xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 #include <optional>
28 #include <vector>
29 
30 #define DEBUG_TYPE "iroutliner"
31 
32 using namespace llvm;
33 using namespace IRSimilarity;
34 
35 // A command flag to be used for debugging to exclude branches from similarity
36 // matching and outlining.
37 namespace llvm {
38 extern cl::opt<bool> DisableBranches;
39 
40 // A command flag to be used for debugging to indirect calls from similarity
41 // matching and outlining.
42 extern cl::opt<bool> DisableIndirectCalls;
43 
44 // A command flag to be used for debugging to exclude intrinsics from similarity
45 // matching and outlining.
46 extern cl::opt<bool> DisableIntrinsics;
47 
48 } // namespace llvm
49 
50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51 // functions. This is false by default because the linker can dedupe linkonceodr
52 // functions. Since the outliner is confined to a single module (modulo LTO),
53 // this is off by default. It should, however, be the default behavior in
54 // LTO.
55 static cl::opt<bool> EnableLinkOnceODRIROutlining(
56     "enable-linkonceodr-ir-outlining", cl::Hidden,
57     cl::desc("Enable the IR outliner on linkonceodr functions"),
58     cl::init(false));
59 
60 // This is a debug option to test small pieces of code to ensure that outlining
61 // works correctly.
62 static cl::opt<bool> NoCostModel(
63     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
64     cl::desc("Debug option to outline greedily, without restriction that "
65              "calculated benefit outweighs cost"));
66 
67 /// The OutlinableGroup holds all the overarching information for outlining
68 /// a set of regions that are structurally similar to one another, such as the
69 /// types of the overall function, the output blocks, the sets of stores needed
70 /// and a list of the different regions. This information is used in the
71 /// deduplication of extracted regions with the same structure.
72 struct OutlinableGroup {
73   /// The sections that could be outlined
74   std::vector<OutlinableRegion *> Regions;
75 
76   /// The argument types for the function created as the overall function to
77   /// replace the extracted function for each region.
78   std::vector<Type *> ArgumentTypes;
79   /// The FunctionType for the overall function.
80   FunctionType *OutlinedFunctionType = nullptr;
81   /// The Function for the collective overall function.
82   Function *OutlinedFunction = nullptr;
83 
84   /// Flag for whether we should not consider this group of OutlinableRegions
85   /// for extraction.
86   bool IgnoreGroup = false;
87 
88   /// The return blocks for the overall function.
89   DenseMap<Value *, BasicBlock *> EndBBs;
90 
91   /// The PHIBlocks with their corresponding return block based on the return
92   /// value as the key.
93   DenseMap<Value *, BasicBlock *> PHIBlocks;
94 
95   /// A set containing the different GVN store sets needed. Each array contains
96   /// a sorted list of the different values that need to be stored into output
97   /// registers.
98   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
99 
100   /// Flag for whether the \ref ArgumentTypes have been defined after the
101   /// extraction of the first region.
102   bool InputTypesSet = false;
103 
104   /// The number of input values in \ref ArgumentTypes.  Anything after this
105   /// index in ArgumentTypes is an output argument.
106   unsigned NumAggregateInputs = 0;
107 
108   /// The mapping of the canonical numbering of the values in outlined sections
109   /// to specific arguments.
110   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
111 
112   /// The number of branches in the region target a basic block that is outside
113   /// of the region.
114   unsigned BranchesToOutside = 0;
115 
116   /// Tracker counting backwards from the highest unsigned value possible to
117   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
118   /// -2 and -1 are assigned by the DenseMap.
119   unsigned PHINodeGVNTracker = -3;
120 
121   DenseMap<unsigned,
122            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
123       PHINodeGVNToGVNs;
124   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
125 
126   /// The number of instructions that will be outlined by extracting \ref
127   /// Regions.
128   InstructionCost Benefit = 0;
129   /// The number of added instructions needed for the outlining of the \ref
130   /// Regions.
131   InstructionCost Cost = 0;
132 
133   /// The argument that needs to be marked with the swifterr attribute.  If not
134   /// needed, there is no value.
135   std::optional<unsigned> SwiftErrorArgument;
136 
137   /// For the \ref Regions, we look at every Value.  If it is a constant,
138   /// we check whether it is the same in Region.
139   ///
140   /// \param [in,out] NotSame contains the global value numbers where the
141   /// constant is not always the same, and must be passed in as an argument.
142   void findSameConstants(DenseSet<unsigned> &NotSame);
143 
144   /// For the regions, look at each set of GVN stores needed and account for
145   /// each combination.  Add an argument to the argument types if there is
146   /// more than one combination.
147   ///
148   /// \param [in] M - The module we are outlining from.
149   void collectGVNStoreSets(Module &M);
150 };
151 
152 /// Move the contents of \p SourceBB to before the last instruction of \p
153 /// TargetBB.
154 /// \param SourceBB - the BasicBlock to pull Instructions from.
155 /// \param TargetBB - the BasicBlock to put Instruction into.
156 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
157   TargetBB.splice(TargetBB.end(), &SourceBB);
158 }
159 
160 /// A function to sort the keys of \p Map, which must be a mapping of constant
161 /// values to basic blocks and return it in \p SortedKeys
162 ///
163 /// \param SortedKeys - The vector the keys will be return in and sorted.
164 /// \param Map - The DenseMap containing keys to sort.
165 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
166                                   DenseMap<Value *, BasicBlock *> &Map) {
167   for (auto &VtoBB : Map)
168     SortedKeys.push_back(VtoBB.first);
169 
170   // Here we expect to have either 1 value that is void (nullptr) or multiple
171   // values that are all constant integers.
172   if (SortedKeys.size() == 1) {
173     assert(!SortedKeys[0] && "Expected a single void value.");
174     return;
175   }
176 
177   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
178     assert(LHS && RHS && "Expected non void values.");
179     const ConstantInt *LHSC = cast<ConstantInt>(LHS);
180     const ConstantInt *RHSC = cast<ConstantInt>(RHS);
181 
182     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
183   });
184 }
185 
186 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
187                                                   Value *V) {
188   std::optional<unsigned> GVN = Candidate->getGVN(V);
189   assert(GVN && "No GVN for incoming value");
190   std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
191   std::optional<unsigned> FirstGVN =
192       Other.Candidate->fromCanonicalNum(*CanonNum);
193   std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
194   return FoundValueOpt.value_or(nullptr);
195 }
196 
197 BasicBlock *
198 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
199                                            BasicBlock *BB) {
200   Instruction *FirstNonPHI = BB->getFirstNonPHIOrDbg();
201   assert(FirstNonPHI && "block is empty?");
202   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
203   if (!CorrespondingVal)
204     return nullptr;
205   BasicBlock *CorrespondingBlock =
206       cast<Instruction>(CorrespondingVal)->getParent();
207   return CorrespondingBlock;
208 }
209 
210 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
211 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
212 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
213 /// when PHINodes are included in outlined regions.
214 ///
215 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
216 /// checked.
217 /// \param Find - The successor block to be replaced.
218 /// \param Replace - The new succesor block to branch to.
219 /// \param Included - The set of blocks about to be outlined.
220 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
221                                       BasicBlock *Replace,
222                                       DenseSet<BasicBlock *> &Included) {
223   for (PHINode &PN : PHIBlock->phis()) {
224     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
225          ++Idx) {
226       // Check if the incoming block is included in the set of blocks being
227       // outlined.
228       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
229       if (!Included.contains(Incoming))
230         continue;
231 
232       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
233       assert(BI && "Not a branch instruction?");
234       // Look over the branching instructions into this block to see if we
235       // used to branch to Find in this outlined block.
236       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
237            Succ++) {
238         // If we have found the block to replace, we do so here.
239         if (BI->getSuccessor(Succ) != Find)
240           continue;
241         BI->setSuccessor(Succ, Replace);
242       }
243     }
244   }
245 }
246 
247 
248 void OutlinableRegion::splitCandidate() {
249   assert(!CandidateSplit && "Candidate already split!");
250 
251   Instruction *BackInst = Candidate->backInstruction();
252 
253   Instruction *EndInst = nullptr;
254   // Check whether the last instruction is a terminator, if it is, we do
255   // not split on the following instruction. We leave the block as it is.  We
256   // also check that this is not the last instruction in the Module, otherwise
257   // the check for whether the current following instruction matches the
258   // previously recorded instruction will be incorrect.
259   if (!BackInst->isTerminator() ||
260       BackInst->getParent() != &BackInst->getFunction()->back()) {
261     EndInst = Candidate->end()->Inst;
262     assert(EndInst && "Expected an end instruction?");
263   }
264 
265   // We check if the current instruction following the last instruction in the
266   // region is the same as the recorded instruction following the last
267   // instruction. If they do not match, there could be problems in rewriting
268   // the program after outlining, so we ignore it.
269   if (!BackInst->isTerminator() &&
270       EndInst != BackInst->getNextNonDebugInstruction())
271     return;
272 
273   Instruction *StartInst = (*Candidate->begin()).Inst;
274   assert(StartInst && "Expected a start instruction?");
275   StartBB = StartInst->getParent();
276   PrevBB = StartBB;
277 
278   DenseSet<BasicBlock *> BBSet;
279   Candidate->getBasicBlocks(BBSet);
280 
281   // We iterate over the instructions in the region, if we find a PHINode, we
282   // check if there are predecessors outside of the region, if there are,
283   // we ignore this region since we are unable to handle the severing of the
284   // phi node right now.
285 
286   // TODO: Handle extraneous inputs for PHINodes through variable number of
287   // inputs, similar to how outputs are handled.
288   BasicBlock::iterator It = StartInst->getIterator();
289   EndBB = BackInst->getParent();
290   BasicBlock *IBlock;
291   BasicBlock *PHIPredBlock = nullptr;
292   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
293   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
294     unsigned NumPredsOutsideRegion = 0;
295     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
296       if (!BBSet.contains(PN->getIncomingBlock(i))) {
297         PHIPredBlock = PN->getIncomingBlock(i);
298         ++NumPredsOutsideRegion;
299         continue;
300       }
301 
302       // We must consider the case there the incoming block to the PHINode is
303       // the same as the final block of the OutlinableRegion.  If this is the
304       // case, the branch from this block must also be outlined to be valid.
305       IBlock = PN->getIncomingBlock(i);
306       if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
307         PHIPredBlock = PN->getIncomingBlock(i);
308         ++NumPredsOutsideRegion;
309       }
310     }
311 
312     if (NumPredsOutsideRegion > 1)
313       return;
314 
315     It++;
316   }
317 
318   // If the region starts with a PHINode, but is not the initial instruction of
319   // the BasicBlock, we ignore this region for now.
320   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
321     return;
322 
323   // If the region ends with a PHINode, but does not contain all of the phi node
324   // instructions of the region, we ignore it for now.
325   if (isa<PHINode>(BackInst) &&
326       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
327     return;
328 
329   // The basic block gets split like so:
330   // block:                 block:
331   //   inst1                  inst1
332   //   inst2                  inst2
333   //   region1               br block_to_outline
334   //   region2              block_to_outline:
335   //   region3          ->    region1
336   //   region4                region2
337   //   inst3                  region3
338   //   inst4                  region4
339   //                          br block_after_outline
340   //                        block_after_outline:
341   //                          inst3
342   //                          inst4
343 
344   std::string OriginalName = PrevBB->getName().str();
345 
346   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
347   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
348   // If there was a PHINode with an incoming block outside the region,
349   // make sure is correctly updated in the newly split block.
350   if (PHIPredBlock)
351     PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
352 
353   CandidateSplit = true;
354   if (!BackInst->isTerminator()) {
355     EndBB = EndInst->getParent();
356     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
357     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
358     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
359   } else {
360     EndBB = BackInst->getParent();
361     EndsInBranch = true;
362     FollowBB = nullptr;
363   }
364 
365   // Refind the basic block set.
366   BBSet.clear();
367   Candidate->getBasicBlocks(BBSet);
368   // For the phi nodes in the new starting basic block of the region, we
369   // reassign the targets of the basic blocks branching instructions.
370   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
371   if (FollowBB)
372     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
373 }
374 
375 void OutlinableRegion::reattachCandidate() {
376   assert(CandidateSplit && "Candidate is not split!");
377 
378   // The basic block gets reattached like so:
379   // block:                        block:
380   //   inst1                         inst1
381   //   inst2                         inst2
382   //   br block_to_outline           region1
383   // block_to_outline:        ->     region2
384   //   region1                       region3
385   //   region2                       region4
386   //   region3                       inst3
387   //   region4                       inst4
388   //   br block_after_outline
389   // block_after_outline:
390   //   inst3
391   //   inst4
392   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
393 
394   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
395   // Make sure PHINode references to the block we are merging into are
396   // updated to be incoming blocks from the predecessor to the current block.
397 
398   // NOTE: If this is updated such that the outlined block can have more than
399   // one incoming block to a PHINode, this logic will have to updated
400   // to handle multiple precessors instead.
401 
402   // We only need to update this if the outlined section contains a PHINode, if
403   // it does not, then the incoming block was never changed in the first place.
404   // On the other hand, if PrevBB has no predecessors, it means that all
405   // incoming blocks to the first block are contained in the region, and there
406   // will be nothing to update.
