1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include <optional> 28 #include <vector> 29 30 #define DEBUG_TYPE "iroutliner" 31 32 using namespace llvm; 33 using namespace IRSimilarity; 34 35 // A command flag to be used for debugging to exclude branches from similarity 36 // matching and outlining. 37 namespace llvm { 38 extern cl::opt<bool> DisableBranches; 39 40 // A command flag to be used for debugging to indirect calls from similarity 41 // matching and outlining. 42 extern cl::opt<bool> DisableIndirectCalls; 43 44 // A command flag to be used for debugging to exclude intrinsics from similarity 45 // matching and outlining. 46 extern cl::opt<bool> DisableIntrinsics; 47 48 } // namespace llvm 49 50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 51 // functions. This is false by default because the linker can dedupe linkonceodr 52 // functions. Since the outliner is confined to a single module (modulo LTO), 53 // this is off by default. It should, however, be the default behavior in 54 // LTO. 55 static cl::opt<bool> EnableLinkOnceODRIROutlining( 56 "enable-linkonceodr-ir-outlining", cl::Hidden, 57 cl::desc("Enable the IR outliner on linkonceodr functions"), 58 cl::init(false)); 59 60 // This is a debug option to test small pieces of code to ensure that outlining 61 // works correctly. 62 static cl::opt<bool> NoCostModel( 63 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 64 cl::desc("Debug option to outline greedily, without restriction that " 65 "calculated benefit outweighs cost")); 66 67 /// The OutlinableGroup holds all the overarching information for outlining 68 /// a set of regions that are structurally similar to one another, such as the 69 /// types of the overall function, the output blocks, the sets of stores needed 70 /// and a list of the different regions. This information is used in the 71 /// deduplication of extracted regions with the same structure. 72 struct OutlinableGroup { 73 /// The sections that could be outlined 74 std::vector<OutlinableRegion *> Regions; 75 76 /// The argument types for the function created as the overall function to 77 /// replace the extracted function for each region. 78 std::vector<Type *> ArgumentTypes; 79 /// The FunctionType for the overall function. 80 FunctionType *OutlinedFunctionType = nullptr; 81 /// The Function for the collective overall function. 82 Function *OutlinedFunction = nullptr; 83 84 /// Flag for whether we should not consider this group of OutlinableRegions 85 /// for extraction. 86 bool IgnoreGroup = false; 87 88 /// The return blocks for the overall function. 89 DenseMap<Value *, BasicBlock *> EndBBs; 90 91 /// The PHIBlocks with their corresponding return block based on the return 92 /// value as the key. 93 DenseMap<Value *, BasicBlock *> PHIBlocks; 94 95 /// A set containing the different GVN store sets needed. Each array contains 96 /// a sorted list of the different values that need to be stored into output 97 /// registers. 98 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 99 100 /// Flag for whether the \ref ArgumentTypes have been defined after the 101 /// extraction of the first region. 102 bool InputTypesSet = false; 103 104 /// The number of input values in \ref ArgumentTypes. Anything after this 105 /// index in ArgumentTypes is an output argument. 106 unsigned NumAggregateInputs = 0; 107 108 /// The mapping of the canonical numbering of the values in outlined sections 109 /// to specific arguments. 110 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 111 112 /// The number of branches in the region target a basic block that is outside 113 /// of the region. 114 unsigned BranchesToOutside = 0; 115 116 /// Tracker counting backwards from the highest unsigned value possible to 117 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 118 /// -2 and -1 are assigned by the DenseMap. 119 unsigned PHINodeGVNTracker = -3; 120 121 DenseMap<unsigned, 122 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 123 PHINodeGVNToGVNs; 124 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 125 126 /// The number of instructions that will be outlined by extracting \ref 127 /// Regions. 128 InstructionCost Benefit = 0; 129 /// The number of added instructions needed for the outlining of the \ref 130 /// Regions. 131 InstructionCost Cost = 0; 132 133 /// The argument that needs to be marked with the swifterr attribute. If not 134 /// needed, there is no value. 135 std::optional<unsigned> SwiftErrorArgument; 136 137 /// For the \ref Regions, we look at every Value. If it is a constant, 138 /// we check whether it is the same in Region. 139 /// 140 /// \param [in,out] NotSame contains the global value numbers where the 141 /// constant is not always the same, and must be passed in as an argument. 142 void findSameConstants(DenseSet<unsigned> &NotSame); 143 144 /// For the regions, look at each set of GVN stores needed and account for 145 /// each combination. Add an argument to the argument types if there is 146 /// more than one combination. 147 /// 148 /// \param [in] M - The module we are outlining from. 149 void collectGVNStoreSets(Module &M); 150 }; 151 152 /// Move the contents of \p SourceBB to before the last instruction of \p 153 /// TargetBB. 154 /// \param SourceBB - the BasicBlock to pull Instructions from. 155 /// \param TargetBB - the BasicBlock to put Instruction into. 156 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 157 TargetBB.splice(TargetBB.end(), &SourceBB); 158 } 159 160 /// A function to sort the keys of \p Map, which must be a mapping of constant 161 /// values to basic blocks and return it in \p SortedKeys 162 /// 163 /// \param SortedKeys - The vector the keys will be return in and sorted. 164 /// \param Map - The DenseMap containing keys to sort. 165 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 166 DenseMap<Value *, BasicBlock *> &Map) { 167 for (auto &VtoBB : Map) 168 SortedKeys.push_back(VtoBB.first); 169 170 // Here we expect to have either 1 value that is void (nullptr) or multiple 171 // values that are all constant integers. 172 if (SortedKeys.size() == 1) { 173 assert(!SortedKeys[0] && "Expected a single void value."); 174 return; 175 } 176 177 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 178 assert(LHS && RHS && "Expected non void values."); 179 const ConstantInt *LHSC = cast<ConstantInt>(LHS); 180 const ConstantInt *RHSC = cast<ConstantInt>(RHS); 181 182 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 183 }); 184 } 185 186 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 187 Value *V) { 188 std::optional<unsigned> GVN = Candidate->getGVN(V); 189 assert(GVN && "No GVN for incoming value"); 190 std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 191 std::optional<unsigned> FirstGVN = 192 Other.Candidate->fromCanonicalNum(*CanonNum); 193 std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 194 return FoundValueOpt.value_or(nullptr); 195 } 196 197 BasicBlock * 198 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other, 199 BasicBlock *BB) { 200 Instruction *FirstNonPHI = BB->getFirstNonPHIOrDbg(); 201 assert(FirstNonPHI && "block is empty?"); 202 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI); 203 if (!CorrespondingVal) 204 return nullptr; 205 BasicBlock *CorrespondingBlock = 206 cast<Instruction>(CorrespondingVal)->getParent(); 207 return CorrespondingBlock; 208 } 209 210 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 211 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 212 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 213 /// when PHINodes are included in outlined regions. 214 /// 215 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 216 /// checked. 217 /// \param Find - The successor block to be replaced. 218 /// \param Replace - The new succesor block to branch to. 219 /// \param Included - The set of blocks about to be outlined. 220 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 221 BasicBlock *Replace, 222 DenseSet<BasicBlock *> &Included) { 223 for (PHINode &PN : PHIBlock->phis()) { 224 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 225 ++Idx) { 226 // Check if the incoming block is included in the set of blocks being 227 // outlined. 228 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 229 if (!Included.contains(Incoming)) 230 continue; 231 232 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 233 assert(BI && "Not a branch instruction?"); 234 // Look over the branching instructions into this block to see if we 235 // used to branch to Find in this outlined block. 236 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 237 Succ++) { 238 // If we have found the block to replace, we do so here. 239 if (BI->getSuccessor(Succ) != Find) 240 continue; 241 BI->setSuccessor(Succ, Replace); 242 } 243 } 244 } 245 } 246 247 248 void OutlinableRegion::splitCandidate() { 249 assert(!CandidateSplit && "Candidate already split!"); 250 251 Instruction *BackInst = Candidate->backInstruction(); 252 253 Instruction *EndInst = nullptr; 254 // Check whether the last instruction is a terminator, if it is, we do 255 // not split on the following instruction. We leave the block as it is. We 256 // also check that this is not the last instruction in the Module, otherwise 257 // the check for whether the current following instruction matches the 258 // previously recorded instruction will be incorrect. 259 if (!BackInst->isTerminator() || 260 BackInst->getParent() != &BackInst->getFunction()->back()) { 261 EndInst = Candidate->end()->Inst; 262 assert(EndInst && "Expected an end instruction?"); 263 } 264 265 // We check if the current instruction following the last instruction in the 266 // region is the same as the recorded instruction following the last 267 // instruction. If they do not match, there could be problems in rewriting 268 // the program after outlining, so we ignore it. 269 if (!BackInst->isTerminator() && 270 EndInst != BackInst->getNextNonDebugInstruction()) 271 return; 272 273 Instruction *StartInst = (*Candidate->begin()).Inst; 274 assert(StartInst && "Expected a start instruction?"); 275 StartBB = StartInst->getParent(); 276 PrevBB = StartBB; 277 278 DenseSet<BasicBlock *> BBSet; 279 Candidate->getBasicBlocks(BBSet); 280 281 // We iterate over the instructions in the region, if we find a PHINode, we 282 // check if there are predecessors outside of the region, if there are, 283 // we ignore this region since we are unable to handle the severing of the 284 // phi node right now. 285 286 // TODO: Handle extraneous inputs for PHINodes through variable number of 287 // inputs, similar to how outputs are handled. 288 BasicBlock::iterator It = StartInst->getIterator(); 289 EndBB = BackInst->getParent(); 290 BasicBlock *IBlock; 291 BasicBlock *PHIPredBlock = nullptr; 292 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst; 293 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 294 unsigned NumPredsOutsideRegion = 0; 295 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 296 if (!BBSet.contains(PN->getIncomingBlock(i))) { 297 PHIPredBlock = PN->getIncomingBlock(i); 298 ++NumPredsOutsideRegion; 299 continue; 300 } 301 302 // We must consider the case there the incoming block to the PHINode is 303 // the same as the final block of the OutlinableRegion. If this is the 304 // case, the branch from this block must also be outlined to be valid. 305 IBlock = PN->getIncomingBlock(i); 306 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) { 307 PHIPredBlock = PN->getIncomingBlock(i); 308 ++NumPredsOutsideRegion; 309 } 310 } 311 312 if (NumPredsOutsideRegion > 1) 313 return; 314 315 It++; 316 } 317 318 // If the region starts with a PHINode, but is not the initial instruction of 319 // the BasicBlock, we ignore this region for now. 320 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 321 return; 322 323 // If the region ends with a PHINode, but does not contain all of the phi node 324 // instructions of the region, we ignore it for now. 325 if (isa<PHINode>(BackInst) && 326 BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 327 return; 328 329 // The basic block gets split like so: 330 // block: block: 331 // inst1 inst1 332 // inst2 inst2 333 // region1 br block_to_outline 334 // region2 block_to_outline: 335 // region3 -> region1 336 // region4 region2 337 // inst3 region3 338 // inst4 region4 339 // br block_after_outline 340 // block_after_outline: 341 // inst3 342 // inst4 343 344 std::string OriginalName = PrevBB->getName().str(); 345 346 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 347 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 348 // If there was a PHINode with an incoming block outside the region, 349 // make sure is correctly updated in the newly split block. 350 if (PHIPredBlock) 351 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB); 352 353 CandidateSplit = true; 354 if (!BackInst->isTerminator()) { 355 EndBB = EndInst->getParent(); 356 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 357 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 358 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 359 } else { 360 EndBB = BackInst->getParent(); 361 EndsInBranch = true; 362 FollowBB = nullptr; 363 } 364 365 // Refind the basic block set. 366 BBSet.clear(); 367 Candidate->getBasicBlocks(BBSet); 368 // For the phi nodes in the new starting basic block of the region, we 369 // reassign the targets of the basic blocks branching instructions. 370 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 371 if (FollowBB) 372 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 373 } 374 375 void OutlinableRegion::reattachCandidate() { 376 assert(CandidateSplit && "Candidate is not split!"); 377 378 // The basic block gets reattached like so: 379 // block: block: 380 // inst1 inst1 381 // inst2 inst2 382 // br block_to_outline region1 383 // block_to_outline: -> region2 384 // region1 region3 385 // region2 region4 386 // region3 inst3 387 // region4 inst4 388 // br block_after_outline 389 // block_after_outline: 390 // inst3 391 // inst4 392 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 393 394 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 395 // Make sure PHINode references to the block we are merging into are 396 // updated to be incoming blocks from the predecessor to the current block. 397 398 // NOTE: If this is updated such that the outlined block can have more than 399 // one incoming block to a PHINode, this logic will have to updated 400 // to handle multiple precessors instead. 401 402 // We only need to update this if the outlined section contains a PHINode, if 403 // it does not, then the incoming block was never changed in the first place. 404 // On the other hand, if PrevBB has no predecessors, it means that all 405 // incoming blocks to the first block are contained in the region, and there 406 // will be nothing to update. 