1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Transforms/IPO.h" 29 #include <vector> 30 31 #define DEBUG_TYPE "iroutliner" 32 33 using namespace llvm; 34 using namespace IRSimilarity; 35 36 // A command flag to be used for debugging to exclude branches from similarity 37 // matching and outlining. 38 namespace llvm { 39 extern cl::opt<bool> DisableBranches; 40 41 // A command flag to be used for debugging to indirect calls from similarity 42 // matching and outlining. 43 extern cl::opt<bool> DisableIndirectCalls; 44 45 // A command flag to be used for debugging to exclude intrinsics from similarity 46 // matching and outlining. 47 extern cl::opt<bool> DisableIntrinsics; 48 49 } // namespace llvm 50 51 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 52 // functions. This is false by default because the linker can dedupe linkonceodr 53 // functions. Since the outliner is confined to a single module (modulo LTO), 54 // this is off by default. It should, however, be the default behavior in 55 // LTO. 56 static cl::opt<bool> EnableLinkOnceODRIROutlining( 57 "enable-linkonceodr-ir-outlining", cl::Hidden, 58 cl::desc("Enable the IR outliner on linkonceodr functions"), 59 cl::init(false)); 60 61 // This is a debug option to test small pieces of code to ensure that outlining 62 // works correctly. 63 static cl::opt<bool> NoCostModel( 64 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 65 cl::desc("Debug option to outline greedily, without restriction that " 66 "calculated benefit outweighs cost")); 67 68 /// The OutlinableGroup holds all the overarching information for outlining 69 /// a set of regions that are structurally similar to one another, such as the 70 /// types of the overall function, the output blocks, the sets of stores needed 71 /// and a list of the different regions. This information is used in the 72 /// deduplication of extracted regions with the same structure. 73 struct OutlinableGroup { 74 /// The sections that could be outlined 75 std::vector<OutlinableRegion *> Regions; 76 77 /// The argument types for the function created as the overall function to 78 /// replace the extracted function for each region. 79 std::vector<Type *> ArgumentTypes; 80 /// The FunctionType for the overall function. 81 FunctionType *OutlinedFunctionType = nullptr; 82 /// The Function for the collective overall function. 83 Function *OutlinedFunction = nullptr; 84 85 /// Flag for whether we should not consider this group of OutlinableRegions 86 /// for extraction. 87 bool IgnoreGroup = false; 88 89 /// The return blocks for the overall function. 90 DenseMap<Value *, BasicBlock *> EndBBs; 91 92 /// The PHIBlocks with their corresponding return block based on the return 93 /// value as the key. 94 DenseMap<Value *, BasicBlock *> PHIBlocks; 95 96 /// A set containing the different GVN store sets needed. Each array contains 97 /// a sorted list of the different values that need to be stored into output 98 /// registers. 99 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 100 101 /// Flag for whether the \ref ArgumentTypes have been defined after the 102 /// extraction of the first region. 103 bool InputTypesSet = false; 104 105 /// The number of input values in \ref ArgumentTypes. Anything after this 106 /// index in ArgumentTypes is an output argument. 107 unsigned NumAggregateInputs = 0; 108 109 /// The mapping of the canonical numbering of the values in outlined sections 110 /// to specific arguments. 111 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 112 113 /// The number of branches in the region target a basic block that is outside 114 /// of the region. 115 unsigned BranchesToOutside = 0; 116 117 /// Tracker counting backwards from the highest unsigned value possible to 118 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 119 /// -2 and -1 are assigned by the DenseMap. 120 unsigned PHINodeGVNTracker = -3; 121 122 DenseMap<unsigned, 123 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 124 PHINodeGVNToGVNs; 125 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 126 127 /// The number of instructions that will be outlined by extracting \ref 128 /// Regions. 129 InstructionCost Benefit = 0; 130 /// The number of added instructions needed for the outlining of the \ref 131 /// Regions. 132 InstructionCost Cost = 0; 133 134 /// The argument that needs to be marked with the swifterr attribute. If not 135 /// needed, there is no value. 136 Optional<unsigned> SwiftErrorArgument; 137 138 /// For the \ref Regions, we look at every Value. If it is a constant, 139 /// we check whether it is the same in Region. 140 /// 141 /// \param [in,out] NotSame contains the global value numbers where the 142 /// constant is not always the same, and must be passed in as an argument. 143 void findSameConstants(DenseSet<unsigned> &NotSame); 144 145 /// For the regions, look at each set of GVN stores needed and account for 146 /// each combination. Add an argument to the argument types if there is 147 /// more than one combination. 148 /// 149 /// \param [in] M - The module we are outlining from. 150 void collectGVNStoreSets(Module &M); 151 }; 152 153 /// Move the contents of \p SourceBB to before the last instruction of \p 154 /// TargetBB. 155 /// \param SourceBB - the BasicBlock to pull Instructions from. 156 /// \param TargetBB - the BasicBlock to put Instruction into. 157 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 158 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 159 I.moveBefore(TargetBB, TargetBB.end()); 160 } 161 162 /// A function to sort the keys of \p Map, which must be a mapping of constant 163 /// values to basic blocks and return it in \p SortedKeys 164 /// 165 /// \param SortedKeys - The vector the keys will be return in and sorted. 166 /// \param Map - The DenseMap containing keys to sort. 167 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 168 DenseMap<Value *, BasicBlock *> &Map) { 169 for (auto &VtoBB : Map) 170 SortedKeys.push_back(VtoBB.first); 171 172 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 173 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 174 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 175 assert(RHSC && "Not a constant integer in return value?"); 176 assert(LHSC && "Not a constant integer in return value?"); 177 178 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 179 }); 180 } 181 182 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 183 Value *V) { 184 Optional<unsigned> GVN = Candidate->getGVN(V); 185 assert(GVN && "No GVN for incoming value"); 186 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 187 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 188 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 189 return FoundValueOpt.value_or(nullptr); 190 } 191 192 BasicBlock * 193 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other, 194 BasicBlock *BB) { 195 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 196 assert(FirstNonPHI && "block is empty?"); 197 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI); 198 if (!CorrespondingVal) 199 return nullptr; 200 BasicBlock *CorrespondingBlock = 201 cast<Instruction>(CorrespondingVal)->getParent(); 202 return CorrespondingBlock; 203 } 204 205 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 206 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 207 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 208 /// when PHINodes are included in outlined regions. 209 /// 210 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 211 /// checked. 212 /// \param Find - The successor block to be replaced. 213 /// \param Replace - The new succesor block to branch to. 214 /// \param Included - The set of blocks about to be outlined. 215 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 216 BasicBlock *Replace, 217 DenseSet<BasicBlock *> &Included) { 218 for (PHINode &PN : PHIBlock->phis()) { 219 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 220 ++Idx) { 221 // Check if the incoming block is included in the set of blocks being 222 // outlined. 223 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 224 if (!Included.contains(Incoming)) 225 continue; 226 227 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 228 assert(BI && "Not a branch instruction?"); 229 // Look over the branching instructions into this block to see if we 230 // used to branch to Find in this outlined block. 231 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 232 Succ++) { 233 // If we have found the block to replace, we do so here. 234 if (BI->getSuccessor(Succ) != Find) 235 continue; 236 BI->setSuccessor(Succ, Replace); 237 } 238 } 239 } 240 } 241 242 243 void OutlinableRegion::splitCandidate() { 244 assert(!CandidateSplit && "Candidate already split!"); 245 246 Instruction *BackInst = Candidate->backInstruction(); 247 248 Instruction *EndInst = nullptr; 249 // Check whether the last instruction is a terminator, if it is, we do 250 // not split on the following instruction. We leave the block as it is. We 251 // also check that this is not the last instruction in the Module, otherwise 252 // the check for whether the current following instruction matches the 253 // previously recorded instruction will be incorrect. 254 if (!BackInst->isTerminator() || 255 BackInst->getParent() != &BackInst->getFunction()->back()) { 256 EndInst = Candidate->end()->Inst; 257 assert(EndInst && "Expected an end instruction?"); 258 } 259 260 // We check if the current instruction following the last instruction in the 261 // region is the same as the recorded instruction following the last 262 // instruction. If they do not match, there could be problems in rewriting 263 // the program after outlining, so we ignore it. 264 if (!BackInst->isTerminator() && 265 EndInst != BackInst->getNextNonDebugInstruction()) 266 return; 267 268 Instruction *StartInst = (*Candidate->begin()).Inst; 269 assert(StartInst && "Expected a start instruction?"); 270 StartBB = StartInst->getParent(); 271 PrevBB = StartBB; 272 273 DenseSet<BasicBlock *> BBSet; 274 Candidate->getBasicBlocks(BBSet); 275 276 // We iterate over the instructions in the region, if we find a PHINode, we 277 // check if there are predecessors outside of the region, if there are, 278 // we ignore this region since we are unable to handle the severing of the 279 // phi node right now. 280 281 // TODO: Handle extraneous inputs for PHINodes through variable number of 282 // inputs, similar to how outputs are handled. 283 BasicBlock::iterator It = StartInst->getIterator(); 284 EndBB = BackInst->getParent(); 285 BasicBlock *IBlock; 286 BasicBlock *PHIPredBlock = nullptr; 287 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst; 288 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 289 unsigned NumPredsOutsideRegion = 0; 290 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 291 if (!BBSet.contains(PN->getIncomingBlock(i))) { 292 PHIPredBlock = PN->getIncomingBlock(i); 293 ++NumPredsOutsideRegion; 294 continue; 295 } 296 297 // We must consider the case there the incoming block to the PHINode is 298 // the same as the final block of the OutlinableRegion. If this is the 299 // case, the branch from this block must also be outlined to be valid. 300 IBlock = PN->getIncomingBlock(i); 301 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) { 302 PHIPredBlock = PN->getIncomingBlock(i); 303 ++NumPredsOutsideRegion; 304 } 305 } 306 307 if (NumPredsOutsideRegion > 1) 308 return; 309 310 It++; 311 } 312 313 // If the region starts with a PHINode, but is not the initial instruction of 314 // the BasicBlock, we ignore this region for now. 315 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 316 return; 317 318 // If the region ends with a PHINode, but does not contain all of the phi node 319 // instructions of the region, we ignore it for now. 320 if (isa<PHINode>(BackInst) && 321 BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 322 return; 323 324 // The basic block gets split like so: 325 // block: block: 326 // inst1 inst1 327 // inst2 inst2 328 // region1 br block_to_outline 329 // region2 block_to_outline: 330 // region3 -> region1 331 // region4 region2 332 // inst3 region3 333 // inst4 region4 334 // br block_after_outline 335 // block_after_outline: 336 // inst3 337 // inst4 338 339 std::string OriginalName = PrevBB->getName().str(); 340 341 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 342 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 343 // If there was a PHINode with an incoming block outside the region, 344 // make sure is correctly updated in the newly split block. 345 if (PHIPredBlock) 346 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB); 347 348 CandidateSplit = true; 349 if (!BackInst->isTerminator()) { 350 EndBB = EndInst->getParent(); 351 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 352 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 353 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 354 } else { 355 EndBB = BackInst->getParent(); 356 EndsInBranch = true; 357 FollowBB = nullptr; 358 } 359 360 // Refind the basic block set. 361 BBSet.clear(); 362 Candidate->getBasicBlocks(BBSet); 363 // For the phi nodes in the new starting basic block of the region, we 364 // reassign the targets of the basic blocks branching instructions. 365 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 366 if (FollowBB) 367 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 368 } 369 370 void OutlinableRegion::reattachCandidate() { 371 assert(CandidateSplit && "Candidate is not split!"); 372 373 // The basic block gets reattached like so: 374 // block: block: 375 // inst1 inst1 376 // inst2 inst2 377 // br block_to_outline region1 378 // block_to_outline: -> region2 379 // region1 region3 380 // region2 region4 381 // region3 inst3 382 // region4 inst4 383 // br block_after_outline 384 // block_after_outline: 385 // inst3 386 // inst4 387 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 388 389 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 390 // Make sure PHINode references to the block we are merging into are 391 // updated to be incoming blocks from the predecessor to the current block. 392 393 // NOTE: If this is updated such that the outlined block can have more than 394 // one incoming block to a PHINode, this logic will have to updated 395 // to handle multiple precessors instead. 396 397 // We only need to update this if the outlined section contains a PHINode, if 398 // it does not, then the incoming block was never changed in the first place. 399 // On the other hand, if PrevBB has no predecessors, it means that all 400 // incoming blocks to the first block are contained in the region, and there 401 // will be nothing to update. 402 Instruction *StartInst = (*Candidate->begin()).Inst; 403 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) { 404 assert(!PrevBB->hasNPredecessorsOrMore(2) && 405 "PrevBB has more than one predecessor. Should be 0 or 1."); 406 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor(); 407 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB); 408 } 409 PrevBB->getTerminator()->eraseFromParent(); 410 411 // If we reattaching after outlining, we iterate over the phi nodes to 412 // the initial block, and reassign the branch instructions of the incoming 413 // blocks to the block we are remerging into. 414 if (!ExtractedFunction) { 415 DenseSet<BasicBlock *> BBSet; 416 Candidate->getBasicBlocks(BBSet); 417 418 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 419 if (!EndsInBranch) 420 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 421 } 422 423 moveBBContents(*StartBB, *PrevBB); 424 425 BasicBlock *PlacementBB = PrevBB; 426 if (StartBB != EndBB) 427 PlacementBB = EndBB; 428 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 429 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 430 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 431 PlacementBB->getTerminator()->eraseFromParent(); 432 moveBBContents(*FollowBB, *PlacementBB); 433 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 434 FollowBB->eraseFromParent(); 435 } 436 437 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 438 StartBB->eraseFromParent(); 439 440 // Make sure to save changes back to the StartBB. 