407   Instruction *StartInst = (*Candidate->begin()).Inst;
408   if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
409     assert(!PrevBB->hasNPredecessorsOrMore(2) &&
410          "PrevBB has more than one predecessor. Should be 0 or 1.");
411     BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
412     PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
413   }
414   PrevBB->getTerminator()->eraseFromParent();
415 
416   // If we reattaching after outlining, we iterate over the phi nodes to
417   // the initial block, and reassign the branch instructions of the incoming
418   // blocks to the block we are remerging into.
419   if (!ExtractedFunction) {
420     DenseSet<BasicBlock *> BBSet;
421     Candidate->getBasicBlocks(BBSet);
422 
423     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
424     if (!EndsInBranch)
425       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
426   }
427 
428   moveBBContents(*StartBB, *PrevBB);
429 
430   BasicBlock *PlacementBB = PrevBB;
431   if (StartBB != EndBB)
432     PlacementBB = EndBB;
433   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
434     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
435     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
436     PlacementBB->getTerminator()->eraseFromParent();
437     moveBBContents(*FollowBB, *PlacementBB);
438     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
439     FollowBB->eraseFromParent();
440   }
441 
442   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
443   StartBB->eraseFromParent();
444 
445   // Make sure to save changes back to the StartBB.
446   StartBB = PrevBB;
447   EndBB = nullptr;
448   PrevBB = nullptr;
449   FollowBB = nullptr;
450 
451   CandidateSplit = false;
452 }
453 
454 /// Find whether \p V matches the Constants previously found for the \p GVN.
455 ///
456 /// \param V - The value to check for consistency.
457 /// \param GVN - The global value number assigned to \p V.
458 /// \param GVNToConstant - The mapping of global value number to Constants.
459 /// \returns true if the Value matches the Constant mapped to by V and false if
460 /// it \p V is a Constant but does not match.
461 /// \returns std::nullopt if \p V is not a Constant.
462 static std::optional<bool>
463 constantMatches(Value *V, unsigned GVN,
464                 DenseMap<unsigned, Constant *> &GVNToConstant) {
465   // See if we have a constants
466   Constant *CST = dyn_cast<Constant>(V);
467   if (!CST)
468     return std::nullopt;
469 
470   // Holds a mapping from a global value number to a Constant.
471   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
472   bool Inserted;
473 
474 
475   // If we have a constant, try to make a new entry in the GVNToConstant.
476   std::tie(GVNToConstantIt, Inserted) =
477       GVNToConstant.insert(std::make_pair(GVN, CST));
478   // If it was found and is not equal, it is not the same. We do not
479   // handle this case yet, and exit early.
480   if (Inserted || (GVNToConstantIt->second == CST))
481     return true;
482 
483   return false;
484 }
485 
486 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
487   InstructionCost Benefit = 0;
488 
489   // Estimate the benefit of outlining a specific sections of the program.  We
490   // delegate mostly this task to the TargetTransformInfo so that if the target
491   // has specific changes, we can have a more accurate estimate.
492 
493   // However, getInstructionCost delegates the code size calculation for
494   // arithmetic instructions to getArithmeticInstrCost in
495   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
496   // code size for a division and remainder instruction to be equal to 4, and
497   // everything else to 1.  This is not an accurate representation of the
498   // division instruction for targets that have a native division instruction.
499   // To be overly conservative, we only add 1 to the number of instructions for
500   // each division instruction.
501   for (IRInstructionData &ID : *Candidate) {
502     Instruction *I = ID.Inst;
503     switch (I->getOpcode()) {
504     case Instruction::FDiv:
505     case Instruction::FRem:
506     case Instruction::SDiv:
507     case Instruction::SRem:
508     case Instruction::UDiv:
509     case Instruction::URem:
510       Benefit += 1;
511       break;
512     default:
513       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
514       break;
515     }
516   }
517 
518   return Benefit;
519 }
520 
521 /// Check the \p OutputMappings structure for value \p Input, if it exists
522 /// it has been used as an output for outlining, and has been renamed, and we
523 /// return the new value, otherwise, we return the same value.
524 ///
525 /// \param OutputMappings [in] - The mapping of values to their renamed value
526 /// after being used as an output for an outlined region.
527 /// \param Input [in] - The value to find the remapped value of, if it exists.
528 /// \return The remapped value if it has been renamed, and the same value if has
529 /// not.
530 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
531                                 Value *Input) {
532   DenseMap<Value *, Value *>::const_iterator OutputMapping =
533       OutputMappings.find(Input);
534   if (OutputMapping != OutputMappings.end())
535     return OutputMapping->second;
536   return Input;
537 }
538 
539 /// Find whether \p Region matches the global value numbering to Constant
540 /// mapping found so far.
541 ///
542 /// \param Region - The OutlinableRegion we are checking for constants
543 /// \param GVNToConstant - The mapping of global value number to Constants.
544 /// \param NotSame - The set of global value numbers that do not have the same
545 /// constant in each region.
546 /// \returns true if all Constants are the same in every use of a Constant in \p
547 /// Region and false if not
548 static bool
549 collectRegionsConstants(OutlinableRegion &Region,
550                         DenseMap<unsigned, Constant *> &GVNToConstant,
551                         DenseSet<unsigned> &NotSame) {
552   bool ConstantsTheSame = true;
553 
554   IRSimilarityCandidate &C = *Region.Candidate;
555   for (IRInstructionData &ID : C) {
556 
557     // Iterate over the operands in an instruction. If the global value number,
558     // assigned by the IRSimilarityCandidate, has been seen before, we check if
559     // the number has been found to be not the same value in each instance.
560     for (Value *V : ID.OperVals) {
561       std::optional<unsigned> GVNOpt = C.getGVN(V);
562       assert(GVNOpt && "Expected a GVN for operand?");
563       unsigned GVN = *GVNOpt;
564 
565       // Check if this global value has been found to not be the same already.
566       if (NotSame.contains(GVN)) {
567         if (isa<Constant>(V))
568           ConstantsTheSame = false;
569         continue;
570       }
571 
572       // If it has been the same so far, we check the value for if the
573       // associated Constant value match the previous instances of the same
574       // global value number.  If the global value does not map to a Constant,
575       // it is considered to not be the same value.
576       std::optional<bool> ConstantMatches =
577           constantMatches(V, GVN, GVNToConstant);
578       if (ConstantMatches) {
579         if (*ConstantMatches)
580           continue;
581         else
582           ConstantsTheSame = false;
583       }
584 
585       // While this value is a register, it might not have been previously,
586       // make sure we don't already have a constant mapped to this global value
587       // number.
588       if (GVNToConstant.contains(GVN))
589         ConstantsTheSame = false;
590 
591       NotSame.insert(GVN);
592     }
593   }
594 
595   return ConstantsTheSame;
596 }
597 
598 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
599   DenseMap<unsigned, Constant *> GVNToConstant;
600 
601   for (OutlinableRegion *Region : Regions)
602     collectRegionsConstants(*Region, GVNToConstant, NotSame);
603 }
604 
605 void OutlinableGroup::collectGVNStoreSets(Module &M) {
606   for (OutlinableRegion *OS : Regions)
607     OutputGVNCombinations.insert(OS->GVNStores);
608 
609   // We are adding an extracted argument to decide between which output path
610   // to use in the basic block.  It is used in a switch statement and only
611   // needs to be an integer.
612   if (OutputGVNCombinations.size() > 1)
613     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
614 }
615 
616 /// Get the subprogram if it exists for one of the outlined regions.
617 ///
618 /// \param [in] Group - The set of regions to find a subprogram for.
619 /// \returns the subprogram if it exists, or nullptr.
620 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
621   for (OutlinableRegion *OS : Group.Regions)
622     if (Function *F = OS->Call->getFunction())
623       if (DISubprogram *SP = F->getSubprogram())
624         return SP;
625 
626   return nullptr;
627 }
628 
629 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
630                                      unsigned FunctionNameSuffix) {
631   assert(!Group.OutlinedFunction && "Function is already defined!");
632 
633   Type *RetTy = Type::getVoidTy(M.getContext());
634   // All extracted functions _should_ have the same return type at this point
635   // since the similarity identifier ensures that all branches outside of the
636   // region occur in the same place.
637 
638   // NOTE: Should we ever move to the model that uses a switch at every point
639   // needed, meaning that we could branch within the region or out, it is
640   // possible that we will need to switch to using the most general case all of
641   // the time.
642   for (OutlinableRegion *R : Group.Regions) {
643     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
644     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
645         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
646       RetTy = ExtractedFuncType;
647   }
648 
649   Group.OutlinedFunctionType = FunctionType::get(
650       RetTy, Group.ArgumentTypes, false);
651 
652   // These functions will only be called from within the same module, so
653   // we can set an internal linkage.
654   Group.OutlinedFunction = Function::Create(
655       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
656       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
657 
658   // Transfer the swifterr attribute to the correct function parameter.
659   if (Group.SwiftErrorArgument)
660     Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
661                                          Attribute::SwiftError);
662 
663   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
664   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
665 
666   // If there's a DISubprogram associated with this outlined function, then
667   // emit debug info for the outlined function.
668   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
669     Function *F = Group.OutlinedFunction;
670     // We have a DISubprogram. Get its DICompileUnit.
671     DICompileUnit *CU = SP->getUnit();
672     DIBuilder DB(M, true, CU);
673     DIFile *Unit = SP->getFile();
674     Mangler Mg;
675     // Get the mangled name of the function for the linkage name.
676     std::string Dummy;
677     llvm::raw_string_ostream MangledNameStream(Dummy);
678     Mg.getNameWithPrefix(MangledNameStream, F, false);
679 
680     DISubprogram *OutlinedSP = DB.createFunction(
681         Unit /* Context */, F->getName(), MangledNameStream.str(),
682         Unit /* File */,
683         0 /* Line 0 is reserved for compiler-generated code. */,
684         DB.createSubroutineType(
685             DB.getOrCreateTypeArray(std::nullopt)), /* void type */
686         0, /* Line 0 is reserved for compiler-generated code. */
687         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
688         /* Outlined code is optimized code by definition. */
689         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
690 
691     // Don't add any new variables to the subprogram.
692     DB.finalizeSubprogram(OutlinedSP);
693 
694     // Attach subprogram to the function.
695     F->setSubprogram(OutlinedSP);
696     // We're done with the DIBuilder.
697     DB.finalize();
698   }
699 
700   return Group.OutlinedFunction;
701 }
702 
703 /// Move each BasicBlock in \p Old to \p New.
704 ///
705 /// \param [in] Old - The function to move the basic blocks from.
706 /// \param [in] New - The function to move the basic blocks to.
707 /// \param [out] NewEnds - The return blocks of the new overall function.
708 static void moveFunctionData(Function &Old, Function &New,
709                              DenseMap<Value *, BasicBlock *> &NewEnds) {
710   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
711     CurrBB.removeFromParent();
712     CurrBB.insertInto(&New);
713     Instruction *I = CurrBB.getTerminator();
714 
715     // For each block we find a return instruction is, it is a potential exit
716     // path for the function.  We keep track of each block based on the return
717     // value here.
718     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
719       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
720 
721     std::vector<Instruction *> DebugInsts;
722 
723     for (Instruction &Val : CurrBB) {
724       // We must handle the scoping of called functions differently than
725       // other outlined instructions.
726       if (!isa<CallInst>(&Val)) {
727         // Remove the debug information for outlined functions.
728         Val.setDebugLoc(DebugLoc());
729 
730         // Loop info metadata may contain line locations. Update them to have no
731         // value in the new subprogram since the outlined code could be from
732         // several locations.
733         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
734           if (DISubprogram *SP = New.getSubprogram())
735             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
736               return DILocation::get(New.getContext(), Loc->getLine(),
737                                      Loc->getColumn(), SP, nullptr);
738           return MD;
739         };
740         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
741         continue;
742       }
743 
744       // From this point we are only handling call instructions.
745       CallInst *CI = cast<CallInst>(&Val);
746 
747       // We add any debug statements here, to be removed after.  Since the
748       // instructions originate from many different locations in the program,
749       // it will cause incorrect reporting from a debugger if we keep the
750       // same debug instructions.
751       if (isa<DbgInfoIntrinsic>(CI)) {
752         DebugInsts.push_back(&Val);
753         continue;
754       }
755 
756       // Edit the scope of called functions inside of outlined functions.
757       if (DISubprogram *SP = New.getSubprogram()) {
758         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
759         Val.setDebugLoc(DI);
760       }
761     }
762 
763     for (Instruction *I : DebugInsts)
764       I->eraseFromParent();
765   }
766 }
767 
768 /// Find the constants that will need to be lifted into arguments
769 /// as they are not the same in each instance of the region.
770 ///
771 /// \param [in] C - The IRSimilarityCandidate containing the region we are
772 /// analyzing.
773 /// \param [in] NotSame - The set of global value numbers that do not have a
774 /// single Constant across all OutlinableRegions similar to \p C.
775 /// \param [out] Inputs - The list containing the global value numbers of the
776 /// arguments needed for the region of code.
777 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
778                           std::vector<unsigned> &Inputs) {
779   DenseSet<unsigned> Seen;
780   // Iterate over the instructions, and find what constants will need to be
781   // extracted into arguments.
782   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
783        IDIt != EndIDIt; IDIt++) {
784     for (Value *V : (*IDIt).OperVals) {
785       // Since these are stored before any outlining, they will be in the
786       // global value numbering.