407 Instruction *StartInst = (*Candidate->begin()).Inst; 408 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) { 409 assert(!PrevBB->hasNPredecessorsOrMore(2) && 410 "PrevBB has more than one predecessor. Should be 0 or 1."); 411 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor(); 412 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB); 413 } 414 PrevBB->getTerminator()->eraseFromParent(); 415 416 // If we reattaching after outlining, we iterate over the phi nodes to 417 // the initial block, and reassign the branch instructions of the incoming 418 // blocks to the block we are remerging into. 419 if (!ExtractedFunction) { 420 DenseSet<BasicBlock *> BBSet; 421 Candidate->getBasicBlocks(BBSet); 422 423 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 424 if (!EndsInBranch) 425 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 426 } 427 428 moveBBContents(*StartBB, *PrevBB); 429 430 BasicBlock *PlacementBB = PrevBB; 431 if (StartBB != EndBB) 432 PlacementBB = EndBB; 433 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 434 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 435 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 436 PlacementBB->getTerminator()->eraseFromParent(); 437 moveBBContents(*FollowBB, *PlacementBB); 438 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 439 FollowBB->eraseFromParent(); 440 } 441 442 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 443 StartBB->eraseFromParent(); 444 445 // Make sure to save changes back to the StartBB. 446 StartBB = PrevBB; 447 EndBB = nullptr; 448 PrevBB = nullptr; 449 FollowBB = nullptr; 450 451 CandidateSplit = false; 452 } 453 454 /// Find whether \p V matches the Constants previously found for the \p GVN. 455 /// 456 /// \param V - The value to check for consistency. 457 /// \param GVN - The global value number assigned to \p V. 458 /// \param GVNToConstant - The mapping of global value number to Constants. 459 /// \returns true if the Value matches the Constant mapped to by V and false if 460 /// it \p V is a Constant but does not match. 461 /// \returns std::nullopt if \p V is not a Constant. 462 static std::optional<bool> 463 constantMatches(Value *V, unsigned GVN, 464 DenseMap<unsigned, Constant *> &GVNToConstant) { 465 // See if we have a constants 466 Constant *CST = dyn_cast<Constant>(V); 467 if (!CST) 468 return std::nullopt; 469 470 // Holds a mapping from a global value number to a Constant. 471 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 472 bool Inserted; 473 474 475 // If we have a constant, try to make a new entry in the GVNToConstant. 476 std::tie(GVNToConstantIt, Inserted) = 477 GVNToConstant.insert(std::make_pair(GVN, CST)); 478 // If it was found and is not equal, it is not the same. We do not 479 // handle this case yet, and exit early. 480 if (Inserted || (GVNToConstantIt->second == CST)) 481 return true; 482 483 return false; 484 } 485 486 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 487 InstructionCost Benefit = 0; 488 489 // Estimate the benefit of outlining a specific sections of the program. We 490 // delegate mostly this task to the TargetTransformInfo so that if the target 491 // has specific changes, we can have a more accurate estimate. 492 493 // However, getInstructionCost delegates the code size calculation for 494 // arithmetic instructions to getArithmeticInstrCost in 495 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 496 // code size for a division and remainder instruction to be equal to 4, and 497 // everything else to 1. This is not an accurate representation of the 498 // division instruction for targets that have a native division instruction. 499 // To be overly conservative, we only add 1 to the number of instructions for 500 // each division instruction. 501 for (IRInstructionData &ID : *Candidate) { 502 Instruction *I = ID.Inst; 503 switch (I->getOpcode()) { 504 case Instruction::FDiv: 505 case Instruction::FRem: 506 case Instruction::SDiv: 507 case Instruction::SRem: 508 case Instruction::UDiv: 509 case Instruction::URem: 510 Benefit += 1; 511 break; 512 default: 513 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 514 break; 515 } 516 } 517 518 return Benefit; 519 } 520 521 /// Check the \p OutputMappings structure for value \p Input, if it exists 522 /// it has been used as an output for outlining, and has been renamed, and we 523 /// return the new value, otherwise, we return the same value. 524 /// 525 /// \param OutputMappings [in] - The mapping of values to their renamed value 526 /// after being used as an output for an outlined region. 527 /// \param Input [in] - The value to find the remapped value of, if it exists. 528 /// \return The remapped value if it has been renamed, and the same value if has 529 /// not. 530 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 531 Value *Input) { 532 DenseMap<Value *, Value *>::const_iterator OutputMapping = 533 OutputMappings.find(Input); 534 if (OutputMapping != OutputMappings.end()) 535 return OutputMapping->second; 536 return Input; 537 } 538 539 /// Find whether \p Region matches the global value numbering to Constant 540 /// mapping found so far. 541 /// 542 /// \param Region - The OutlinableRegion we are checking for constants 543 /// \param GVNToConstant - The mapping of global value number to Constants. 544 /// \param NotSame - The set of global value numbers that do not have the same 545 /// constant in each region. 546 /// \returns true if all Constants are the same in every use of a Constant in \p 547 /// Region and false if not 548 static bool 549 collectRegionsConstants(OutlinableRegion &Region, 550 DenseMap<unsigned, Constant *> &GVNToConstant, 551 DenseSet<unsigned> &NotSame) { 552 bool ConstantsTheSame = true; 553 554 IRSimilarityCandidate &C = *Region.Candidate; 555 for (IRInstructionData &ID : C) { 556 557 // Iterate over the operands in an instruction. If the global value number, 558 // assigned by the IRSimilarityCandidate, has been seen before, we check if 559 // the number has been found to be not the same value in each instance. 560 for (Value *V : ID.OperVals) { 561 std::optional<unsigned> GVNOpt = C.getGVN(V); 562 assert(GVNOpt && "Expected a GVN for operand?"); 563 unsigned GVN = *GVNOpt; 564 565 // Check if this global value has been found to not be the same already. 566 if (NotSame.contains(GVN)) { 567 if (isa<Constant>(V)) 568 ConstantsTheSame = false; 569 continue; 570 } 571 572 // If it has been the same so far, we check the value for if the 573 // associated Constant value match the previous instances of the same 574 // global value number. If the global value does not map to a Constant, 575 // it is considered to not be the same value. 576 std::optional<bool> ConstantMatches = 577 constantMatches(V, GVN, GVNToConstant); 578 if (ConstantMatches) { 579 if (*ConstantMatches) 580 continue; 581 else 582 ConstantsTheSame = false; 583 } 584 585 // While this value is a register, it might not have been previously, 586 // make sure we don't already have a constant mapped to this global value 587 // number. 588 if (GVNToConstant.contains(GVN)) 589 ConstantsTheSame = false; 590 591 NotSame.insert(GVN); 592 } 593 } 594 595 return ConstantsTheSame; 596 } 597 598 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 599 DenseMap<unsigned, Constant *> GVNToConstant; 600 601 for (OutlinableRegion *Region : Regions) 602 collectRegionsConstants(*Region, GVNToConstant, NotSame); 603 } 604 605 void OutlinableGroup::collectGVNStoreSets(Module &M) { 606 for (OutlinableRegion *OS : Regions) 607 OutputGVNCombinations.insert(OS->GVNStores); 608 609 // We are adding an extracted argument to decide between which output path 610 // to use in the basic block. It is used in a switch statement and only 611 // needs to be an integer. 612 if (OutputGVNCombinations.size() > 1) 613 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 614 } 615 616 /// Get the subprogram if it exists for one of the outlined regions. 617 /// 618 /// \param [in] Group - The set of regions to find a subprogram for. 619 /// \returns the subprogram if it exists, or nullptr. 620 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 621 for (OutlinableRegion *OS : Group.Regions) 622 if (Function *F = OS->Call->getFunction()) 623 if (DISubprogram *SP = F->getSubprogram()) 624 return SP; 625 626 return nullptr; 627 } 628 629 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 630 unsigned FunctionNameSuffix) { 631 assert(!Group.OutlinedFunction && "Function is already defined!"); 632 633 Type *RetTy = Type::getVoidTy(M.getContext()); 634 // All extracted functions _should_ have the same return type at this point 635 // since the similarity identifier ensures that all branches outside of the 636 // region occur in the same place. 637 638 // NOTE: Should we ever move to the model that uses a switch at every point 639 // needed, meaning that we could branch within the region or out, it is 640 // possible that we will need to switch to using the most general case all of 641 // the time. 642 for (OutlinableRegion *R : Group.Regions) { 643 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 644 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 645 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 646 RetTy = ExtractedFuncType; 647 } 648 649 Group.OutlinedFunctionType = FunctionType::get( 650 RetTy, Group.ArgumentTypes, false); 651 652 // These functions will only be called from within the same module, so 653 // we can set an internal linkage. 654 Group.OutlinedFunction = Function::Create( 655 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 656 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 657 658 // Transfer the swifterr attribute to the correct function parameter. 659 if (Group.SwiftErrorArgument) 660 Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument, 661 Attribute::SwiftError); 662 663 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 664 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 665 666 // If there's a DISubprogram associated with this outlined function, then 667 // emit debug info for the outlined function. 668 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 669 Function *F = Group.OutlinedFunction; 670 // We have a DISubprogram. Get its DICompileUnit. 671 DICompileUnit *CU = SP->getUnit(); 672 DIBuilder DB(M, true, CU); 673 DIFile *Unit = SP->getFile(); 674 Mangler Mg; 675 // Get the mangled name of the function for the linkage name. 676 std::string Dummy; 677 llvm::raw_string_ostream MangledNameStream(Dummy); 678 Mg.getNameWithPrefix(MangledNameStream, F, false); 679 680 DISubprogram *OutlinedSP = DB.createFunction( 681 Unit /* Context */, F->getName(), Dummy, 682 Unit /* File */, 683 0 /* Line 0 is reserved for compiler-generated code. */, 684 DB.createSubroutineType( 685 DB.getOrCreateTypeArray(std::nullopt)), /* void type */ 686 0, /* Line 0 is reserved for compiler-generated code. */ 687 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 688 /* Outlined code is optimized code by definition. */ 689 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 690 691 // Don't add any new variables to the subprogram. 692 DB.finalizeSubprogram(OutlinedSP); 693 694 // Attach subprogram to the function. 695 F->setSubprogram(OutlinedSP); 696 // We're done with the DIBuilder. 697 DB.finalize(); 698 } 699 700 return Group.OutlinedFunction; 701 } 702 703 /// Move each BasicBlock in \p Old to \p New. 704 /// 705 /// \param [in] Old - The function to move the basic blocks from. 706 /// \param [in] New - The function to move the basic blocks to. 707 /// \param [out] NewEnds - The return blocks of the new overall function. 708 static void moveFunctionData(Function &Old, Function &New, 709 DenseMap<Value *, BasicBlock *> &NewEnds) { 710 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 711 CurrBB.removeFromParent(); 712 CurrBB.insertInto(&New); 713 Instruction *I = CurrBB.getTerminator(); 714 715 // For each block we find a return instruction is, it is a potential exit 716 // path for the function. We keep track of each block based on the return 717 // value here. 718 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 719 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 720 721 std::vector<Instruction *> DebugInsts; 722 723 for (Instruction &Val : CurrBB) { 724 // Since debug-info originates from many different locations in the 725 // program, it will cause incorrect reporting from a debugger if we keep 726 // the same debug instructions. Drop non-intrinsic DbgVariableRecords 727 // here, collect intrinsics for removal later. 728 Val.dropDbgRecords(); 729 730 // We must handle the scoping of called functions differently than 731 // other outlined instructions. 732 if (!isa<CallInst>(&Val)) { 733 // Remove the debug information for outlined functions. 734 Val.setDebugLoc(DebugLoc()); 735 736 // Loop info metadata may contain line locations. Update them to have no 737 // value in the new subprogram since the outlined code could be from 738 // several locations. 739 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * { 740 if (DISubprogram *SP = New.getSubprogram()) 741 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 742 return DILocation::get(New.getContext(), Loc->getLine(), 743 Loc->getColumn(), SP, nullptr); 744 return MD; 745 }; 746 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc); 747 continue; 748 } 749 750 // From this point we are only handling call instructions. 751 CallInst *CI = cast<CallInst>(&Val); 752 753 // Collect debug intrinsics for later removal. 754 if (isa<DbgInfoIntrinsic>(CI)) { 755 DebugInsts.push_back(&Val); 756 continue; 757 } 758 759 // Edit the scope of called functions inside of outlined functions. 760 if (DISubprogram *SP = New.getSubprogram()) { 761 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 762 Val.setDebugLoc(DI); 763 } 764 } 765 766 for (Instruction *I : DebugInsts) 767 I->eraseFromParent(); 768 } 769 } 770 771 /// Find the constants that will need to be lifted into arguments 772 /// as they are not the same in each instance of the region. 773 /// 774 /// \param [in] C - The IRSimilarityCandidate containing the region we are 775 /// analyzing. 776 /// \param [in] NotSame - The set of global value numbers that do not have a 777 /// single Constant across all OutlinableRegions similar to \p C. 778 /// \param [out] Inputs - The list containing the global value numbers of the 779 /// arguments needed for the region of code. 780 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 781 std::vector<unsigned> &Inputs) { 782 DenseSet<unsigned> Seen; 783 // Iterate over the instructions, and find what constants will need to be 784 // extracted into arguments. 785 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 786 IDIt != EndIDIt; IDIt++) { 787 for (Value *V : (*IDIt).OperVals) { 788 // Since these are stored before any outlining, they will be in the 789 // global value numbering. 790 unsigned GVN = *C.getGVN(V); 791 if (isa<Constant>(V)) 792 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 793 Inputs.push_back(GVN); 794 Seen.insert(GVN); 795 } 796 } 797 } 798 } 799 800 /// Find the GVN for the inputs that have been found by the CodeExtractor. 801 /// 802 /// \param [in] C - The IRSimilarityCandidate containing the region we are 803 /// analyzing. 804 /// \param [in] CurrentInputs - The set of inputs found by the 805 /// CodeExtractor. 806 /// \param [in] OutputMappings - The mapping of values that have been replaced 807 /// by a new output value. 808 /// \param [out] EndInputNumbers - The global value numbers for the extracted 809 /// arguments. 810 static void mapInputsToGVNs(IRSimilarityCandidate &C, 811 SetVector<Value *> &CurrentInputs, 812 const DenseMap<Value *, Value *> &OutputMappings, 813 std::vector<unsigned> &EndInputNumbers) { 814 // Get the Global Value Number for each input. We check if the Value has been 815 // replaced by a different value at output, and use the original value before 816 // replacement. 