutputStoreBBs.size(), EndBB); 1105 1106 unsigned Idx = 0; 1107 for (BasicBlock *BB : OutputStoreBBs) { 1108 SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), 1109 BB); 1110 Term = BB->getTerminator(); 1111 Term->setSuccessor(0, ReturnBlock); 1112 Idx++; 1113 } 1114 return; 1115 } 1116 1117 // If there needs to be stores, move them from the output block to the end 1118 // block to save on branching instructions. 1119 if (OutputStoreBBs.size() == 1) { 1120 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 1121 << *OG.OutlinedFunction << "\n"); 1122 BasicBlock *OutputBlock = OutputStoreBBs[0]; 1123 Instruction *Term = OutputBlock->getTerminator(); 1124 Term->eraseFromParent(); 1125 Term = EndBB->getTerminator(); 1126 moveBBContents(*OutputBlock, *EndBB); 1127 Term->moveBefore(*EndBB, EndBB->end()); 1128 OutputBlock->eraseFromParent(); 1129 } 1130 } 1131 1132 /// Fill the new function that will serve as the replacement function for all of 1133 /// the extracted regions of a certain structure from the first region in the 1134 /// list of regions. Replace this first region's extracted function with the 1135 /// new overall function. 1136 /// 1137 /// \param [in] M - The module we are outlining from. 1138 /// \param [in] CurrentGroup - The group of regions to be outlined. 1139 /// \param [in,out] OutputStoreBBs - The output blocks for each different 1140 /// set of stores needed for the different functions. 1141 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 1142 /// once outlining is complete. 1143 static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup, 1144 std::vector<BasicBlock *> &OutputStoreBBs, 1145 std::vector<Function *> &FuncsToRemove) { 1146 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 1147 1148 // Move first extracted function's instructions into new function. 1149 LLVM_DEBUG(dbgs() << "Move instructions from " 1150 << *CurrentOS->ExtractedFunction << " to instruction " 1151 << *CurrentGroup.OutlinedFunction << "\n"); 1152 1153 CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction, 1154 *CurrentGroup.OutlinedFunction); 1155 1156 // Transfer the attributes from the function to the new function. 1157 for (Attribute A : 1158 CurrentOS->ExtractedFunction->getAttributes().getFnAttributes()) 1159 CurrentGroup.OutlinedFunction->addFnAttr(A); 1160 1161 // Create an output block for the first extracted function. 1162 BasicBlock *NewBB = BasicBlock::Create( 1163 M.getContext(), Twine("output_block_") + Twine(static_cast<unsigned>(0)), 1164 CurrentGroup.OutlinedFunction); 1165 CurrentOS->OutputBlockNum = 0; 1166 1167 replaceArgumentUses(*CurrentOS, NewBB); 1168 replaceConstants(*CurrentOS); 1169 1170 // If the new basic block has no new stores, we can erase it from the module. 1171 // It it does, we create a branch instruction to the last basic block from the 1172 // new one. 1173 if (NewBB->size() == 0) { 1174 CurrentOS->OutputBlockNum = -1; 1175 NewBB->eraseFromParent(); 1176 } else { 1177 BranchInst::Create(CurrentGroup.EndBB, NewBB); 1178 OutputStoreBBs.push_back(NewBB); 1179 } 1180 1181 // Replace the call to the extracted function with the outlined function. 1182 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1183 1184 // We only delete the extracted functions at the end since we may need to 1185 // reference instructions contained in them for mapping purposes. 1186 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1187 } 1188 1189 void IROutliner::deduplicateExtractedSections( 1190 Module &M, OutlinableGroup &CurrentGroup, 1191 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 1192 createFunction(M, CurrentGroup, OutlinedFunctionNum); 1193 1194 std::vector<BasicBlock *> OutputStoreBBs; 1195 1196 OutlinableRegion *CurrentOS; 1197 1198 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); 1199 1200 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 1201 CurrentOS = CurrentGroup.Regions[Idx]; 1202 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 1203 *CurrentOS->ExtractedFunction); 1204 1205 // Create a new BasicBlock to hold the needed store instructions. 1206 BasicBlock *NewBB = BasicBlock::Create( 1207 M.getContext(), "output_block_" + std::to_string(Idx), 1208 CurrentGroup.OutlinedFunction); 1209 replaceArgumentUses(*CurrentOS, NewBB); 1210 1211 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB, 1212 CurrentGroup.EndBB, OutputMappings, 1213 OutputStoreBBs); 1214 1215 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1216 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1217 } 1218 1219 // Create a switch statement to handle the different output schemes. 