787       unsigned GVN = *C.getGVN(V);
788       if (isa<Constant>(V))
789         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
790           Inputs.push_back(GVN);
791           Seen.insert(GVN);
792         }
793     }
794   }
795 }
796 
797 /// Find the GVN for the inputs that have been found by the CodeExtractor.
798 ///
799 /// \param [in] C - The IRSimilarityCandidate containing the region we are
800 /// analyzing.
801 /// \param [in] CurrentInputs - The set of inputs found by the
802 /// CodeExtractor.
803 /// \param [in] OutputMappings - The mapping of values that have been replaced
804 /// by a new output value.
805 /// \param [out] EndInputNumbers - The global value numbers for the extracted
806 /// arguments.
807 static void mapInputsToGVNs(IRSimilarityCandidate &C,
808                             SetVector<Value *> &CurrentInputs,
809                             const DenseMap<Value *, Value *> &OutputMappings,
810                             std::vector<unsigned> &EndInputNumbers) {
811   // Get the Global Value Number for each input.  We check if the Value has been
812   // replaced by a different value at output, and use the original value before
813   // replacement.
814   for (Value *Input : CurrentInputs) {
815     assert(Input && "Have a nullptr as an input");
816     if (OutputMappings.contains(Input))
817       Input = OutputMappings.find(Input)->second;
818     assert(C.getGVN(Input) && "Could not find a numbering for the given input");
819     EndInputNumbers.push_back(*C.getGVN(Input));
820   }
821 }
822 
823 /// Find the original value for the \p ArgInput values if any one of them was
824 /// replaced during a previous extraction.
825 ///
826 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
827 /// \param [in] OutputMappings - The mapping of values that have been replaced
828 /// by a new output value.
829 /// \param [out] RemappedArgInputs - The remapped values according to
830 /// \p OutputMappings that will be extracted.
831 static void
832 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
833                      const DenseMap<Value *, Value *> &OutputMappings,
834                      SetVector<Value *> &RemappedArgInputs) {
835   // Get the global value number for each input that will be extracted as an
836   // argument by the code extractor, remapping if needed for reloaded values.
837   for (Value *Input : ArgInputs) {
838     if (OutputMappings.contains(Input))
839       Input = OutputMappings.find(Input)->second;
840     RemappedArgInputs.insert(Input);
841   }
842 }
843 
844 /// Find the input GVNs and the output values for a region of Instructions.
845 /// Using the code extractor, we collect the inputs to the extracted function.
846 ///
847 /// The \p Region can be identified as needing to be ignored in this function.
848 /// It should be checked whether it should be ignored after a call to this
849 /// function.
850 ///
851 /// \param [in,out] Region - The region of code to be analyzed.
852 /// \param [out] InputGVNs - The global value numbers for the extracted
853 /// arguments.
854 /// \param [in] NotSame - The global value numbers in the region that do not
855 /// have the same constant value in the regions structurally similar to
856 /// \p Region.
857 /// \param [in] OutputMappings - The mapping of values that have been replaced
858 /// by a new output value after extraction.
859 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
860 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
861 /// as outputs.
862 static void getCodeExtractorArguments(
863     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
864     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
865     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
866   IRSimilarityCandidate &C = *Region.Candidate;
867 
868   // OverallInputs are the inputs to the region found by the CodeExtractor,
869   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
870   // allocas of values whose lifetimes are contained completely within the
871   // outlined region. PremappedInputs are the arguments found by the
872   // CodeExtractor, removing conditions such as sunken allocas, but that
873   // may need to be remapped due to the extracted output values replacing
874   // the original values. We use DummyOutputs for this first run of finding
875   // inputs and outputs since the outputs could change during findAllocas,
876   // the correct set of extracted outputs will be in the final Outputs ValueSet.
877   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
878       DummyOutputs;
879 
880   // Use the code extractor to get the inputs and outputs, without sunken
881   // allocas or removing llvm.assumes.
882   CodeExtractor *CE = Region.CE;
883   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
884   assert(Region.StartBB && "Region must have a start BasicBlock!");
885   Function *OrigF = Region.StartBB->getParent();
886   CodeExtractorAnalysisCache CEAC(*OrigF);
887   BasicBlock *Dummy = nullptr;
888 
889   // The region may be ineligible due to VarArgs in the parent function. In this
890   // case we ignore the region.
891   if (!CE->isEligible()) {
892     Region.IgnoreRegion = true;
893     return;
894   }
895 
896   // Find if any values are going to be sunk into the function when extracted
897   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
898   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
899 
900   // TODO: Support regions with sunken allocas: values whose lifetimes are
901   // contained completely within the outlined region.  These are not guaranteed
902   // to be the same in every region, so we must elevate them all to arguments
903   // when they appear.  If these values are not equal, it means there is some
904   // Input in OverallInputs that was removed for ArgInputs.
905   if (OverallInputs.size() != PremappedInputs.size()) {
906     Region.IgnoreRegion = true;
907     return;
908   }
909 
910   findConstants(C, NotSame, InputGVNs);
911 
912   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
913 
914   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
915                        ArgInputs);
916 
917   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
918   // we need to make sure they are in a deterministic order.
919   stable_sort(InputGVNs);
920 }
921 
922 /// Look over the inputs and map each input argument to an argument in the
923 /// overall function for the OutlinableRegions.  This creates a way to replace
924 /// the arguments of the extracted function with the arguments of the new
925 /// overall function.
926 ///
927 /// \param [in,out] Region - The region of code to be analyzed.
928 /// \param [in] InputGVNs - The global value numbering of the input values
929 /// collected.
930 /// \param [in] ArgInputs - The values of the arguments to the extracted
931 /// function.
932 static void
933 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
934                                         std::vector<unsigned> &InputGVNs,
935                                         SetVector<Value *> &ArgInputs) {
936 
937   IRSimilarityCandidate &C = *Region.Candidate;
938   OutlinableGroup &Group = *Region.Parent;
939 
940   // This counts the argument number in the overall function.
941   unsigned TypeIndex = 0;
942 
943   // This counts the argument number in the extracted function.
944   unsigned OriginalIndex = 0;
945 
946   // Find the mapping of the extracted arguments to the arguments for the
947   // overall function. Since there may be extra arguments in the overall
948   // function to account for the extracted constants, we have two different
949   // counters as we find extracted arguments, and as we come across overall
950   // arguments.
951 
952   // Additionally, in our first pass, for the first extracted function,
953   // we find argument locations for the canonical value numbering.  This
954   // numbering overrides any discovered location for the extracted code.
955   for (unsigned InputVal : InputGVNs) {
956     std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
957     assert(CanonicalNumberOpt && "Canonical number not found?");
958     unsigned CanonicalNumber = *CanonicalNumberOpt;
959 
960     std::optional<Value *> InputOpt = C.fromGVN(InputVal);
961     assert(InputOpt && "Global value number not found?");
962     Value *Input = *InputOpt;
963 
964     DenseMap<unsigned, unsigned>::iterator AggArgIt =
965         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
966 
967     if (!Group.InputTypesSet) {
968       Group.ArgumentTypes.push_back(Input->getType());
969       // If the input value has a swifterr attribute, make sure to mark the
970       // argument in the overall function.
971       if (Input->isSwiftError()) {
972         assert(
973             !Group.SwiftErrorArgument &&
974             "Argument already marked with swifterr for this OutlinableGroup!");
975         Group.SwiftErrorArgument = TypeIndex;
976       }
977     }
978 
979     // Check if we have a constant. If we do add it to the overall argument
980     // number to Constant map for the region, and continue to the next input.
981     if (Constant *CST = dyn_cast<Constant>(Input)) {
982       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
983         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
984       else {
985         Group.CanonicalNumberToAggArg.insert(
986             std::make_pair(CanonicalNumber, TypeIndex));
987         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
988       }
989       TypeIndex++;
990       continue;
991     }
992 
993     // It is not a constant, we create the mapping from extracted argument list
994     // to the overall argument list, using the canonical location, if it exists.
995     assert(ArgInputs.count(Input) && "Input cannot be found!");
996 
997     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
998       if (OriginalIndex != AggArgIt->second)
999         Region.ChangedArgOrder = true;
1000       Region.ExtractedArgToAgg.insert(
1001           std::make_pair(OriginalIndex, AggArgIt->second));
1002       Region.AggArgToExtracted.insert(
1003           std::make_pair(AggArgIt->second, OriginalIndex));
1004     } else {
1005       Group.CanonicalNumberToAggArg.insert(
1006           std::make_pair(CanonicalNumber, TypeIndex));
1007       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1008       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1009     }
1010     OriginalIndex++;
1011     TypeIndex++;
1012   }
1013 
1014   // If the function type definitions for the OutlinableGroup holding the region
1015   // have not been set, set the length of the inputs here.  We should have the
1016   // same inputs for all of the different regions contained in the
1017   // OutlinableGroup since they are all structurally similar to one another.
1018   if (!Group.InputTypesSet) {
1019     Group.NumAggregateInputs = TypeIndex;
1020     Group.InputTypesSet = true;
1021   }
1022 
1023   Region.NumExtractedInputs = OriginalIndex;
1024 }
1025 
1026 /// Check if the \p V has any uses outside of the region other than \p PN.
1027 ///
1028 /// \param V [in] - The value to check.
1029 /// \param PHILoc [in] - The location in the PHINode of \p V.
1030 /// \param PN [in] - The PHINode using \p V.
1031 /// \param Exits [in] - The potential blocks we exit to from the outlined
1032 /// region.
1033 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1034 /// \returns true if \p V has any use soutside its region other than \p PN.
1035 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1036                             SmallPtrSet<BasicBlock *, 1> &Exits,
1037                             DenseSet<BasicBlock *> &BlocksInRegion) {
1038   // We check to see if the value is used by the PHINode from some other
1039   // predecessor not included in the region.  If it is, we make sure
1040   // to keep it as an output.
1041   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1042              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1043                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1044                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1045              }))
1046     return true;
1047 
1048   // Check if the value is used by any other instructions outside the region.
1049   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1050     Instruction *I = dyn_cast<Instruction>(U);
1051     if (!I)
1052       return false;
1053 
1054     // If the use of the item is inside the region, we skip it.  Uses
1055     // inside the region give us useful information about how the item could be
1056     // used as an output.
1057     BasicBlock *Parent = I->getParent();
1058     if (BlocksInRegion.contains(Parent))
1059       return false;
1060 
1061     // If it's not a PHINode then we definitely know the use matters.  This
1062     // output value will not completely combined with another item in a PHINode
1063     // as it is directly reference by another non-phi instruction
1064     if (!isa<PHINode>(I))
1065       return true;
1066 
1067     // If we have a PHINode outside one of the exit locations, then it
1068     // can be considered an outside use as well.  If there is a PHINode
1069     // contained in the Exit where this values use matters, it will be
1070     // caught when we analyze that PHINode.
1071     if (!Exits.contains(Parent))
1072       return true;
1073 
1074     return false;
1075   });
1076 }
1077 
1078 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1079 /// considered outputs. A PHINodes is an output when more than one incoming
1080 /// value has been marked by the CodeExtractor as an output.
1081 ///
1082 /// \param CurrentExitFromRegion [in] - The block to analyze.
1083 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1084 /// region.
1085 /// \param RegionBlocks [in] - The basic blocks in the region.
1086 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1087 /// PHINodes to this as we find that they replace output values.
1088 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1089 /// totally replaced  by a PHINode.
1090 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1091 /// in PHINodes, but have other uses, and should still be considered outputs.
1092 static void analyzeExitPHIsForOutputUses(
1093     BasicBlock *CurrentExitFromRegion,
1094     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1095     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1096     DenseSet<Value *> &OutputsReplacedByPHINode,
1097     DenseSet<Value *> &OutputsWithNonPhiUses) {
1098   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1099     // Find all incoming values from the outlining region.
1100     SmallVector<unsigned, 2> IncomingVals;
1101     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1102       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1103         IncomingVals.push_back(I);
1104 
1105     // Do not process PHI if there are no predecessors from region.
1106     unsigned NumIncomingVals = IncomingVals.size();
1107     if (NumIncomingVals == 0)
1108       continue;
1109 
1110     // If there is one predecessor, we mark it as a value that needs to be kept
1111     // as an output.
1112     if (NumIncomingVals == 1) {
1113       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1114       OutputsWithNonPhiUses.insert(V);
1115       OutputsReplacedByPHINode.erase(V);
1116       continue;
1117     }
1118 
1119     // This PHINode will be used as an output value, so we add it to our list.
1120     Outputs.insert(&PN);
1121 
1122     // Not all of the incoming values should be ignored as other inputs and
1123     // outputs may have uses in outlined region.  If they have other uses
1124     // outside of the single PHINode we should not skip over it.
1125     for (unsigned Idx : IncomingVals) {
1126       Value *V = PN.getIncomingValue(Idx);
1127       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1128         OutputsWithNonPhiUses.insert(V);
1129         OutputsReplacedByPHINode.erase(V);
1130         continue;
1131       }
1132       if (!OutputsWithNonPhiUses.contains(V))
1133         OutputsReplacedByPHINode.insert(V);
1134     }
1135   }
1136 }
1137 
1138 // Represents the type for the unsigned number denoting the output number for
1139 // phi node, along with the canonical number for the exit block.