441 StartBB = PrevBB; 442 EndBB = nullptr; 443 PrevBB = nullptr; 444 FollowBB = nullptr; 445 446 CandidateSplit = false; 447 } 448 449 /// Find whether \p V matches the Constants previously found for the \p GVN. 450 /// 451 /// \param V - The value to check for consistency. 452 /// \param GVN - The global value number assigned to \p V. 453 /// \param GVNToConstant - The mapping of global value number to Constants. 454 /// \returns true if the Value matches the Constant mapped to by V and false if 455 /// it \p V is a Constant but does not match. 456 /// \returns None if \p V is not a Constant. 457 static Optional<bool> 458 constantMatches(Value *V, unsigned GVN, 459 DenseMap<unsigned, Constant *> &GVNToConstant) { 460 // See if we have a constants 461 Constant *CST = dyn_cast<Constant>(V); 462 if (!CST) 463 return None; 464 465 // Holds a mapping from a global value number to a Constant. 466 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 467 bool Inserted; 468 469 470 // If we have a constant, try to make a new entry in the GVNToConstant. 471 std::tie(GVNToConstantIt, Inserted) = 472 GVNToConstant.insert(std::make_pair(GVN, CST)); 473 // If it was found and is not equal, it is not the same. We do not 474 // handle this case yet, and exit early. 475 if (Inserted || (GVNToConstantIt->second == CST)) 476 return true; 477 478 return false; 479 } 480 481 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 482 InstructionCost Benefit = 0; 483 484 // Estimate the benefit of outlining a specific sections of the program. We 485 // delegate mostly this task to the TargetTransformInfo so that if the target 486 // has specific changes, we can have a more accurate estimate. 487 488 // However, getInstructionCost delegates the code size calculation for 489 // arithmetic instructions to getArithmeticInstrCost in 490 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 491 // code size for a division and remainder instruction to be equal to 4, and 492 // everything else to 1. This is not an accurate representation of the 493 // division instruction for targets that have a native division instruction. 494 // To be overly conservative, we only add 1 to the number of instructions for 495 // each division instruction. 496 for (IRInstructionData &ID : *Candidate) { 497 Instruction *I = ID.Inst; 498 switch (I->getOpcode()) { 499 case Instruction::FDiv: 500 case Instruction::FRem: 501 case Instruction::SDiv: 502 case Instruction::SRem: 503 case Instruction::UDiv: 504 case Instruction::URem: 505 Benefit += 1; 506 break; 507 default: 508 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 509 break; 510 } 511 } 512 513 return Benefit; 514 } 515 516 /// Check the \p OutputMappings structure for value \p Input, if it exists 517 /// it has been used as an output for outlining, and has been renamed, and we 518 /// return the new value, otherwise, we return the same value. 519 /// 520 /// \param OutputMappings [in] - The mapping of values to their renamed value 521 /// after being used as an output for an outlined region. 522 /// \param Input [in] - The value to find the remapped value of, if it exists. 523 /// \return The remapped value if it has been renamed, and the same value if has 524 /// not. 525 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 526 Value *Input) { 527 DenseMap<Value *, Value *>::const_iterator OutputMapping = 528 OutputMappings.find(Input); 529 if (OutputMapping != OutputMappings.end()) 530 return OutputMapping->second; 531 return Input; 532 } 533 534 /// Find whether \p Region matches the global value numbering to Constant 535 /// mapping found so far. 536 /// 537 /// \param Region - The OutlinableRegion we are checking for constants 538 /// \param GVNToConstant - The mapping of global value number to Constants. 539 /// \param NotSame - The set of global value numbers that do not have the same 540 /// constant in each region. 541 /// \returns true if all Constants are the same in every use of a Constant in \p 542 /// Region and false if not 543 static bool 544 collectRegionsConstants(OutlinableRegion &Region, 545 DenseMap<unsigned, Constant *> &GVNToConstant, 546 DenseSet<unsigned> &NotSame) { 547 bool ConstantsTheSame = true; 548 549 IRSimilarityCandidate &C = *Region.Candidate; 550 for (IRInstructionData &ID : C) { 551 552 // Iterate over the operands in an instruction. If the global value number, 553 // assigned by the IRSimilarityCandidate, has been seen before, we check if 554 // the the number has been found to be not the same value in each instance. 555 for (Value *V : ID.OperVals) { 556 Optional<unsigned> GVNOpt = C.getGVN(V); 557 assert(GVNOpt && "Expected a GVN for operand?"); 558 unsigned GVN = GVNOpt.value(); 559 560 // Check if this global value has been found to not be the same already. 561 if (NotSame.contains(GVN)) { 562 if (isa<Constant>(V)) 563 ConstantsTheSame = false; 564 continue; 565 } 566 567 // If it has been the same so far, we check the value for if the 568 // associated Constant value match the previous instances of the same 569 // global value number. If the global value does not map to a Constant, 570 // it is considered to not be the same value. 571 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 572 if (ConstantMatches) { 573 if (ConstantMatches.value()) 574 continue; 575 else 576 ConstantsTheSame = false; 577 } 578 579 // While this value is a register, it might not have been previously, 580 // make sure we don't already have a constant mapped to this global value 581 // number. 582 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 583 ConstantsTheSame = false; 584 585 NotSame.insert(GVN); 586 } 587 } 588 589 return ConstantsTheSame; 590 } 591 592 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 593 DenseMap<unsigned, Constant *> GVNToConstant; 594 595 for (OutlinableRegion *Region : Regions) 596 collectRegionsConstants(*Region, GVNToConstant, NotSame); 597 } 598 599 void OutlinableGroup::collectGVNStoreSets(Module &M) { 600 for (OutlinableRegion *OS : Regions) 601 OutputGVNCombinations.insert(OS->GVNStores); 602 603 // We are adding an extracted argument to decide between which output path 604 // to use in the basic block. It is used in a switch statement and only 605 // needs to be an integer. 606 if (OutputGVNCombinations.size() > 1) 607 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 608 } 609 610 /// Get the subprogram if it exists for one of the outlined regions. 611 /// 612 /// \param [in] Group - The set of regions to find a subprogram for. 613 /// \returns the subprogram if it exists, or nullptr. 614 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 615 for (OutlinableRegion *OS : Group.Regions) 616 if (Function *F = OS->Call->getFunction()) 617 if (DISubprogram *SP = F->getSubprogram()) 618 return SP; 619 620 return nullptr; 621 } 622 623 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 624 unsigned FunctionNameSuffix) { 625 assert(!Group.OutlinedFunction && "Function is already defined!"); 626 627 Type *RetTy = Type::getVoidTy(M.getContext()); 628 // All extracted functions _should_ have the same return type at this point 629 // since the similarity identifier ensures that all branches outside of the 630 // region occur in the same place. 631 632 // NOTE: Should we ever move to the model that uses a switch at every point 633 // needed, meaning that we could branch within the region or out, it is 634 // possible that we will need to switch to using the most general case all of 635 // the time. 636 for (OutlinableRegion *R : Group.Regions) { 637 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 638 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 639 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 640 RetTy = ExtractedFuncType; 641 } 642 643 Group.OutlinedFunctionType = FunctionType::get( 644 RetTy, Group.ArgumentTypes, false); 645 646 // These functions will only be called from within the same module, so 647 // we can set an internal linkage. 648 Group.OutlinedFunction = Function::Create( 649 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 650 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 651 652 // Transfer the swifterr attribute to the correct function parameter. 653 if (Group.SwiftErrorArgument) 654 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.value(), 655 Attribute::SwiftError); 656 657 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 658 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 659 660 // If there's a DISubprogram associated with this outlined function, then 661 // emit debug info for the outlined function. 662 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 663 Function *F = Group.OutlinedFunction; 664 // We have a DISubprogram. Get its DICompileUnit. 665 DICompileUnit *CU = SP->getUnit(); 666 DIBuilder DB(M, true, CU); 667 DIFile *Unit = SP->getFile(); 668 Mangler Mg; 669 // Get the mangled name of the function for the linkage name. 670 std::string Dummy; 671 llvm::raw_string_ostream MangledNameStream(Dummy); 672 Mg.getNameWithPrefix(MangledNameStream, F, false); 673 674 DISubprogram *OutlinedSP = DB.createFunction( 675 Unit /* Context */, F->getName(), MangledNameStream.str(), 676 Unit /* File */, 677 0 /* Line 0 is reserved for compiler-generated code. */, 678 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 679 0, /* Line 0 is reserved for compiler-generated code. */ 680 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 681 /* Outlined code is optimized code by definition. */ 682 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 683 684 // Don't add any new variables to the subprogram. 685 DB.finalizeSubprogram(OutlinedSP); 686 687 // Attach subprogram to the function. 688 F->setSubprogram(OutlinedSP); 689 // We're done with the DIBuilder. 690 DB.finalize(); 691 } 692 693 return Group.OutlinedFunction; 694 } 695 696 /// Move each BasicBlock in \p Old to \p New. 697 /// 698 /// \param [in] Old - The function to move the basic blocks from. 699 /// \param [in] New - The function to move the basic blocks to. 700 /// \param [out] NewEnds - The return blocks of the new overall function. 701 static void moveFunctionData(Function &Old, Function &New, 702 DenseMap<Value *, BasicBlock *> &NewEnds) { 703 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 704 CurrBB.removeFromParent(); 705 CurrBB.insertInto(&New); 706 Instruction *I = CurrBB.getTerminator(); 707 708 // For each block we find a return instruction is, it is a potential exit 709 // path for the function. We keep track of each block based on the return 710 // value here. 711 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 712 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 713 714 std::vector<Instruction *> DebugInsts; 715 716 for (Instruction &Val : CurrBB) { 717 // We must handle the scoping of called functions differently than 718 // other outlined instructions. 719 if (!isa<CallInst>(&Val)) { 720 // Remove the debug information for outlined functions. 721 Val.setDebugLoc(DebugLoc()); 722 723 // Loop info metadata may contain line locations. Update them to have no 724 // value in the new subprogram since the outlined code could be from 725 // several locations. 726 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * { 727 if (DISubprogram *SP = New.getSubprogram()) 728 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 729 return DILocation::get(New.getContext(), Loc->getLine(), 730 Loc->getColumn(), SP, nullptr); 731 return MD; 732 }; 733 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc); 734 continue; 735 } 736 737 // From this point we are only handling call instructions. 738 CallInst *CI = cast<CallInst>(&Val); 739 740 // We add any debug statements here, to be removed after. Since the 741 // instructions originate from many different locations in the program, 742 // it will cause incorrect reporting from a debugger if we keep the 743 // same debug instructions. 744 if (isa<DbgInfoIntrinsic>(CI)) { 745 DebugInsts.push_back(&Val); 746 continue; 747 } 748 749 // Edit the scope of called functions inside of outlined functions. 750 if (DISubprogram *SP = New.getSubprogram()) { 751 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 752 Val.setDebugLoc(DI); 753 } 754 } 755 756 for (Instruction *I : DebugInsts) 757 I->eraseFromParent(); 758 } 759 } 760 761 /// Find the the constants that will need to be lifted into arguments 762 /// as they are not the same in each instance of the region. 763 /// 764 /// \param [in] C - The IRSimilarityCandidate containing the region we are 765 /// analyzing. 766 /// \param [in] NotSame - The set of global value numbers that do not have a 767 /// single Constant across all OutlinableRegions similar to \p C. 768 /// \param [out] Inputs - The list containing the global value numbers of the 769 /// arguments needed for the region of code. 770 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 771 std::vector<unsigned> &Inputs) { 772 DenseSet<unsigned> Seen; 773 // Iterate over the instructions, and find what constants will need to be 774 // extracted into arguments. 775 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 776 IDIt != EndIDIt; IDIt++) { 777 for (Value *V : (*IDIt).OperVals) { 778 // Since these are stored before any outlining, they will be in the 779 // global value numbering. 780 unsigned GVN = *C.getGVN(V); 781 if (isa<Constant>(V)) 782 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 783 Inputs.push_back(GVN); 784 Seen.insert(GVN); 785 } 786 } 787 } 788 } 789 790 /// Find the GVN for the inputs that have been found by the CodeExtractor. 791 /// 792 /// \param [in] C - The IRSimilarityCandidate containing the region we are 793 /// analyzing. 794 /// \param [in] CurrentInputs - The set of inputs found by the 795 /// CodeExtractor. 796 /// \param [in] OutputMappings - The mapping of values that have been replaced 797 /// by a new output value. 798 /// \param [out] EndInputNumbers - The global value numbers for the extracted 799 /// arguments. 800 static void mapInputsToGVNs(IRSimilarityCandidate &C, 801 SetVector<Value *> &CurrentInputs, 802 const DenseMap<Value *, Value *> &OutputMappings, 803 std::vector<unsigned> &EndInputNumbers) { 804 // Get the Global Value Number for each input. We check if the Value has been 805 // replaced by a different value at output, and use the original value before 806 // replacement. 807 for (Value *Input : CurrentInputs) { 808 assert(Input && "Have a nullptr as an input"); 809 if (OutputMappings.find(Input) != OutputMappings.end()) 810 Input = OutputMappings.find(Input)->second; 811 assert(C.getGVN(Input) && "Could not find a numbering for the given input"); 812 EndInputNumbers.push_back(C.getGVN(Input).value()); 813 } 814 } 815 816 /// Find the original value for the \p ArgInput values if any one of them was 817 /// replaced during a previous extraction. 