xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 #include <optional>
28 #include <vector>
29 
30 #define DEBUG_TYPE "iroutliner"
31 
32 using namespace llvm;
33 using namespace IRSimilarity;
34 
35 // A command flag to be used for debugging to exclude branches from similarity
36 // matching and outlining.
37 namespace llvm {
38 extern cl::opt<bool> DisableBranches;
39 
40 // A command flag to be used for debugging to indirect calls from similarity
41 // matching and outlining.
42 extern cl::opt<bool> DisableIndirectCalls;
43 
44 // A command flag to be used for debugging to exclude intrinsics from similarity
45 // matching and outlining.
46 extern cl::opt<bool> DisableIntrinsics;
47 
48 } // namespace llvm
49 
50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51 // functions. This is false by default because the linker can dedupe linkonceodr
52 // functions. Since the outliner is confined to a single module (modulo LTO),
53 // this is off by default. It should, however, be the default behavior in
54 // LTO.
55 static cl::opt<bool> EnableLinkOnceODRIROutlining(
56     "enable-linkonceodr-ir-outlining", cl::Hidden,
57     cl::desc("Enable the IR outliner on linkonceodr functions"),
58     cl::init(false));
59 
60 // This is a debug option to test small pieces of code to ensure that outlining
61 // works correctly.
62 static cl::opt<bool> NoCostModel(
63     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
64     cl::desc("Debug option to outline greedily, without restriction that "
65              "calculated benefit outweighs cost"));
66 
67 /// The OutlinableGroup holds all the overarching information for outlining
68 /// a set of regions that are structurally similar to one another, such as the
69 /// types of the overall function, the output blocks, the sets of stores needed
70 /// and a list of the different regions. This information is used in the
71 /// deduplication of extracted regions with the same structure.
72 struct OutlinableGroup {
73   /// The sections that could be outlined
74   std::vector<OutlinableRegion *> Regions;
75 
76   /// The argument types for the function created as the overall function to
77   /// replace the extracted function for each region.
78   std::vector<Type *> ArgumentTypes;
79   /// The FunctionType for the overall function.
80   FunctionType *OutlinedFunctionType = nullptr;
81   /// The Function for the collective overall function.
82   Function *OutlinedFunction = nullptr;
83 
84   /// Flag for whether we should not consider this group of OutlinableRegions
85   /// for extraction.
86   bool IgnoreGroup = false;
87 
88   /// The return blocks for the overall function.
89   DenseMap<Value *, BasicBlock *> EndBBs;
90 
91   /// The PHIBlocks with their corresponding return block based on the return
92   /// value as the key.
93   DenseMap<Value *, BasicBlock *> PHIBlocks;
94 
95   /// A set containing the different GVN store sets needed. Each array contains
96   /// a sorted list of the different values that need to be stored into output
97   /// registers.
98   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
99 
100   /// Flag for whether the \ref ArgumentTypes have been defined after the
101   /// extraction of the first region.
102   bool InputTypesSet = false;
103 
104   /// The number of input values in \ref ArgumentTypes.  Anything after this
105   /// index in ArgumentTypes is an output argument.
106   unsigned NumAggregateInputs = 0;
107 
108   /// The mapping of the canonical numbering of the values in outlined sections
109   /// to specific arguments.
110   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
111 
112   /// The number of branches in the region target a basic block that is outside
113   /// of the region.
114   unsigned BranchesToOutside = 0;
115 
116   /// Tracker counting backwards from the highest unsigned value possible to
117   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
118   /// -2 and -1 are assigned by the DenseMap.
119   unsigned PHINodeGVNTracker = -3;
120 
121   DenseMap<unsigned,
122            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
123       PHINodeGVNToGVNs;
124   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
125 
126   /// The number of instructions that will be outlined by extracting \ref
127   /// Regions.
128   InstructionCost Benefit = 0;
129   /// The number of added instructions needed for the outlining of the \ref
130   /// Regions.
131   InstructionCost Cost = 0;
132 
133   /// The argument that needs to be marked with the swifterr attribute.  If not
134   /// needed, there is no value.
135   std::optional<unsigned> SwiftErrorArgument;
136 
137   /// For the \ref Regions, we look at every Value.  If it is a constant,
138   /// we check whether it is the same in Region.