817 for (Value *Input : CurrentInputs) { 818 assert(Input && "Have a nullptr as an input"); 819 if (OutputMappings.contains(Input)) 820 Input = OutputMappings.find(Input)->second; 821 assert(C.getGVN(Input) && "Could not find a numbering for the given input"); 822 EndInputNumbers.push_back(*C.getGVN(Input)); 823 } 824 } 825 826 /// Find the original value for the \p ArgInput values if any one of them was 827 /// replaced during a previous extraction. 828 /// 829 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 830 /// \param [in] OutputMappings - The mapping of values that have been replaced 831 /// by a new output value. 832 /// \param [out] RemappedArgInputs - The remapped values according to 833 /// \p OutputMappings that will be extracted. 834 static void 835 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 836 const DenseMap<Value *, Value *> &OutputMappings, 837 SetVector<Value *> &RemappedArgInputs) { 838 // Get the global value number for each input that will be extracted as an 839 // argument by the code extractor, remapping if needed for reloaded values. 840 for (Value *Input : ArgInputs) { 841 if (OutputMappings.contains(Input)) 842 Input = OutputMappings.find(Input)->second; 843 RemappedArgInputs.insert(Input); 844 } 845 } 846 847 /// Find the input GVNs and the output values for a region of Instructions. 848 /// Using the code extractor, we collect the inputs to the extracted function. 849 /// 850 /// The \p Region can be identified as needing to be ignored in this function. 851 /// It should be checked whether it should be ignored after a call to this 852 /// function. 853 /// 854 /// \param [in,out] Region - The region of code to be analyzed. 855 /// \param [out] InputGVNs - The global value numbers for the extracted 856 /// arguments. 857 /// \param [in] NotSame - The global value numbers in the region that do not 858 /// have the same constant value in the regions structurally similar to 859 /// \p Region. 860 /// \param [in] OutputMappings - The mapping of values that have been replaced 861 /// by a new output value after extraction. 862 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 863 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 864 /// as outputs. 865 static void getCodeExtractorArguments( 866 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 867 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 868 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 869 IRSimilarityCandidate &C = *Region.Candidate; 870 871 // OverallInputs are the inputs to the region found by the CodeExtractor, 872 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 873 // allocas of values whose lifetimes are contained completely within the 874 // outlined region. PremappedInputs are the arguments found by the 875 // CodeExtractor, removing conditions such as sunken allocas, but that 876 // may need to be remapped due to the extracted output values replacing 877 // the original values. We use DummyOutputs for this first run of finding 878 // inputs and outputs since the outputs could change during findAllocas, 879 // the correct set of extracted outputs will be in the final Outputs ValueSet. 880 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 881 DummyOutputs; 882 883 // Use the code extractor to get the inputs and outputs, without sunken 884 // allocas or removing llvm.assumes. 885 CodeExtractor *CE = Region.CE; 886 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 887 assert(Region.StartBB && "Region must have a start BasicBlock!"); 888 Function *OrigF = Region.StartBB->getParent(); 889 CodeExtractorAnalysisCache CEAC(*OrigF); 890 BasicBlock *Dummy = nullptr; 891 892 // The region may be ineligible due to VarArgs in the parent function. In this 893 // case we ignore the region. 894 if (!CE->isEligible()) { 895 Region.IgnoreRegion = true; 896 return; 897 } 898 899 // Find if any values are going to be sunk into the function when extracted 900 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 901 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 902 903 // TODO: Support regions with sunken allocas: values whose lifetimes are 904 // contained completely within the outlined region. These are not guaranteed 905 // to be the same in every region, so we must elevate them all to arguments 906 // when they appear. If these values are not equal, it means there is some 907 // Input in OverallInputs that was removed for ArgInputs. 908 if (OverallInputs.size() != PremappedInputs.size()) { 909 Region.IgnoreRegion = true; 910 return; 911 } 912 913 findConstants(C, NotSame, InputGVNs); 914 915 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 916 917 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 918 ArgInputs); 919 920 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 921 // we need to make sure they are in a deterministic order. 922 stable_sort(InputGVNs); 923 } 924 925 /// Look over the inputs and map each input argument to an argument in the 926 /// overall function for the OutlinableRegions. This creates a way to replace 927 /// the arguments of the extracted function with the arguments of the new 928 /// overall function. 929 /// 930 /// \param [in,out] Region - The region of code to be analyzed. 931 /// \param [in] InputGVNs - The global value numbering of the input values 932 /// collected. 933 /// \param [in] ArgInputs - The values of the arguments to the extracted 934 /// function. 935 static void 936 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 937 std::vector<unsigned> &InputGVNs, 938 SetVector<Value *> &ArgInputs) { 939 940 IRSimilarityCandidate &C = *Region.Candidate; 941 OutlinableGroup &Group = *Region.Parent; 942 943 // This counts the argument number in the overall function. 944 unsigned TypeIndex = 0; 945 946 // This counts the argument number in the extracted function. 947 unsigned OriginalIndex = 0; 948 949 // Find the mapping of the extracted arguments to the arguments for the 950 // overall function. Since there may be extra arguments in the overall 951 // function to account for the extracted constants, we have two different 952 // counters as we find extracted arguments, and as we come across overall 953 // arguments. 954 955 // Additionally, in our first pass, for the first extracted function, 956 // we find argument locations for the canonical value numbering. This 957 // numbering overrides any discovered location for the extracted code. 958 for (unsigned InputVal : InputGVNs) { 959 std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 960 assert(CanonicalNumberOpt && "Canonical number not found?"); 961 unsigned CanonicalNumber = *CanonicalNumberOpt; 962 963 std::optional<Value *> InputOpt = C.fromGVN(InputVal); 964 assert(InputOpt && "Global value number not found?"); 965 Value *Input = *InputOpt; 966 967 DenseMap<unsigned, unsigned>::iterator AggArgIt = 968 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 969 970 if (!Group.InputTypesSet) { 971 Group.ArgumentTypes.push_back(Input->getType()); 972 // If the input value has a swifterr attribute, make sure to mark the 973 // argument in the overall function. 974 if (Input->isSwiftError()) { 975 assert( 976 !Group.SwiftErrorArgument && 977 "Argument already marked with swifterr for this OutlinableGroup!"); 978 Group.SwiftErrorArgument = TypeIndex; 979 } 980 } 981 982 // Check if we have a constant. If we do add it to the overall argument 983 // number to Constant map for the region, and continue to the next input. 984 if (Constant *CST = dyn_cast<Constant>(Input)) { 985 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 986 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 987 else { 988 Group.CanonicalNumberToAggArg.insert( 989 std::make_pair(CanonicalNumber, TypeIndex)); 990 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 991 } 992 TypeIndex++; 993 continue; 994 } 995 996 // It is not a constant, we create the mapping from extracted argument list 997 // to the overall argument list, using the canonical location, if it exists. 998 assert(ArgInputs.count(Input) && "Input cannot be found!"); 999 1000 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 1001 if (OriginalIndex != AggArgIt->second) 1002 Region.ChangedArgOrder = true; 1003 Region.ExtractedArgToAgg.insert( 1004 std::make_pair(OriginalIndex, AggArgIt->second)); 1005 Region.AggArgToExtracted.insert( 1006 std::make_pair(AggArgIt->second, OriginalIndex)); 1007 } else { 1008 Group.CanonicalNumberToAggArg.insert( 1009 std::make_pair(CanonicalNumber, TypeIndex)); 1010 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 1011 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 1012 } 1013 OriginalIndex++; 1014 TypeIndex++; 1015 } 1016 1017 // If the function type definitions for the OutlinableGroup holding the region 1018 // have not been set, set the length of the inputs here. We should have the 1019 // same inputs for all of the different regions contained in the 1020 // OutlinableGroup since they are all structurally similar to one another. 1021 if (!Group.InputTypesSet) { 1022 Group.NumAggregateInputs = TypeIndex; 1023 Group.InputTypesSet = true; 1024 } 1025 1026 Region.NumExtractedInputs = OriginalIndex; 1027 } 1028 1029 /// Check if the \p V has any uses outside of the region other than \p PN. 1030 /// 1031 /// \param V [in] - The value to check. 1032 /// \param PHILoc [in] - The location in the PHINode of \p V. 1033 /// \param PN [in] - The PHINode using \p V. 1034 /// \param Exits [in] - The potential blocks we exit to from the outlined 1035 /// region. 1036 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 1037 /// \returns true if \p V has any use soutside its region other than \p PN. 1038 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 1039 SmallPtrSet<BasicBlock *, 1> &Exits, 1040 DenseSet<BasicBlock *> &BlocksInRegion) { 1041 // We check to see if the value is used by the PHINode from some other 1042 // predecessor not included in the region. If it is, we make sure 1043 // to keep it as an output. 1044 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()), 1045 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 1046 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 1047 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 1048 })) 1049 return true; 1050 1051 // Check if the value is used by any other instructions outside the region. 1052 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 1053 Instruction *I = dyn_cast<Instruction>(U); 1054 if (!I) 1055 return false; 1056 1057 // If the use of the item is inside the region, we skip it. Uses 1058 // inside the region give us useful information about how the item could be 1059 // used as an output. 1060 BasicBlock *Parent = I->getParent(); 1061 if (BlocksInRegion.contains(Parent)) 1062 return false; 1063 1064 // If it's not a PHINode then we definitely know the use matters. This 1065 // output value will not completely combined with another item in a PHINode 1066 // as it is directly reference by another non-phi instruction 1067 if (!isa<PHINode>(I)) 1068 return true; 1069 1070 // If we have a PHINode outside one of the exit locations, then it 1071 // can be considered an outside use as well. If there is a PHINode 1072 // contained in the Exit where this values use matters, it will be 1073 // caught when we analyze that PHINode. 1074 if (!Exits.contains(Parent)) 1075 return true; 1076 1077 return false; 1078 }); 1079 } 1080 1081 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1082 /// considered outputs. A PHINodes is an output when more than one incoming 1083 /// value has been marked by the CodeExtractor as an output. 1084 /// 1085 /// \param CurrentExitFromRegion [in] - The block to analyze. 1086 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1087 /// region. 1088 /// \param RegionBlocks [in] - The basic blocks in the region. 1089 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1090 /// PHINodes to this as we find that they replace output values. 1091 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1092 /// totally replaced by a PHINode. 1093 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1094 /// in PHINodes, but have other uses, and should still be considered outputs. 1095 static void analyzeExitPHIsForOutputUses( 1096 BasicBlock *CurrentExitFromRegion, 1097 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1098 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1099 DenseSet<Value *> &OutputsReplacedByPHINode, 1100 DenseSet<Value *> &OutputsWithNonPhiUses) { 1101 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1102 // Find all incoming values from the outlining region. 1103 SmallVector<unsigned, 2> IncomingVals; 1104 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1105 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1106 IncomingVals.push_back(I); 1107 1108 // Do not process PHI if there are no predecessors from region. 1109 unsigned NumIncomingVals = IncomingVals.size(); 1110 if (NumIncomingVals == 0) 1111 continue; 1112 1113 // If there is one predecessor, we mark it as a value that needs to be kept 1114 // as an output. 1115 if (NumIncomingVals == 1) { 1116 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1117 OutputsWithNonPhiUses.insert(V); 1118 OutputsReplacedByPHINode.erase(V); 1119 continue; 1120 } 1121 1122 // This PHINode will be used as an output value, so we add it to our list. 1123 Outputs.insert(&PN); 1124 1125 // Not all of the incoming values should be ignored as other inputs and 1126 // outputs may have uses in outlined region. If they have other uses 1127 // outside of the single PHINode we should not skip over it. 1128 for (unsigned Idx : IncomingVals) { 1129 Value *V = PN.getIncomingValue(Idx); 1130 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1131 OutputsWithNonPhiUses.insert(V); 1132 OutputsReplacedByPHINode.erase(V); 1133 continue; 1134 } 1135 if (!OutputsWithNonPhiUses.contains(V)) 1136 OutputsReplacedByPHINode.insert(V); 1137 } 1138 } 1139 } 1140 1141 // Represents the type for the unsigned number denoting the output number for 1142 // phi node, along with the canonical number for the exit block. 1143 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1144 // The list of canonical numbers for the incoming values to a PHINode. 1145 using CanonList = SmallVector<unsigned, 2>; 1146 // The pair type representing the set of canonical values being combined in the 1147 // PHINode, along with the location data for the PHINode. 1148 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1149 1150 /// Encode \p PND as an integer for easy lookup based on the argument location, 1151 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1152 /// the values stored in the PHINode. 1153 /// 1154 /// \param PND - The data to hash. 1155 /// \returns The hash code of \p PND. 1156 static hash_code encodePHINodeData(PHINodeData &PND) { 1157 return llvm::hash_combine( 1158 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1159 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1160 } 1161 1162 /// Create a special GVN for PHINodes that will be used outside of 1163 /// the region. We create a hash code based on the Canonical number of the 1164 /// parent BasicBlock, the canonical numbering of the values stored in the 1165 /// PHINode and the aggregate argument location. This is used to find whether 1166 /// this PHINode type has been given a canonical numbering already. If not, we 1167 /// assign it a value and store it for later use. The value is returned to 1168 /// identify different output schemes for the set of regions. 