818 /// 819 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 820 /// \param [in] OutputMappings - The mapping of values that have been replaced 821 /// by a new output value. 822 /// \param [out] RemappedArgInputs - The remapped values according to 823 /// \p OutputMappings that will be extracted. 824 static void 825 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 826 const DenseMap<Value *, Value *> &OutputMappings, 827 SetVector<Value *> &RemappedArgInputs) { 828 // Get the global value number for each input that will be extracted as an 829 // argument by the code extractor, remapping if needed for reloaded values. 830 for (Value *Input : ArgInputs) { 831 if (OutputMappings.find(Input) != OutputMappings.end()) 832 Input = OutputMappings.find(Input)->second; 833 RemappedArgInputs.insert(Input); 834 } 835 } 836 837 /// Find the input GVNs and the output values for a region of Instructions. 838 /// Using the code extractor, we collect the inputs to the extracted function. 839 /// 840 /// The \p Region can be identified as needing to be ignored in this function. 841 /// It should be checked whether it should be ignored after a call to this 842 /// function. 843 /// 844 /// \param [in,out] Region - The region of code to be analyzed. 845 /// \param [out] InputGVNs - The global value numbers for the extracted 846 /// arguments. 847 /// \param [in] NotSame - The global value numbers in the region that do not 848 /// have the same constant value in the regions structurally similar to 849 /// \p Region. 850 /// \param [in] OutputMappings - The mapping of values that have been replaced 851 /// by a new output value after extraction. 852 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 853 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 854 /// as outputs. 855 static void getCodeExtractorArguments( 856 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 857 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 858 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 859 IRSimilarityCandidate &C = *Region.Candidate; 860 861 // OverallInputs are the inputs to the region found by the CodeExtractor, 862 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 863 // allocas of values whose lifetimes are contained completely within the 864 // outlined region. PremappedInputs are the arguments found by the 865 // CodeExtractor, removing conditions such as sunken allocas, but that 866 // may need to be remapped due to the extracted output values replacing 867 // the original values. We use DummyOutputs for this first run of finding 868 // inputs and outputs since the outputs could change during findAllocas, 869 // the correct set of extracted outputs will be in the final Outputs ValueSet. 870 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 871 DummyOutputs; 872 873 // Use the code extractor to get the inputs and outputs, without sunken 874 // allocas or removing llvm.assumes. 875 CodeExtractor *CE = Region.CE; 876 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 877 assert(Region.StartBB && "Region must have a start BasicBlock!"); 878 Function *OrigF = Region.StartBB->getParent(); 879 CodeExtractorAnalysisCache CEAC(*OrigF); 880 BasicBlock *Dummy = nullptr; 881 882 // The region may be ineligible due to VarArgs in the parent function. In this 883 // case we ignore the region. 884 if (!CE->isEligible()) { 885 Region.IgnoreRegion = true; 886 return; 887 } 888 889 // Find if any values are going to be sunk into the function when extracted 890 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 891 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 892 893 // TODO: Support regions with sunken allocas: values whose lifetimes are 894 // contained completely within the outlined region. These are not guaranteed 895 // to be the same in every region, so we must elevate them all to arguments 896 // when they appear. If these values are not equal, it means there is some 897 // Input in OverallInputs that was removed for ArgInputs. 898 if (OverallInputs.size() != PremappedInputs.size()) { 899 Region.IgnoreRegion = true; 900 return; 901 } 902 903 findConstants(C, NotSame, InputGVNs); 904 905 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 906 907 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 908 ArgInputs); 909 910 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 911 // we need to make sure they are in a deterministic order. 912 stable_sort(InputGVNs); 913 } 914 915 /// Look over the inputs and map each input argument to an argument in the 916 /// overall function for the OutlinableRegions. This creates a way to replace 917 /// the arguments of the extracted function with the arguments of the new 918 /// overall function. 919 /// 920 /// \param [in,out] Region - The region of code to be analyzed. 921 /// \param [in] InputGVNs - The global value numbering of the input values 922 /// collected. 923 /// \param [in] ArgInputs - The values of the arguments to the extracted 924 /// function. 925 static void 926 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 927 std::vector<unsigned> &InputGVNs, 928 SetVector<Value *> &ArgInputs) { 929 930 IRSimilarityCandidate &C = *Region.Candidate; 931 OutlinableGroup &Group = *Region.Parent; 932 933 // This counts the argument number in the overall function. 934 unsigned TypeIndex = 0; 935 936 // This counts the argument number in the extracted function. 937 unsigned OriginalIndex = 0; 938 939 // Find the mapping of the extracted arguments to the arguments for the 940 // overall function. Since there may be extra arguments in the overall 941 // function to account for the extracted constants, we have two different 942 // counters as we find extracted arguments, and as we come across overall 943 // arguments. 944 945 // Additionally, in our first pass, for the first extracted function, 946 // we find argument locations for the canonical value numbering. This 947 // numbering overrides any discovered location for the extracted code. 948 for (unsigned InputVal : InputGVNs) { 949 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 950 assert(CanonicalNumberOpt && "Canonical number not found?"); 951 unsigned CanonicalNumber = CanonicalNumberOpt.value(); 952 953 Optional<Value *> InputOpt = C.fromGVN(InputVal); 954 assert(InputOpt && "Global value number not found?"); 955 Value *Input = InputOpt.value(); 956 957 DenseMap<unsigned, unsigned>::iterator AggArgIt = 958 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 959 960 if (!Group.InputTypesSet) { 961 Group.ArgumentTypes.push_back(Input->getType()); 962 // If the input value has a swifterr attribute, make sure to mark the 963 // argument in the overall function. 964 if (Input->isSwiftError()) { 965 assert( 966 !Group.SwiftErrorArgument && 967 "Argument already marked with swifterr for this OutlinableGroup!"); 968 Group.SwiftErrorArgument = TypeIndex; 969 } 970 } 971 972 // Check if we have a constant. If we do add it to the overall argument 973 // number to Constant map for the region, and continue to the next input. 974 if (Constant *CST = dyn_cast<Constant>(Input)) { 975 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 976 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 977 else { 978 Group.CanonicalNumberToAggArg.insert( 979 std::make_pair(CanonicalNumber, TypeIndex)); 980 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 981 } 982 TypeIndex++; 983 continue; 984 } 985 986 // It is not a constant, we create the mapping from extracted argument list 987 // to the overall argument list, using the canonical location, if it exists. 988 assert(ArgInputs.count(Input) && "Input cannot be found!"); 989 990 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 991 if (OriginalIndex != AggArgIt->second) 992 Region.ChangedArgOrder = true; 993 Region.ExtractedArgToAgg.insert( 994 std::make_pair(OriginalIndex, AggArgIt->second)); 995 Region.AggArgToExtracted.insert( 996 std::make_pair(AggArgIt->second, OriginalIndex)); 997 } else { 998 Group.CanonicalNumberToAggArg.insert( 999 std::make_pair(CanonicalNumber, TypeIndex)); 1000 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 1001 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 1002 } 1003 OriginalIndex++; 1004 TypeIndex++; 1005 } 1006 1007 // If the function type definitions for the OutlinableGroup holding the region 1008 // have not been set, set the length of the inputs here. We should have the 1009 // same inputs for all of the different regions contained in the 1010 // OutlinableGroup since they are all structurally similar to one another. 1011 if (!Group.InputTypesSet) { 1012 Group.NumAggregateInputs = TypeIndex; 1013 Group.InputTypesSet = true; 1014 } 1015 1016 Region.NumExtractedInputs = OriginalIndex; 1017 } 1018 1019 /// Check if the \p V has any uses outside of the region other than \p PN. 1020 /// 1021 /// \param V [in] - The value to check. 1022 /// \param PHILoc [in] - The location in the PHINode of \p V. 1023 /// \param PN [in] - The PHINode using \p V. 1024 /// \param Exits [in] - The potential blocks we exit to from the outlined 1025 /// region. 1026 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 1027 /// \returns true if \p V has any use soutside its region other than \p PN. 1028 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 1029 SmallPtrSet<BasicBlock *, 1> &Exits, 1030 DenseSet<BasicBlock *> &BlocksInRegion) { 1031 // We check to see if the value is used by the PHINode from some other 1032 // predecessor not included in the region. If it is, we make sure 1033 // to keep it as an output. 1034 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 1035 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 1036 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 1037 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 1038 })) 1039 return true; 1040 1041 // Check if the value is used by any other instructions outside the region. 1042 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 1043 Instruction *I = dyn_cast<Instruction>(U); 1044 if (!I) 1045 return false; 1046 1047 // If the use of the item is inside the region, we skip it. Uses 1048 // inside the region give us useful information about how the item could be 1049 // used as an output. 1050 BasicBlock *Parent = I->getParent(); 1051 if (BlocksInRegion.contains(Parent)) 1052 return false; 1053 1054 // If it's not a PHINode then we definitely know the use matters. This 1055 // output value will not completely combined with another item in a PHINode 1056 // as it is directly reference by another non-phi instruction 1057 if (!isa<PHINode>(I)) 1058 return true; 1059 1060 // If we have a PHINode outside one of the exit locations, then it 1061 // can be considered an outside use as well. If there is a PHINode 1062 // contained in the Exit where this values use matters, it will be 1063 // caught when we analyze that PHINode. 1064 if (!Exits.contains(Parent)) 1065 return true; 1066 1067 return false; 1068 }); 1069 } 1070 1071 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1072 /// considered outputs. A PHINodes is an output when more than one incoming 1073 /// value has been marked by the CodeExtractor as an output. 1074 /// 1075 /// \param CurrentExitFromRegion [in] - The block to analyze. 1076 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1077 /// region. 1078 /// \param RegionBlocks [in] - The basic blocks in the region. 1079 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1080 /// PHINodes to this as we find that they replace output values. 1081 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1082 /// totally replaced by a PHINode. 1083 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1084 /// in PHINodes, but have other uses, and should still be considered outputs. 1085 static void analyzeExitPHIsForOutputUses( 1086 BasicBlock *CurrentExitFromRegion, 1087 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1088 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1089 DenseSet<Value *> &OutputsReplacedByPHINode, 1090 DenseSet<Value *> &OutputsWithNonPhiUses) { 1091 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1092 // Find all incoming values from the outlining region. 1093 SmallVector<unsigned, 2> IncomingVals; 1094 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1095 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1096 IncomingVals.push_back(I); 1097 1098 // Do not process PHI if there are no predecessors from region. 1099 unsigned NumIncomingVals = IncomingVals.size(); 1100 if (NumIncomingVals == 0) 1101 continue; 1102 1103 // If there is one predecessor, we mark it as a value that needs to be kept 1104 // as an output. 1105 if (NumIncomingVals == 1) { 1106 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1107 OutputsWithNonPhiUses.insert(V); 1108 OutputsReplacedByPHINode.erase(V); 1109 continue; 1110 } 1111 1112 // This PHINode will be used as an output value, so we add it to our list. 1113 Outputs.insert(&PN); 1114 1115 // Not all of the incoming values should be ignored as other inputs and 1116 // outputs may have uses in outlined region. If they have other uses 1117 // outside of the single PHINode we should not skip over it. 1118 for (unsigned Idx : IncomingVals) { 1119 Value *V = PN.getIncomingValue(Idx); 1120 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1121 OutputsWithNonPhiUses.insert(V); 1122 OutputsReplacedByPHINode.erase(V); 1123 continue; 1124 } 1125 if (!OutputsWithNonPhiUses.contains(V)) 1126 OutputsReplacedByPHINode.insert(V); 1127 } 1128 } 1129 } 1130 1131 // Represents the type for the unsigned number denoting the output number for 1132 // phi node, along with the canonical number for the exit block. 1133 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1134 // The list of canonical numbers for the incoming values to a PHINode. 1135 using CanonList = SmallVector<unsigned, 2>; 1136 // The pair type representing the set of canonical values being combined in the 1137 // PHINode, along with the location data for the PHINode. 1138 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1139 1140 /// Encode \p PND as an integer for easy lookup based on the argument location, 1141 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1142 /// the values stored in the PHINode. 1143 /// 1144 /// \param PND - The data to hash. 1145 /// \returns The hash code of \p PND. 1146 static hash_code encodePHINodeData(PHINodeData &PND) { 1147 return llvm::hash_combine( 1148 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1149 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1150 } 1151 1152 /// Create a special GVN for PHINodes that will be used outside of 1153 /// the region. We create a hash code based on the Canonical number of the 1154 /// parent BasicBlock, the canonical numbering of the values stored in the 1155 /// PHINode and the aggregate argument location. This is used to find whether 1156 /// this PHINode type has been given a canonical numbering already. If not, we 1157 /// assign it a value and store it for later use. The value is returned to 1158 /// identify different output schemes for the set of regions. 1159 /// 1160 /// \param Region - The region that \p PN is an output for. 1161 /// \param PN - The PHINode we are analyzing. 1162 /// \param Blocks - The blocks for the region we are analyzing. 