139   ///
140   /// \param [in,out] NotSame contains the global value numbers where the
141   /// constant is not always the same, and must be passed in as an argument.
142   void findSameConstants(DenseSet<unsigned> &NotSame);
143 
144   /// For the regions, look at each set of GVN stores needed and account for
145   /// each combination.  Add an argument to the argument types if there is
146   /// more than one combination.
147   ///
148   /// \param [in] M - The module we are outlining from.
149   void collectGVNStoreSets(Module &M);
150 };
151 
152 /// Move the contents of \p SourceBB to before the last instruction of \p
153 /// TargetBB.
154 /// \param SourceBB - the BasicBlock to pull Instructions from.
155 /// \param TargetBB - the BasicBlock to put Instruction into.
156 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
157   TargetBB.splice(TargetBB.end(), &SourceBB);
158 }
159 
160 /// A function to sort the keys of \p Map, which must be a mapping of constant
161 /// values to basic blocks and return it in \p SortedKeys
162 ///
163 /// \param SortedKeys - The vector the keys will be return in and sorted.
164 /// \param Map - The DenseMap containing keys to sort.
165 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
166                                   DenseMap<Value *, BasicBlock *> &Map) {
167   for (auto &VtoBB : Map)
168     SortedKeys.push_back(VtoBB.first);
169 
170   // Here we expect to have either 1 value that is void (nullptr) or multiple
171   // values that are all constant integers.
172   if (SortedKeys.size() == 1) {
173     assert(!SortedKeys[0] && "Expected a single void value.");
174     return;
175   }
176 
177   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
178     assert(LHS && RHS && "Expected non void values.");
179     const ConstantInt *LHSC = cast<ConstantInt>(LHS);
180     const ConstantInt *RHSC = cast<ConstantInt>(RHS);
181 
182     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
183   });
184 }
185 
186 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
187                                                   Value *V) {
188   std::optional<unsigned> GVN = Candidate->getGVN(V);
189   assert(GVN && "No GVN for incoming value");
190   std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
191   std::optional<unsigned> FirstGVN =
192       Other.Candidate->fromCanonicalNum(*CanonNum);
193   std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
194   return FoundValueOpt.value_or(nullptr);
195 }
196 
197 BasicBlock *
198 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
199                                            BasicBlock *BB) {
200   Instruction *FirstNonPHI = BB->getFirstNonPHIOrDbg();
201   assert(FirstNonPHI && "block is empty?");
202   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
203   if (!CorrespondingVal)
204     return nullptr;
205   BasicBlock *CorrespondingBlock =
206       cast<Instruction>(CorrespondingVal)->getParent();
207   return CorrespondingBlock;
208 }
209 
210 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
211 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
212 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
213 /// when PHINodes are included in outlined regions.
214 ///
215 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
216 /// checked.
217 /// \param Find - The successor block to be replaced.
218 /// \param Replace - The new succesor block to branch to.
219 /// \param Included - The set of blocks about to be outlined.
220 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
221                                       BasicBlock *Replace,
222                                       DenseSet<BasicBlock *> &Included) {
223   for (PHINode &PN : PHIBlock->phis()) {
224     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
225          ++Idx) {
226       // Check if the incoming block is included in the set of blocks being
227       // outlined.
228       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
229       if (!Included.contains(Incoming))
230         continue;
231 
232       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
233       assert(BI && "Not a branch instruction?");
234       // Look over the branching instructions into this block to see if we
235       // used to branch to Find in this outlined block.
236       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
237            Succ++) {
238         // If we have found the block to replace, we do so here.
239         if (BI->getSuccessor(Succ) != Find)
240           continue;
241         BI->setSuccessor(Succ, Replace);
242       }
243     }
244   }
245 }
246 
247 
248 void OutlinableRegion::splitCandidate() {
249   assert(!CandidateSplit && "Candidate already split!");
250 
251   Instruction *BackInst = Candidate->backInstruction();
252 
253   Instruction *EndInst = nullptr;
254   // Check whether the last instruction is a terminator, if it is, we do
255   // not split on the following instruction. We leave the block as it is.  We
256   // also check that this is not the last instruction in the Module, otherwise
257   // the check for whether the current following instruction matches the
258   // previously recorded instruction will be incorrect.