1220 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs); 1221 1222 OutlinedFunctionNum++; 1223 } 1224 1225 void IROutliner::pruneIncompatibleRegions( 1226 std::vector<IRSimilarityCandidate> &CandidateVec, 1227 OutlinableGroup &CurrentGroup) { 1228 bool PreviouslyOutlined; 1229 1230 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 1231 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 1232 const IRSimilarityCandidate &RHS) { 1233 return LHS.getStartIdx() < RHS.getStartIdx(); 1234 }); 1235 1236 unsigned CurrentEndIdx = 0; 1237 for (IRSimilarityCandidate &IRSC : CandidateVec) { 1238 PreviouslyOutlined = false; 1239 unsigned StartIdx = IRSC.getStartIdx(); 1240 unsigned EndIdx = IRSC.getEndIdx(); 1241 1242 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1243 if (Outlined.contains(Idx)) { 1244 PreviouslyOutlined = true; 1245 break; 1246 } 1247 1248 if (PreviouslyOutlined) 1249 continue; 1250 1251 // TODO: If in the future we can outline across BasicBlocks, we will need to 1252 // check all BasicBlocks contained in the region. 1253 if (IRSC.getStartBB()->hasAddressTaken()) 1254 continue; 1255 1256 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 1257 !OutlineFromLinkODRs) 1258 continue; 1259 1260 // Greedily prune out any regions that will overlap with already chosen 1261 // regions. 1262 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 1263 continue; 1264 1265 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 1266 // We check if there is a discrepancy between the InstructionDataList 1267 // and the actual next instruction in the module. If there is, it means 1268 // that an extra instruction was added, likely by the CodeExtractor. 1269 1270 // Since we do not have any similarity data about this particular 1271 // instruction, we cannot confidently outline it, and must discard this 1272 // candidate. 1273 if (std::next(ID.getIterator())->Inst != 1274 ID.Inst->getNextNonDebugInstruction()) 1275 return true; 1276 return !this->InstructionClassifier.visit(ID.Inst); 1277 }); 1278 1279 if (BadInst) 1280 continue; 1281 1282 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 1283 OutlinableRegion(IRSC, CurrentGroup); 1284 CurrentGroup.Regions.push_back(OS); 1285 1286 CurrentEndIdx = EndIdx; 1287 } 1288 } 1289 1290 InstructionCost 1291 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 1292 InstructionCost RegionBenefit = 0; 1293 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1294 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1295 // We add the number of instructions in the region to the benefit as an 1296 // estimate as to how much will be removed. 1297 RegionBenefit += Region->getBenefit(TTI); 1298 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 1299 << " saved instructions to overfall benefit.\n"); 1300 } 1301 1302 return RegionBenefit; 1303 } 1304 1305 InstructionCost 1306 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 1307 InstructionCost OverallCost = 0; 1308 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1309 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1310 1311 // Each output incurs a load after the call, so we add that to the cost. 1312 for (unsigned OutputGVN : Region->GVNStores) { 1313 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN); 1314 assert(OV.hasValue() && "Could not find value for GVN?"); 1315 Value *V = OV.getValue(); 1316 InstructionCost LoadCost = 1317 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1318 TargetTransformInfo::TCK_CodeSize); 1319 1320 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 1321 << " instructions to cost for output of type " 1322 << *V->getType() << "\n"); 1323 OverallCost += LoadCost; 1324 } 1325 } 1326 1327 return OverallCost; 1328 } 1329 1330 /// Find the extra instructions needed to handle any output values for the 1331 /// region. 1332 /// 1333 /// \param [in] M - The Module to outline from. 1334 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 1335 /// \param [in] TTI - The TargetTransformInfo used to collect information for 1336 /// new instruction costs. 1337 /// \returns the additional cost to handle the outputs. 1338 static InstructionCost findCostForOutputBlocks(Module &M, 1339 OutlinableGroup &CurrentGroup, 1340 TargetTransformInfo &TTI) { 1341 InstructionCost OutputCost = 0; 1342 1343 for (const ArrayRef<unsigned> &OutputUse : 1344 CurrentGroup.OutputGVNCombinations) { 1345 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 1346 for (unsigned GVN : OutputUse) { 1347 Optional<Value *> OV = Candidate.fromGVN(GVN); 1348 assert(OV.hasValue() && "Could not find value for GVN?"); 1349 Value *V = OV.getValue(); 1350 InstructionCost StoreCost = 1351 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1352 TargetTransformInfo::TCK_CodeSize); 1353 1354 // An instruction cost is added for each store set that needs to occur for 1355 // various output combinations inside the function, plus a branch to 1356 // return to the exit block. 1357 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 1358 << " instructions to cost for output of type " 1359 << *V->getType() << "\n"); 1360 OutputCost += StoreCost; 1361 } 1362 1363 InstructionCost BranchCost = 1364 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1365 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 1366 << " a branch instruction\n"); 1367 OutputCost += BranchCost; 1368 } 1369 1370 // If there is more than one output scheme, we must have a comparison and 1371 // branch for each different item in the switch statement. 