1140 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1141 // The list of canonical numbers for the incoming values to a PHINode.
1142 using CanonList = SmallVector<unsigned, 2>;
1143 // The pair type representing the set of canonical values being combined in the
1144 // PHINode, along with the location data for the PHINode.
1145 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1146 
1147 /// Encode \p PND as an integer for easy lookup based on the argument location,
1148 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1149 /// the values stored in the PHINode.
1150 ///
1151 /// \param PND - The data to hash.
1152 /// \returns The hash code of \p PND.
1153 static hash_code encodePHINodeData(PHINodeData &PND) {
1154   return llvm::hash_combine(
1155       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1156       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1157 }
1158 
1159 /// Create a special GVN for PHINodes that will be used outside of
1160 /// the region.  We create a hash code based on the Canonical number of the
1161 /// parent BasicBlock, the canonical numbering of the values stored in the
1162 /// PHINode and the aggregate argument location.  This is used to find whether
1163 /// this PHINode type has been given a canonical numbering already.  If not, we
1164 /// assign it a value and store it for later use.  The value is returned to
1165 /// identify different output schemes for the set of regions.
1166 ///
1167 /// \param Region - The region that \p PN is an output for.
1168 /// \param PN - The PHINode we are analyzing.
1169 /// \param Blocks - The blocks for the region we are analyzing.
1170 /// \param AggArgIdx - The argument \p PN will be stored into.
1171 /// \returns An optional holding the assigned canonical number, or std::nullopt
1172 /// if there is some attribute of the PHINode blocking it from being used.
1173 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1174                                                 PHINode *PN,
1175                                                 DenseSet<BasicBlock *> &Blocks,
1176                                                 unsigned AggArgIdx) {
1177   OutlinableGroup &Group = *Region.Parent;
1178   IRSimilarityCandidate &Cand = *Region.Candidate;
1179   BasicBlock *PHIBB = PN->getParent();
1180   CanonList PHIGVNs;
1181   Value *Incoming;
1182   BasicBlock *IncomingBlock;
1183   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1184     Incoming = PN->getIncomingValue(Idx);
1185     IncomingBlock = PN->getIncomingBlock(Idx);
1186     // If we cannot find a GVN, and the incoming block is included in the region
1187     // this means that the input to the PHINode is not included in the region we
1188     // are trying to analyze, meaning, that if it was outlined, we would be
1189     // adding an extra input.  We ignore this case for now, and so ignore the
1190     // region.
1191     std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1192     if (!OGVN && Blocks.contains(IncomingBlock)) {
1193       Region.IgnoreRegion = true;
1194       return std::nullopt;
1195     }
1196 
1197     // If the incoming block isn't in the region, we don't have to worry about
1198     // this incoming value.
1199     if (!Blocks.contains(IncomingBlock))
1200       continue;
1201 
1202     // Collect the canonical numbers of the values in the PHINode.
1203     unsigned GVN = *OGVN;
1204     OGVN = Cand.getCanonicalNum(GVN);
1205     assert(OGVN && "No GVN found for incoming value?");
1206     PHIGVNs.push_back(*OGVN);
1207 
1208     // Find the incoming block and use the canonical numbering as well to define
1209     // the hash for the PHINode.
1210     OGVN = Cand.getGVN(IncomingBlock);
1211 
1212     // If there is no number for the incoming block, it is because we have
1213     // split the candidate basic blocks.  So we use the previous block that it
1214     // was split from to find the valid global value numbering for the PHINode.
1215     if (!OGVN) {
1216       assert(Cand.getStartBB() == IncomingBlock &&
1217              "Unknown basic block used in exit path PHINode.");
1218 
1219       BasicBlock *PrevBlock = nullptr;
1220       // Iterate over the predecessors to the incoming block of the
1221       // PHINode, when we find a block that is not contained in the region
1222       // we know that this is the first block that we split from, and should
1223       // have a valid global value numbering.
1224       for (BasicBlock *Pred : predecessors(IncomingBlock))
1225         if (!Blocks.contains(Pred)) {
1226           PrevBlock = Pred;
1227           break;
1228         }
1229       assert(PrevBlock && "Expected a predecessor not in the reigon!");
1230       OGVN = Cand.getGVN(PrevBlock);
1231     }
1232     GVN = *OGVN;
1233     OGVN = Cand.getCanonicalNum(GVN);
1234     assert(OGVN && "No GVN found for incoming block?");
1235     PHIGVNs.push_back(*OGVN);
1236   }
1237 
1238   // Now that we have the GVNs for the incoming values, we are going to combine
1239   // them with the GVN of the incoming bock, and the output location of the
1240   // PHINode to generate a hash value representing this instance of the PHINode.
1241   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1242   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1243   std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1244   assert(BBGVN && "Could not find GVN for the incoming block!");
1245 
1246   BBGVN = Cand.getCanonicalNum(*BBGVN);
1247   assert(BBGVN && "Could not find canonical number for the incoming block!");
1248   // Create a pair of the exit block canonical value, and the aggregate
1249   // argument location, connected to the canonical numbers stored in the
1250   // PHINode.
1251   PHINodeData TemporaryPair =
1252       std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1253   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1254 
1255   // Look for and create a new entry in our connection between canonical
1256   // numbers for PHINodes, and the set of objects we just created.
1257   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1258   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1259     bool Inserted = false;
1260     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1261         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1262     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1263         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1264   }
1265 
1266   return GVNToPHIIt->second;
1267 }
1268 
1269 /// Create a mapping of the output arguments for the \p Region to the output
1270 /// arguments of the overall outlined function.
1271 ///
1272 /// \param [in,out] Region - The region of code to be analyzed.
1273 /// \param [in] Outputs - The values found by the code extractor.
1274 static void
1275 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1276                                           SetVector<Value *> &Outputs) {
1277   OutlinableGroup &Group = *Region.Parent;
1278   IRSimilarityCandidate &C = *Region.Candidate;
1279 
1280   SmallVector<BasicBlock *> BE;
1281   DenseSet<BasicBlock *> BlocksInRegion;
1282   C.getBasicBlocks(BlocksInRegion, BE);
1283 
1284   // Find the exits to the region.
1285   SmallPtrSet<BasicBlock *, 1> Exits;
1286   for (BasicBlock *Block : BE)
1287     for (BasicBlock *Succ : successors(Block))
1288       if (!BlocksInRegion.contains(Succ))
1289         Exits.insert(Succ);
1290 
1291   // After determining which blocks exit to PHINodes, we add these PHINodes to
1292   // the set of outputs to be processed.  We also check the incoming values of
1293   // the PHINodes for whether they should no longer be considered outputs.
1294   DenseSet<Value *> OutputsReplacedByPHINode;
1295   DenseSet<Value *> OutputsWithNonPhiUses;
1296   for (BasicBlock *ExitBB : Exits)
1297     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1298                                  OutputsReplacedByPHINode,
1299                                  OutputsWithNonPhiUses);
1300 
1301   // This counts the argument number in the extracted function.
1302   unsigned OriginalIndex = Region.NumExtractedInputs;
1303 
1304   // This counts the argument number in the overall function.
1305   unsigned TypeIndex = Group.NumAggregateInputs;
1306   bool TypeFound;
1307   DenseSet<unsigned> AggArgsUsed;
1308 
1309   // Iterate over the output types and identify if there is an aggregate pointer
1310   // type whose base type matches the current output type. If there is, we mark
1311   // that we will use this output register for this value. If not we add another
1312   // type to the overall argument type list. We also store the GVNs used for
1313   // stores to identify which values will need to be moved into an special
1314   // block that holds the stores to the output registers.
1315   for (Value *Output : Outputs) {
1316     TypeFound = false;
1317     // We can do this since it is a result value, and will have a number
1318     // that is necessarily the same. BUT if in the future, the instructions
1319     // do not have to be in same order, but are functionally the same, we will
1320     // have to use a different scheme, as one-to-one correspondence is not
1321     // guaranteed.
1322     unsigned ArgumentSize = Group.ArgumentTypes.size();
1323 
1324     // If the output is combined in a PHINode, we make sure to skip over it.
1325     if (OutputsReplacedByPHINode.contains(Output))
1326       continue;
1327 
1328     unsigned AggArgIdx = 0;
1329     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1330       if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
1331         continue;
1332 
1333       if (AggArgsUsed.contains(Jdx))
1334         continue;
1335 
1336       TypeFound = true;
1337       AggArgsUsed.insert(Jdx);
1338       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1339       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1340       AggArgIdx = Jdx;
1341       break;
1342     }
1343 
1344     // We were unable to find an unused type in the output type set that matches
1345     // the output, so we add a pointer type to the argument types of the overall
1346     // function to handle this output and create a mapping to it.
1347     if (!TypeFound) {
1348       Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(),
1349           M.getDataLayout().getAllocaAddrSpace()));
1350       // Mark the new pointer type as the last value in the aggregate argument
1351       // list.
1352       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1353       AggArgsUsed.insert(ArgTypeIdx);
1354       Region.ExtractedArgToAgg.insert(
1355           std::make_pair(OriginalIndex, ArgTypeIdx));
1356       Region.AggArgToExtracted.insert(
1357           std::make_pair(ArgTypeIdx, OriginalIndex));
1358       AggArgIdx = ArgTypeIdx;
1359     }
1360 
1361     // TODO: Adapt to the extra input from the PHINode.
1362     PHINode *PN = dyn_cast<PHINode>(Output);
1363 
1364     std::optional<unsigned> GVN;
1365     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1366       // Values outside the region can be combined into PHINode when we
1367       // have multiple exits. We collect both of these into a list to identify
1368       // which values are being used in the PHINode. Each list identifies a
1369       // different PHINode, and a different output. We store the PHINode as it's
1370       // own canonical value.  These canonical values are also dependent on the
1371       // output argument it is saved to.
1372 
1373       // If two PHINodes have the same canonical values, but different aggregate
1374       // argument locations, then they will have distinct Canonical Values.
1375       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1376       if (!GVN)
1377         return;
1378     } else {
1379       // If we do not have a PHINode we use the global value numbering for the
1380       // output value, to find the canonical number to add to the set of stored
1381       // values.
1382       GVN = C.getGVN(Output);
1383       GVN = C.getCanonicalNum(*GVN);
1384     }
1385 
1386     // Each region has a potentially unique set of outputs.  We save which
1387     // values are output in a list of canonical values so we can differentiate
1388     // among the different store schemes.
1389     Region.GVNStores.push_back(*GVN);
1390 
1391     OriginalIndex++;
1392     TypeIndex++;
1393   }
1394 
1395   // We sort the stored values to make sure that we are not affected by analysis
1396   // order when determining what combination of items were stored.
1397   stable_sort(Region.GVNStores);
1398 }
1399 
1400 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1401                                       DenseSet<unsigned> &NotSame) {
1402   std::vector<unsigned> Inputs;
1403   SetVector<Value *> ArgInputs, Outputs;
1404 
1405   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1406                             Outputs);
1407 
1408   if (Region.IgnoreRegion)
1409     return;
1410 
1411   // Map the inputs found by the CodeExtractor to the arguments found for
1412   // the overall function.
1413   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1414 
1415   // Map the outputs found by the CodeExtractor to the arguments found for
1416   // the overall function.
1417   findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1418 }
1419 
1420 /// Replace the extracted function in the Region with a call to the overall
1421 /// function constructed from the deduplicated similar regions, replacing and
1422 /// remapping the values passed to the extracted function as arguments to the
1423 /// new arguments of the overall function.
1424 ///
1425 /// \param [in] M - The module to outline from.
1426 /// \param [in] Region - The regions of extracted code to be replaced with a new
1427 /// function.
1428 /// \returns a call instruction with the replaced function.
1429 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1430   std::vector<Value *> NewCallArgs;
1431   DenseMap<unsigned, unsigned>::iterator ArgPair;
1432 
1433   OutlinableGroup &Group = *Region.Parent;
1434   CallInst *Call = Region.Call;
1435   assert(Call && "Call to replace is nullptr?");
1436   Function *AggFunc = Group.OutlinedFunction;
1437   assert(AggFunc && "Function to replace with is nullptr?");
1438 
1439   // If the arguments are the same size, there are not values that need to be
1440   // made into an argument, the argument ordering has not been change, or
1441   // different output registers to handle.  We can simply replace the called
1442   // function in this case.
1443   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1444     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1445                       << *AggFunc << " with same number of arguments\n");
1446     Call->setCalledFunction(AggFunc);
1447     return Call;
1448   }
1449 
1450   // We have a different number of arguments than the new function, so
1451   // we need to use our previously mappings off extracted argument to overall
1452   // function argument, and constants to overall function argument to create the
1453   // new argument list.
1454   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1455 
1456     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1457         Group.OutputGVNCombinations.size() > 1) {
1458       // If we are on the last argument, and we need to differentiate between
1459       // output blocks, add an integer to the argument list to determine
1460       // what block to take
1461       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1462                         << Region.OutputBlockNum << "\n");
1463       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1464                                              Region.OutputBlockNum));
1465       continue;
1466     }
1467 
1468     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1469     if (ArgPair != Region.AggArgToExtracted.end()) {
1470       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1471       // If we found the mapping from the extracted function to the overall
1472       // function, we simply add it to the argument list.  We use the same
1473       // value, it just needs to honor the new order of arguments.