259   if (!BackInst->isTerminator() ||
260       BackInst->getParent() != &BackInst->getFunction()->back()) {
261     EndInst = Candidate->end()->Inst;
262     assert(EndInst && "Expected an end instruction?");
263   }
264 
265   // We check if the current instruction following the last instruction in the
266   // region is the same as the recorded instruction following the last
267   // instruction. If they do not match, there could be problems in rewriting
268   // the program after outlining, so we ignore it.
269   if (!BackInst->isTerminator() &&
270       EndInst != BackInst->getNextNonDebugInstruction())
271     return;
272 
273   Instruction *StartInst = (*Candidate->begin()).Inst;
274   assert(StartInst && "Expected a start instruction?");
275   StartBB = StartInst->getParent();
276   PrevBB = StartBB;
277 
278   DenseSet<BasicBlock *> BBSet;
279   Candidate->getBasicBlocks(BBSet);
280 
281   // We iterate over the instructions in the region, if we find a PHINode, we
282   // check if there are predecessors outside of the region, if there are,
283   // we ignore this region since we are unable to handle the severing of the
284   // phi node right now.
285 
286   // TODO: Handle extraneous inputs for PHINodes through variable number of
287   // inputs, similar to how outputs are handled.
288   BasicBlock::iterator It = StartInst->getIterator();
289   EndBB = BackInst->getParent();
290   BasicBlock *IBlock;
291   BasicBlock *PHIPredBlock = nullptr;
292   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
293   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
294     unsigned NumPredsOutsideRegion = 0;
295     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
296       if (!BBSet.contains(PN->getIncomingBlock(i))) {
297         PHIPredBlock = PN->getIncomingBlock(i);
298         ++NumPredsOutsideRegion;
299         continue;
300       }
301 
302       // We must consider the case there the incoming block to the PHINode is
303       // the same as the final block of the OutlinableRegion.  If this is the
304       // case, the branch from this block must also be outlined to be valid.
305       IBlock = PN->getIncomingBlock(i);
306       if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
307         PHIPredBlock = PN->getIncomingBlock(i);
308         ++NumPredsOutsideRegion;
309       }
310     }
311 
312     if (NumPredsOutsideRegion > 1)
313       return;
314 
315     It++;
316   }
317 
318   // If the region starts with a PHINode, but is not the initial instruction of
319   // the BasicBlock, we ignore this region for now.
320   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
321     return;
322 
323   // If the region ends with a PHINode, but does not contain all of the phi node
324   // instructions of the region, we ignore it for now.
325   if (isa<PHINode>(BackInst) &&
326       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
327     return;
328 
329   // The basic block gets split like so:
330   // block:                 block:
331   //   inst1                  inst1
332   //   inst2                  inst2
333   //   region1               br block_to_outline
334   //   region2              block_to_outline:
335   //   region3          ->    region1
336   //   region4                region2
337   //   inst3                  region3
338   //   inst4                  region4
339   //                          br block_after_outline
340   //                        block_after_outline:
341   //                          inst3
342   //                          inst4
343 
344   std::string OriginalName = PrevBB->getName().str();
345 
346   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
347   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
348   // If there was a PHINode with an incoming block outside the region,
349   // make sure is correctly updated in the newly split block.
350   if (PHIPredBlock)
351     PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
352 
353   CandidateSplit = true;
354   if (!BackInst->isTerminator()) {
355     EndBB = EndInst->getParent();
356     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
357     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
358     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
359   } else {
360     EndBB = BackInst->getParent();
361     EndsInBranch = true;
362     FollowBB = nullptr;
363   }
364 
365   // Refind the basic block set.
366   BBSet.clear();
367   Candidate->getBasicBlocks(BBSet);
368   // For the phi nodes in the new starting basic block of the region, we
369   // reassign the targets of the basic blocks branching instructions.