1163 /// \param AggArgIdx - The argument \p PN will be stored into. 1164 /// \returns An optional holding the assigned canonical number, or None if 1165 /// there is some attribute of the PHINode blocking it from being used. 1166 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1167 PHINode *PN, 1168 DenseSet<BasicBlock *> &Blocks, 1169 unsigned AggArgIdx) { 1170 OutlinableGroup &Group = *Region.Parent; 1171 IRSimilarityCandidate &Cand = *Region.Candidate; 1172 BasicBlock *PHIBB = PN->getParent(); 1173 CanonList PHIGVNs; 1174 Value *Incoming; 1175 BasicBlock *IncomingBlock; 1176 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1177 Incoming = PN->getIncomingValue(Idx); 1178 IncomingBlock = PN->getIncomingBlock(Idx); 1179 // If we cannot find a GVN, and the incoming block is included in the region 1180 // this means that the input to the PHINode is not included in the region we 1181 // are trying to analyze, meaning, that if it was outlined, we would be 1182 // adding an extra input. We ignore this case for now, and so ignore the 1183 // region. 1184 Optional<unsigned> OGVN = Cand.getGVN(Incoming); 1185 if (!OGVN && Blocks.contains(IncomingBlock)) { 1186 Region.IgnoreRegion = true; 1187 return None; 1188 } 1189 1190 // If the incoming block isn't in the region, we don't have to worry about 1191 // this incoming value. 1192 if (!Blocks.contains(IncomingBlock)) 1193 continue; 1194 1195 // Collect the canonical numbers of the values in the PHINode. 1196 unsigned GVN = *OGVN; 1197 OGVN = Cand.getCanonicalNum(GVN); 1198 assert(OGVN && "No GVN found for incoming value?"); 1199 PHIGVNs.push_back(*OGVN); 1200 1201 // Find the incoming block and use the canonical numbering as well to define 1202 // the hash for the PHINode. 1203 OGVN = Cand.getGVN(IncomingBlock); 1204 1205 // If there is no number for the incoming block, it is becaause we have 1206 // split the candidate basic blocks. So we use the previous block that it 1207 // was split from to find the valid global value numbering for the PHINode. 1208 if (!OGVN) { 1209 assert(Cand.getStartBB() == IncomingBlock && 1210 "Unknown basic block used in exit path PHINode."); 1211 1212 BasicBlock *PrevBlock = nullptr; 1213 // Iterate over the predecessors to the incoming block of the 1214 // PHINode, when we find a block that is not contained in the region 1215 // we know that this is the first block that we split from, and should 1216 // have a valid global value numbering. 1217 for (BasicBlock *Pred : predecessors(IncomingBlock)) 1218 if (!Blocks.contains(Pred)) { 1219 PrevBlock = Pred; 1220 break; 1221 } 1222 assert(PrevBlock && "Expected a predecessor not in the reigon!"); 1223 OGVN = Cand.getGVN(PrevBlock); 1224 } 1225 GVN = *OGVN; 1226 OGVN = Cand.getCanonicalNum(GVN); 1227 assert(OGVN && "No GVN found for incoming block?"); 1228 PHIGVNs.push_back(*OGVN); 1229 } 1230 1231 // Now that we have the GVNs for the incoming values, we are going to combine 1232 // them with the GVN of the incoming bock, and the output location of the 1233 // PHINode to generate a hash value representing this instance of the PHINode. 1234 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1235 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1236 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1237 assert(BBGVN && "Could not find GVN for the incoming block!"); 1238 1239 BBGVN = Cand.getCanonicalNum(BBGVN.value()); 1240 assert(BBGVN && "Could not find canonical number for the incoming block!"); 1241 // Create a pair of the exit block canonical value, and the aggregate 1242 // argument location, connected to the canonical numbers stored in the 1243 // PHINode. 1244 PHINodeData TemporaryPair = 1245 std::make_pair(std::make_pair(BBGVN.value(), AggArgIdx), PHIGVNs); 1246 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1247 1248 // Look for and create a new entry in our connection between canonical 1249 // numbers for PHINodes, and the set of objects we just created. 1250 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1251 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1252 bool Inserted = false; 1253 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1254 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1255 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1256 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1257 } 1258 1259 return GVNToPHIIt->second; 1260 } 1261 1262 /// Create a mapping of the output arguments for the \p Region to the output 1263 /// arguments of the overall outlined function. 1264 /// 1265 /// \param [in,out] Region - The region of code to be analyzed. 1266 /// \param [in] Outputs - The values found by the code extractor. 1267 static void 1268 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 1269 SetVector<Value *> &Outputs) { 1270 OutlinableGroup &Group = *Region.Parent; 1271 IRSimilarityCandidate &C = *Region.Candidate; 1272 1273 SmallVector<BasicBlock *> BE; 1274 DenseSet<BasicBlock *> BlocksInRegion; 1275 C.getBasicBlocks(BlocksInRegion, BE); 1276 1277 // Find the exits to the region. 1278 SmallPtrSet<BasicBlock *, 1> Exits; 1279 for (BasicBlock *Block : BE) 1280 for (BasicBlock *Succ : successors(Block)) 1281 if (!BlocksInRegion.contains(Succ)) 1282 Exits.insert(Succ); 1283 1284 // After determining which blocks exit to PHINodes, we add these PHINodes to 1285 // the set of outputs to be processed. We also check the incoming values of 1286 // the PHINodes for whether they should no longer be considered outputs. 1287 DenseSet<Value *> OutputsReplacedByPHINode; 1288 DenseSet<Value *> OutputsWithNonPhiUses; 1289 for (BasicBlock *ExitBB : Exits) 1290 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1291 OutputsReplacedByPHINode, 1292 OutputsWithNonPhiUses); 1293 1294 // This counts the argument number in the extracted function. 1295 unsigned OriginalIndex = Region.NumExtractedInputs; 1296 1297 // This counts the argument number in the overall function. 1298 unsigned TypeIndex = Group.NumAggregateInputs; 1299 bool TypeFound; 1300 DenseSet<unsigned> AggArgsUsed; 1301 1302 // Iterate over the output types and identify if there is an aggregate pointer 1303 // type whose base type matches the current output type. If there is, we mark 1304 // that we will use this output register for this value. If not we add another 1305 // type to the overall argument type list. We also store the GVNs used for 1306 // stores to identify which values will need to be moved into an special 1307 // block that holds the stores to the output registers. 1308 for (Value *Output : Outputs) { 1309 TypeFound = false; 1310 // We can do this since it is a result value, and will have a number 1311 // that is necessarily the same. BUT if in the future, the instructions 1312 // do not have to be in same order, but are functionally the same, we will 1313 // have to use a different scheme, as one-to-one correspondence is not 1314 // guaranteed. 1315 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1316 1317 // If the output is combined in a PHINode, we make sure to skip over it. 1318 if (OutputsReplacedByPHINode.contains(Output)) 1319 continue; 1320 1321 unsigned AggArgIdx = 0; 1322 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1323 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 1324 continue; 1325 1326 if (AggArgsUsed.contains(Jdx)) 1327 continue; 1328 1329 TypeFound = true; 1330 AggArgsUsed.insert(Jdx); 1331 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1332 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1333 AggArgIdx = Jdx; 1334 break; 1335 } 1336 1337 // We were unable to find an unused type in the output type set that matches 1338 // the output, so we add a pointer type to the argument types of the overall 1339 // function to handle this output and create a mapping to it. 1340 if (!TypeFound) { 1341 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 1342 // Mark the new pointer type as the last value in the aggregate argument 1343 // list. 1344 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1345 AggArgsUsed.insert(ArgTypeIdx); 1346 Region.ExtractedArgToAgg.insert( 1347 std::make_pair(OriginalIndex, ArgTypeIdx)); 1348 Region.AggArgToExtracted.insert( 1349 std::make_pair(ArgTypeIdx, OriginalIndex)); 1350 AggArgIdx = ArgTypeIdx; 1351 } 1352 1353 // TODO: Adapt to the extra input from the PHINode. 1354 PHINode *PN = dyn_cast<PHINode>(Output); 1355 1356 Optional<unsigned> GVN; 1357 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1358 // Values outside the region can be combined into PHINode when we 1359 // have multiple exits. We collect both of these into a list to identify 1360 // which values are being used in the PHINode. Each list identifies a 1361 // different PHINode, and a different output. We store the PHINode as it's 1362 // own canonical value. These canonical values are also dependent on the 1363 // output argument it is saved to. 1364 1365 // If two PHINodes have the same canonical values, but different aggregate 1366 // argument locations, then they will have distinct Canonical Values. 1367 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx); 1368 if (!GVN) 1369 return; 1370 } else { 1371 // If we do not have a PHINode we use the global value numbering for the 1372 // output value, to find the canonical number to add to the set of stored 1373 // values. 1374 GVN = C.getGVN(Output); 1375 GVN = C.getCanonicalNum(*GVN); 1376 } 1377 1378 // Each region has a potentially unique set of outputs. We save which 1379 // values are output in a list of canonical values so we can differentiate 1380 // among the different store schemes. 1381 Region.GVNStores.push_back(*GVN); 1382 1383 OriginalIndex++; 1384 TypeIndex++; 1385 } 1386 1387 // We sort the stored values to make sure that we are not affected by analysis 1388 // order when determining what combination of items were stored. 1389 stable_sort(Region.GVNStores); 1390 } 1391 1392 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1393 DenseSet<unsigned> &NotSame) { 1394 std::vector<unsigned> Inputs; 1395 SetVector<Value *> ArgInputs, Outputs; 1396 1397 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1398 Outputs); 1399 1400 if (Region.IgnoreRegion) 1401 return; 1402 1403 // Map the inputs found by the CodeExtractor to the arguments found for 1404 // the overall function. 1405 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1406 1407 // Map the outputs found by the CodeExtractor to the arguments found for 1408 // the overall function. 1409 findExtractedOutputToOverallOutputMapping(Region, Outputs); 1410 } 1411 1412 /// Replace the extracted function in the Region with a call to the overall 1413 /// function constructed from the deduplicated similar regions, replacing and 1414 /// remapping the values passed to the extracted function as arguments to the 1415 /// new arguments of the overall function. 1416 /// 1417 /// \param [in] M - The module to outline from. 1418 /// \param [in] Region - The regions of extracted code to be replaced with a new 1419 /// function. 1420 /// \returns a call instruction with the replaced function. 1421 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1422 std::vector<Value *> NewCallArgs; 1423 DenseMap<unsigned, unsigned>::iterator ArgPair; 1424 1425 OutlinableGroup &Group = *Region.Parent; 1426 CallInst *Call = Region.Call; 1427 assert(Call && "Call to replace is nullptr?"); 1428 Function *AggFunc = Group.OutlinedFunction; 1429 assert(AggFunc && "Function to replace with is nullptr?"); 1430 1431 // If the arguments are the same size, there are not values that need to be 1432 // made into an argument, the argument ordering has not been change, or 1433 // different output registers to handle. We can simply replace the called 1434 // function in this case. 1435 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1436 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1437 << *AggFunc << " with same number of arguments\n"); 1438 Call->setCalledFunction(AggFunc); 1439 return Call; 1440 } 1441 1442 // We have a different number of arguments than the new function, so 1443 // we need to use our previously mappings off extracted argument to overall 1444 // function argument, and constants to overall function argument to create the 1445 // new argument list. 1446 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1447 1448 if (AggArgIdx == AggFunc->arg_size() - 1 && 1449 Group.OutputGVNCombinations.size() > 1) { 1450 // If we are on the last argument, and we need to differentiate between 1451 // output blocks, add an integer to the argument list to determine 1452 // what block to take 1453 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1454 << Region.OutputBlockNum << "\n"); 1455 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1456 Region.OutputBlockNum)); 1457 continue; 1458 } 1459 1460 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1461 if (ArgPair != Region.AggArgToExtracted.end()) { 1462 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1463 // If we found the mapping from the extracted function to the overall 1464 // function, we simply add it to the argument list. We use the same 1465 // value, it just needs to honor the new order of arguments. 1466 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1467 << *ArgumentValue << "\n"); 1468 NewCallArgs.push_back(ArgumentValue); 1469 continue; 1470 } 1471 1472 // If it is a constant, we simply add it to the argument list as a value. 1473 if (Region.AggArgToConstant.find(AggArgIdx) != 1474 Region.AggArgToConstant.end()) { 1475 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1476 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1477 << *CST << "\n"); 1478 NewCallArgs.push_back(CST); 1479 continue; 1480 } 1481 1482 // Add a nullptr value if the argument is not found in the extracted 1483 // function. If we cannot find a value, it means it is not in use 1484 // for the region, so we should not pass anything to it. 1485 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1486 NewCallArgs.push_back(ConstantPointerNull::get( 1487 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1488 } 1489 1490 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1491 << *AggFunc << " with new set of arguments\n"); 1492 // Create the new call instruction and erase the old one. 1493 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1494 Call); 1495 1496 // It is possible that the call to the outlined function is either the first 1497 // instruction is in the new block, the last instruction, or both. If either 1498 // of these is the case, we need to make sure that we replace the instruction 1499 // in the IRInstructionData struct with the new call. 1500 CallInst *OldCall = Region.Call; 1501 if (Region.NewFront->Inst == OldCall) 1502 Region.NewFront->Inst = Call; 1503 if (Region.NewBack->Inst == OldCall) 1504 Region.NewBack->Inst = Call; 1505 1506 // Transfer any debug information. 1507 Call->setDebugLoc(Region.Call->getDebugLoc()); 1508 // Since our output may determine which branch we go to, we make sure to 1509 // propogate this new call value through the module. 1510 OldCall->replaceAllUsesWith(Call); 1511 1512 // Remove the old instruction. 1513 OldCall->eraseFromParent(); 1514 Region.Call = Call; 1515 1516 // Make sure that the argument in the new function has the SwiftError 1517 // argument. 1518 if (Group.SwiftErrorArgument) 1519 Call->addParamAttr(Group.SwiftErrorArgument.value(), Attribute::SwiftError); 1520 1521 return Call; 1522 } 1523 1524 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1525 /// for \p RetVal. 1526 /// 1527 /// \param Group - The OutlinableGroup containing the information about the 1528 /// overall outlined function. 