1372 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 1373 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 1374 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 1375 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 1376 TargetTransformInfo::TCK_CodeSize); 1377 InstructionCost BranchCost = 1378 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1379 1380 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 1381 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 1382 1383 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 1384 << " instructions for each switch case for each different" 1385 << " output path in a function\n"); 1386 OutputCost += TotalCost; 1387 } 1388 1389 return OutputCost; 1390 } 1391 1392 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 1393 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 1394 CurrentGroup.Benefit += RegionBenefit; 1395 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 1396 1397 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 1398 CurrentGroup.Cost += OutputReloadCost; 1399 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1400 1401 InstructionCost AverageRegionBenefit = 1402 RegionBenefit / CurrentGroup.Regions.size(); 1403 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 1404 unsigned NumRegions = CurrentGroup.Regions.size(); 1405 TargetTransformInfo &TTI = 1406 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1407 1408 // We add one region to the cost once, to account for the instructions added 1409 // inside of the newly created function. 1410 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 1411 << " instructions to cost for body of new function.\n"); 1412 CurrentGroup.Cost += AverageRegionBenefit; 1413 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1414 1415 // For each argument, we must add an instruction for loading the argument 1416 // out of the register and into a value inside of the newly outlined function. 1417 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1418 << " instructions to cost for each argument in the new" 1419 << " function.\n"); 1420 CurrentGroup.Cost += 1421 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 1422 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1423 1424 // Each argument needs to either be loaded into a register or onto the stack. 1425 // Some arguments will only be loaded into the stack once the argument 1426 // registers are filled. 1427 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1428 << " instructions to cost for each argument in the new" 1429 << " function " << NumRegions << " times for the " 1430 << "needed argument handling at the call site.\n"); 1431 CurrentGroup.Cost += 1432 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 1433 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1434 1435 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 1436 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1437 } 1438 1439 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 1440 ArrayRef<Value *> Outputs, 1441 LoadInst *LI) { 1442 // For and load instructions following the call 1443 Value *Operand = LI->getPointerOperand(); 1444 Optional<unsigned> OutputIdx = None; 1445 // Find if the operand it is an output register. 1446 for (unsigned ArgIdx = Region.NumExtractedInputs; 1447 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 1448 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 1449 OutputIdx = ArgIdx - Region.NumExtractedInputs; 1450 break; 1451 } 1452 } 1453 1454 // If we found an output register, place a mapping of the new value 1455 // to the original in the mapping. 1456 if (!OutputIdx.hasValue()) 1457 return; 1458 1459 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 1460 OutputMappings.end()) { 1461 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 1462 << *Outputs[OutputIdx.getValue()] << "\n"); 1463 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 1464 } else { 1465 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 1466 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 1467 << *Outputs[OutputIdx.getValue()] << "\n"); 1468 OutputMappings.insert(std::make_pair(LI, Orig)); 1469 } 1470 } 1471 1472 bool IROutliner::extractSection(OutlinableRegion &Region) { 1473 SetVector<Value *> ArgInputs, Outputs, SinkCands; 1474 Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands); 1475 1476 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 1477 assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!"); 1478 Function *OrigF = Region.StartBB->getParent(); 1479 CodeExtractorAnalysisCache CEAC(*OrigF); 1480 Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC); 1481 1482 // If the extraction was successful, find the BasicBlock, and reassign the 1483 // OutlinableRegion blocks 1484 if (!Region.ExtractedFunction) { 1485 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 1486 << "\n"); 1487 Region.reattachCandidate(); 1488 return false; 1489 } 1490 1491 BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor(); 1492 Region.StartBB = RewrittenBB; 1493 Region.EndBB = RewrittenBB; 1494 1495 // The sequences of outlinable regions has now changed. We must fix the 1496 // IRInstructionDataList for consistency. Although they may not be illegal 1497 // instructions, they should not be compared with anything else as they 1498 // should not be outlined in this round. So marking these as illegal is 1499 // allowed. 