1474       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1475                         << *ArgumentValue << "\n");
1476       NewCallArgs.push_back(ArgumentValue);
1477       continue;
1478     }
1479 
1480     // If it is a constant, we simply add it to the argument list as a value.
1481     if (Region.AggArgToConstant.contains(AggArgIdx)) {
1482       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1483       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1484                         << *CST << "\n");
1485       NewCallArgs.push_back(CST);
1486       continue;
1487     }
1488 
1489     // Add a nullptr value if the argument is not found in the extracted
1490     // function.  If we cannot find a value, it means it is not in use
1491     // for the region, so we should not pass anything to it.
1492     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1493     NewCallArgs.push_back(ConstantPointerNull::get(
1494         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1495   }
1496 
1497   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1498                     << *AggFunc << " with new set of arguments\n");
1499   // Create the new call instruction and erase the old one.
1500   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1501                           Call);
1502 
1503   // It is possible that the call to the outlined function is either the first
1504   // instruction is in the new block, the last instruction, or both.  If either
1505   // of these is the case, we need to make sure that we replace the instruction
1506   // in the IRInstructionData struct with the new call.
1507   CallInst *OldCall = Region.Call;
1508   if (Region.NewFront->Inst == OldCall)
1509     Region.NewFront->Inst = Call;
1510   if (Region.NewBack->Inst == OldCall)
1511     Region.NewBack->Inst = Call;
1512 
1513   // Transfer any debug information.
1514   Call->setDebugLoc(Region.Call->getDebugLoc());
1515   // Since our output may determine which branch we go to, we make sure to
1516   // propogate this new call value through the module.
1517   OldCall->replaceAllUsesWith(Call);
1518 
1519   // Remove the old instruction.
1520   OldCall->eraseFromParent();
1521   Region.Call = Call;
1522 
1523   // Make sure that the argument in the new function has the SwiftError
1524   // argument.
1525   if (Group.SwiftErrorArgument)
1526     Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1527 
1528   return Call;
1529 }
1530 
1531 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1532 /// for \p RetVal.
1533 ///
1534 /// \param Group - The OutlinableGroup containing the information about the
1535 /// overall outlined function.
1536 /// \param RetVal - The return value or exit option that we are currently
1537 /// evaluating.
1538 /// \returns The found or newly created BasicBlock to contain the needed
1539 /// PHINodes to be used as outputs.
1540 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1541   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1542       ReturnBlockForRetVal;
1543   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1544   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1545   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1546          "Could not find output value!");
1547   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1548 
1549   // Find if a PHIBlock exists for this return value already.  If it is
1550   // the first time we are analyzing this, we will not, so we record it.
1551   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1552   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1553     return PhiBlockForRetVal->second;
1554 
1555   // If we did not find a block, we create one, and insert it into the
1556   // overall function and record it.
1557   bool Inserted = false;
1558   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1559                                             ReturnBB->getParent());
1560   std::tie(PhiBlockForRetVal, Inserted) =
1561       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1562 
1563   // We find the predecessors of the return block in the newly created outlined
1564   // function in order to point them to the new PHIBlock rather than the already
1565   // existing return block.
1566   SmallVector<BranchInst *, 2> BranchesToChange;
1567   for (BasicBlock *Pred : predecessors(ReturnBB))
1568     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1569 
1570   // Now we mark the branch instructions found, and change the references of the
1571   // return block to the newly created PHIBlock.
1572   for (BranchInst *BI : BranchesToChange)
1573     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1574       if (BI->getSuccessor(Succ) != ReturnBB)
1575         continue;
1576       BI->setSuccessor(Succ, PHIBlock);
1577     }
1578 
1579   BranchInst::Create(ReturnBB, PHIBlock);
1580 
1581   return PhiBlockForRetVal->second;
1582 }
1583 
1584 /// For the function call now representing the \p Region, find the passed value
1585 /// to that call that represents Argument \p A at the call location if the
1586 /// call has already been replaced with a call to the  overall, aggregate
1587 /// function.
1588 ///
1589 /// \param A - The Argument to get the passed value for.
1590 /// \param Region - The extracted Region corresponding to the outlined function.
1591 /// \returns The Value representing \p A at the call site.
1592 static Value *
1593 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1594                                            const OutlinableRegion &Region) {
1595   // If we don't need to adjust the argument number at all (since the call
1596   // has already been replaced by a call to the overall outlined function)
1597   // we can just get the specified argument.
1598   return Region.Call->getArgOperand(A->getArgNo());
1599 }
1600 
1601 /// For the function call now representing the \p Region, find the passed value
1602 /// to that call that represents Argument \p A at the call location if the
1603 /// call has only been replaced by the call to the aggregate function.
1604 ///
1605 /// \param A - The Argument to get the passed value for.
1606 /// \param Region - The extracted Region corresponding to the outlined function.
1607 /// \returns The Value representing \p A at the call site.
1608 static Value *
1609 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1610                                            const OutlinableRegion &Region) {
1611   unsigned ArgNum = A->getArgNo();
1612 
1613   // If it is a constant, we can look at our mapping from when we created
1614   // the outputs to figure out what the constant value is.
1615   if (Region.AggArgToConstant.count(ArgNum))
1616     return Region.AggArgToConstant.find(ArgNum)->second;
1617 
1618   // If it is not a constant, and we are not looking at the overall function, we
1619   // need to adjust which argument we are looking at.
1620   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1621   return Region.Call->getArgOperand(ArgNum);
1622 }
1623 
1624 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1625 ///
1626 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1627 /// \param Region [in] - The OutlinableRegion containing \p PN.
1628 /// \param OutputMappings [in] - The mapping of output values from outlined
1629 /// region to their original values.
1630 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1631 /// \p PN paired with their incoming block.
1632 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1633 /// of \p Region rather than the overall function's call.
1634 static void findCanonNumsForPHI(
1635     PHINode *PN, OutlinableRegion &Region,
1636     const DenseMap<Value *, Value *> &OutputMappings,
1637     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1638     bool ReplacedWithOutlinedCall = true) {
1639   // Iterate over the incoming values.
1640   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1641     Value *IVal = PN->getIncomingValue(Idx);
1642     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1643     // If we have an argument as incoming value, we need to grab the passed
1644     // value from the call itself.
1645     if (Argument *A = dyn_cast<Argument>(IVal)) {
1646       if (ReplacedWithOutlinedCall)
1647         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1648       else
1649         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1650     }
1651 
1652     // Get the original value if it has been replaced by an output value.
1653     IVal = findOutputMapping(OutputMappings, IVal);
1654 
1655     // Find and add the canonical number for the incoming value.
1656     std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1657     assert(GVN && "No GVN for incoming value");
1658     std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1659     assert(CanonNum && "No Canonical Number for GVN");
1660     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1661   }
1662 }
1663 
1664 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1665 /// in order to condense the number of instructions added to the outlined
1666 /// function.
1667 ///
1668 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1669 /// \param Region [in] - The OutlinableRegion containing \p PN.
1670 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1671 /// \p PN in.
1672 /// \param OutputMappings [in] - The mapping of output values from outlined
1673 /// region to their original values.
1674 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1675 /// matched.
1676 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1677 static PHINode*
1678 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1679                        BasicBlock *OverallPhiBlock,
1680                        const DenseMap<Value *, Value *> &OutputMappings,
1681                        DenseSet<PHINode *> &UsedPHIs) {
1682   OutlinableGroup &Group = *Region.Parent;
1683 
1684 
1685   // A list of the canonical numbering assigned to each incoming value, paired
1686   // with the incoming block for the PHINode passed into this function.
1687   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1688 
1689   // We have to use the extracted function since we have merged this region into
1690   // the overall function yet.  We make sure to reassign the argument numbering
1691   // since it is possible that the argument ordering is different between the
1692   // functions.
1693   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1694                       /* ReplacedWithOutlinedCall = */ false);
1695 
1696   OutlinableRegion *FirstRegion = Group.Regions[0];
1697 
1698   // A list of the canonical numbering assigned to each incoming value, paired
1699   // with the incoming block for the PHINode that we are currently comparing
1700   // the passed PHINode to.
1701   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1702 
1703   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1704   // the uses of the PHINode we are searching for, with the found PHINode.
1705   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1706     // If this PHINode has already been matched to another PHINode to be merged,
1707     // we skip it.
1708     if (UsedPHIs.contains(&CurrPN))
1709       continue;
1710 
1711     CurrentCanonNums.clear();
1712     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1713                         /* ReplacedWithOutlinedCall = */ true);
1714 
1715     // If the list of incoming values is not the same length, then they cannot
1716     // match since there is not an analogue for each incoming value.
1717     if (PNCanonNums.size() != CurrentCanonNums.size())
1718       continue;
1719 
1720     bool FoundMatch = true;
1721 
1722     // We compare the canonical value for each incoming value in the passed
1723     // in PHINode to one already present in the outlined region.  If the
1724     // incoming values do not match, then the PHINodes do not match.
1725 
1726     // We also check to make sure that the incoming block matches as well by
1727     // finding the corresponding incoming block in the combined outlined region
1728     // for the current outlined region.
1729     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1730       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1731       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1732       if (ToCompareTo.first != ToAdd.first) {
1733         FoundMatch = false;
1734         break;
1735       }
1736 
1737       BasicBlock *CorrespondingBlock =
1738           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1739       assert(CorrespondingBlock && "Found block is nullptr");
1740       if (CorrespondingBlock != ToCompareTo.second) {
1741         FoundMatch = false;
1742         break;
1743       }
1744     }
1745 
1746     // If all incoming values and branches matched, then we can merge
1747     // into the found PHINode.
1748     if (FoundMatch) {
1749       UsedPHIs.insert(&CurrPN);
1750       return &CurrPN;
1751     }
1752   }
1753 
1754   // If we've made it here, it means we weren't able to replace the PHINode, so
1755   // we must insert it ourselves.
1756   PHINode *NewPN = cast<PHINode>(PN.clone());
1757   NewPN->insertBefore(&*OverallPhiBlock->begin());
1758   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1759        Idx++) {
1760     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1761     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1762 
1763     // Find corresponding basic block in the overall function for the incoming
1764     // block.
1765     BasicBlock *BlockToUse =
1766         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1767     NewPN->setIncomingBlock(Idx, BlockToUse);
1768 
1769     // If we have an argument we make sure we replace using the argument from
1770     // the correct function.
1771     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1772       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1773       NewPN->setIncomingValue(Idx, Val);
1774       continue;
1775     }
1776 
1777     // Find the corresponding value in the overall function.
1778     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1779     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1780     assert(Val && "Value is nullptr?");
1781     DenseMap<Value *, Value *>::iterator RemappedIt =
1782         FirstRegion->RemappedArguments.find(Val);
1783     if (RemappedIt != FirstRegion->RemappedArguments.end())
1784       Val = RemappedIt->second;
1785     NewPN->setIncomingValue(Idx, Val);
1786   }
1787   return NewPN;
1788 }
1789 
1790 // Within an extracted function, replace the argument uses of the extracted
1791 // region with the arguments of the function for an OutlinableGroup.
1792 //
1793 /// \param [in] Region - The region of extracted code to be changed.
1794 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1795 /// region.
1796 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1797 /// function to define the overall outlined function for all the regions, or
1798 /// if we are operating on one of the following regions.
1799 static void
1800 replaceArgumentUses(OutlinableRegion &Region,
1801                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1802                     const DenseMap<Value *, Value *> &OutputMappings,
1803                     bool FirstFunction = false) {
1804   OutlinableGroup &Group = *Region.Parent;
1805   assert(Region.ExtractedFunction && "Region has no extracted function?");
1806 
1807   Function *DominatingFunction = Region.ExtractedFunction;
1808   if (FirstFunction)
1809     DominatingFunction = Group.OutlinedFunction;
1810   DominatorTree DT(*DominatingFunction);
1811   DenseSet<PHINode *> UsedPHIs;
1812 
1813   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1814        ArgIdx++) {
1815     assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
1816            "No mapping from extracted to outlined?");
1817     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1818     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1819     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1820     // The argument is an input, so we can simply replace it with the overall
1821     // argument value
1822     if (ArgIdx < Region.NumExtractedInputs) {
1823       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1824                         << *Region.ExtractedFunction << " with " << *AggArg
1825                         << " in function " << *Group.OutlinedFunction << "\n");
1826       Arg->replaceAllUsesWith(AggArg);
1827       Value *V = Region.Call->getArgOperand(ArgIdx);
1828       Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1829       continue;
1830     }
1831 
1832     // If we are replacing an output, we place the store value in its own
1833     // block inside the overall function before replacing the use of the output
1834     // in the function.
1835     assert(Arg->hasOneUse() && "Output argument can only have one use");
1836     User *InstAsUser = Arg->user_back();
1837     assert(InstAsUser && "User is nullptr!");
1838 
1839     Instruction *I = cast<Instruction>(InstAsUser);
1840     BasicBlock *BB = I->getParent();
1841     SmallVector<BasicBlock *, 4> Descendants;
1842     DT.getDescendants(BB, Descendants);
1843     bool EdgeAdded = false;
1844     if (Descendants.size() == 0) {
1845       EdgeAdded = true;
1846       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1847       DT.getDescendants(BB, Descendants);
1848     }
1849 
1850     // Iterate over the following blocks, looking for return instructions,
1851     // if we find one, find the corresponding output block for the return value
1852     // and move our store instruction there.