1529 /// \param RetVal - The return value or exit option that we are currently 1530 /// evaluating. 1531 /// \returns The found or newly created BasicBlock to contain the needed 1532 /// PHINodes to be used as outputs. 1533 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1534 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1535 ReturnBlockForRetVal; 1536 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1537 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1538 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1539 "Could not find output value!"); 1540 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1541 1542 // Find if a PHIBlock exists for this return value already. If it is 1543 // the first time we are analyzing this, we will not, so we record it. 1544 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1545 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1546 return PhiBlockForRetVal->second; 1547 1548 // If we did not find a block, we create one, and insert it into the 1549 // overall function and record it. 1550 bool Inserted = false; 1551 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1552 ReturnBB->getParent()); 1553 std::tie(PhiBlockForRetVal, Inserted) = 1554 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1555 1556 // We find the predecessors of the return block in the newly created outlined 1557 // function in order to point them to the new PHIBlock rather than the already 1558 // existing return block. 1559 SmallVector<BranchInst *, 2> BranchesToChange; 1560 for (BasicBlock *Pred : predecessors(ReturnBB)) 1561 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1562 1563 // Now we mark the branch instructions found, and change the references of the 1564 // return block to the newly created PHIBlock. 1565 for (BranchInst *BI : BranchesToChange) 1566 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1567 if (BI->getSuccessor(Succ) != ReturnBB) 1568 continue; 1569 BI->setSuccessor(Succ, PHIBlock); 1570 } 1571 1572 BranchInst::Create(ReturnBB, PHIBlock); 1573 1574 return PhiBlockForRetVal->second; 1575 } 1576 1577 /// For the function call now representing the \p Region, find the passed value 1578 /// to that call that represents Argument \p A at the call location if the 1579 /// call has already been replaced with a call to the overall, aggregate 1580 /// function. 1581 /// 1582 /// \param A - The Argument to get the passed value for. 1583 /// \param Region - The extracted Region corresponding to the outlined function. 1584 /// \returns The Value representing \p A at the call site. 1585 static Value * 1586 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1587 const OutlinableRegion &Region) { 1588 // If we don't need to adjust the argument number at all (since the call 1589 // has already been replaced by a call to the overall outlined function) 1590 // we can just get the specified argument. 1591 return Region.Call->getArgOperand(A->getArgNo()); 1592 } 1593 1594 /// For the function call now representing the \p Region, find the passed value 1595 /// to that call that represents Argument \p A at the call location if the 1596 /// call has only been replaced by the call to the aggregate function. 1597 /// 1598 /// \param A - The Argument to get the passed value for. 1599 /// \param Region - The extracted Region corresponding to the outlined function. 1600 /// \returns The Value representing \p A at the call site. 1601 static Value * 1602 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1603 const OutlinableRegion &Region) { 1604 unsigned ArgNum = A->getArgNo(); 1605 1606 // If it is a constant, we can look at our mapping from when we created 1607 // the outputs to figure out what the constant value is. 1608 if (Region.AggArgToConstant.count(ArgNum)) 1609 return Region.AggArgToConstant.find(ArgNum)->second; 1610 1611 // If it is not a constant, and we are not looking at the overall function, we 1612 // need to adjust which argument we are looking at. 1613 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1614 return Region.Call->getArgOperand(ArgNum); 1615 } 1616 1617 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1618 /// 1619 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1620 /// \param Region [in] - The OutlinableRegion containing \p PN. 1621 /// \param OutputMappings [in] - The mapping of output values from outlined 1622 /// region to their original values. 1623 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1624 /// \p PN paired with their incoming block. 1625 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1626 /// of \p Region rather than the overall function's call. 1627 static void findCanonNumsForPHI( 1628 PHINode *PN, OutlinableRegion &Region, 1629 const DenseMap<Value *, Value *> &OutputMappings, 1630 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums, 1631 bool ReplacedWithOutlinedCall = true) { 1632 // Iterate over the incoming values. 1633 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1634 Value *IVal = PN->getIncomingValue(Idx); 1635 BasicBlock *IBlock = PN->getIncomingBlock(Idx); 1636 // If we have an argument as incoming value, we need to grab the passed 1637 // value from the call itself. 1638 if (Argument *A = dyn_cast<Argument>(IVal)) { 1639 if (ReplacedWithOutlinedCall) 1640 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1641 else 1642 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1643 } 1644 1645 // Get the original value if it has been replaced by an output value. 1646 IVal = findOutputMapping(OutputMappings, IVal); 1647 1648 // Find and add the canonical number for the incoming value. 1649 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1650 assert(GVN && "No GVN for incoming value"); 1651 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1652 assert(CanonNum && "No Canonical Number for GVN"); 1653 CanonNums.push_back(std::make_pair(*CanonNum, IBlock)); 1654 } 1655 } 1656 1657 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1658 /// in order to condense the number of instructions added to the outlined 1659 /// function. 1660 /// 1661 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1662 /// \param Region [in] - The OutlinableRegion containing \p PN. 1663 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1664 /// \p PN in. 1665 /// \param OutputMappings [in] - The mapping of output values from outlined 1666 /// region to their original values. 1667 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been 1668 /// matched. 1669 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1670 static PHINode* 1671 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1672 BasicBlock *OverallPhiBlock, 1673 const DenseMap<Value *, Value *> &OutputMappings, 1674 DenseSet<PHINode *> &UsedPHIs) { 1675 OutlinableGroup &Group = *Region.Parent; 1676 1677 1678 // A list of the canonical numbering assigned to each incoming value, paired 1679 // with the incoming block for the PHINode passed into this function. 1680 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums; 1681 1682 // We have to use the extracted function since we have merged this region into 1683 // the overall function yet. We make sure to reassign the argument numbering 1684 // since it is possible that the argument ordering is different between the 1685 // functions. 1686 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1687 /* ReplacedWithOutlinedCall = */ false); 1688 1689 OutlinableRegion *FirstRegion = Group.Regions[0]; 1690 1691 // A list of the canonical numbering assigned to each incoming value, paired 1692 // with the incoming block for the PHINode that we are currently comparing 1693 // the passed PHINode to. 1694 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums; 1695 1696 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1697 // the uses of the PHINode we are searching for, with the found PHINode. 1698 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1699 // If this PHINode has already been matched to another PHINode to be merged, 1700 // we skip it. 1701 if (UsedPHIs.contains(&CurrPN)) 1702 continue; 1703 1704 CurrentCanonNums.clear(); 1705 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1706 /* ReplacedWithOutlinedCall = */ true); 1707 1708 // If the list of incoming values is not the same length, then they cannot 1709 // match since there is not an analogue for each incoming value. 1710 if (PNCanonNums.size() != CurrentCanonNums.size()) 1711 continue; 1712 1713 bool FoundMatch = true; 1714 1715 // We compare the canonical value for each incoming value in the passed 1716 // in PHINode to one already present in the outlined region. If the 1717 // incoming values do not match, then the PHINodes do not match. 1718 1719 // We also check to make sure that the incoming block matches as well by 1720 // finding the corresponding incoming block in the combined outlined region 1721 // for the current outlined region. 1722 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) { 1723 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx]; 1724 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx]; 1725 if (ToCompareTo.first != ToAdd.first) { 1726 FoundMatch = false; 1727 break; 1728 } 1729 1730 BasicBlock *CorrespondingBlock = 1731 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second); 1732 assert(CorrespondingBlock && "Found block is nullptr"); 1733 if (CorrespondingBlock != ToCompareTo.second) { 1734 FoundMatch = false; 1735 break; 1736 } 1737 } 1738 1739 // If all incoming values and branches matched, then we can merge 1740 // into the found PHINode. 1741 if (FoundMatch) { 1742 UsedPHIs.insert(&CurrPN); 1743 return &CurrPN; 1744 } 1745 } 1746 1747 // If we've made it here, it means we weren't able to replace the PHINode, so 1748 // we must insert it ourselves. 1749 PHINode *NewPN = cast<PHINode>(PN.clone()); 1750 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1751 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1752 Idx++) { 1753 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1754 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1755 1756 // Find corresponding basic block in the overall function for the incoming 1757 // block. 1758 BasicBlock *BlockToUse = 1759 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock); 1760 NewPN->setIncomingBlock(Idx, BlockToUse); 1761 1762 // If we have an argument we make sure we replace using the argument from 1763 // the correct function. 1764 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1765 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1766 NewPN->setIncomingValue(Idx, Val); 1767 continue; 1768 } 1769 1770 // Find the corresponding value in the overall function. 1771 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1772 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1773 assert(Val && "Value is nullptr?"); 1774 DenseMap<Value *, Value *>::iterator RemappedIt = 1775 FirstRegion->RemappedArguments.find(Val); 1776 if (RemappedIt != FirstRegion->RemappedArguments.end()) 1777 Val = RemappedIt->second; 1778 NewPN->setIncomingValue(Idx, Val); 1779 } 1780 return NewPN; 1781 } 1782 1783 // Within an extracted function, replace the argument uses of the extracted 1784 // region with the arguments of the function for an OutlinableGroup. 1785 // 1786 /// \param [in] Region - The region of extracted code to be changed. 1787 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1788 /// region. 1789 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1790 /// function to define the overall outlined function for all the regions, or 1791 /// if we are operating on one of the following regions. 1792 static void 1793 replaceArgumentUses(OutlinableRegion &Region, 1794 DenseMap<Value *, BasicBlock *> &OutputBBs, 1795 const DenseMap<Value *, Value *> &OutputMappings, 1796 bool FirstFunction = false) { 1797 OutlinableGroup &Group = *Region.Parent; 1798 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1799 1800 Function *DominatingFunction = Region.ExtractedFunction; 1801 if (FirstFunction) 1802 DominatingFunction = Group.OutlinedFunction; 1803 DominatorTree DT(*DominatingFunction); 1804 DenseSet<PHINode *> UsedPHIs; 1805 1806 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1807 ArgIdx++) { 1808 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1809 Region.ExtractedArgToAgg.end() && 1810 "No mapping from extracted to outlined?"); 1811 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1812 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1813 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1814 // The argument is an input, so we can simply replace it with the overall 1815 // argument value 1816 if (ArgIdx < Region.NumExtractedInputs) { 1817 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1818 << *Region.ExtractedFunction << " with " << *AggArg 1819 << " in function " << *Group.OutlinedFunction << "\n"); 1820 Arg->replaceAllUsesWith(AggArg); 1821 Value *V = Region.Call->getArgOperand(ArgIdx); 1822 Region.RemappedArguments.insert(std::make_pair(V, AggArg)); 1823 continue; 1824 } 1825 1826 // If we are replacing an output, we place the store value in its own 1827 // block inside the overall function before replacing the use of the output 1828 // in the function. 1829 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1830 User *InstAsUser = Arg->user_back(); 1831 assert(InstAsUser && "User is nullptr!"); 1832 1833 Instruction *I = cast<Instruction>(InstAsUser); 1834 BasicBlock *BB = I->getParent(); 1835 SmallVector<BasicBlock *, 4> Descendants; 1836 DT.getDescendants(BB, Descendants); 1837 bool EdgeAdded = false; 1838 if (Descendants.size() == 0) { 1839 EdgeAdded = true; 1840 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1841 DT.getDescendants(BB, Descendants); 1842 } 1843 1844 // Iterate over the following blocks, looking for return instructions, 1845 // if we find one, find the corresponding output block for the return value 1846 // and move our store instruction there. 1847 for (BasicBlock *DescendBB : Descendants) { 1848 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1849 if (!RI) 1850 continue; 1851 Value *RetVal = RI->getReturnValue(); 1852 auto VBBIt = OutputBBs.find(RetVal); 1853 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1854 1855 // If this is storing a PHINode, we must make sure it is included in the 1856 // overall function. 1857 StoreInst *SI = cast<StoreInst>(I); 1858 1859 Value *ValueOperand = SI->getValueOperand(); 1860 1861 StoreInst *NewI = cast<StoreInst>(I->clone()); 1862 NewI->setDebugLoc(DebugLoc()); 1863 BasicBlock *OutputBB = VBBIt->second; 1864 OutputBB->getInstList().push_back(NewI); 1865 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1866 << *OutputBB << "\n"); 1867 1868 // If this is storing a PHINode, we must make sure it is included in the 1869 // overall function. 1870 if (!isa<PHINode>(ValueOperand) || 1871 Region.Candidate->getGVN(ValueOperand).has_value()) { 1872 if (FirstFunction) 1873 continue; 1874 Value *CorrVal = 1875 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1876 assert(CorrVal && "Value is nullptr?"); 1877 NewI->setOperand(0, CorrVal); 1878 continue; 1879 } 1880 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1881 // If it has a value, it was not split by the code extractor, which 1882 // is what we are looking for. 1883 if (Region.Candidate->getGVN(PN)) 1884 continue; 1885 1886 // We record the parent block for the PHINode in the Region so that 1887 // we can exclude it from checks later on. 1888 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1889 1890 // If this is the first function, we do not need to worry about mergiing 1891 // this with any other block in the overall outlined function, so we can 1892 // just continue. 