1169 /// 1170 /// \param Region - The region that \p PN is an output for. 1171 /// \param PN - The PHINode we are analyzing. 1172 /// \param Blocks - The blocks for the region we are analyzing. 1173 /// \param AggArgIdx - The argument \p PN will be stored into. 1174 /// \returns An optional holding the assigned canonical number, or std::nullopt 1175 /// if there is some attribute of the PHINode blocking it from being used. 1176 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1177 PHINode *PN, 1178 DenseSet<BasicBlock *> &Blocks, 1179 unsigned AggArgIdx) { 1180 OutlinableGroup &Group = *Region.Parent; 1181 IRSimilarityCandidate &Cand = *Region.Candidate; 1182 BasicBlock *PHIBB = PN->getParent(); 1183 CanonList PHIGVNs; 1184 Value *Incoming; 1185 BasicBlock *IncomingBlock; 1186 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1187 Incoming = PN->getIncomingValue(Idx); 1188 IncomingBlock = PN->getIncomingBlock(Idx); 1189 // If we cannot find a GVN, and the incoming block is included in the region 1190 // this means that the input to the PHINode is not included in the region we 1191 // are trying to analyze, meaning, that if it was outlined, we would be 1192 // adding an extra input. We ignore this case for now, and so ignore the 1193 // region. 1194 std::optional<unsigned> OGVN = Cand.getGVN(Incoming); 1195 if (!OGVN && Blocks.contains(IncomingBlock)) { 1196 Region.IgnoreRegion = true; 1197 return std::nullopt; 1198 } 1199 1200 // If the incoming block isn't in the region, we don't have to worry about 1201 // this incoming value. 1202 if (!Blocks.contains(IncomingBlock)) 1203 continue; 1204 1205 // Collect the canonical numbers of the values in the PHINode. 1206 unsigned GVN = *OGVN; 1207 OGVN = Cand.getCanonicalNum(GVN); 1208 assert(OGVN && "No GVN found for incoming value?"); 1209 PHIGVNs.push_back(*OGVN); 1210 1211 // Find the incoming block and use the canonical numbering as well to define 1212 // the hash for the PHINode. 1213 OGVN = Cand.getGVN(IncomingBlock); 1214 1215 // If there is no number for the incoming block, it is because we have 1216 // split the candidate basic blocks. So we use the previous block that it 1217 // was split from to find the valid global value numbering for the PHINode. 1218 if (!OGVN) { 1219 assert(Cand.getStartBB() == IncomingBlock && 1220 "Unknown basic block used in exit path PHINode."); 1221 1222 BasicBlock *PrevBlock = nullptr; 1223 // Iterate over the predecessors to the incoming block of the 1224 // PHINode, when we find a block that is not contained in the region 1225 // we know that this is the first block that we split from, and should 1226 // have a valid global value numbering. 1227 for (BasicBlock *Pred : predecessors(IncomingBlock)) 1228 if (!Blocks.contains(Pred)) { 1229 PrevBlock = Pred; 1230 break; 1231 } 1232 assert(PrevBlock && "Expected a predecessor not in the reigon!"); 1233 OGVN = Cand.getGVN(PrevBlock); 1234 } 1235 GVN = *OGVN; 1236 OGVN = Cand.getCanonicalNum(GVN); 1237 assert(OGVN && "No GVN found for incoming block?"); 1238 PHIGVNs.push_back(*OGVN); 1239 } 1240 1241 // Now that we have the GVNs for the incoming values, we are going to combine 1242 // them with the GVN of the incoming bock, and the output location of the 1243 // PHINode to generate a hash value representing this instance of the PHINode. 1244 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1245 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1246 std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1247 assert(BBGVN && "Could not find GVN for the incoming block!"); 1248 1249 BBGVN = Cand.getCanonicalNum(*BBGVN); 1250 assert(BBGVN && "Could not find canonical number for the incoming block!"); 1251 // Create a pair of the exit block canonical value, and the aggregate 1252 // argument location, connected to the canonical numbers stored in the 1253 // PHINode. 1254 PHINodeData TemporaryPair = 1255 std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs); 1256 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1257 1258 // Look for and create a new entry in our connection between canonical 1259 // numbers for PHINodes, and the set of objects we just created. 1260 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1261 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1262 bool Inserted = false; 1263 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1264 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1265 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1266 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1267 } 1268 1269 return GVNToPHIIt->second; 1270 } 1271 1272 /// Create a mapping of the output arguments for the \p Region to the output 1273 /// arguments of the overall outlined function. 1274 /// 1275 /// \param [in,out] Region - The region of code to be analyzed. 1276 /// \param [in] Outputs - The values found by the code extractor. 1277 static void 1278 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region, 1279 SetVector<Value *> &Outputs) { 1280 OutlinableGroup &Group = *Region.Parent; 1281 IRSimilarityCandidate &C = *Region.Candidate; 1282 1283 SmallVector<BasicBlock *> BE; 1284 DenseSet<BasicBlock *> BlocksInRegion; 1285 C.getBasicBlocks(BlocksInRegion, BE); 1286 1287 // Find the exits to the region. 1288 SmallPtrSet<BasicBlock *, 1> Exits; 1289 for (BasicBlock *Block : BE) 1290 for (BasicBlock *Succ : successors(Block)) 1291 if (!BlocksInRegion.contains(Succ)) 1292 Exits.insert(Succ); 1293 1294 // After determining which blocks exit to PHINodes, we add these PHINodes to 1295 // the set of outputs to be processed. We also check the incoming values of 1296 // the PHINodes for whether they should no longer be considered outputs. 1297 DenseSet<Value *> OutputsReplacedByPHINode; 1298 DenseSet<Value *> OutputsWithNonPhiUses; 1299 for (BasicBlock *ExitBB : Exits) 1300 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1301 OutputsReplacedByPHINode, 1302 OutputsWithNonPhiUses); 1303 1304 // This counts the argument number in the extracted function. 1305 unsigned OriginalIndex = Region.NumExtractedInputs; 1306 1307 // This counts the argument number in the overall function. 1308 unsigned TypeIndex = Group.NumAggregateInputs; 1309 bool TypeFound; 1310 DenseSet<unsigned> AggArgsUsed; 1311 1312 // Iterate over the output types and identify if there is an aggregate pointer 1313 // type whose base type matches the current output type. If there is, we mark 1314 // that we will use this output register for this value. If not we add another 1315 // type to the overall argument type list. We also store the GVNs used for 1316 // stores to identify which values will need to be moved into an special 1317 // block that holds the stores to the output registers. 1318 for (Value *Output : Outputs) { 1319 TypeFound = false; 1320 // We can do this since it is a result value, and will have a number 1321 // that is necessarily the same. BUT if in the future, the instructions 1322 // do not have to be in same order, but are functionally the same, we will 1323 // have to use a different scheme, as one-to-one correspondence is not 1324 // guaranteed. 1325 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1326 1327 // If the output is combined in a PHINode, we make sure to skip over it. 1328 if (OutputsReplacedByPHINode.contains(Output)) 1329 continue; 1330 1331 unsigned AggArgIdx = 0; 1332 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1333 if (!isa<PointerType>(Group.ArgumentTypes[Jdx])) 1334 continue; 1335 1336 if (AggArgsUsed.contains(Jdx)) 1337 continue; 1338 1339 TypeFound = true; 1340 AggArgsUsed.insert(Jdx); 1341 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1342 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1343 AggArgIdx = Jdx; 1344 break; 1345 } 1346 1347 // We were unable to find an unused type in the output type set that matches 1348 // the output, so we add a pointer type to the argument types of the overall 1349 // function to handle this output and create a mapping to it. 1350 if (!TypeFound) { 1351 Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(), 1352 M.getDataLayout().getAllocaAddrSpace())); 1353 // Mark the new pointer type as the last value in the aggregate argument 1354 // list. 1355 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1356 AggArgsUsed.insert(ArgTypeIdx); 1357 Region.ExtractedArgToAgg.insert( 1358 std::make_pair(OriginalIndex, ArgTypeIdx)); 1359 Region.AggArgToExtracted.insert( 1360 std::make_pair(ArgTypeIdx, OriginalIndex)); 1361 AggArgIdx = ArgTypeIdx; 1362 } 1363 1364 // TODO: Adapt to the extra input from the PHINode. 1365 PHINode *PN = dyn_cast<PHINode>(Output); 1366 1367 std::optional<unsigned> GVN; 1368 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1369 // Values outside the region can be combined into PHINode when we 1370 // have multiple exits. We collect both of these into a list to identify 1371 // which values are being used in the PHINode. Each list identifies a 1372 // different PHINode, and a different output. We store the PHINode as it's 1373 // own canonical value. These canonical values are also dependent on the 1374 // output argument it is saved to. 1375 1376 // If two PHINodes have the same canonical values, but different aggregate 1377 // argument locations, then they will have distinct Canonical Values. 1378 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx); 1379 if (!GVN) 1380 return; 1381 } else { 1382 // If we do not have a PHINode we use the global value numbering for the 1383 // output value, to find the canonical number to add to the set of stored 1384 // values. 1385 GVN = C.getGVN(Output); 1386 GVN = C.getCanonicalNum(*GVN); 1387 } 1388 1389 // Each region has a potentially unique set of outputs. We save which 1390 // values are output in a list of canonical values so we can differentiate 1391 // among the different store schemes. 1392 Region.GVNStores.push_back(*GVN); 1393 1394 OriginalIndex++; 1395 TypeIndex++; 1396 } 1397 1398 // We sort the stored values to make sure that we are not affected by analysis 1399 // order when determining what combination of items were stored. 1400 stable_sort(Region.GVNStores); 1401 } 1402 1403 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1404 DenseSet<unsigned> &NotSame) { 1405 std::vector<unsigned> Inputs; 1406 SetVector<Value *> ArgInputs, Outputs; 1407 1408 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1409 Outputs); 1410 1411 if (Region.IgnoreRegion) 1412 return; 1413 1414 // Map the inputs found by the CodeExtractor to the arguments found for 1415 // the overall function. 1416 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1417 1418 // Map the outputs found by the CodeExtractor to the arguments found for 1419 // the overall function. 1420 findExtractedOutputToOverallOutputMapping(M, Region, Outputs); 1421 } 1422 1423 /// Replace the extracted function in the Region with a call to the overall 1424 /// function constructed from the deduplicated similar regions, replacing and 1425 /// remapping the values passed to the extracted function as arguments to the 1426 /// new arguments of the overall function. 1427 /// 1428 /// \param [in] M - The module to outline from. 1429 /// \param [in] Region - The regions of extracted code to be replaced with a new 1430 /// function. 1431 /// \returns a call instruction with the replaced function. 1432 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1433 std::vector<Value *> NewCallArgs; 1434 DenseMap<unsigned, unsigned>::iterator ArgPair; 1435 1436 OutlinableGroup &Group = *Region.Parent; 1437 CallInst *Call = Region.Call; 1438 assert(Call && "Call to replace is nullptr?"); 1439 Function *AggFunc = Group.OutlinedFunction; 1440 assert(AggFunc && "Function to replace with is nullptr?"); 1441 1442 // If the arguments are the same size, there are not values that need to be 1443 // made into an argument, the argument ordering has not been change, or 1444 // different output registers to handle. We can simply replace the called 1445 // function in this case. 1446 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1447 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1448 << *AggFunc << " with same number of arguments\n"); 1449 Call->setCalledFunction(AggFunc); 1450 return Call; 1451 } 1452 1453 // We have a different number of arguments than the new function, so 1454 // we need to use our previously mappings off extracted argument to overall 1455 // function argument, and constants to overall function argument to create the 1456 // new argument list. 1457 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1458 1459 if (AggArgIdx == AggFunc->arg_size() - 1 && 1460 Group.OutputGVNCombinations.size() > 1) { 1461 // If we are on the last argument, and we need to differentiate between 1462 // output blocks, add an integer to the argument list to determine 1463 // what block to take 1464 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1465 << Region.OutputBlockNum << "\n"); 1466 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1467 Region.OutputBlockNum)); 1468 continue; 1469 } 1470 1471 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1472 if (ArgPair != Region.AggArgToExtracted.end()) { 1473 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1474 // If we found the mapping from the extracted function to the overall 1475 // function, we simply add it to the argument list. We use the same 1476 // value, it just needs to honor the new order of arguments. 1477 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1478 << *ArgumentValue << "\n"); 1479 NewCallArgs.push_back(ArgumentValue); 1480 continue; 1481 } 1482 1483 // If it is a constant, we simply add it to the argument list as a value. 1484 if (Region.AggArgToConstant.contains(AggArgIdx)) { 1485 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1486 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1487 << *CST << "\n"); 1488 NewCallArgs.push_back(CST); 1489 continue; 1490 } 1491 1492 // Add a nullptr value if the argument is not found in the extracted 1493 // function. If we cannot find a value, it means it is not in use 1494 // for the region, so we should not pass anything to it. 1495 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1496 NewCallArgs.push_back(ConstantPointerNull::get( 1497 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1498 } 1499 1500 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1501 << *AggFunc << " with new set of arguments\n"); 1502 // Create the new call instruction and erase the old one. 1503 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1504 Call->getIterator()); 1505 1506 // It is possible that the call to the outlined function is either the first 1507 // instruction is in the new block, the last instruction, or both. If either 1508 // of these is the case, we need to make sure that we replace the instruction 1509 // in the IRInstructionData struct with the new call. 1510 CallInst *OldCall = Region.Call; 1511 if (Region.NewFront->Inst == OldCall) 1512 Region.NewFront->Inst = Call; 1513 if (Region.NewBack->Inst == OldCall) 1514 Region.NewBack->Inst = Call; 1515 1516 // Transfer any debug information. 