1853     for (BasicBlock *DescendBB : Descendants) {
1854       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1855       if (!RI)
1856         continue;
1857       Value *RetVal = RI->getReturnValue();
1858       auto VBBIt = OutputBBs.find(RetVal);
1859       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1860 
1861       // If this is storing a PHINode, we must make sure it is included in the
1862       // overall function.
1863       StoreInst *SI = cast<StoreInst>(I);
1864 
1865       Value *ValueOperand = SI->getValueOperand();
1866 
1867       StoreInst *NewI = cast<StoreInst>(I->clone());
1868       NewI->setDebugLoc(DebugLoc());
1869       BasicBlock *OutputBB = VBBIt->second;
1870       NewI->insertInto(OutputBB, OutputBB->end());
1871       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1872                         << *OutputBB << "\n");
1873 
1874       // If this is storing a PHINode, we must make sure it is included in the
1875       // overall function.
1876       if (!isa<PHINode>(ValueOperand) ||
1877           Region.Candidate->getGVN(ValueOperand).has_value()) {
1878         if (FirstFunction)
1879           continue;
1880         Value *CorrVal =
1881             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1882         assert(CorrVal && "Value is nullptr?");
1883         NewI->setOperand(0, CorrVal);
1884         continue;
1885       }
1886       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1887       // If it has a value, it was not split by the code extractor, which
1888       // is what we are looking for.
1889       if (Region.Candidate->getGVN(PN))
1890         continue;
1891 
1892       // We record the parent block for the PHINode in the Region so that
1893       // we can exclude it from checks later on.
1894       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1895 
1896       // If this is the first function, we do not need to worry about mergiing
1897       // this with any other block in the overall outlined function, so we can
1898       // just continue.
1899       if (FirstFunction) {
1900         BasicBlock *PHIBlock = PN->getParent();
1901         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1902         continue;
1903       }
1904 
1905       // We look for the aggregate block that contains the PHINodes leading into
1906       // this exit path. If we can't find one, we create one.
1907       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1908 
1909       // For our PHINode, we find the combined canonical numbering, and
1910       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1911       // cannot, we copy the PHINode and move it into this new block.
1912       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1913                                               OutputMappings, UsedPHIs);
1914       NewI->setOperand(0, NewPN);
1915     }
1916 
1917     // If we added an edge for basic blocks without a predecessor, we remove it
1918     // here.
1919     if (EdgeAdded)
1920       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1921     I->eraseFromParent();
1922 
1923     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1924                       << *Region.ExtractedFunction << " with " << *AggArg
1925                       << " in function " << *Group.OutlinedFunction << "\n");
1926     Arg->replaceAllUsesWith(AggArg);
1927   }
1928 }
1929 
1930 /// Within an extracted function, replace the constants that need to be lifted
1931 /// into arguments with the actual argument.
1932 ///
1933 /// \param Region [in] - The region of extracted code to be changed.
1934 void replaceConstants(OutlinableRegion &Region) {
1935   OutlinableGroup &Group = *Region.Parent;
1936   // Iterate over the constants that need to be elevated into arguments
1937   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1938     unsigned AggArgIdx = Const.first;
1939     Function *OutlinedFunction = Group.OutlinedFunction;
1940     assert(OutlinedFunction && "Overall Function is not defined?");
1941     Constant *CST = Const.second;
1942     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1943     // Identify the argument it will be elevated to, and replace instances of
1944     // that constant in the function.
1945 
1946     // TODO: If in the future constants do not have one global value number,
1947     // i.e. a constant 1 could be mapped to several values, this check will
1948     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1949 
1950     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1951                       << " in function " << *OutlinedFunction << " with "
1952                       << *Arg << "\n");
1953     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1954       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1955         return I->getFunction() == OutlinedFunction;
1956       return false;
1957     });
1958   }
1959 }
1960 
1961 /// It is possible that there is a basic block that already performs the same
1962 /// stores. This returns a duplicate block, if it exists
1963 ///
1964 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1965 /// \param OutputStoreBBs [in] The existing output blocks.
1966 /// \returns an optional value with the number output block if there is a match.
1967 std::optional<unsigned> findDuplicateOutputBlock(
1968     DenseMap<Value *, BasicBlock *> &OutputBBs,
1969     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1970 
1971   bool Mismatch = false;
1972   unsigned MatchingNum = 0;
1973   // We compare the new set output blocks to the other sets of output blocks.
1974   // If they are the same number, and have identical instructions, they are
1975   // considered to be the same.
1976   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1977     Mismatch = false;
1978     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1979       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1980           OutputBBs.find(VToB.first);
1981       if (OutputBBIt == OutputBBs.end()) {
1982         Mismatch = true;
1983         break;
1984       }
1985 
1986       BasicBlock *CompBB = VToB.second;
1987       BasicBlock *OutputBB = OutputBBIt->second;
1988       if (CompBB->size() - 1 != OutputBB->size()) {
1989         Mismatch = true;
1990         break;
1991       }
1992 
1993       BasicBlock::iterator NIt = OutputBB->begin();
1994       for (Instruction &I : *CompBB) {
1995         if (isa<BranchInst>(&I))
1996           continue;
1997 
1998         if (!I.isIdenticalTo(&(*NIt))) {
1999           Mismatch = true;
2000           break;
2001         }
2002 
2003         NIt++;
2004       }
2005     }
2006 
2007     if (!Mismatch)
2008       return MatchingNum;
2009 
2010     MatchingNum++;
2011   }
2012 
2013   return std::nullopt;
2014 }
2015 
2016 /// Remove empty output blocks from the outlined region.
2017 ///
2018 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2019 /// Region.
2020 /// \param Region - The OutlinableRegion we are analyzing.
2021 static bool
2022 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2023                             OutlinableRegion &Region) {
2024   bool AllRemoved = true;
2025   Value *RetValueForBB;
2026   BasicBlock *NewBB;
2027   SmallVector<Value *, 4> ToRemove;
2028   // Iterate over the output blocks created in the outlined section.
2029   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2030     RetValueForBB = VtoBB.first;
2031     NewBB = VtoBB.second;
2032 
2033     // If there are no instructions, we remove it from the module, and also
2034     // mark the value for removal from the return value to output block mapping.
2035     if (NewBB->size() == 0) {
2036       NewBB->eraseFromParent();
2037       ToRemove.push_back(RetValueForBB);
2038       continue;
2039     }
2040 
2041     // Mark that we could not remove all the blocks since they were not all
2042     // empty.
2043     AllRemoved = false;
2044   }
2045 
2046   // Remove the return value from the mapping.
2047   for (Value *V : ToRemove)
2048     BlocksToPrune.erase(V);
2049 
2050   // Mark the region as having the no output scheme.
2051   if (AllRemoved)
2052     Region.OutputBlockNum = -1;
2053 
2054   return AllRemoved;
2055 }
2056 
2057 /// For the outlined section, move needed the StoreInsts for the output
2058 /// registers into their own block. Then, determine if there is a duplicate
2059 /// output block already created.
2060 ///
2061 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2062 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2063 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2064 /// placed in.
2065 /// \param [in] EndBBs - the final blocks of the extracted function.
2066 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2067 /// been replaced by a new output value.
2068 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2069 static void alignOutputBlockWithAggFunc(
2070     OutlinableGroup &OG, OutlinableRegion &Region,
2071     DenseMap<Value *, BasicBlock *> &OutputBBs,
2072     DenseMap<Value *, BasicBlock *> &EndBBs,
2073     const DenseMap<Value *, Value *> &OutputMappings,
2074     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2075   // If none of the output blocks have any instructions, this means that we do
2076   // not have to determine if it matches any of the other output schemes, and we
2077   // don't have to do anything else.
2078   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2079     return;
2080 
2081   // Determine is there is a duplicate set of blocks.
2082   std::optional<unsigned> MatchingBB =
2083       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2084 
2085   // If there is, we remove the new output blocks.  If it does not,
2086   // we add it to our list of sets of output blocks.
2087   if (MatchingBB) {
2088     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2089                       << Region.ExtractedFunction << " to " << *MatchingBB);
2090 
2091     Region.OutputBlockNum = *MatchingBB;
2092     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2093       VtoBB.second->eraseFromParent();
2094     return;
2095   }
2096 
2097   Region.OutputBlockNum = OutputStoreBBs.size();
2098 
2099   Value *RetValueForBB;
2100   BasicBlock *NewBB;
2101   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2102   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2103     RetValueForBB = VtoBB.first;
2104     NewBB = VtoBB.second;
2105     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2106         EndBBs.find(RetValueForBB);
2107     LLVM_DEBUG(dbgs() << "Create output block for region in"
2108                       << Region.ExtractedFunction << " to "
2109                       << *NewBB);
2110     BranchInst::Create(VBBIt->second, NewBB);
2111     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2112   }
2113 }
2114 
2115 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2116 /// before creating a basic block for each \p NewMap, and inserting into the new
2117 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2118 ///
2119 /// \param OldMap [in] - The mapping to base the new mapping off of.
2120 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2121 /// \param ParentFunc [in] - The function to put the new basic block in.
2122 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2123 /// by an index value.
2124 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2125                                        DenseMap<Value *, BasicBlock *> &NewMap,
2126                                        Function *ParentFunc, Twine BaseName) {
2127   unsigned Idx = 0;
2128   std::vector<Value *> SortedKeys;
2129 
2130   getSortedConstantKeys(SortedKeys, OldMap);
2131 
2132   for (Value *RetVal : SortedKeys) {
2133     BasicBlock *NewBB = BasicBlock::Create(
2134         ParentFunc->getContext(),
2135         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2136         ParentFunc);
2137     NewMap.insert(std::make_pair(RetVal, NewBB));
2138   }
2139 }
2140 
2141 /// Create the switch statement for outlined function to differentiate between
2142 /// all the output blocks.
2143 ///
2144 /// For the outlined section, determine if an outlined block already exists that
2145 /// matches the needed stores for the extracted section.
2146 /// \param [in] M - The module we are outlining from.
2147 /// \param [in] OG - The group of regions to be outlined.
2148 /// \param [in] EndBBs - The final blocks of the extracted function.
2149 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2150 void createSwitchStatement(
2151     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2152     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2153   // We only need the switch statement if there is more than one store
2154   // combination, or there is more than one set of output blocks.  The first
2155   // will occur when we store different sets of values for two different
2156   // regions.  The second will occur when we have two outputs that are combined
2157   // in a PHINode outside of the region in one outlined instance, and are used
2158   // seaparately in another. This will create the same set of OutputGVNs, but
2159   // will generate two different output schemes.
2160   if (OG.OutputGVNCombinations.size() > 1) {
2161     Function *AggFunc = OG.OutlinedFunction;
2162     // Create a final block for each different return block.
2163     DenseMap<Value *, BasicBlock *> ReturnBBs;
2164     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2165 
2166     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2167       std::pair<Value *, BasicBlock *> &OutputBlock =
2168           *OG.EndBBs.find(RetBlockPair.first);
2169       BasicBlock *ReturnBlock = RetBlockPair.second;
2170       BasicBlock *EndBB = OutputBlock.second;
2171       Instruction *Term = EndBB->getTerminator();
2172       // Move the return value to the final block instead of the original exit
2173       // stub.
2174       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2175       // Put the switch statement in the old end basic block for the function
2176       // with a fall through to the new return block.
2177       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2178                         << OutputStoreBBs.size() << "\n");
2179       SwitchInst *SwitchI =
2180           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2181                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2182 
2183       unsigned Idx = 0;
2184       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2185         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2186             OutputStoreBB.find(OutputBlock.first);
2187 
2188         if (OSBBIt == OutputStoreBB.end())
2189           continue;
2190 
2191         BasicBlock *BB = OSBBIt->second;
2192         SwitchI->addCase(
2193             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2194         Term = BB->getTerminator();
2195         Term->setSuccessor(0, ReturnBlock);
2196         Idx++;
2197       }
2198     }
2199     return;
2200   }
2201 
2202   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2203 
2204   // If there needs to be stores, move them from the output blocks to their
2205   // corresponding ending block.  We do not check that the OutputGVNCombinations
2206   // is equal to 1 here since that could just been the case where there are 0
2207   // outputs. Instead, we check whether there is more than one set of output
2208   // blocks since this is the only case where we would have to move the
2209   // stores, and erase the extraneous blocks.
2210   if (OutputStoreBBs.size() == 1) {
2211     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2212                       << *OG.OutlinedFunction << "\n");
2213     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2214     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2215       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2216           EndBBs.find(VBPair.first);
2217       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2218       BasicBlock *EndBB = EndBBIt->second;
2219       BasicBlock *OutputBB = VBPair.second;
2220       Instruction *Term = OutputBB->getTerminator();
2221       Term->eraseFromParent();
2222       Term = EndBB->getTerminator();
2223       moveBBContents(*OutputBB, *EndBB);
2224       Term->moveBefore(*EndBB, EndBB->end());
2225       OutputBB->eraseFromParent();
2226     }
2227   }
2228 }
2229 
2230 /// Fill the new function that will serve as the replacement function for all of
2231 /// the extracted regions of a certain structure from the first region in the
2232 /// list of regions.  Replace this first region's extracted function with the
2233 /// new overall function.