1893 if (FirstFunction) { 1894 BasicBlock *PHIBlock = PN->getParent(); 1895 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1896 continue; 1897 } 1898 1899 // We look for the aggregate block that contains the PHINodes leading into 1900 // this exit path. If we can't find one, we create one. 1901 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1902 1903 // For our PHINode, we find the combined canonical numbering, and 1904 // attempt to find a matching PHINode in the overall PHIBlock. If we 1905 // cannot, we copy the PHINode and move it into this new block. 1906 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, 1907 OutputMappings, UsedPHIs); 1908 NewI->setOperand(0, NewPN); 1909 } 1910 1911 // If we added an edge for basic blocks without a predecessor, we remove it 1912 // here. 1913 if (EdgeAdded) 1914 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1915 I->eraseFromParent(); 1916 1917 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1918 << *Region.ExtractedFunction << " with " << *AggArg 1919 << " in function " << *Group.OutlinedFunction << "\n"); 1920 Arg->replaceAllUsesWith(AggArg); 1921 } 1922 } 1923 1924 /// Within an extracted function, replace the constants that need to be lifted 1925 /// into arguments with the actual argument. 1926 /// 1927 /// \param Region [in] - The region of extracted code to be changed. 1928 void replaceConstants(OutlinableRegion &Region) { 1929 OutlinableGroup &Group = *Region.Parent; 1930 // Iterate over the constants that need to be elevated into arguments 1931 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1932 unsigned AggArgIdx = Const.first; 1933 Function *OutlinedFunction = Group.OutlinedFunction; 1934 assert(OutlinedFunction && "Overall Function is not defined?"); 1935 Constant *CST = Const.second; 1936 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1937 // Identify the argument it will be elevated to, and replace instances of 1938 // that constant in the function. 1939 1940 // TODO: If in the future constants do not have one global value number, 1941 // i.e. a constant 1 could be mapped to several values, this check will 1942 // have to be more strict. It cannot be using only replaceUsesWithIf. 1943 1944 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1945 << " in function " << *OutlinedFunction << " with " 1946 << *Arg << "\n"); 1947 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1948 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1949 return I->getFunction() == OutlinedFunction; 1950 return false; 1951 }); 1952 } 1953 } 1954 1955 /// It is possible that there is a basic block that already performs the same 1956 /// stores. This returns a duplicate block, if it exists 1957 /// 1958 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1959 /// \param OutputStoreBBs [in] The existing output blocks. 1960 /// \returns an optional value with the number output block if there is a match. 1961 Optional<unsigned> findDuplicateOutputBlock( 1962 DenseMap<Value *, BasicBlock *> &OutputBBs, 1963 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1964 1965 bool Mismatch = false; 1966 unsigned MatchingNum = 0; 1967 // We compare the new set output blocks to the other sets of output blocks. 1968 // If they are the same number, and have identical instructions, they are 1969 // considered to be the same. 1970 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1971 Mismatch = false; 1972 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1973 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1974 OutputBBs.find(VToB.first); 1975 if (OutputBBIt == OutputBBs.end()) { 1976 Mismatch = true; 1977 break; 1978 } 1979 1980 BasicBlock *CompBB = VToB.second; 1981 BasicBlock *OutputBB = OutputBBIt->second; 1982 if (CompBB->size() - 1 != OutputBB->size()) { 1983 Mismatch = true; 1984 break; 1985 } 1986 1987 BasicBlock::iterator NIt = OutputBB->begin(); 1988 for (Instruction &I : *CompBB) { 1989 if (isa<BranchInst>(&I)) 1990 continue; 1991 1992 if (!I.isIdenticalTo(&(*NIt))) { 1993 Mismatch = true; 1994 break; 1995 } 1996 1997 NIt++; 1998 } 1999 } 2000 2001 if (!Mismatch) 2002 return MatchingNum; 2003 2004 MatchingNum++; 2005 } 2006 2007 return None; 2008 } 2009 2010 /// Remove empty output blocks from the outlined region. 2011 /// 2012 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 2013 /// Region. 2014 /// \param Region - The OutlinableRegion we are analyzing. 2015 static bool 2016 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 2017 OutlinableRegion &Region) { 2018 bool AllRemoved = true; 2019 Value *RetValueForBB; 2020 BasicBlock *NewBB; 2021 SmallVector<Value *, 4> ToRemove; 2022 // Iterate over the output blocks created in the outlined section. 2023 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 2024 RetValueForBB = VtoBB.first; 2025 NewBB = VtoBB.second; 2026 2027 // If there are no instructions, we remove it from the module, and also 2028 // mark the value for removal from the return value to output block mapping. 2029 if (NewBB->size() == 0) { 2030 NewBB->eraseFromParent(); 2031 ToRemove.push_back(RetValueForBB); 2032 continue; 2033 } 2034 2035 // Mark that we could not remove all the blocks since they were not all 2036 // empty. 2037 AllRemoved = false; 2038 } 2039 2040 // Remove the return value from the mapping. 2041 for (Value *V : ToRemove) 2042 BlocksToPrune.erase(V); 2043 2044 // Mark the region as having the no output scheme. 2045 if (AllRemoved) 2046 Region.OutputBlockNum = -1; 2047 2048 return AllRemoved; 2049 } 2050 2051 /// For the outlined section, move needed the StoreInsts for the output 2052 /// registers into their own block. Then, determine if there is a duplicate 2053 /// output block already created. 2054 /// 2055 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 2056 /// \param [in] Region - The OutlinableRegion that is being analyzed. 2057 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 2058 /// placed in. 2059 /// \param [in] EndBBs - the final blocks of the extracted function. 2060 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 2061 /// been replaced by a new output value. 2062 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2063 static void alignOutputBlockWithAggFunc( 2064 OutlinableGroup &OG, OutlinableRegion &Region, 2065 DenseMap<Value *, BasicBlock *> &OutputBBs, 2066 DenseMap<Value *, BasicBlock *> &EndBBs, 2067 const DenseMap<Value *, Value *> &OutputMappings, 2068 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2069 // If none of the output blocks have any instructions, this means that we do 2070 // not have to determine if it matches any of the other output schemes, and we 2071 // don't have to do anything else. 2072 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 2073 return; 2074 2075 // Determine is there is a duplicate set of blocks. 2076 Optional<unsigned> MatchingBB = 2077 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 2078 2079 // If there is, we remove the new output blocks. If it does not, 2080 // we add it to our list of sets of output blocks. 2081 if (MatchingBB) { 2082 LLVM_DEBUG(dbgs() << "Set output block for region in function" 2083 << Region.ExtractedFunction << " to " 2084 << MatchingBB.value()); 2085 2086 Region.OutputBlockNum = MatchingBB.value(); 2087 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 2088 VtoBB.second->eraseFromParent(); 2089 return; 2090 } 2091 2092 Region.OutputBlockNum = OutputStoreBBs.size(); 2093 2094 Value *RetValueForBB; 2095 BasicBlock *NewBB; 2096 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2097 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 2098 RetValueForBB = VtoBB.first; 2099 NewBB = VtoBB.second; 2100 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2101 EndBBs.find(RetValueForBB); 2102 LLVM_DEBUG(dbgs() << "Create output block for region in" 2103 << Region.ExtractedFunction << " to " 2104 << *NewBB); 2105 BranchInst::Create(VBBIt->second, NewBB); 2106 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 2107 } 2108 } 2109 2110 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 2111 /// before creating a basic block for each \p NewMap, and inserting into the new 2112 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 2113 /// 2114 /// \param OldMap [in] - The mapping to base the new mapping off of. 2115 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 2116 /// \param ParentFunc [in] - The function to put the new basic block in. 2117 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 2118 /// by an index value. 2119 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 2120 DenseMap<Value *, BasicBlock *> &NewMap, 2121 Function *ParentFunc, Twine BaseName) { 2122 unsigned Idx = 0; 2123 std::vector<Value *> SortedKeys; 2124 2125 getSortedConstantKeys(SortedKeys, OldMap); 2126 2127 for (Value *RetVal : SortedKeys) { 2128 BasicBlock *NewBB = BasicBlock::Create( 2129 ParentFunc->getContext(), 2130 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 2131 ParentFunc); 2132 NewMap.insert(std::make_pair(RetVal, NewBB)); 2133 } 2134 } 2135 2136 /// Create the switch statement for outlined function to differentiate between 2137 /// all the output blocks. 2138 /// 2139 /// For the outlined section, determine if an outlined block already exists that 2140 /// matches the needed stores for the extracted section. 2141 /// \param [in] M - The module we are outlining from. 2142 /// \param [in] OG - The group of regions to be outlined. 2143 /// \param [in] EndBBs - The final blocks of the extracted function. 2144 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2145 void createSwitchStatement( 2146 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 2147 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2148 // We only need the switch statement if there is more than one store 2149 // combination, or there is more than one set of output blocks. The first 2150 // will occur when we store different sets of values for two different 2151 // regions. The second will occur when we have two outputs that are combined 2152 // in a PHINode outside of the region in one outlined instance, and are used 2153 // seaparately in another. This will create the same set of OutputGVNs, but 2154 // will generate two different output schemes. 2155 if (OG.OutputGVNCombinations.size() > 1) { 2156 Function *AggFunc = OG.OutlinedFunction; 2157 // Create a final block for each different return block. 2158 DenseMap<Value *, BasicBlock *> ReturnBBs; 2159 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2160 2161 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2162 std::pair<Value *, BasicBlock *> &OutputBlock = 2163 *OG.EndBBs.find(RetBlockPair.first); 2164 BasicBlock *ReturnBlock = RetBlockPair.second; 2165 BasicBlock *EndBB = OutputBlock.second; 2166 Instruction *Term = EndBB->getTerminator(); 2167 // Move the return value to the final block instead of the original exit 2168 // stub. 2169 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2170 // Put the switch statement in the old end basic block for the function 2171 // with a fall through to the new return block. 2172 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2173 << OutputStoreBBs.size() << "\n"); 2174 SwitchInst *SwitchI = 2175 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2176 ReturnBlock, OutputStoreBBs.size(), EndBB); 2177 2178 unsigned Idx = 0; 2179 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2180 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2181 OutputStoreBB.find(OutputBlock.first); 2182 2183 if (OSBBIt == OutputStoreBB.end()) 2184 continue; 2185 2186 BasicBlock *BB = OSBBIt->second; 2187 SwitchI->addCase( 2188 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2189 Term = BB->getTerminator(); 2190 Term->setSuccessor(0, ReturnBlock); 2191 Idx++; 2192 } 2193 } 2194 return; 2195 } 2196 2197 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2198 2199 // If there needs to be stores, move them from the output blocks to their 2200 // corresponding ending block. We do not check that the OutputGVNCombinations 2201 // is equal to 1 here since that could just been the case where there are 0 2202 // outputs. Instead, we check whether there is more than one set of output 2203 // blocks since this is the only case where we would have to move the 2204 // stores, and erase the extraneous blocks. 2205 if (OutputStoreBBs.size() == 1) { 2206 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2207 << *OG.OutlinedFunction << "\n"); 2208 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2209 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2210 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2211 EndBBs.find(VBPair.first); 2212 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2213 BasicBlock *EndBB = EndBBIt->second; 2214 BasicBlock *OutputBB = VBPair.second; 2215 Instruction *Term = OutputBB->getTerminator(); 2216 Term->eraseFromParent(); 2217 Term = EndBB->getTerminator(); 2218 moveBBContents(*OutputBB, *EndBB); 2219 Term->moveBefore(*EndBB, EndBB->end()); 2220 OutputBB->eraseFromParent(); 2221 } 2222 } 2223 } 2224 2225 /// Fill the new function that will serve as the replacement function for all of 2226 /// the extracted regions of a certain structure from the first region in the 2227 /// list of regions. Replace this first region's extracted function with the 2228 /// new overall function. 2229 /// 2230 /// \param [in] M - The module we are outlining from. 2231 /// \param [in] CurrentGroup - The group of regions to be outlined. 2232 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2233 /// set of stores needed for the different functions. 2234 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2235 /// once outlining is complete. 2236 /// \param [in] OutputMappings - Extracted functions to erase from module 2237 /// once outlining is complete. 2238 static void fillOverallFunction( 2239 Module &M, OutlinableGroup &CurrentGroup, 2240 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2241 std::vector<Function *> &FuncsToRemove, 2242 const DenseMap<Value *, Value *> &OutputMappings) { 2243 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2244 2245 // Move first extracted function's instructions into new function. 2246 LLVM_DEBUG(dbgs() << "Move instructions from " 2247 << *CurrentOS->ExtractedFunction << " to instruction " 2248 << *CurrentGroup.OutlinedFunction << "\n"); 2249 moveFunctionData(*CurrentOS->ExtractedFunction, 2250 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2251 2252 // Transfer the attributes from the function to the new function. 2253 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2254 CurrentGroup.OutlinedFunction->addFnAttr(A); 2255 2256 // Create a new set of output blocks for the first extracted function. 2257 DenseMap<Value *, BasicBlock *> NewBBs; 2258 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2259 CurrentGroup.OutlinedFunction, "output_block_0"); 2260 CurrentOS->OutputBlockNum = 0; 2261 2262 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2263 replaceConstants(*CurrentOS); 2264 2265 // We first identify if any output blocks are empty, if they are we remove 2266 // them. We then create a branch instruction to the basic block to the return 2267 // block for the function for each non empty output block. 