1517 Call->setDebugLoc(Region.Call->getDebugLoc()); 1518 // Since our output may determine which branch we go to, we make sure to 1519 // propogate this new call value through the module. 1520 OldCall->replaceAllUsesWith(Call); 1521 1522 // Remove the old instruction. 1523 OldCall->eraseFromParent(); 1524 Region.Call = Call; 1525 1526 // Make sure that the argument in the new function has the SwiftError 1527 // argument. 1528 if (Group.SwiftErrorArgument) 1529 Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError); 1530 1531 return Call; 1532 } 1533 1534 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1535 /// for \p RetVal. 1536 /// 1537 /// \param Group - The OutlinableGroup containing the information about the 1538 /// overall outlined function. 1539 /// \param RetVal - The return value or exit option that we are currently 1540 /// evaluating. 1541 /// \returns The found or newly created BasicBlock to contain the needed 1542 /// PHINodes to be used as outputs. 1543 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1544 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1545 ReturnBlockForRetVal; 1546 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1547 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1548 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1549 "Could not find output value!"); 1550 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1551 1552 // Find if a PHIBlock exists for this return value already. If it is 1553 // the first time we are analyzing this, we will not, so we record it. 1554 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1555 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1556 return PhiBlockForRetVal->second; 1557 1558 // If we did not find a block, we create one, and insert it into the 1559 // overall function and record it. 1560 bool Inserted = false; 1561 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1562 ReturnBB->getParent()); 1563 std::tie(PhiBlockForRetVal, Inserted) = 1564 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1565 1566 // We find the predecessors of the return block in the newly created outlined 1567 // function in order to point them to the new PHIBlock rather than the already 1568 // existing return block. 1569 SmallVector<BranchInst *, 2> BranchesToChange; 1570 for (BasicBlock *Pred : predecessors(ReturnBB)) 1571 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1572 1573 // Now we mark the branch instructions found, and change the references of the 1574 // return block to the newly created PHIBlock. 1575 for (BranchInst *BI : BranchesToChange) 1576 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1577 if (BI->getSuccessor(Succ) != ReturnBB) 1578 continue; 1579 BI->setSuccessor(Succ, PHIBlock); 1580 } 1581 1582 BranchInst::Create(ReturnBB, PHIBlock); 1583 1584 return PhiBlockForRetVal->second; 1585 } 1586 1587 /// For the function call now representing the \p Region, find the passed value 1588 /// to that call that represents Argument \p A at the call location if the 1589 /// call has already been replaced with a call to the overall, aggregate 1590 /// function. 1591 /// 1592 /// \param A - The Argument to get the passed value for. 1593 /// \param Region - The extracted Region corresponding to the outlined function. 1594 /// \returns The Value representing \p A at the call site. 1595 static Value * 1596 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1597 const OutlinableRegion &Region) { 1598 // If we don't need to adjust the argument number at all (since the call 1599 // has already been replaced by a call to the overall outlined function) 1600 // we can just get the specified argument. 1601 return Region.Call->getArgOperand(A->getArgNo()); 1602 } 1603 1604 /// For the function call now representing the \p Region, find the passed value 1605 /// to that call that represents Argument \p A at the call location if the 1606 /// call has only been replaced by the call to the aggregate function. 1607 /// 1608 /// \param A - The Argument to get the passed value for. 1609 /// \param Region - The extracted Region corresponding to the outlined function. 1610 /// \returns The Value representing \p A at the call site. 1611 static Value * 1612 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1613 const OutlinableRegion &Region) { 1614 unsigned ArgNum = A->getArgNo(); 1615 1616 // If it is a constant, we can look at our mapping from when we created 1617 // the outputs to figure out what the constant value is. 1618 if (Region.AggArgToConstant.count(ArgNum)) 1619 return Region.AggArgToConstant.find(ArgNum)->second; 1620 1621 // If it is not a constant, and we are not looking at the overall function, we 1622 // need to adjust which argument we are looking at. 1623 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1624 return Region.Call->getArgOperand(ArgNum); 1625 } 1626 1627 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1628 /// 1629 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1630 /// \param Region [in] - The OutlinableRegion containing \p PN. 1631 /// \param OutputMappings [in] - The mapping of output values from outlined 1632 /// region to their original values. 1633 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1634 /// \p PN paired with their incoming block. 1635 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1636 /// of \p Region rather than the overall function's call. 1637 static void findCanonNumsForPHI( 1638 PHINode *PN, OutlinableRegion &Region, 1639 const DenseMap<Value *, Value *> &OutputMappings, 1640 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums, 1641 bool ReplacedWithOutlinedCall = true) { 1642 // Iterate over the incoming values. 1643 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1644 Value *IVal = PN->getIncomingValue(Idx); 1645 BasicBlock *IBlock = PN->getIncomingBlock(Idx); 1646 // If we have an argument as incoming value, we need to grab the passed 1647 // value from the call itself. 1648 if (Argument *A = dyn_cast<Argument>(IVal)) { 1649 if (ReplacedWithOutlinedCall) 1650 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1651 else 1652 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1653 } 1654 1655 // Get the original value if it has been replaced by an output value. 1656 IVal = findOutputMapping(OutputMappings, IVal); 1657 1658 // Find and add the canonical number for the incoming value. 1659 std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1660 assert(GVN && "No GVN for incoming value"); 1661 std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1662 assert(CanonNum && "No Canonical Number for GVN"); 1663 CanonNums.push_back(std::make_pair(*CanonNum, IBlock)); 1664 } 1665 } 1666 1667 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1668 /// in order to condense the number of instructions added to the outlined 1669 /// function. 1670 /// 1671 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1672 /// \param Region [in] - The OutlinableRegion containing \p PN. 1673 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1674 /// \p PN in. 1675 /// \param OutputMappings [in] - The mapping of output values from outlined 1676 /// region to their original values. 1677 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been 1678 /// matched. 1679 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1680 static PHINode* 1681 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1682 BasicBlock *OverallPhiBlock, 1683 const DenseMap<Value *, Value *> &OutputMappings, 1684 DenseSet<PHINode *> &UsedPHIs) { 1685 OutlinableGroup &Group = *Region.Parent; 1686 1687 1688 // A list of the canonical numbering assigned to each incoming value, paired 1689 // with the incoming block for the PHINode passed into this function. 1690 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums; 1691 1692 // We have to use the extracted function since we have merged this region into 1693 // the overall function yet. We make sure to reassign the argument numbering 1694 // since it is possible that the argument ordering is different between the 1695 // functions. 1696 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1697 /* ReplacedWithOutlinedCall = */ false); 1698 1699 OutlinableRegion *FirstRegion = Group.Regions[0]; 1700 1701 // A list of the canonical numbering assigned to each incoming value, paired 1702 // with the incoming block for the PHINode that we are currently comparing 1703 // the passed PHINode to. 1704 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums; 1705 1706 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1707 // the uses of the PHINode we are searching for, with the found PHINode. 1708 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1709 // If this PHINode has already been matched to another PHINode to be merged, 1710 // we skip it. 1711 if (UsedPHIs.contains(&CurrPN)) 1712 continue; 1713 1714 CurrentCanonNums.clear(); 1715 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1716 /* ReplacedWithOutlinedCall = */ true); 1717 1718 // If the list of incoming values is not the same length, then they cannot 1719 // match since there is not an analogue for each incoming value. 1720 if (PNCanonNums.size() != CurrentCanonNums.size()) 1721 continue; 1722 1723 bool FoundMatch = true; 1724 1725 // We compare the canonical value for each incoming value in the passed 1726 // in PHINode to one already present in the outlined region. If the 1727 // incoming values do not match, then the PHINodes do not match. 1728 1729 // We also check to make sure that the incoming block matches as well by 1730 // finding the corresponding incoming block in the combined outlined region 1731 // for the current outlined region. 1732 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) { 1733 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx]; 1734 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx]; 1735 if (ToCompareTo.first != ToAdd.first) { 1736 FoundMatch = false; 1737 break; 1738 } 1739 1740 BasicBlock *CorrespondingBlock = 1741 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second); 1742 assert(CorrespondingBlock && "Found block is nullptr"); 1743 if (CorrespondingBlock != ToCompareTo.second) { 1744 FoundMatch = false; 1745 break; 1746 } 1747 } 1748 1749 // If all incoming values and branches matched, then we can merge 1750 // into the found PHINode. 1751 if (FoundMatch) { 1752 UsedPHIs.insert(&CurrPN); 1753 return &CurrPN; 1754 } 1755 } 1756 1757 // If we've made it here, it means we weren't able to replace the PHINode, so 1758 // we must insert it ourselves. 1759 PHINode *NewPN = cast<PHINode>(PN.clone()); 1760 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1761 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1762 Idx++) { 1763 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1764 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1765 1766 // Find corresponding basic block in the overall function for the incoming 1767 // block. 1768 BasicBlock *BlockToUse = 1769 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock); 1770 NewPN->setIncomingBlock(Idx, BlockToUse); 1771 1772 // If we have an argument we make sure we replace using the argument from 1773 // the correct function. 1774 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1775 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1776 NewPN->setIncomingValue(Idx, Val); 1777 continue; 1778 } 1779 1780 // Find the corresponding value in the overall function. 1781 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1782 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1783 assert(Val && "Value is nullptr?"); 1784 DenseMap<Value *, Value *>::iterator RemappedIt = 1785 FirstRegion->RemappedArguments.find(Val); 1786 if (RemappedIt != FirstRegion->RemappedArguments.end()) 1787 Val = RemappedIt->second; 1788 NewPN->setIncomingValue(Idx, Val); 1789 } 1790 return NewPN; 1791 } 1792 1793 // Within an extracted function, replace the argument uses of the extracted 1794 // region with the arguments of the function for an OutlinableGroup. 1795 // 1796 /// \param [in] Region - The region of extracted code to be changed. 1797 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1798 /// region. 1799 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1800 /// function to define the overall outlined function for all the regions, or 1801 /// if we are operating on one of the following regions. 1802 static void 1803 replaceArgumentUses(OutlinableRegion &Region, 1804 DenseMap<Value *, BasicBlock *> &OutputBBs, 1805 const DenseMap<Value *, Value *> &OutputMappings, 1806 bool FirstFunction = false) { 1807 OutlinableGroup &Group = *Region.Parent; 1808 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1809 1810 Function *DominatingFunction = Region.ExtractedFunction; 1811 if (FirstFunction) 1812 DominatingFunction = Group.OutlinedFunction; 1813 DominatorTree DT(*DominatingFunction); 1814 DenseSet<PHINode *> UsedPHIs; 1815 1816 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1817 ArgIdx++) { 1818 assert(Region.ExtractedArgToAgg.contains(ArgIdx) && 1819 "No mapping from extracted to outlined?"); 1820 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1821 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1822 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1823 // The argument is an input, so we can simply replace it with the overall 1824 // argument value 1825 if (ArgIdx < Region.NumExtractedInputs) { 1826 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1827 << *Region.ExtractedFunction << " with " << *AggArg 1828 << " in function " << *Group.OutlinedFunction << "\n"); 1829 Arg->replaceAllUsesWith(AggArg); 1830 Value *V = Region.Call->getArgOperand(ArgIdx); 1831 Region.RemappedArguments.insert(std::make_pair(V, AggArg)); 1832 continue; 1833 } 1834 1835 // If we are replacing an output, we place the store value in its own 1836 // block inside the overall function before replacing the use of the output 1837 // in the function. 1838 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1839 User *InstAsUser = Arg->user_back(); 1840 assert(InstAsUser && "User is nullptr!"); 1841 1842 Instruction *I = cast<Instruction>(InstAsUser); 1843 BasicBlock *BB = I->getParent(); 1844 SmallVector<BasicBlock *, 4> Descendants; 1845 DT.getDescendants(BB, Descendants); 1846 bool EdgeAdded = false; 1847 if (Descendants.size() == 0) { 1848 EdgeAdded = true; 1849 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1850 DT.getDescendants(BB, Descendants); 1851 } 1852 1853 // Iterate over the following blocks, looking for return instructions, 1854 // if we find one, find the corresponding output block for the return value 1855 // and move our store instruction there. 1856 for (BasicBlock *DescendBB : Descendants) { 1857 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1858 if (!RI) 1859 continue; 1860 Value *RetVal = RI->getReturnValue(); 1861 auto VBBIt = OutputBBs.find(RetVal); 1862 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1863 1864 // If this is storing a PHINode, we must make sure it is included in the 1865 // overall function. 