1500 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1501 Instruction *BeginRewritten = &*RewrittenBB->begin(); 1502 Instruction *EndRewritten = &*RewrittenBB->begin(); 1503 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 1504 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 1505 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 1506 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 1507 1508 // Insert the first IRInstructionData of the new region in front of the 1509 // first IRInstructionData of the IRSimilarityCandidate. 1510 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 1511 // Insert the first IRInstructionData of the new region after the 1512 // last IRInstructionData of the IRSimilarityCandidate. 1513 IDL->insert(Region.Candidate->end(), *Region.NewBack); 1514 // Remove the IRInstructionData from the IRSimilarityCandidate. 1515 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 1516 1517 assert(RewrittenBB != nullptr && 1518 "Could not find a predecessor after extraction!"); 1519 1520 // Iterate over the new set of instructions to find the new call 1521 // instruction. 1522 for (Instruction &I : *RewrittenBB) 1523 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1524 if (Region.ExtractedFunction == CI->getCalledFunction()) 1525 Region.Call = CI; 1526 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 1527 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 1528 Region.reattachCandidate(); 1529 return true; 1530 } 1531 1532 unsigned IROutliner::doOutline(Module &M) { 1533 // Find the possible similarity sections. 1534 IRSimilarityIdentifier &Identifier = getIRSI(M); 1535 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 1536 1537 // Sort them by size of extracted sections 1538 unsigned OutlinedFunctionNum = 0; 1539 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 1540 // to sort them by the potential number of instructions to be outlined 1541 if (SimilarityCandidates.size() > 1) 1542 llvm::stable_sort(SimilarityCandidates, 1543 [](const std::vector<IRSimilarityCandidate> &LHS, 1544 const std::vector<IRSimilarityCandidate> &RHS) { 1545 return LHS[0].getLength() * LHS.size() > 1546 RHS[0].getLength() * RHS.size(); 1547 }); 1548 1549 DenseSet<unsigned> NotSame; 1550 std::vector<Function *> FuncsToRemove; 1551 // Iterate over the possible sets of similarity. 1552 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 1553 OutlinableGroup CurrentGroup; 1554 1555 // Remove entries that were previously outlined 1556 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 1557 1558 // We pruned the number of regions to 0 to 1, meaning that it's not worth 1559 // trying to outlined since there is no compatible similar instance of this 1560 // code. 1561 if (CurrentGroup.Regions.size() < 2) 1562 continue; 1563 1564 // Determine if there are any values that are the same constant throughout 1565 // each section in the set. 1566 NotSame.clear(); 1567 CurrentGroup.findSameConstants(NotSame); 1568 1569 if (CurrentGroup.IgnoreGroup) 1570 continue; 1571 1572 // Create a CodeExtractor for each outlinable region. Identify inputs and 1573 // outputs for each section using the code extractor and create the argument 1574 // types for the Aggregate Outlining Function. 1575 std::vector<OutlinableRegion *> OutlinedRegions; 1576 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1577 // Break the outlinable region out of its parent BasicBlock into its own 1578 // BasicBlocks (see function implementation). 1579 OS->splitCandidate(); 1580 std::vector<BasicBlock *> BE = {OS->StartBB}; 1581 OS->CE = new (ExtractorAllocator.Allocate()) 1582 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 1583 false, "outlined"); 1584 findAddInputsOutputs(M, *OS, NotSame); 1585 if (!OS->IgnoreRegion) 1586 OutlinedRegions.push_back(OS); 1587 else 1588 OS->reattachCandidate(); 1589 } 1590 1591 CurrentGroup.Regions = std::move(OutlinedRegions); 1592 1593 if (CurrentGroup.Regions.empty()) 1594 continue; 1595 1596 CurrentGroup.collectGVNStoreSets(M); 1597 1598 if (CostModel) 1599 findCostBenefit(M, CurrentGroup); 1600 1601 // If we are adhering to the cost model, reattach all the candidates 1602 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 1603 for (OutlinableRegion *OS : CurrentGroup.Regions) 1604 OS->reattachCandidate(); 1605 OptimizationRemarkEmitter &ORE = getORE( 1606 *CurrentGroup.Regions[0]->Candidate->getFunction()); 1607 ORE.emit([&]() { 1608 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1609 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 1610 C->frontInstruction()); 