2268 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2269 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2270 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2271 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2272 CurrentGroup.EndBBs.find(VToBB.first); 2273 BasicBlock *EndBB = VBBIt->second; 2274 BranchInst::Create(EndBB, VToBB.second); 2275 OutputStoreBBs.back().insert(VToBB); 2276 } 2277 } 2278 2279 // Replace the call to the extracted function with the outlined function. 2280 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2281 2282 // We only delete the extracted functions at the end since we may need to 2283 // reference instructions contained in them for mapping purposes. 2284 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2285 } 2286 2287 void IROutliner::deduplicateExtractedSections( 2288 Module &M, OutlinableGroup &CurrentGroup, 2289 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2290 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2291 2292 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2293 2294 OutlinableRegion *CurrentOS; 2295 2296 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2297 OutputMappings); 2298 2299 std::vector<Value *> SortedKeys; 2300 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2301 CurrentOS = CurrentGroup.Regions[Idx]; 2302 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2303 *CurrentOS->ExtractedFunction); 2304 2305 // Create a set of BasicBlocks, one for each return block, to hold the 2306 // needed store instructions. 2307 DenseMap<Value *, BasicBlock *> NewBBs; 2308 createAndInsertBasicBlocks( 2309 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2310 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2311 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2312 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2313 CurrentGroup.EndBBs, OutputMappings, 2314 OutputStoreBBs); 2315 2316 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2317 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2318 } 2319 2320 // Create a switch statement to handle the different output schemes. 2321 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2322 2323 OutlinedFunctionNum++; 2324 } 2325 2326 /// Checks that the next instruction in the InstructionDataList matches the 2327 /// next instruction in the module. If they do not, there could be the 2328 /// possibility that extra code has been inserted, and we must ignore it. 2329 /// 2330 /// \param ID - The IRInstructionData to check the next instruction of. 2331 /// \returns true if the InstructionDataList and actual instruction match. 2332 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2333 // We check if there is a discrepancy between the InstructionDataList 2334 // and the actual next instruction in the module. If there is, it means 2335 // that an extra instruction was added, likely by the CodeExtractor. 2336 2337 // Since we do not have any similarity data about this particular 2338 // instruction, we cannot confidently outline it, and must discard this 2339 // candidate. 2340 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2341 Instruction *NextIDLInst = NextIDIt->Inst; 2342 Instruction *NextModuleInst = nullptr; 2343 if (!ID.Inst->isTerminator()) 2344 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2345 else if (NextIDLInst != nullptr) 2346 NextModuleInst = 2347 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2348 2349 if (NextIDLInst && NextIDLInst != NextModuleInst) 2350 return false; 2351 2352 return true; 2353 } 2354 2355 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2356 const OutlinableRegion &Region) { 2357 IRSimilarityCandidate *IRSC = Region.Candidate; 2358 unsigned StartIdx = IRSC->getStartIdx(); 2359 unsigned EndIdx = IRSC->getEndIdx(); 2360 2361 // A check to make sure that we are not about to attempt to outline something 2362 // that has already been outlined. 2363 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2364 if (Outlined.contains(Idx)) 2365 return false; 2366 2367 // We check if the recorded instruction matches the actual next instruction, 2368 // if it does not, we fix it in the InstructionDataList. 2369 if (!Region.Candidate->backInstruction()->isTerminator()) { 2370 Instruction *NewEndInst = 2371 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2372 assert(NewEndInst && "Next instruction is a nullptr?"); 2373 if (Region.Candidate->end()->Inst != NewEndInst) { 2374 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2375 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2376 IRInstructionData(*NewEndInst, 2377 InstructionClassifier.visit(*NewEndInst), *IDL); 2378 2379 // Insert the first IRInstructionData of the new region after the 2380 // last IRInstructionData of the IRSimilarityCandidate. 2381 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2382 } 2383 } 2384 2385 return none_of(*IRSC, [this](IRInstructionData &ID) { 2386 if (!nextIRInstructionDataMatchesNextInst(ID)) 2387 return true; 2388 2389 return !this->InstructionClassifier.visit(ID.Inst); 2390 }); 2391 } 2392 2393 void IROutliner::pruneIncompatibleRegions( 2394 std::vector<IRSimilarityCandidate> &CandidateVec, 2395 OutlinableGroup &CurrentGroup) { 2396 bool PreviouslyOutlined; 2397 2398 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2399 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2400 const IRSimilarityCandidate &RHS) { 2401 return LHS.getStartIdx() < RHS.getStartIdx(); 2402 }); 2403 2404 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2405 // Since outlining a call and a branch instruction will be the same as only 2406 // outlinining a call instruction, we ignore it as a space saving. 2407 if (FirstCandidate.getLength() == 2) { 2408 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2409 isa<BranchInst>(FirstCandidate.back()->Inst)) 2410 return; 2411 } 2412 2413 unsigned CurrentEndIdx = 0; 2414 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2415 PreviouslyOutlined = false; 2416 unsigned StartIdx = IRSC.getStartIdx(); 2417 unsigned EndIdx = IRSC.getEndIdx(); 2418 2419 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2420 if (Outlined.contains(Idx)) { 2421 PreviouslyOutlined = true; 2422 break; 2423 } 2424 2425 if (PreviouslyOutlined) 2426 continue; 2427 2428 // Check over the instructions, and if the basic block has its address 2429 // taken for use somewhere else, we do not outline that block. 2430 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2431 return ID.Inst->getParent()->hasAddressTaken(); 2432 }); 2433 2434 if (BBHasAddressTaken) 2435 continue; 2436 2437 if (IRSC.getFunction()->hasOptNone()) 2438 continue; 2439 2440 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2441 !OutlineFromLinkODRs) 2442 continue; 2443 2444 // Greedily prune out any regions that will overlap with already chosen 2445 // regions. 2446 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2447 continue; 2448 2449 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2450 if (!nextIRInstructionDataMatchesNextInst(ID)) 2451 return true; 2452 2453 return !this->InstructionClassifier.visit(ID.Inst); 2454 }); 2455 2456 if (BadInst) 2457 continue; 2458 2459 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2460 OutlinableRegion(IRSC, CurrentGroup); 2461 CurrentGroup.Regions.push_back(OS); 2462 2463 CurrentEndIdx = EndIdx; 2464 } 2465 } 2466 2467 InstructionCost 2468 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2469 InstructionCost RegionBenefit = 0; 2470 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2471 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2472 // We add the number of instructions in the region to the benefit as an 2473 // estimate as to how much will be removed. 2474 RegionBenefit += Region->getBenefit(TTI); 2475 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2476 << " saved instructions to overfall benefit.\n"); 2477 } 2478 2479 return RegionBenefit; 2480 } 2481 2482 /// For the \p OutputCanon number passed in find the value represented by this 2483 /// canonical number. If it is from a PHINode, we pick the first incoming 2484 /// value and return that Value instead. 2485 /// 2486 /// \param Region - The OutlinableRegion to get the Value from. 2487 /// \param OutputCanon - The canonical number to find the Value from. 2488 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2489 /// Region. 2490 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2491 unsigned OutputCanon) { 2492 OutlinableGroup &CurrentGroup = *Region.Parent; 2493 // If the value is greater than the value in the tracker, we have a 2494 // PHINode and will instead use one of the incoming values to find the 2495 // type. 2496 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2497 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2498 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2499 "Could not find GVN set for PHINode number!"); 2500 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2501 OutputCanon = *It->second.second.begin(); 2502 } 2503 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); 2504 assert(OGVN && "Could not find GVN for Canonical Number?"); 2505 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2506 assert(OV && "Could not find value for GVN?"); 2507 return *OV; 2508 } 2509 2510 InstructionCost 2511 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2512 InstructionCost OverallCost = 0; 2513 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2514 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2515 2516 // Each output incurs a load after the call, so we add that to the cost. 2517 for (unsigned OutputCanon : Region->GVNStores) { 2518 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2519 InstructionCost LoadCost = 2520 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2521 TargetTransformInfo::TCK_CodeSize); 2522 2523 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2524 << " instructions to cost for output of type " 2525 << *V->getType() << "\n"); 2526 OverallCost += LoadCost; 2527 } 2528 } 2529 2530 return OverallCost; 2531 } 2532 2533 /// Find the extra instructions needed to handle any output values for the 2534 /// region. 2535 /// 2536 /// \param [in] M - The Module to outline from. 2537 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2538 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2539 /// new instruction costs. 2540 /// \returns the additional cost to handle the outputs. 2541 static InstructionCost findCostForOutputBlocks(Module &M, 2542 OutlinableGroup &CurrentGroup, 2543 TargetTransformInfo &TTI) { 2544 InstructionCost OutputCost = 0; 2545 unsigned NumOutputBranches = 0; 2546 2547 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2548 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2549 DenseSet<BasicBlock *> CandidateBlocks; 2550 Candidate.getBasicBlocks(CandidateBlocks); 2551 2552 // Count the number of different output branches that point to blocks outside 2553 // of the region. 2554 DenseSet<BasicBlock *> FoundBlocks; 2555 for (IRInstructionData &ID : Candidate) { 2556 if (!isa<BranchInst>(ID.Inst)) 2557 continue; 2558 2559 for (Value *V : ID.OperVals) { 2560 BasicBlock *BB = static_cast<BasicBlock *>(V); 2561 if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second) 2562 NumOutputBranches++; 2563 } 2564 } 2565 2566 CurrentGroup.BranchesToOutside = NumOutputBranches; 2567 2568 for (const ArrayRef<unsigned> &OutputUse : 2569 CurrentGroup.OutputGVNCombinations) { 2570 for (unsigned OutputCanon : OutputUse) { 2571 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2572 InstructionCost StoreCost = 2573 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2574 TargetTransformInfo::TCK_CodeSize); 2575 2576 // An instruction cost is added for each store set that needs to occur for 2577 // various output combinations inside the function, plus a branch to 2578 // return to the exit block. 2579 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2580 << " instructions to cost for output of type " 2581 << *V->getType() << "\n"); 2582 OutputCost += StoreCost * NumOutputBranches; 2583 } 2584 2585 InstructionCost BranchCost = 2586 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2587 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2588 << " a branch instruction\n"); 2589 OutputCost += BranchCost * NumOutputBranches; 2590 } 2591 2592 // If there is more than one output scheme, we must have a comparison and 2593 // branch for each different item in the switch statement. 2594 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2595 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2596 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2597 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2598 TargetTransformInfo::TCK_CodeSize); 2599 InstructionCost BranchCost = 2600 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2601 2602 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2603 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2604 2605 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2606 << " instructions for each switch case for each different" 2607 << " output path in a function\n"); 2608 OutputCost += TotalCost * NumOutputBranches; 2609 } 2610 2611 return OutputCost; 2612 } 2613 2614 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2615 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2616 CurrentGroup.Benefit += RegionBenefit; 2617 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2618 2619 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2620 CurrentGroup.Cost += OutputReloadCost; 2621 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2622 2623 InstructionCost AverageRegionBenefit = 2624 RegionBenefit / CurrentGroup.Regions.size(); 2625 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2626 unsigned NumRegions = CurrentGroup.Regions.size(); 2627 TargetTransformInfo &TTI = 2628 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2629 2630 // We add one region to the cost once, to account for the instructions added 2631 // inside of the newly created function. 2632 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2633 << " instructions to cost for body of new function.\n"); 2634 CurrentGroup.Cost += AverageRegionBenefit; 2635 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2636 2637 // For each argument, we must add an instruction for loading the argument 2638 // out of the register and into a value inside of the newly outlined function. 2639 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2640 << " instructions to cost for each argument in the new" 2641 << " function.\n"); 2642 CurrentGroup.Cost += 2643 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2644 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2645 2646 // Each argument needs to either be loaded into a register or onto the stack. 2647 // Some arguments will only be loaded into the stack once the argument 2648 // registers are filled. 2649 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2650 << " instructions to cost for each argument in the new" 2651 << " function " << NumRegions << " times for the " 2652 << "needed argument handling at the call site.\n"); 2653 CurrentGroup.Cost += 2654 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2655 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2656 2657 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2658 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2659 } 2660 2661 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2662 ArrayRef<Value *> Outputs, 2663 LoadInst *LI) { 2664 // For and load instructions following the call 2665 Value *Operand = LI->getPointerOperand(); 2666 Optional<unsigned> OutputIdx = None; 2667 // Find if the operand it is an output register. 