1866 StoreInst *SI = cast<StoreInst>(I); 1867 1868 Value *ValueOperand = SI->getValueOperand(); 1869 1870 StoreInst *NewI = cast<StoreInst>(I->clone()); 1871 NewI->setDebugLoc(DebugLoc()); 1872 BasicBlock *OutputBB = VBBIt->second; 1873 NewI->insertInto(OutputBB, OutputBB->end()); 1874 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1875 << *OutputBB << "\n"); 1876 1877 // If this is storing a PHINode, we must make sure it is included in the 1878 // overall function. 1879 if (!isa<PHINode>(ValueOperand) || 1880 Region.Candidate->getGVN(ValueOperand).has_value()) { 1881 if (FirstFunction) 1882 continue; 1883 Value *CorrVal = 1884 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1885 assert(CorrVal && "Value is nullptr?"); 1886 NewI->setOperand(0, CorrVal); 1887 continue; 1888 } 1889 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1890 // If it has a value, it was not split by the code extractor, which 1891 // is what we are looking for. 1892 if (Region.Candidate->getGVN(PN)) 1893 continue; 1894 1895 // We record the parent block for the PHINode in the Region so that 1896 // we can exclude it from checks later on. 1897 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1898 1899 // If this is the first function, we do not need to worry about mergiing 1900 // this with any other block in the overall outlined function, so we can 1901 // just continue. 1902 if (FirstFunction) { 1903 BasicBlock *PHIBlock = PN->getParent(); 1904 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1905 continue; 1906 } 1907 1908 // We look for the aggregate block that contains the PHINodes leading into 1909 // this exit path. If we can't find one, we create one. 1910 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1911 1912 // For our PHINode, we find the combined canonical numbering, and 1913 // attempt to find a matching PHINode in the overall PHIBlock. If we 1914 // cannot, we copy the PHINode and move it into this new block. 1915 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, 1916 OutputMappings, UsedPHIs); 1917 NewI->setOperand(0, NewPN); 1918 } 1919 1920 // If we added an edge for basic blocks without a predecessor, we remove it 1921 // here. 1922 if (EdgeAdded) 1923 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1924 I->eraseFromParent(); 1925 1926 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1927 << *Region.ExtractedFunction << " with " << *AggArg 1928 << " in function " << *Group.OutlinedFunction << "\n"); 1929 Arg->replaceAllUsesWith(AggArg); 1930 } 1931 } 1932 1933 /// Within an extracted function, replace the constants that need to be lifted 1934 /// into arguments with the actual argument. 1935 /// 1936 /// \param Region [in] - The region of extracted code to be changed. 1937 void replaceConstants(OutlinableRegion &Region) { 1938 OutlinableGroup &Group = *Region.Parent; 1939 // Iterate over the constants that need to be elevated into arguments 1940 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1941 unsigned AggArgIdx = Const.first; 1942 Function *OutlinedFunction = Group.OutlinedFunction; 1943 assert(OutlinedFunction && "Overall Function is not defined?"); 1944 Constant *CST = Const.second; 1945 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1946 // Identify the argument it will be elevated to, and replace instances of 1947 // that constant in the function. 1948 1949 // TODO: If in the future constants do not have one global value number, 1950 // i.e. a constant 1 could be mapped to several values, this check will 1951 // have to be more strict. It cannot be using only replaceUsesWithIf. 1952 1953 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1954 << " in function " << *OutlinedFunction << " with " 1955 << *Arg << "\n"); 1956 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1957 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1958 return I->getFunction() == OutlinedFunction; 1959 return false; 1960 }); 1961 } 1962 } 1963 1964 /// It is possible that there is a basic block that already performs the same 1965 /// stores. This returns a duplicate block, if it exists 1966 /// 1967 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1968 /// \param OutputStoreBBs [in] The existing output blocks. 1969 /// \returns an optional value with the number output block if there is a match. 1970 std::optional<unsigned> findDuplicateOutputBlock( 1971 DenseMap<Value *, BasicBlock *> &OutputBBs, 1972 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1973 1974 bool Mismatch = false; 1975 unsigned MatchingNum = 0; 1976 // We compare the new set output blocks to the other sets of output blocks. 1977 // If they are the same number, and have identical instructions, they are 1978 // considered to be the same. 1979 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1980 Mismatch = false; 1981 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1982 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1983 OutputBBs.find(VToB.first); 1984 if (OutputBBIt == OutputBBs.end()) { 1985 Mismatch = true; 1986 break; 1987 } 1988 1989 BasicBlock *CompBB = VToB.second; 1990 BasicBlock *OutputBB = OutputBBIt->second; 1991 if (CompBB->size() - 1 != OutputBB->size()) { 1992 Mismatch = true; 1993 break; 1994 } 1995 1996 BasicBlock::iterator NIt = OutputBB->begin(); 1997 for (Instruction &I : *CompBB) { 1998 if (isa<BranchInst>(&I)) 1999 continue; 2000 2001 if (!I.isIdenticalTo(&(*NIt))) { 2002 Mismatch = true; 2003 break; 2004 } 2005 2006 NIt++; 2007 } 2008 } 2009 2010 if (!Mismatch) 2011 return MatchingNum; 2012 2013 MatchingNum++; 2014 } 2015 2016 return std::nullopt; 2017 } 2018 2019 /// Remove empty output blocks from the outlined region. 2020 /// 2021 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 2022 /// Region. 2023 /// \param Region - The OutlinableRegion we are analyzing. 2024 static bool 2025 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 2026 OutlinableRegion &Region) { 2027 bool AllRemoved = true; 2028 Value *RetValueForBB; 2029 BasicBlock *NewBB; 2030 SmallVector<Value *, 4> ToRemove; 2031 // Iterate over the output blocks created in the outlined section. 2032 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 2033 RetValueForBB = VtoBB.first; 2034 NewBB = VtoBB.second; 2035 2036 // If there are no instructions, we remove it from the module, and also 2037 // mark the value for removal from the return value to output block mapping. 2038 if (NewBB->size() == 0) { 2039 NewBB->eraseFromParent(); 2040 ToRemove.push_back(RetValueForBB); 2041 continue; 2042 } 2043 2044 // Mark that we could not remove all the blocks since they were not all 2045 // empty. 2046 AllRemoved = false; 2047 } 2048 2049 // Remove the return value from the mapping. 2050 for (Value *V : ToRemove) 2051 BlocksToPrune.erase(V); 2052 2053 // Mark the region as having the no output scheme. 2054 if (AllRemoved) 2055 Region.OutputBlockNum = -1; 2056 2057 return AllRemoved; 2058 } 2059 2060 /// For the outlined section, move needed the StoreInsts for the output 2061 /// registers into their own block. Then, determine if there is a duplicate 2062 /// output block already created. 2063 /// 2064 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 2065 /// \param [in] Region - The OutlinableRegion that is being analyzed. 2066 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 2067 /// placed in. 2068 /// \param [in] EndBBs - the final blocks of the extracted function. 2069 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 2070 /// been replaced by a new output value. 2071 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2072 static void alignOutputBlockWithAggFunc( 2073 OutlinableGroup &OG, OutlinableRegion &Region, 2074 DenseMap<Value *, BasicBlock *> &OutputBBs, 2075 DenseMap<Value *, BasicBlock *> &EndBBs, 2076 const DenseMap<Value *, Value *> &OutputMappings, 2077 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2078 // If none of the output blocks have any instructions, this means that we do 2079 // not have to determine if it matches any of the other output schemes, and we 2080 // don't have to do anything else. 2081 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 2082 return; 2083 2084 // Determine is there is a duplicate set of blocks. 2085 std::optional<unsigned> MatchingBB = 2086 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 2087 2088 // If there is, we remove the new output blocks. If it does not, 2089 // we add it to our list of sets of output blocks. 2090 if (MatchingBB) { 2091 LLVM_DEBUG(dbgs() << "Set output block for region in function" 2092 << Region.ExtractedFunction << " to " << *MatchingBB); 2093 2094 Region.OutputBlockNum = *MatchingBB; 2095 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 2096 VtoBB.second->eraseFromParent(); 2097 return; 2098 } 2099 2100 Region.OutputBlockNum = OutputStoreBBs.size(); 2101 2102 Value *RetValueForBB; 2103 BasicBlock *NewBB; 2104 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2105 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 2106 RetValueForBB = VtoBB.first; 2107 NewBB = VtoBB.second; 2108 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2109 EndBBs.find(RetValueForBB); 2110 LLVM_DEBUG(dbgs() << "Create output block for region in" 2111 << Region.ExtractedFunction << " to " 2112 << *NewBB); 2113 BranchInst::Create(VBBIt->second, NewBB); 2114 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 2115 } 2116 } 2117 2118 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 2119 /// before creating a basic block for each \p NewMap, and inserting into the new 2120 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 2121 /// 2122 /// \param OldMap [in] - The mapping to base the new mapping off of. 2123 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 2124 /// \param ParentFunc [in] - The function to put the new basic block in. 2125 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 2126 /// by an index value. 2127 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 2128 DenseMap<Value *, BasicBlock *> &NewMap, 2129 Function *ParentFunc, Twine BaseName) { 2130 unsigned Idx = 0; 2131 std::vector<Value *> SortedKeys; 2132 2133 getSortedConstantKeys(SortedKeys, OldMap); 2134 2135 for (Value *RetVal : SortedKeys) { 2136 BasicBlock *NewBB = BasicBlock::Create( 2137 ParentFunc->getContext(), 2138 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 2139 ParentFunc); 2140 NewMap.insert(std::make_pair(RetVal, NewBB)); 2141 } 2142 } 2143 2144 /// Create the switch statement for outlined function to differentiate between 2145 /// all the output blocks. 2146 /// 2147 /// For the outlined section, determine if an outlined block already exists that 2148 /// matches the needed stores for the extracted section. 2149 /// \param [in] M - The module we are outlining from. 2150 /// \param [in] OG - The group of regions to be outlined. 2151 /// \param [in] EndBBs - The final blocks of the extracted function. 2152 /// \param [in,out] OutputStoreBBs - The existing output blocks. 2153 void createSwitchStatement( 2154 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 2155 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 2156 // We only need the switch statement if there is more than one store 2157 // combination, or there is more than one set of output blocks. The first 2158 // will occur when we store different sets of values for two different 2159 // regions. The second will occur when we have two outputs that are combined 2160 // in a PHINode outside of the region in one outlined instance, and are used 2161 // seaparately in another. This will create the same set of OutputGVNs, but 2162 // will generate two different output schemes. 2163 if (OG.OutputGVNCombinations.size() > 1) { 2164 Function *AggFunc = OG.OutlinedFunction; 2165 // Create a final block for each different return block. 2166 DenseMap<Value *, BasicBlock *> ReturnBBs; 2167 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2168 2169 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2170 std::pair<Value *, BasicBlock *> &OutputBlock = 2171 *OG.EndBBs.find(RetBlockPair.first); 2172 BasicBlock *ReturnBlock = RetBlockPair.second; 2173 BasicBlock *EndBB = OutputBlock.second; 2174 Instruction *Term = EndBB->getTerminator(); 2175 // Move the return value to the final block instead of the original exit 2176 // stub. 2177 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2178 // Put the switch statement in the old end basic block for the function 2179 // with a fall through to the new return block. 2180 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2181 << OutputStoreBBs.size() << "\n"); 2182 SwitchInst *SwitchI = 2183 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2184 ReturnBlock, OutputStoreBBs.size(), EndBB); 2185 2186 unsigned Idx = 0; 2187 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2188 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2189 OutputStoreBB.find(OutputBlock.first); 2190 2191 if (OSBBIt == OutputStoreBB.end()) 2192 continue; 2193 2194 BasicBlock *BB = OSBBIt->second; 2195 SwitchI->addCase( 2196 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2197 Term = BB->getTerminator(); 2198 Term->setSuccessor(0, ReturnBlock); 2199 Idx++; 2200 } 2201 } 2202 return; 2203 } 2204 2205 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2206 2207 // If there needs to be stores, move them from the output blocks to their 2208 // corresponding ending block. We do not check that the OutputGVNCombinations 2209 // is equal to 1 here since that could just been the case where there are 0 2210 // outputs. Instead, we check whether there is more than one set of output 2211 // blocks since this is the only case where we would have to move the 2212 // stores, and erase the extraneous blocks. 2213 if (OutputStoreBBs.size() == 1) { 2214 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2215 << *OG.OutlinedFunction << "\n"); 2216 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2217 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2218 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2219 EndBBs.find(VBPair.first); 2220 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2221 BasicBlock *EndBB = EndBBIt->second; 2222 BasicBlock *OutputBB = VBPair.second; 2223 Instruction *Term = OutputBB->getTerminator(); 2224 Term->eraseFromParent(); 2225 Term = EndBB->getTerminator(); 2226 moveBBContents(*OutputBB, *EndBB); 2227 Term->moveBefore(*EndBB, EndBB->end()); 2228 OutputBB->eraseFromParent(); 2229 } 2230 } 2231 } 2232 2233 /// Fill the new function that will serve as the replacement function for all of 2234 /// the extracted regions of a certain structure from the first region in the 2235 /// list of regions. Replace this first region's extracted function with the 2236 /// new overall function. 2237 /// 2238 /// \param [in] M - The module we are outlining from. 2239 /// \param [in] CurrentGroup - The group of regions to be outlined. 2240 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2241 /// set of stores needed for the different functions. 2242 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2243 /// once outlining is complete. 2244 /// \param [in] OutputMappings - Extracted functions to erase from module 2245 /// once outlining is complete. 2246 static void fillOverallFunction( 2247 Module &M, OutlinableGroup &CurrentGroup, 2248 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2249 std::vector<Function *> &FuncsToRemove, 2250 const DenseMap<Value *, Value *> &OutputMappings) { 2251 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2252 2253 // Move first extracted function's instructions into new function. 