2234 ///
2235 /// \param [in] M - The module we are outlining from.
2236 /// \param [in] CurrentGroup - The group of regions to be outlined.
2237 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2238 /// set of stores needed for the different functions.
2239 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2240 /// once outlining is complete.
2241 /// \param [in] OutputMappings - Extracted functions to erase from module
2242 /// once outlining is complete.
2243 static void fillOverallFunction(
2244     Module &M, OutlinableGroup &CurrentGroup,
2245     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2246     std::vector<Function *> &FuncsToRemove,
2247     const DenseMap<Value *, Value *> &OutputMappings) {
2248   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2249 
2250   // Move first extracted function's instructions into new function.
2251   LLVM_DEBUG(dbgs() << "Move instructions from "
2252                     << *CurrentOS->ExtractedFunction << " to instruction "
2253                     << *CurrentGroup.OutlinedFunction << "\n");
2254   moveFunctionData(*CurrentOS->ExtractedFunction,
2255                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2256 
2257   // Transfer the attributes from the function to the new function.
2258   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2259     CurrentGroup.OutlinedFunction->addFnAttr(A);
2260 
2261   // Create a new set of output blocks for the first extracted function.
2262   DenseMap<Value *, BasicBlock *> NewBBs;
2263   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2264                              CurrentGroup.OutlinedFunction, "output_block_0");
2265   CurrentOS->OutputBlockNum = 0;
2266 
2267   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2268   replaceConstants(*CurrentOS);
2269 
2270   // We first identify if any output blocks are empty, if they are we remove
2271   // them. We then create a branch instruction to the basic block to the return
2272   // block for the function for each non empty output block.
2273   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2274     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2275     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2276       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2277           CurrentGroup.EndBBs.find(VToBB.first);
2278       BasicBlock *EndBB = VBBIt->second;
2279       BranchInst::Create(EndBB, VToBB.second);
2280       OutputStoreBBs.back().insert(VToBB);
2281     }
2282   }
2283 
2284   // Replace the call to the extracted function with the outlined function.
2285   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2286 
2287   // We only delete the extracted functions at the end since we may need to
2288   // reference instructions contained in them for mapping purposes.
2289   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2290 }
2291 
2292 void IROutliner::deduplicateExtractedSections(
2293     Module &M, OutlinableGroup &CurrentGroup,
2294     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2295   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2296 
2297   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2298 
2299   OutlinableRegion *CurrentOS;
2300 
2301   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2302                       OutputMappings);
2303 
2304   std::vector<Value *> SortedKeys;
2305   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2306     CurrentOS = CurrentGroup.Regions[Idx];
2307     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2308                                                *CurrentOS->ExtractedFunction);
2309 
2310     // Create a set of BasicBlocks, one for each return block, to hold the
2311     // needed store instructions.
2312     DenseMap<Value *, BasicBlock *> NewBBs;
2313     createAndInsertBasicBlocks(
2314         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2315         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2316     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2317     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2318                                 CurrentGroup.EndBBs, OutputMappings,
2319                                 OutputStoreBBs);
2320 
2321     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2322     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2323   }
2324 
2325   // Create a switch statement to handle the different output schemes.
2326   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2327 
2328   OutlinedFunctionNum++;
2329 }
2330 
2331 /// Checks that the next instruction in the InstructionDataList matches the
2332 /// next instruction in the module.  If they do not, there could be the
2333 /// possibility that extra code has been inserted, and we must ignore it.
2334 ///
2335 /// \param ID - The IRInstructionData to check the next instruction of.
2336 /// \returns true if the InstructionDataList and actual instruction match.
2337 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2338   // We check if there is a discrepancy between the InstructionDataList
2339   // and the actual next instruction in the module.  If there is, it means
2340   // that an extra instruction was added, likely by the CodeExtractor.
2341 
2342   // Since we do not have any similarity data about this particular
2343   // instruction, we cannot confidently outline it, and must discard this
2344   // candidate.
2345   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2346   Instruction *NextIDLInst = NextIDIt->Inst;
2347   Instruction *NextModuleInst = nullptr;
2348   if (!ID.Inst->isTerminator())
2349     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2350   else if (NextIDLInst != nullptr)
2351     NextModuleInst =
2352         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2353 
2354   if (NextIDLInst && NextIDLInst != NextModuleInst)
2355     return false;
2356 
2357   return true;
2358 }
2359 
2360 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2361     const OutlinableRegion &Region) {
2362   IRSimilarityCandidate *IRSC = Region.Candidate;
2363   unsigned StartIdx = IRSC->getStartIdx();
2364   unsigned EndIdx = IRSC->getEndIdx();
2365 
2366   // A check to make sure that we are not about to attempt to outline something
2367   // that has already been outlined.
2368   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2369     if (Outlined.contains(Idx))
2370       return false;
2371 
2372   // We check if the recorded instruction matches the actual next instruction,
2373   // if it does not, we fix it in the InstructionDataList.
2374   if (!Region.Candidate->backInstruction()->isTerminator()) {
2375     Instruction *NewEndInst =
2376         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2377     assert(NewEndInst && "Next instruction is a nullptr?");
2378     if (Region.Candidate->end()->Inst != NewEndInst) {
2379       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2380       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2381           IRInstructionData(*NewEndInst,
2382                             InstructionClassifier.visit(*NewEndInst), *IDL);
2383 
2384       // Insert the first IRInstructionData of the new region after the
2385       // last IRInstructionData of the IRSimilarityCandidate.
2386       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2387     }
2388   }
2389 
2390   return none_of(*IRSC, [this](IRInstructionData &ID) {
2391     if (!nextIRInstructionDataMatchesNextInst(ID))
2392       return true;
2393 
2394     return !this->InstructionClassifier.visit(ID.Inst);
2395   });
2396 }
2397 
2398 void IROutliner::pruneIncompatibleRegions(
2399     std::vector<IRSimilarityCandidate> &CandidateVec,
2400     OutlinableGroup &CurrentGroup) {
2401   bool PreviouslyOutlined;
2402 
2403   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2404   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2405                                const IRSimilarityCandidate &RHS) {
2406     return LHS.getStartIdx() < RHS.getStartIdx();
2407   });
2408 
2409   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2410   // Since outlining a call and a branch instruction will be the same as only
2411   // outlinining a call instruction, we ignore it as a space saving.
2412   if (FirstCandidate.getLength() == 2) {
2413     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2414         isa<BranchInst>(FirstCandidate.back()->Inst))
2415       return;
2416   }
2417 
2418   unsigned CurrentEndIdx = 0;
2419   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2420     PreviouslyOutlined = false;
2421     unsigned StartIdx = IRSC.getStartIdx();
2422     unsigned EndIdx = IRSC.getEndIdx();
2423     const Function &FnForCurrCand = *IRSC.getFunction();
2424 
2425     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2426       if (Outlined.contains(Idx)) {
2427         PreviouslyOutlined = true;
2428         break;
2429       }
2430 
2431     if (PreviouslyOutlined)
2432       continue;
2433 
2434     // Check over the instructions, and if the basic block has its address
2435     // taken for use somewhere else, we do not outline that block.
2436     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2437       return ID.Inst->getParent()->hasAddressTaken();
2438     });
2439 
2440     if (BBHasAddressTaken)
2441       continue;
2442 
2443     if (FnForCurrCand.hasOptNone())
2444       continue;
2445 
2446     if (FnForCurrCand.hasFnAttribute("nooutline")) {
2447       LLVM_DEBUG({
2448         dbgs() << "... Skipping function with nooutline attribute: "
2449                << FnForCurrCand.getName() << "\n";
2450       });
2451       continue;
2452     }
2453 
2454     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2455         !OutlineFromLinkODRs)
2456       continue;
2457 
2458     // Greedily prune out any regions that will overlap with already chosen
2459     // regions.
2460     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2461       continue;
2462 
2463     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2464       if (!nextIRInstructionDataMatchesNextInst(ID))
2465         return true;
2466 
2467       return !this->InstructionClassifier.visit(ID.Inst);
2468     });
2469 
2470     if (BadInst)
2471       continue;
2472 
2473     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2474         OutlinableRegion(IRSC, CurrentGroup);
2475     CurrentGroup.Regions.push_back(OS);
2476 
2477     CurrentEndIdx = EndIdx;
2478   }
2479 }
2480 
2481 InstructionCost
2482 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2483   InstructionCost RegionBenefit = 0;
2484   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2485     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2486     // We add the number of instructions in the region to the benefit as an
2487     // estimate as to how much will be removed.
2488     RegionBenefit += Region->getBenefit(TTI);
2489     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2490                       << " saved instructions to overfall benefit.\n");
2491   }
2492 
2493   return RegionBenefit;
2494 }
2495 
2496 /// For the \p OutputCanon number passed in find the value represented by this
2497 /// canonical number. If it is from a PHINode, we pick the first incoming
2498 /// value and return that Value instead.
2499 ///
2500 /// \param Region - The OutlinableRegion to get the Value from.
2501 /// \param OutputCanon - The canonical number to find the Value from.
2502 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2503 /// Region.
2504 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2505                                       unsigned OutputCanon) {
2506   OutlinableGroup &CurrentGroup = *Region.Parent;
2507   // If the value is greater than the value in the tracker, we have a
2508   // PHINode and will instead use one of the incoming values to find the
2509   // type.
2510   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2511     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2512     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2513            "Could not find GVN set for PHINode number!");
2514     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2515     OutputCanon = *It->second.second.begin();
2516   }
2517   std::optional<unsigned> OGVN =
2518       Region.Candidate->fromCanonicalNum(OutputCanon);
2519   assert(OGVN && "Could not find GVN for Canonical Number?");
2520   std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2521   assert(OV && "Could not find value for GVN?");
2522   return *OV;
2523 }
2524 
2525 InstructionCost
2526 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2527   InstructionCost OverallCost = 0;
2528   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2529     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2530 
2531     // Each output incurs a load after the call, so we add that to the cost.
2532     for (unsigned OutputCanon : Region->GVNStores) {
2533       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2534       InstructionCost LoadCost =
2535           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2536                               TargetTransformInfo::TCK_CodeSize);
2537 
2538       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2539                         << " instructions to cost for output of type "
2540                         << *V->getType() << "\n");
2541       OverallCost += LoadCost;
2542     }
2543   }
2544 
2545   return OverallCost;
2546 }
2547 
2548 /// Find the extra instructions needed to handle any output values for the
2549 /// region.
2550 ///
2551 /// \param [in] M - The Module to outline from.
2552 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2553 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2554 /// new instruction costs.
2555 /// \returns the additional cost to handle the outputs.
2556 static InstructionCost findCostForOutputBlocks(Module &M,
2557                                                OutlinableGroup &CurrentGroup,
2558                                                TargetTransformInfo &TTI) {
2559   InstructionCost OutputCost = 0;
2560   unsigned NumOutputBranches = 0;
2561 
2562   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2563   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2564   DenseSet<BasicBlock *> CandidateBlocks;
2565   Candidate.getBasicBlocks(CandidateBlocks);
2566 
2567   // Count the number of different output branches that point to blocks outside
2568   // of the region.
2569   DenseSet<BasicBlock *> FoundBlocks;
2570   for (IRInstructionData &ID : Candidate) {
2571     if (!isa<BranchInst>(ID.Inst))
2572       continue;
2573 
2574     for (Value *V : ID.OperVals) {
2575       BasicBlock *BB = static_cast<BasicBlock *>(V);
2576       if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2577         NumOutputBranches++;
2578     }
2579   }
2580 
2581   CurrentGroup.BranchesToOutside = NumOutputBranches;
2582 
2583   for (const ArrayRef<unsigned> &OutputUse :
2584        CurrentGroup.OutputGVNCombinations) {
2585     for (unsigned OutputCanon : OutputUse) {
2586       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2587       InstructionCost StoreCost =
2588           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2589                               TargetTransformInfo::TCK_CodeSize);
2590 
2591       // An instruction cost is added for each store set that needs to occur for
2592       // various output combinations inside the function, plus a branch to
2593       // return to the exit block.
2594       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2595                         << " instructions to cost for output of type "
2596                         << *V->getType() << "\n");
2597       OutputCost += StoreCost * NumOutputBranches;
2598     }
2599 
2600     InstructionCost BranchCost =
2601         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2602     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2603                       << " a branch instruction\n");
2604     OutputCost += BranchCost * NumOutputBranches;
2605   }
2606 
2607   // If there is more than one output scheme, we must have a comparison and
2608   // branch for each different item in the switch statement.
2609   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2610     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2611         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2612         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2613         TargetTransformInfo::TCK_CodeSize);
2614     InstructionCost BranchCost =
2615         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2616 
2617     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2618     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2619 
2620     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2621                       << " instructions for each switch case for each different"
2622                       << " output path in a function\n");
2623     OutputCost += TotalCost * NumOutputBranches;
2624   }
2625 
2626   return OutputCost;
2627 }
2628 
2629 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2630   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2631   CurrentGroup.Benefit += RegionBenefit;
2632   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2633 
2634   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2635   CurrentGroup.Cost += OutputReloadCost;
2636   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2637 
2638   InstructionCost AverageRegionBenefit =
2639       RegionBenefit / CurrentGroup.Regions.size();
2640   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2641   unsigned NumRegions = CurrentGroup.Regions.size();
2642   TargetTransformInfo &TTI =
2643       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2644 
2645   // We add one region to the cost once, to account for the instructions added
2646   // inside of the newly created function.