2668 for (unsigned ArgIdx = Region.NumExtractedInputs; 2669 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2670 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2671 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2672 break; 2673 } 2674 } 2675 2676 // If we found an output register, place a mapping of the new value 2677 // to the original in the mapping. 2678 if (!OutputIdx) 2679 return; 2680 2681 if (OutputMappings.find(Outputs[OutputIdx.value()]) == OutputMappings.end()) { 2682 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2683 << *Outputs[OutputIdx.value()] << "\n"); 2684 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.value()])); 2685 } else { 2686 Value *Orig = OutputMappings.find(Outputs[OutputIdx.value()])->second; 2687 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2688 << *Outputs[OutputIdx.value()] << "\n"); 2689 OutputMappings.insert(std::make_pair(LI, Orig)); 2690 } 2691 } 2692 2693 bool IROutliner::extractSection(OutlinableRegion &Region) { 2694 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2695 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2696 BasicBlock *InitialStart = Region.StartBB; 2697 Function *OrigF = Region.StartBB->getParent(); 2698 CodeExtractorAnalysisCache CEAC(*OrigF); 2699 Region.ExtractedFunction = 2700 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2701 2702 // If the extraction was successful, find the BasicBlock, and reassign the 2703 // OutlinableRegion blocks 2704 if (!Region.ExtractedFunction) { 2705 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2706 << "\n"); 2707 Region.reattachCandidate(); 2708 return false; 2709 } 2710 2711 // Get the block containing the called branch, and reassign the blocks as 2712 // necessary. If the original block still exists, it is because we ended on 2713 // a branch instruction, and so we move the contents into the block before 2714 // and assign the previous block correctly. 2715 User *InstAsUser = Region.ExtractedFunction->user_back(); 2716 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2717 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2718 assert(Region.PrevBB && "PrevBB is nullptr?"); 2719 if (Region.PrevBB == InitialStart) { 2720 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2721 Instruction *BI = NewPrev->getTerminator(); 2722 BI->eraseFromParent(); 2723 moveBBContents(*InitialStart, *NewPrev); 2724 Region.PrevBB = NewPrev; 2725 InitialStart->eraseFromParent(); 2726 } 2727 2728 Region.StartBB = RewrittenBB; 2729 Region.EndBB = RewrittenBB; 2730 2731 // The sequences of outlinable regions has now changed. We must fix the 2732 // IRInstructionDataList for consistency. Although they may not be illegal 2733 // instructions, they should not be compared with anything else as they 2734 // should not be outlined in this round. So marking these as illegal is 2735 // allowed. 2736 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2737 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2738 Instruction *EndRewritten = &*RewrittenBB->begin(); 2739 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2740 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2741 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2742 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2743 2744 // Insert the first IRInstructionData of the new region in front of the 2745 // first IRInstructionData of the IRSimilarityCandidate. 2746 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2747 // Insert the first IRInstructionData of the new region after the 2748 // last IRInstructionData of the IRSimilarityCandidate. 2749 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2750 // Remove the IRInstructionData from the IRSimilarityCandidate. 2751 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2752 2753 assert(RewrittenBB != nullptr && 2754 "Could not find a predecessor after extraction!"); 2755 2756 // Iterate over the new set of instructions to find the new call 2757 // instruction. 2758 for (Instruction &I : *RewrittenBB) 2759 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2760 if (Region.ExtractedFunction == CI->getCalledFunction()) 2761 Region.Call = CI; 2762 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2763 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2764 Region.reattachCandidate(); 2765 return true; 2766 } 2767 2768 unsigned IROutliner::doOutline(Module &M) { 2769 // Find the possible similarity sections. 2770 InstructionClassifier.EnableBranches = !DisableBranches; 2771 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2772 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2773 2774 IRSimilarityIdentifier &Identifier = getIRSI(M); 2775 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2776 2777 // Sort them by size of extracted sections 2778 unsigned OutlinedFunctionNum = 0; 2779 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2780 // to sort them by the potential number of instructions to be outlined 2781 if (SimilarityCandidates.size() > 1) 2782 llvm::stable_sort(SimilarityCandidates, 2783 [](const std::vector<IRSimilarityCandidate> &LHS, 2784 const std::vector<IRSimilarityCandidate> &RHS) { 2785 return LHS[0].getLength() * LHS.size() > 2786 RHS[0].getLength() * RHS.size(); 2787 }); 2788 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2789 // each of the following for loops to avoid making an allocator. 2790 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2791 2792 DenseSet<unsigned> NotSame; 2793 std::vector<OutlinableGroup *> NegativeCostGroups; 2794 std::vector<OutlinableRegion *> OutlinedRegions; 2795 // Iterate over the possible sets of similarity. 2796 unsigned PotentialGroupIdx = 0; 2797 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2798 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2799 2800 // Remove entries that were previously outlined 2801 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2802 2803 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2804 // trying to outlined since there is no compatible similar instance of this 2805 // code. 2806 if (CurrentGroup.Regions.size() < 2) 2807 continue; 2808 2809 // Determine if there are any values that are the same constant throughout 2810 // each section in the set. 2811 NotSame.clear(); 2812 CurrentGroup.findSameConstants(NotSame); 2813 2814 if (CurrentGroup.IgnoreGroup) 2815 continue; 2816 2817 // Create a CodeExtractor for each outlinable region. Identify inputs and 2818 // outputs for each section using the code extractor and create the argument 2819 // types for the Aggregate Outlining Function. 2820 OutlinedRegions.clear(); 2821 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2822 // Break the outlinable region out of its parent BasicBlock into its own 2823 // BasicBlocks (see function implementation). 2824 OS->splitCandidate(); 2825 2826 // There's a chance that when the region is split, extra instructions are 2827 // added to the region. This makes the region no longer viable 2828 // to be split, so we ignore it for outlining. 2829 if (!OS->CandidateSplit) 2830 continue; 2831 2832 SmallVector<BasicBlock *> BE; 2833 DenseSet<BasicBlock *> BlocksInRegion; 2834 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2835 OS->CE = new (ExtractorAllocator.Allocate()) 2836 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2837 false, nullptr, "outlined"); 2838 findAddInputsOutputs(M, *OS, NotSame); 2839 if (!OS->IgnoreRegion) 2840 OutlinedRegions.push_back(OS); 2841 2842 // We recombine the blocks together now that we have gathered all the 2843 // needed information. 2844 OS->reattachCandidate(); 2845 } 2846 2847 CurrentGroup.Regions = std::move(OutlinedRegions); 2848 2849 if (CurrentGroup.Regions.empty()) 2850 continue; 2851 2852 CurrentGroup.collectGVNStoreSets(M); 2853 2854 if (CostModel) 2855 findCostBenefit(M, CurrentGroup); 2856 2857 // If we are adhering to the cost model, skip those groups where the cost 2858 // outweighs the benefits. 2859 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2860 OptimizationRemarkEmitter &ORE = 2861 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2862 ORE.emit([&]() { 2863 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2864 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2865 C->frontInstruction()); 2866 R << "did not outline " 2867 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2868 << " regions due to estimated increase of " 2869 << ore::NV("InstructionIncrease", 2870 CurrentGroup.Cost - CurrentGroup.Benefit) 2871 << " instructions at locations "; 2872 interleave( 2873 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2874 [&R](OutlinableRegion *Region) { 2875 R << ore::NV( 2876 "DebugLoc", 2877 Region->Candidate->frontInstruction()->getDebugLoc()); 2878 }, 2879 [&R]() { R << " "; }); 2880 return R; 2881 }); 2882 continue; 2883 } 2884 2885 NegativeCostGroups.push_back(&CurrentGroup); 2886 } 2887 2888 ExtractorAllocator.DestroyAll(); 2889 2890 if (NegativeCostGroups.size() > 1) 2891 stable_sort(NegativeCostGroups, 2892 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2893 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2894 }); 2895 2896 std::vector<Function *> FuncsToRemove; 2897 for (OutlinableGroup *CG : NegativeCostGroups) { 2898 OutlinableGroup &CurrentGroup = *CG; 2899 2900 OutlinedRegions.clear(); 2901 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2902 // We check whether our region is compatible with what has already been 2903 // outlined, and whether we need to ignore this item. 2904 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2905 continue; 2906 OutlinedRegions.push_back(Region); 2907 } 2908 2909 if (OutlinedRegions.size() < 2) 2910 continue; 2911 2912 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2913 // we are still outlining enough regions to make up for the added cost. 2914 CurrentGroup.Regions = std::move(OutlinedRegions); 2915 if (CostModel) { 2916 CurrentGroup.Benefit = 0; 2917 CurrentGroup.Cost = 0; 2918 findCostBenefit(M, CurrentGroup); 2919 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2920 continue; 2921 } 2922 OutlinedRegions.clear(); 2923 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2924 Region->splitCandidate(); 2925 if (!Region->CandidateSplit) 2926 continue; 2927 OutlinedRegions.push_back(Region); 2928 } 2929 2930 CurrentGroup.Regions = std::move(OutlinedRegions); 2931 if (CurrentGroup.Regions.size() < 2) { 2932 for (OutlinableRegion *R : CurrentGroup.Regions) 2933 R->reattachCandidate(); 2934 continue; 2935 } 2936 2937 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2938 << " and benefit " << CurrentGroup.Benefit << "\n"); 2939 2940 // Create functions out of all the sections, and mark them as outlined. 2941 OutlinedRegions.clear(); 2942 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2943 SmallVector<BasicBlock *> BE; 2944 DenseSet<BasicBlock *> BlocksInRegion; 2945 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2946 OS->CE = new (ExtractorAllocator.Allocate()) 2947 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2948 false, nullptr, "outlined"); 2949 bool FunctionOutlined = extractSection(*OS); 2950 if (FunctionOutlined) { 2951 unsigned StartIdx = OS->Candidate->getStartIdx(); 2952 unsigned EndIdx = OS->Candidate->getEndIdx(); 2953 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2954 Outlined.insert(Idx); 2955 2956 OutlinedRegions.push_back(OS); 2957 } 2958 } 2959 2960 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2961 << " with benefit " << CurrentGroup.Benefit 2962 << " and cost " << CurrentGroup.Cost << "\n"); 2963 2964 CurrentGroup.Regions = std::move(OutlinedRegions); 2965 2966 if (CurrentGroup.Regions.empty()) 2967 continue; 2968 2969 OptimizationRemarkEmitter &ORE = 2970 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2971 ORE.emit([&]() { 2972 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2973 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2974 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2975 << " regions with decrease of " 2976 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2977 << " instructions at locations "; 2978 interleave( 2979 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2980 [&R](OutlinableRegion *Region) { 2981 R << ore::NV("DebugLoc", 2982 Region->Candidate->frontInstruction()->getDebugLoc()); 2983 }, 2984 [&R]() { R << " "; }); 2985 return R; 2986 }); 2987 2988 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2989 OutlinedFunctionNum); 2990 } 2991 2992 for (Function *F : FuncsToRemove) 2993 F->eraseFromParent(); 2994 2995 return OutlinedFunctionNum; 2996 } 2997 2998 bool IROutliner::run(Module &M) { 2999 CostModel = !NoCostModel; 3000 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 3001 3002 return doOutline(M) > 0; 3003 } 3004 3005 // Pass Manager Boilerplate 3006 namespace { 3007 class IROutlinerLegacyPass : public ModulePass { 3008 public: 3009 static char ID; 3010 IROutlinerLegacyPass() : ModulePass(ID) { 3011 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 3012 } 3013 3014 void getAnalysisUsage(AnalysisUsage &AU) const override { 3015 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3016 AU.addRequired<TargetTransformInfoWrapperPass>(); 3017 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 3018 } 3019 3020 bool runOnModule(Module &M) override; 3021 }; 3022 } // namespace 3023 3024 bool IROutlinerLegacyPass::runOnModule(Module &M) { 3025 if (skipModule(M)) 3026 return false; 3027 3028 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3029 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3030 ORE.reset(new OptimizationRemarkEmitter(&F)); 3031 return *ORE; 3032 }; 3033 3034 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 3035 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3036 }; 3037 3038 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 3039 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 3040 }; 3041 3042 return IROutliner(GTTI, GIRSI, GORE).run(M); 3043 } 3044 3045 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 3046 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3047 3048 std::function<TargetTransformInfo &(Function &)> GTTI = 3049 [&FAM](Function &F) -> TargetTransformInfo & { 3050 return FAM.getResult<TargetIRAnalysis>(F); 3051 }; 3052 3053 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 3054 [&AM](Module &M) -> IRSimilarityIdentifier & { 3055 return AM.getResult<IRSimilarityAnalysis>(M); 3056 }; 3057 3058 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3059 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 3060 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3061 ORE.reset(new OptimizationRemarkEmitter(&F)); 3062 return *ORE; 3063 }; 3064 3065 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 3066 return PreservedAnalyses::none(); 3067 return PreservedAnalyses::all(); 3068 } 3069 3070 char IROutlinerLegacyPass::ID = 0; 3071 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 3072 false) 3073 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 3074 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3075 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3076 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 3077 false) 3078 3079 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 3080