1611 R << "did not outline " 1612 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1613 << " regions due to estimated increase of " 1614 << ore::NV("InstructionIncrease", 1615 CurrentGroup.Cost - CurrentGroup.Benefit) 1616 << " instructions at locations "; 1617 interleave( 1618 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1619 [&R](OutlinableRegion *Region) { 1620 R << ore::NV( 1621 "DebugLoc", 1622 Region->Candidate->frontInstruction()->getDebugLoc()); 1623 }, 1624 [&R]() { R << " "; }); 1625 return R; 1626 }); 1627 continue; 1628 } 1629 1630 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 1631 << " and benefit " << CurrentGroup.Benefit << "\n"); 1632 1633 // Create functions out of all the sections, and mark them as outlined. 1634 OutlinedRegions.clear(); 1635 for (OutlinableRegion *OS : CurrentGroup.Regions) { 1636 bool FunctionOutlined = extractSection(*OS); 1637 if (FunctionOutlined) { 1638 unsigned StartIdx = OS->Candidate->getStartIdx(); 1639 unsigned EndIdx = OS->Candidate->getEndIdx(); 1640 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1641 Outlined.insert(Idx); 1642 1643 OutlinedRegions.push_back(OS); 1644 } 1645 } 1646 1647 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 1648 << " with benefit " << CurrentGroup.Benefit 1649 << " and cost " << CurrentGroup.Cost << "\n"); 1650 1651 CurrentGroup.Regions = std::move(OutlinedRegions); 1652 1653 if (CurrentGroup.Regions.empty()) 1654 continue; 1655 1656 OptimizationRemarkEmitter &ORE = 1657 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 1658 ORE.emit([&]() { 1659 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 1660 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 1661 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 1662 << " regions with decrease of " 1663 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 1664 << " instructions at locations "; 1665 interleave( 1666 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 1667 [&R](OutlinableRegion *Region) { 1668 R << ore::NV("DebugLoc", 1669 Region->Candidate->frontInstruction()->getDebugLoc()); 1670 }, 1671 [&R]() { R << " "; }); 1672 return R; 1673 }); 1674 1675 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 1676 OutlinedFunctionNum); 1677 } 1678 1679 for (Function *F : FuncsToRemove) 1680 F->eraseFromParent(); 1681 1682 return OutlinedFunctionNum; 1683 } 1684 1685 bool IROutliner::run(Module &M) { 1686 CostModel = !NoCostModel; 1687 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 1688 1689 return doOutline(M) > 0; 1690 } 1691 1692 // Pass Manager Boilerplate 1693 class IROutlinerLegacyPass : public ModulePass { 1694 public: 1695 static char ID; 1696 IROutlinerLegacyPass() : ModulePass(ID) { 1697 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 1698 } 1699 1700 void getAnalysisUsage(AnalysisUsage &AU) const override { 1701 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1702 AU.addRequired<TargetTransformInfoWrapperPass>(); 1703 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 1704 } 1705 1706 bool runOnModule(Module &M) override; 1707 }; 1708 1709 bool IROutlinerLegacyPass::runOnModule(Module &M) { 1710 if (skipModule(M)) 1711 return false; 1712 1713 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1714 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1715 ORE.reset(new OptimizationRemarkEmitter(&F)); 1716 return *ORE.get(); 1717 }; 1718 1719 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 1720 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1721 }; 1722 1723 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 1724 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 1725 }; 1726 1727 return IROutliner(GTTI, GIRSI, GORE).run(M); 1728 } 1729 1730 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 1731 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1732 1733 std::function<TargetTransformInfo &(Function &)> GTTI = 1734 [&FAM](Function &F) -> TargetTransformInfo & { 1735 return FAM.getResult<TargetIRAnalysis>(F); 1736 }; 1737 1738 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 1739 [&AM](Module &M) -> IRSimilarityIdentifier & { 1740 return AM.getResult<IRSimilarityAnalysis>(M); 1741 }; 1742 1743 std::unique_ptr<OptimizationRemarkEmitter> ORE; 1744 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 1745 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 1746 ORE.reset(new OptimizationRemarkEmitter(&F)); 1747 return *ORE.get(); 1748 }; 1749 1750 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 1751 return PreservedAnalyses::none(); 1752 return PreservedAnalyses::all(); 1753 } 1754 1755 char IROutlinerLegacyPass::ID = 0; 1756 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1757 false) 1758 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 1759 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1760 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1761 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 1762 false) 1763 1764 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 1765