2254 LLVM_DEBUG(dbgs() << "Move instructions from " 2255 << *CurrentOS->ExtractedFunction << " to instruction " 2256 << *CurrentGroup.OutlinedFunction << "\n"); 2257 moveFunctionData(*CurrentOS->ExtractedFunction, 2258 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2259 2260 // Transfer the attributes from the function to the new function. 2261 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2262 CurrentGroup.OutlinedFunction->addFnAttr(A); 2263 2264 // Create a new set of output blocks for the first extracted function. 2265 DenseMap<Value *, BasicBlock *> NewBBs; 2266 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2267 CurrentGroup.OutlinedFunction, "output_block_0"); 2268 CurrentOS->OutputBlockNum = 0; 2269 2270 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2271 replaceConstants(*CurrentOS); 2272 2273 // We first identify if any output blocks are empty, if they are we remove 2274 // them. We then create a branch instruction to the basic block to the return 2275 // block for the function for each non empty output block. 2276 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2277 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2278 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2279 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2280 CurrentGroup.EndBBs.find(VToBB.first); 2281 BasicBlock *EndBB = VBBIt->second; 2282 BranchInst::Create(EndBB, VToBB.second); 2283 OutputStoreBBs.back().insert(VToBB); 2284 } 2285 } 2286 2287 // Replace the call to the extracted function with the outlined function. 2288 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2289 2290 // We only delete the extracted functions at the end since we may need to 2291 // reference instructions contained in them for mapping purposes. 2292 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2293 } 2294 2295 void IROutliner::deduplicateExtractedSections( 2296 Module &M, OutlinableGroup &CurrentGroup, 2297 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2298 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2299 2300 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2301 2302 OutlinableRegion *CurrentOS; 2303 2304 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2305 OutputMappings); 2306 2307 std::vector<Value *> SortedKeys; 2308 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2309 CurrentOS = CurrentGroup.Regions[Idx]; 2310 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2311 *CurrentOS->ExtractedFunction); 2312 2313 // Create a set of BasicBlocks, one for each return block, to hold the 2314 // needed store instructions. 2315 DenseMap<Value *, BasicBlock *> NewBBs; 2316 createAndInsertBasicBlocks( 2317 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2318 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2319 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2320 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2321 CurrentGroup.EndBBs, OutputMappings, 2322 OutputStoreBBs); 2323 2324 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2325 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2326 } 2327 2328 // Create a switch statement to handle the different output schemes. 2329 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2330 2331 OutlinedFunctionNum++; 2332 } 2333 2334 /// Checks that the next instruction in the InstructionDataList matches the 2335 /// next instruction in the module. If they do not, there could be the 2336 /// possibility that extra code has been inserted, and we must ignore it. 2337 /// 2338 /// \param ID - The IRInstructionData to check the next instruction of. 2339 /// \returns true if the InstructionDataList and actual instruction match. 2340 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2341 // We check if there is a discrepancy between the InstructionDataList 2342 // and the actual next instruction in the module. If there is, it means 2343 // that an extra instruction was added, likely by the CodeExtractor. 2344 2345 // Since we do not have any similarity data about this particular 2346 // instruction, we cannot confidently outline it, and must discard this 2347 // candidate. 2348 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2349 Instruction *NextIDLInst = NextIDIt->Inst; 2350 Instruction *NextModuleInst = nullptr; 2351 if (!ID.Inst->isTerminator()) 2352 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2353 else if (NextIDLInst != nullptr) 2354 NextModuleInst = 2355 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2356 2357 if (NextIDLInst && NextIDLInst != NextModuleInst) 2358 return false; 2359 2360 return true; 2361 } 2362 2363 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2364 const OutlinableRegion &Region) { 2365 IRSimilarityCandidate *IRSC = Region.Candidate; 2366 unsigned StartIdx = IRSC->getStartIdx(); 2367 unsigned EndIdx = IRSC->getEndIdx(); 2368 2369 // A check to make sure that we are not about to attempt to outline something 2370 // that has already been outlined. 2371 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2372 if (Outlined.contains(Idx)) 2373 return false; 2374 2375 // We check if the recorded instruction matches the actual next instruction, 2376 // if it does not, we fix it in the InstructionDataList. 2377 if (!Region.Candidate->backInstruction()->isTerminator()) { 2378 Instruction *NewEndInst = 2379 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2380 assert(NewEndInst && "Next instruction is a nullptr?"); 2381 if (Region.Candidate->end()->Inst != NewEndInst) { 2382 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2383 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2384 IRInstructionData(*NewEndInst, 2385 InstructionClassifier.visit(*NewEndInst), *IDL); 2386 2387 // Insert the first IRInstructionData of the new region after the 2388 // last IRInstructionData of the IRSimilarityCandidate. 2389 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2390 } 2391 } 2392 2393 return none_of(*IRSC, [this](IRInstructionData &ID) { 2394 if (!nextIRInstructionDataMatchesNextInst(ID)) 2395 return true; 2396 2397 return !this->InstructionClassifier.visit(ID.Inst); 2398 }); 2399 } 2400 2401 void IROutliner::pruneIncompatibleRegions( 2402 std::vector<IRSimilarityCandidate> &CandidateVec, 2403 OutlinableGroup &CurrentGroup) { 2404 bool PreviouslyOutlined; 2405 2406 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2407 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2408 const IRSimilarityCandidate &RHS) { 2409 return LHS.getStartIdx() < RHS.getStartIdx(); 2410 }); 2411 2412 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2413 // Since outlining a call and a branch instruction will be the same as only 2414 // outlinining a call instruction, we ignore it as a space saving. 2415 if (FirstCandidate.getLength() == 2) { 2416 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2417 isa<BranchInst>(FirstCandidate.back()->Inst)) 2418 return; 2419 } 2420 2421 unsigned CurrentEndIdx = 0; 2422 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2423 PreviouslyOutlined = false; 2424 unsigned StartIdx = IRSC.getStartIdx(); 2425 unsigned EndIdx = IRSC.getEndIdx(); 2426 const Function &FnForCurrCand = *IRSC.getFunction(); 2427 2428 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2429 if (Outlined.contains(Idx)) { 2430 PreviouslyOutlined = true; 2431 break; 2432 } 2433 2434 if (PreviouslyOutlined) 2435 continue; 2436 2437 // Check over the instructions, and if the basic block has its address 2438 // taken for use somewhere else, we do not outline that block. 2439 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2440 return ID.Inst->getParent()->hasAddressTaken(); 2441 }); 2442 2443 if (BBHasAddressTaken) 2444 continue; 2445 2446 if (FnForCurrCand.hasOptNone()) 2447 continue; 2448 2449 if (FnForCurrCand.hasFnAttribute("nooutline")) { 2450 LLVM_DEBUG({ 2451 dbgs() << "... Skipping function with nooutline attribute: " 2452 << FnForCurrCand.getName() << "\n"; 2453 }); 2454 continue; 2455 } 2456 2457 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2458 !OutlineFromLinkODRs) 2459 continue; 2460 2461 // Greedily prune out any regions that will overlap with already chosen 2462 // regions. 2463 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2464 continue; 2465 2466 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2467 if (!nextIRInstructionDataMatchesNextInst(ID)) 2468 return true; 2469 2470 return !this->InstructionClassifier.visit(ID.Inst); 2471 }); 2472 2473 if (BadInst) 2474 continue; 2475 2476 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2477 OutlinableRegion(IRSC, CurrentGroup); 2478 CurrentGroup.Regions.push_back(OS); 2479 2480 CurrentEndIdx = EndIdx; 2481 } 2482 } 2483 2484 InstructionCost 2485 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2486 InstructionCost RegionBenefit = 0; 2487 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2488 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2489 // We add the number of instructions in the region to the benefit as an 2490 // estimate as to how much will be removed. 2491 RegionBenefit += Region->getBenefit(TTI); 2492 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2493 << " saved instructions to overfall benefit.\n"); 2494 } 2495 2496 return RegionBenefit; 2497 } 2498 2499 /// For the \p OutputCanon number passed in find the value represented by this 2500 /// canonical number. If it is from a PHINode, we pick the first incoming 2501 /// value and return that Value instead. 2502 /// 2503 /// \param Region - The OutlinableRegion to get the Value from. 2504 /// \param OutputCanon - The canonical number to find the Value from. 2505 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2506 /// Region. 2507 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2508 unsigned OutputCanon) { 2509 OutlinableGroup &CurrentGroup = *Region.Parent; 2510 // If the value is greater than the value in the tracker, we have a 2511 // PHINode and will instead use one of the incoming values to find the 2512 // type. 2513 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2514 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2515 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2516 "Could not find GVN set for PHINode number!"); 2517 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2518 OutputCanon = *It->second.second.begin(); 2519 } 2520 std::optional<unsigned> OGVN = 2521 Region.Candidate->fromCanonicalNum(OutputCanon); 2522 assert(OGVN && "Could not find GVN for Canonical Number?"); 2523 std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2524 assert(OV && "Could not find value for GVN?"); 2525 return *OV; 2526 } 2527 2528 InstructionCost 2529 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2530 InstructionCost OverallCost = 0; 2531 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2532 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2533 2534 // Each output incurs a load after the call, so we add that to the cost. 2535 for (unsigned OutputCanon : Region->GVNStores) { 2536 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2537 InstructionCost LoadCost = 2538 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2539 TargetTransformInfo::TCK_CodeSize); 2540 2541 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2542 << " instructions to cost for output of type " 2543 << *V->getType() << "\n"); 2544 OverallCost += LoadCost; 2545 } 2546 } 2547 2548 return OverallCost; 2549 } 2550 2551 /// Find the extra instructions needed to handle any output values for the 2552 /// region. 2553 /// 2554 /// \param [in] M - The Module to outline from. 2555 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2556 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2557 /// new instruction costs. 2558 /// \returns the additional cost to handle the outputs. 2559 static InstructionCost findCostForOutputBlocks(Module &M, 2560 OutlinableGroup &CurrentGroup, 2561 TargetTransformInfo &TTI) { 2562 InstructionCost OutputCost = 0; 2563 unsigned NumOutputBranches = 0; 2564 2565 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2566 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2567 DenseSet<BasicBlock *> CandidateBlocks; 2568 Candidate.getBasicBlocks(CandidateBlocks); 2569 2570 // Count the number of different output branches that point to blocks outside 2571 // of the region. 2572 DenseSet<BasicBlock *> FoundBlocks; 2573 for (IRInstructionData &ID : Candidate) { 2574 if (!isa<BranchInst>(ID.Inst)) 2575 continue; 2576 2577 for (Value *V : ID.OperVals) { 2578 BasicBlock *BB = static_cast<BasicBlock *>(V); 2579 if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second) 2580 NumOutputBranches++; 2581 } 2582 } 2583 2584 CurrentGroup.BranchesToOutside = NumOutputBranches; 2585 2586 for (const ArrayRef<unsigned> &OutputUse : 2587 CurrentGroup.OutputGVNCombinations) { 2588 for (unsigned OutputCanon : OutputUse) { 2589 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2590 InstructionCost StoreCost = 2591 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2592 TargetTransformInfo::TCK_CodeSize); 2593 2594 // An instruction cost is added for each store set that needs to occur for 2595 // various output combinations inside the function, plus a branch to 2596 // return to the exit block. 2597 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2598 << " instructions to cost for output of type " 2599 << *V->getType() << "\n"); 2600 OutputCost += StoreCost * NumOutputBranches; 2601 } 2602 2603 InstructionCost BranchCost = 2604 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2605 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2606 << " a branch instruction\n"); 2607 OutputCost += BranchCost * NumOutputBranches; 2608 } 2609 2610 // If there is more than one output scheme, we must have a comparison and 2611 // branch for each different item in the switch statement. 2612 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2613 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2614 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2615 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2616 TargetTransformInfo::TCK_CodeSize); 2617 InstructionCost BranchCost = 2618 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2619 2620 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2621 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2622 2623 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2624 << " instructions for each switch case for each different" 2625 << " output path in a function\n"); 2626 OutputCost += TotalCost * NumOutputBranches; 2627 } 2628 2629 return OutputCost; 2630 } 2631 2632 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2633 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2634 CurrentGroup.Benefit += RegionBenefit; 2635 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2636 2637 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2638 CurrentGroup.Cost += OutputReloadCost; 2639 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2640 2641 InstructionCost AverageRegionBenefit = 2642 RegionBenefit / CurrentGroup.Regions.size(); 2643 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2644 unsigned NumRegions = CurrentGroup.Regions.size(); 2645 TargetTransformInfo &TTI = 2646 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2647 2648 // We add one region to the cost once, to account for the instructions added 2649 // inside of the newly created function. 