370   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
371   if (FollowBB)
372     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
373 }
374 
375 void OutlinableRegion::reattachCandidate() {
376   assert(CandidateSplit && "Candidate is not split!");
377 
378   // The basic block gets reattached like so:
379   // block:                        block:
380   //   inst1                         inst1
381   //   inst2                         inst2
382   //   br block_to_outline           region1
383   // block_to_outline:        ->     region2
384   //   region1                       region3
385   //   region2                       region4
386   //   region3                       inst3
387   //   region4                       inst4
388   //   br block_after_outline
389   // block_after_outline:
390   //   inst3
391   //   inst4
392   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
393 
394   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
395   // Make sure PHINode references to the block we are merging into are
396   // updated to be incoming blocks from the predecessor to the current block.
397 
398   // NOTE: If this is updated such that the outlined block can have more than
399   // one incoming block to a PHINode, this logic will have to updated
400   // to handle multiple precessors instead.
401 
402   // We only need to update this if the outlined section contains a PHINode, if
403   // it does not, then the incoming block was never changed in the first place.
404   // On the other hand, if PrevBB has no predecessors, it means that all
405   // incoming blocks to the first block are contained in the region, and there
406   // will be nothing to update.
407   Instruction *StartInst = (*Candidate->begin()).Inst;
408   if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
409     assert(!PrevBB->hasNPredecessorsOrMore(2) &&
410          "PrevBB has more than one predecessor. Should be 0 or 1.");
411     BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
412     PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
413   }
414   PrevBB->getTerminator()->eraseFromParent();
415 
416   // If we reattaching after outlining, we iterate over the phi nodes to
417   // the initial block, and reassign the branch instructions of the incoming
418   // blocks to the block we are remerging into.
419   if (!ExtractedFunction) {
420     DenseSet<BasicBlock *> BBSet;
421     Candidate->getBasicBlocks(BBSet);
422 
423     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
424     if (!EndsInBranch)
425       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
426   }
427 
428   moveBBContents(*StartBB, *PrevBB);
429 
430   BasicBlock *PlacementBB = PrevBB;
431   if (StartBB != EndBB)
432     PlacementBB = EndBB;
433   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
434     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
435     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
436     PlacementBB->getTerminator()->eraseFromParent();
437     moveBBContents(*FollowBB, *PlacementBB);
438     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
439     FollowBB->eraseFromParent();
440   }
441 
442   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
443   StartBB->eraseFromParent();
444 
445   // Make sure to save changes back to the StartBB.
446   StartBB = PrevBB;
447   EndBB = nullptr;
448   PrevBB = nullptr;
449   FollowBB = nullptr;
450 
451   CandidateSplit = false;
452 }
453 
454 /// Find whether \p V matches the Constants previously found for the \p GVN.
455 ///
456 /// \param V - The value to check for consistency.
457 /// \param GVN - The global value number assigned to \p V.
458 /// \param GVNToConstant - The mapping of global value number to Constants.
459 /// \returns true if the Value matches the Constant mapped to by V and false if
460 /// it \p V is a Constant but does not match.
461 /// \returns std::nullopt if \p V is not a Constant.
462 static std::optional<bool>
463 constantMatches(Value *V, unsigned GVN,
464                 DenseMap<unsigned, Constant *> &GVNToConstant) {
465   // See if we have a constants
466   Constant *CST = dyn_cast<Constant>(V);
467   if (!CST)
468     return std::nullopt;
469 
470   // Holds a mapping from a global value number to a Constant.
471   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
472   bool Inserted;
473 
474 
475   // If we have a constant, try to make a new entry in the GVNToConstant.
476   std::tie(GVNToConstantIt, Inserted) =
477       GVNToConstant.insert(std::make_pair(GVN, CST));
478   // If it was found and is not equal, it is not the same. We do not
479   // handle this case yet, and exit early.
480   if (Inserted || (GVNToConstantIt->second == CST))
481     return true;
482 
483   return false;
484 }
485 
486 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
487   InstructionCost Benefit = 0;
488 
489   // Estimate the benefit of outlining a specific sections of the program.  We
490   // delegate mostly this task to the TargetTransformInfo so that if the target
491   // has specific changes, we can have a more accurate estimate.