2647   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2648                     << " instructions to cost for body of new function.\n");
2649   CurrentGroup.Cost += AverageRegionBenefit;
2650   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2651 
2652   // For each argument, we must add an instruction for loading the argument
2653   // out of the register and into a value inside of the newly outlined function.
2654   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2655                     << " instructions to cost for each argument in the new"
2656                     << " function.\n");
2657   CurrentGroup.Cost +=
2658       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2659   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2660 
2661   // Each argument needs to either be loaded into a register or onto the stack.
2662   // Some arguments will only be loaded into the stack once the argument
2663   // registers are filled.
2664   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2665                     << " instructions to cost for each argument in the new"
2666                     << " function " << NumRegions << " times for the "
2667                     << "needed argument handling at the call site.\n");
2668   CurrentGroup.Cost +=
2669       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2670   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2671 
2672   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2673   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2674 }
2675 
2676 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2677                                      ArrayRef<Value *> Outputs,
2678                                      LoadInst *LI) {
2679   // For and load instructions following the call
2680   Value *Operand = LI->getPointerOperand();
2681   std::optional<unsigned> OutputIdx;
2682   // Find if the operand it is an output register.
2683   for (unsigned ArgIdx = Region.NumExtractedInputs;
2684        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2685     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2686       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2687       break;
2688     }
2689   }
2690 
2691   // If we found an output register, place a mapping of the new value
2692   // to the original in the mapping.
2693   if (!OutputIdx)
2694     return;
2695 
2696   if (!OutputMappings.contains(Outputs[*OutputIdx])) {
2697     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2698                       << *Outputs[*OutputIdx] << "\n");
2699     OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2700   } else {
2701     Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2702     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2703                       << *Outputs[*OutputIdx] << "\n");
2704     OutputMappings.insert(std::make_pair(LI, Orig));
2705   }
2706 }
2707 
2708 bool IROutliner::extractSection(OutlinableRegion &Region) {
2709   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2710   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2711   BasicBlock *InitialStart = Region.StartBB;
2712   Function *OrigF = Region.StartBB->getParent();
2713   CodeExtractorAnalysisCache CEAC(*OrigF);
2714   Region.ExtractedFunction =
2715       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2716 
2717   // If the extraction was successful, find the BasicBlock, and reassign the
2718   // OutlinableRegion blocks
2719   if (!Region.ExtractedFunction) {
2720     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2721                       << "\n");
2722     Region.reattachCandidate();
2723     return false;
2724   }
2725 
2726   // Get the block containing the called branch, and reassign the blocks as
2727   // necessary.  If the original block still exists, it is because we ended on
2728   // a branch instruction, and so we move the contents into the block before
2729   // and assign the previous block correctly.
2730   User *InstAsUser = Region.ExtractedFunction->user_back();
2731   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2732   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2733   assert(Region.PrevBB && "PrevBB is nullptr?");
2734   if (Region.PrevBB == InitialStart) {
2735     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2736     Instruction *BI = NewPrev->getTerminator();
2737     BI->eraseFromParent();
2738     moveBBContents(*InitialStart, *NewPrev);
2739     Region.PrevBB = NewPrev;
2740     InitialStart->eraseFromParent();
2741   }
2742 
2743   Region.StartBB = RewrittenBB;
2744   Region.EndBB = RewrittenBB;
2745 
2746   // The sequences of outlinable regions has now changed.  We must fix the
2747   // IRInstructionDataList for consistency.  Although they may not be illegal
2748   // instructions, they should not be compared with anything else as they
2749   // should not be outlined in this round.  So marking these as illegal is
2750   // allowed.
2751   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2752   Instruction *BeginRewritten = &*RewrittenBB->begin();
2753   Instruction *EndRewritten = &*RewrittenBB->begin();
2754   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2755       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2756   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2757       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2758 
2759   // Insert the first IRInstructionData of the new region in front of the
2760   // first IRInstructionData of the IRSimilarityCandidate.
2761   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2762   // Insert the first IRInstructionData of the new region after the
2763   // last IRInstructionData of the IRSimilarityCandidate.
2764   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2765   // Remove the IRInstructionData from the IRSimilarityCandidate.
2766   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2767 
2768   assert(RewrittenBB != nullptr &&
2769          "Could not find a predecessor after extraction!");
2770 
2771   // Iterate over the new set of instructions to find the new call
2772   // instruction.
2773   for (Instruction &I : *RewrittenBB)
2774     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2775       if (Region.ExtractedFunction == CI->getCalledFunction())
2776         Region.Call = CI;
2777     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2778       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2779   Region.reattachCandidate();
2780   return true;
2781 }
2782 
2783 unsigned IROutliner::doOutline(Module &M) {
2784   // Find the possible similarity sections.
2785   InstructionClassifier.EnableBranches = !DisableBranches;
2786   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2787   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2788 
2789   IRSimilarityIdentifier &Identifier = getIRSI(M);
2790   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2791 
2792   // Sort them by size of extracted sections
2793   unsigned OutlinedFunctionNum = 0;
2794   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2795   // to sort them by the potential number of instructions to be outlined
2796   if (SimilarityCandidates.size() > 1)
2797     llvm::stable_sort(SimilarityCandidates,
2798                       [](const std::vector<IRSimilarityCandidate> &LHS,
2799                          const std::vector<IRSimilarityCandidate> &RHS) {
2800                         return LHS[0].getLength() * LHS.size() >
2801                                RHS[0].getLength() * RHS.size();
2802                       });
2803   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2804   // each of the following for loops to avoid making an allocator.
2805   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2806 
2807   DenseSet<unsigned> NotSame;
2808   std::vector<OutlinableGroup *> NegativeCostGroups;
2809   std::vector<OutlinableRegion *> OutlinedRegions;
2810   // Iterate over the possible sets of similarity.
2811   unsigned PotentialGroupIdx = 0;
2812   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2813     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2814 
2815     // Remove entries that were previously outlined
2816     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2817 
2818     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2819     // trying to outlined since there is no compatible similar instance of this
2820     // code.
2821     if (CurrentGroup.Regions.size() < 2)
2822       continue;
2823 
2824     // Determine if there are any values that are the same constant throughout
2825     // each section in the set.
2826     NotSame.clear();
2827     CurrentGroup.findSameConstants(NotSame);
2828 
2829     if (CurrentGroup.IgnoreGroup)
2830       continue;
2831 
2832     // Create a CodeExtractor for each outlinable region. Identify inputs and
2833     // outputs for each section using the code extractor and create the argument
2834     // types for the Aggregate Outlining Function.
2835     OutlinedRegions.clear();
2836     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2837       // Break the outlinable region out of its parent BasicBlock into its own
2838       // BasicBlocks (see function implementation).
2839       OS->splitCandidate();
2840 
2841       // There's a chance that when the region is split, extra instructions are
2842       // added to the region. This makes the region no longer viable
2843       // to be split, so we ignore it for outlining.
2844       if (!OS->CandidateSplit)
2845         continue;
2846 
2847       SmallVector<BasicBlock *> BE;
2848       DenseSet<BasicBlock *> BlocksInRegion;
2849       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2850       OS->CE = new (ExtractorAllocator.Allocate())
2851           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2852                         false, nullptr, "outlined");
2853       findAddInputsOutputs(M, *OS, NotSame);
2854       if (!OS->IgnoreRegion)
2855         OutlinedRegions.push_back(OS);
2856 
2857       // We recombine the blocks together now that we have gathered all the
2858       // needed information.
2859       OS->reattachCandidate();
2860     }
2861 
2862     CurrentGroup.Regions = std::move(OutlinedRegions);
2863 
2864     if (CurrentGroup.Regions.empty())
2865       continue;
2866 
2867     CurrentGroup.collectGVNStoreSets(M);
2868 
2869     if (CostModel)
2870       findCostBenefit(M, CurrentGroup);
2871 
2872     // If we are adhering to the cost model, skip those groups where the cost
2873     // outweighs the benefits.
2874     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2875       OptimizationRemarkEmitter &ORE =
2876           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2877       ORE.emit([&]() {
2878         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2879         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2880                                    C->frontInstruction());
2881         R << "did not outline "
2882           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2883           << " regions due to estimated increase of "
2884           << ore::NV("InstructionIncrease",
2885                      CurrentGroup.Cost - CurrentGroup.Benefit)
2886           << " instructions at locations ";
2887         interleave(
2888             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2889             [&R](OutlinableRegion *Region) {
2890               R << ore::NV(
2891                   "DebugLoc",
2892                   Region->Candidate->frontInstruction()->getDebugLoc());
2893             },
2894             [&R]() { R << " "; });
2895         return R;
2896       });
2897       continue;
2898     }
2899 
2900     NegativeCostGroups.push_back(&CurrentGroup);
2901   }
2902 
2903   ExtractorAllocator.DestroyAll();
2904 
2905   if (NegativeCostGroups.size() > 1)
2906     stable_sort(NegativeCostGroups,
2907                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2908                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2909                 });
2910 
2911   std::vector<Function *> FuncsToRemove;
2912   for (OutlinableGroup *CG : NegativeCostGroups) {
2913     OutlinableGroup &CurrentGroup = *CG;
2914 
2915     OutlinedRegions.clear();
2916     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2917       // We check whether our region is compatible with what has already been
2918       // outlined, and whether we need to ignore this item.
2919       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2920         continue;
2921       OutlinedRegions.push_back(Region);
2922     }
2923 
2924     if (OutlinedRegions.size() < 2)
2925       continue;
2926 
2927     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2928     // we are still outlining enough regions to make up for the added cost.
2929     CurrentGroup.Regions = std::move(OutlinedRegions);
2930     if (CostModel) {
2931       CurrentGroup.Benefit = 0;
2932       CurrentGroup.Cost = 0;
2933       findCostBenefit(M, CurrentGroup);
2934       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2935         continue;
2936     }
2937     OutlinedRegions.clear();
2938     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2939       Region->splitCandidate();
2940       if (!Region->CandidateSplit)
2941         continue;
2942       OutlinedRegions.push_back(Region);
2943     }
2944 
2945     CurrentGroup.Regions = std::move(OutlinedRegions);
2946     if (CurrentGroup.Regions.size() < 2) {
2947       for (OutlinableRegion *R : CurrentGroup.Regions)
2948         R->reattachCandidate();
2949       continue;
2950     }
2951 
2952     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2953                       << " and benefit " << CurrentGroup.Benefit << "\n");
2954 
2955     // Create functions out of all the sections, and mark them as outlined.
2956     OutlinedRegions.clear();
2957     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2958       SmallVector<BasicBlock *> BE;
2959       DenseSet<BasicBlock *> BlocksInRegion;
2960       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2961       OS->CE = new (ExtractorAllocator.Allocate())
2962           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2963                         false, nullptr, "outlined");
2964       bool FunctionOutlined = extractSection(*OS);
2965       if (FunctionOutlined) {
2966         unsigned StartIdx = OS->Candidate->getStartIdx();
2967         unsigned EndIdx = OS->Candidate->getEndIdx();
2968         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2969           Outlined.insert(Idx);
2970 
2971         OutlinedRegions.push_back(OS);
2972       }
2973     }
2974 
2975     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2976                       << " with benefit " << CurrentGroup.Benefit
2977                       << " and cost " << CurrentGroup.Cost << "\n");
2978 
2979     CurrentGroup.Regions = std::move(OutlinedRegions);
2980 
2981     if (CurrentGroup.Regions.empty())
2982       continue;
2983 
2984     OptimizationRemarkEmitter &ORE =
2985         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2986     ORE.emit([&]() {
2987       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2988       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2989       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2990         << " regions with decrease of "
2991         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2992         << " instructions at locations ";
2993       interleave(
2994           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2995           [&R](OutlinableRegion *Region) {
2996             R << ore::NV("DebugLoc",
2997                          Region->Candidate->frontInstruction()->getDebugLoc());
2998           },
2999           [&R]() { R << " "; });
3000       return R;
3001     });
3002 
3003     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3004                                  OutlinedFunctionNum);
3005   }
3006 
3007   for (Function *F : FuncsToRemove)
3008     F->eraseFromParent();
3009 
3010   return OutlinedFunctionNum;
3011 }
3012 
3013 bool IROutliner::run(Module &M) {
3014   CostModel = !NoCostModel;
3015   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3016 
3017   return doOutline(M) > 0;
3018 }
3019 
3020 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3021   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3022 
3023   std::function<TargetTransformInfo &(Function &)> GTTI =
3024       [&FAM](Function &F) -> TargetTransformInfo & {
3025     return FAM.getResult<TargetIRAnalysis>(F);
3026   };
3027 
3028   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3029       [&AM](Module &M) -> IRSimilarityIdentifier & {
3030     return AM.getResult<IRSimilarityAnalysis>(M);
3031   };
3032 
3033   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3034   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3035       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3036     ORE.reset(new OptimizationRemarkEmitter(&F));
3037     return *ORE;
3038   };
3039 
3040   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3041     return PreservedAnalyses::none();
3042   return PreservedAnalyses::all();
3043 }
3044