2650 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2651 << " instructions to cost for body of new function.\n"); 2652 CurrentGroup.Cost += AverageRegionBenefit; 2653 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2654 2655 // For each argument, we must add an instruction for loading the argument 2656 // out of the register and into a value inside of the newly outlined function. 2657 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2658 << " instructions to cost for each argument in the new" 2659 << " function.\n"); 2660 CurrentGroup.Cost += 2661 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2662 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2663 2664 // Each argument needs to either be loaded into a register or onto the stack. 2665 // Some arguments will only be loaded into the stack once the argument 2666 // registers are filled. 2667 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2668 << " instructions to cost for each argument in the new" 2669 << " function " << NumRegions << " times for the " 2670 << "needed argument handling at the call site.\n"); 2671 CurrentGroup.Cost += 2672 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2673 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2674 2675 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2676 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2677 } 2678 2679 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2680 ArrayRef<Value *> Outputs, 2681 LoadInst *LI) { 2682 // For and load instructions following the call 2683 Value *Operand = LI->getPointerOperand(); 2684 std::optional<unsigned> OutputIdx; 2685 // Find if the operand it is an output register. 2686 for (unsigned ArgIdx = Region.NumExtractedInputs; 2687 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2688 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2689 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2690 break; 2691 } 2692 } 2693 2694 // If we found an output register, place a mapping of the new value 2695 // to the original in the mapping. 2696 if (!OutputIdx) 2697 return; 2698 2699 if (!OutputMappings.contains(Outputs[*OutputIdx])) { 2700 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2701 << *Outputs[*OutputIdx] << "\n"); 2702 OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx])); 2703 } else { 2704 Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second; 2705 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2706 << *Outputs[*OutputIdx] << "\n"); 2707 OutputMappings.insert(std::make_pair(LI, Orig)); 2708 } 2709 } 2710 2711 bool IROutliner::extractSection(OutlinableRegion &Region) { 2712 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2713 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2714 BasicBlock *InitialStart = Region.StartBB; 2715 Function *OrigF = Region.StartBB->getParent(); 2716 CodeExtractorAnalysisCache CEAC(*OrigF); 2717 Region.ExtractedFunction = 2718 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2719 2720 // If the extraction was successful, find the BasicBlock, and reassign the 2721 // OutlinableRegion blocks 2722 if (!Region.ExtractedFunction) { 2723 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2724 << "\n"); 2725 Region.reattachCandidate(); 2726 return false; 2727 } 2728 2729 // Get the block containing the called branch, and reassign the blocks as 2730 // necessary. If the original block still exists, it is because we ended on 2731 // a branch instruction, and so we move the contents into the block before 2732 // and assign the previous block correctly. 2733 User *InstAsUser = Region.ExtractedFunction->user_back(); 2734 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2735 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2736 assert(Region.PrevBB && "PrevBB is nullptr?"); 2737 if (Region.PrevBB == InitialStart) { 2738 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2739 Instruction *BI = NewPrev->getTerminator(); 2740 BI->eraseFromParent(); 2741 moveBBContents(*InitialStart, *NewPrev); 2742 Region.PrevBB = NewPrev; 2743 InitialStart->eraseFromParent(); 2744 } 2745 2746 Region.StartBB = RewrittenBB; 2747 Region.EndBB = RewrittenBB; 2748 2749 // The sequences of outlinable regions has now changed. We must fix the 2750 // IRInstructionDataList for consistency. Although they may not be illegal 2751 // instructions, they should not be compared with anything else as they 2752 // should not be outlined in this round. So marking these as illegal is 2753 // allowed. 2754 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2755 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2756 Instruction *EndRewritten = &*RewrittenBB->begin(); 2757 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2758 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2759 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2760 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2761 2762 // Insert the first IRInstructionData of the new region in front of the 2763 // first IRInstructionData of the IRSimilarityCandidate. 2764 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2765 // Insert the first IRInstructionData of the new region after the 2766 // last IRInstructionData of the IRSimilarityCandidate. 2767 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2768 // Remove the IRInstructionData from the IRSimilarityCandidate. 2769 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2770 2771 assert(RewrittenBB != nullptr && 2772 "Could not find a predecessor after extraction!"); 2773 2774 // Iterate over the new set of instructions to find the new call 2775 // instruction. 2776 for (Instruction &I : *RewrittenBB) 2777 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2778 if (Region.ExtractedFunction == CI->getCalledFunction()) 2779 Region.Call = CI; 2780 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2781 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2782 Region.reattachCandidate(); 2783 return true; 2784 } 2785 2786 unsigned IROutliner::doOutline(Module &M) { 2787 // Find the possible similarity sections. 2788 InstructionClassifier.EnableBranches = !DisableBranches; 2789 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2790 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2791 2792 IRSimilarityIdentifier &Identifier = getIRSI(M); 2793 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2794 2795 // Sort them by size of extracted sections 2796 unsigned OutlinedFunctionNum = 0; 2797 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2798 // to sort them by the potential number of instructions to be outlined 2799 if (SimilarityCandidates.size() > 1) 2800 llvm::stable_sort(SimilarityCandidates, 2801 [](const std::vector<IRSimilarityCandidate> &LHS, 2802 const std::vector<IRSimilarityCandidate> &RHS) { 2803 return LHS[0].getLength() * LHS.size() > 2804 RHS[0].getLength() * RHS.size(); 2805 }); 2806 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2807 // each of the following for loops to avoid making an allocator. 2808 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2809 2810 DenseSet<unsigned> NotSame; 2811 std::vector<OutlinableGroup *> NegativeCostGroups; 2812 std::vector<OutlinableRegion *> OutlinedRegions; 2813 // Iterate over the possible sets of similarity. 2814 unsigned PotentialGroupIdx = 0; 2815 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2816 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2817 2818 // Remove entries that were previously outlined 2819 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2820 2821 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2822 // trying to outlined since there is no compatible similar instance of this 2823 // code. 2824 if (CurrentGroup.Regions.size() < 2) 2825 continue; 2826 2827 // Determine if there are any values that are the same constant throughout 2828 // each section in the set. 2829 NotSame.clear(); 2830 CurrentGroup.findSameConstants(NotSame); 2831 2832 if (CurrentGroup.IgnoreGroup) 2833 continue; 2834 2835 // Create a CodeExtractor for each outlinable region. Identify inputs and 2836 // outputs for each section using the code extractor and create the argument 2837 // types for the Aggregate Outlining Function. 2838 OutlinedRegions.clear(); 2839 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2840 // Break the outlinable region out of its parent BasicBlock into its own 2841 // BasicBlocks (see function implementation). 2842 OS->splitCandidate(); 2843 2844 // There's a chance that when the region is split, extra instructions are 2845 // added to the region. This makes the region no longer viable 2846 // to be split, so we ignore it for outlining. 2847 if (!OS->CandidateSplit) 2848 continue; 2849 2850 SmallVector<BasicBlock *> BE; 2851 DenseSet<BasicBlock *> BlocksInRegion; 2852 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2853 OS->CE = new (ExtractorAllocator.Allocate()) 2854 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2855 false, nullptr, "outlined"); 2856 findAddInputsOutputs(M, *OS, NotSame); 2857 if (!OS->IgnoreRegion) 2858 OutlinedRegions.push_back(OS); 2859 2860 // We recombine the blocks together now that we have gathered all the 2861 // needed information. 2862 OS->reattachCandidate(); 2863 } 2864 2865 CurrentGroup.Regions = std::move(OutlinedRegions); 2866 2867 if (CurrentGroup.Regions.empty()) 2868 continue; 2869 2870 CurrentGroup.collectGVNStoreSets(M); 2871 2872 if (CostModel) 2873 findCostBenefit(M, CurrentGroup); 2874 2875 // If we are adhering to the cost model, skip those groups where the cost 2876 // outweighs the benefits. 2877 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2878 OptimizationRemarkEmitter &ORE = 2879 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2880 ORE.emit([&]() { 2881 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2882 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2883 C->frontInstruction()); 2884 R << "did not outline " 2885 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2886 << " regions due to estimated increase of " 2887 << ore::NV("InstructionIncrease", 2888 CurrentGroup.Cost - CurrentGroup.Benefit) 2889 << " instructions at locations "; 2890 interleave( 2891 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2892 [&R](OutlinableRegion *Region) { 2893 R << ore::NV( 2894 "DebugLoc", 2895 Region->Candidate->frontInstruction()->getDebugLoc()); 2896 }, 2897 [&R]() { R << " "; }); 2898 return R; 2899 }); 2900 continue; 2901 } 2902 2903 NegativeCostGroups.push_back(&CurrentGroup); 2904 } 2905 2906 ExtractorAllocator.DestroyAll(); 2907 2908 if (NegativeCostGroups.size() > 1) 2909 stable_sort(NegativeCostGroups, 2910 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2911 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2912 }); 2913 2914 std::vector<Function *> FuncsToRemove; 2915 for (OutlinableGroup *CG : NegativeCostGroups) { 2916 OutlinableGroup &CurrentGroup = *CG; 2917 2918 OutlinedRegions.clear(); 2919 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2920 // We check whether our region is compatible with what has already been 2921 // outlined, and whether we need to ignore this item. 2922 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2923 continue; 2924 OutlinedRegions.push_back(Region); 2925 } 2926 2927 if (OutlinedRegions.size() < 2) 2928 continue; 2929 2930 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2931 // we are still outlining enough regions to make up for the added cost. 2932 CurrentGroup.Regions = std::move(OutlinedRegions); 2933 if (CostModel) { 2934 CurrentGroup.Benefit = 0; 2935 CurrentGroup.Cost = 0; 2936 findCostBenefit(M, CurrentGroup); 2937 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2938 continue; 2939 } 2940 OutlinedRegions.clear(); 2941 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2942 Region->splitCandidate(); 2943 if (!Region->CandidateSplit) 2944 continue; 2945 OutlinedRegions.push_back(Region); 2946 } 2947 2948 CurrentGroup.Regions = std::move(OutlinedRegions); 2949 if (CurrentGroup.Regions.size() < 2) { 2950 for (OutlinableRegion *R : CurrentGroup.Regions) 2951 R->reattachCandidate(); 2952 continue; 2953 } 2954 2955 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2956 << " and benefit " << CurrentGroup.Benefit << "\n"); 2957 2958 // Create functions out of all the sections, and mark them as outlined. 2959 OutlinedRegions.clear(); 2960 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2961 SmallVector<BasicBlock *> BE; 2962 DenseSet<BasicBlock *> BlocksInRegion; 2963 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2964 OS->CE = new (ExtractorAllocator.Allocate()) 2965 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2966 false, nullptr, "outlined"); 2967 bool FunctionOutlined = extractSection(*OS); 2968 if (FunctionOutlined) { 2969 unsigned StartIdx = OS->Candidate->getStartIdx(); 2970 unsigned EndIdx = OS->Candidate->getEndIdx(); 2971 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2972 Outlined.insert(Idx); 2973 2974 OutlinedRegions.push_back(OS); 2975 } 2976 } 2977 2978 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2979 << " with benefit " << CurrentGroup.Benefit 2980 << " and cost " << CurrentGroup.Cost << "\n"); 2981 2982 CurrentGroup.Regions = std::move(OutlinedRegions); 2983 2984 if (CurrentGroup.Regions.empty()) 2985 continue; 2986 2987 OptimizationRemarkEmitter &ORE = 2988 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2989 ORE.emit([&]() { 2990 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2991 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2992 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2993 << " regions with decrease of " 2994 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2995 << " instructions at locations "; 2996 interleave( 2997 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2998 [&R](OutlinableRegion *Region) { 2999 R << ore::NV("DebugLoc", 3000 Region->Candidate->frontInstruction()->getDebugLoc()); 3001 }, 3002 [&R]() { R << " "; }); 3003 return R; 3004 }); 3005 3006 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 3007 OutlinedFunctionNum); 3008 } 3009 3010 for (Function *F : FuncsToRemove) 3011 F->eraseFromParent(); 3012 3013 return OutlinedFunctionNum; 3014 } 3015 3016 bool IROutliner::run(Module &M) { 3017 CostModel = !NoCostModel; 3018 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 3019 3020 return doOutline(M) > 0; 3021 } 3022 3023 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 3024 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3025 3026 std::function<TargetTransformInfo &(Function &)> GTTI = 3027 [&FAM](Function &F) -> TargetTransformInfo & { 3028 return FAM.getResult<TargetIRAnalysis>(F); 3029 }; 3030 3031 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 3032 [&AM](Module &M) -> IRSimilarityIdentifier & { 3033 return AM.getResult<IRSimilarityAnalysis>(M); 3034 }; 3035 3036 std::unique_ptr<OptimizationRemarkEmitter> ORE; 3037 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 3038 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 3039 ORE.reset(new OptimizationRemarkEmitter(&F)); 3040 return *ORE; 3041 }; 3042 3043 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 3044 return PreservedAnalyses::none(); 3045 return PreservedAnalyses::all(); 3046 } 3047