492 
493   // However, getInstructionCost delegates the code size calculation for
494   // arithmetic instructions to getArithmeticInstrCost in
495   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
496   // code size for a division and remainder instruction to be equal to 4, and
497   // everything else to 1.  This is not an accurate representation of the
498   // division instruction for targets that have a native division instruction.
499   // To be overly conservative, we only add 1 to the number of instructions for
500   // each division instruction.
501   for (IRInstructionData &ID : *Candidate) {
502     Instruction *I = ID.Inst;
503     switch (I->getOpcode()) {
504     case Instruction::FDiv:
505     case Instruction::FRem:
506     case Instruction::SDiv:
507     case Instruction::SRem:
508     case Instruction::UDiv:
509     case Instruction::URem:
510       Benefit += 1;
511       break;
512     default:
513       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
514       break;
515     }
516   }
517 
518   return Benefit;
519 }
520 
521 /// Check the \p OutputMappings structure for value \p Input, if it exists
522 /// it has been used as an output for outlining, and has been renamed, and we
523 /// return the new value, otherwise, we return the same value.
524 ///
525 /// \param OutputMappings [in] - The mapping of values to their renamed value
526 /// after being used as an output for an outlined region.
527 /// \param Input [in] - The value to find the remapped value of, if it exists.
528 /// \return The remapped value if it has been renamed, and the same value if has
529 /// not.
530 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
531                                 Value *Input) {
532   DenseMap<Value *, Value *>::const_iterator OutputMapping =
533       OutputMappings.find(Input);
534   if (OutputMapping != OutputMappings.end())
535     return OutputMapping->second;
536   return Input;
537 }
538 
539 /// Find whether \p Region matches the global value numbering to Constant
540 /// mapping found so far.
541 ///
542 /// \param Region - The OutlinableRegion we are checking for constants
543 /// \param GVNToConstant - The mapping of global value number to Constants.
544 /// \param NotSame - The set of global value numbers that do not have the same
545 /// constant in each region.
546 /// \returns true if all Constants are the same in every use of a Constant in \p
547 /// Region and false if not
548 static bool
549 collectRegionsConstants(OutlinableRegion &Region,
550                         DenseMap<unsigned, Constant *> &GVNToConstant,
551                         DenseSet<unsigned> &NotSame) {
552   bool ConstantsTheSame = true;
553 
554   IRSimilarityCandidate &C = *Region.Candidate;
555   for (IRInstructionData &ID : C) {
556 
557     // Iterate over the operands in an instruction. If the global value number,
558     // assigned by the IRSimilarityCandidate, has been seen before, we check if
559     // the number has been found to be not the same value in each instance.
560     for (Value *V : ID.OperVals) {
561       std::optional<unsigned> GVNOpt = C.getGVN(V);
562       assert(GVNOpt && "Expected a GVN for operand?");
563       unsigned GVN = *GVNOpt;
564 
565       // Check if this global value has been found to not be the same already.
566       if (NotSame.contains(GVN)) {
567         if (isa<Constant>(V))
568           ConstantsTheSame = false;
569         continue;
570       }
571 
572       // If it has been the same so far, we check the value for if the
573       // associated Constant value match the previous instances of the same
574       // global value number.  If the global value does not map to a Constant,
575       // it is considered to not be the same value.
576       std::optional<bool> ConstantMatches =
577           constantMatches(V, GVN, GVNToConstant);
578       if (ConstantMatches) {
579         if (*ConstantMatches)
580           continue;
581         else
582           ConstantsTheSame = false;
583       }
584 
585       // While this value is a register, it might not have been previously,
586       // make sure we don't already have a constant mapped to this global value
587       // number.
588       if (GVNToConstant.contains(GVN))
589         ConstantsTheSame = false;
590 
591       NotSame.insert(GVN);
592     }
593   }
594 
595   return ConstantsTheSame;
596 }
597 
598 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
599   DenseMap<unsigned, Constant *> GVNToConstant;
600 
601   for (OutlinableRegion *Region : Regions)
602     collectRegionsConstants(*Region, GVNToConstant, NotSame);
603 }
604 
605 void OutlinableGroup::collectGVNStoreSets(Module &M) {
606   for (OutlinableRegion *OS : Regions)
607     OutputGVNCombinations.insert(OS->GVNStores);
608 
609   // We are adding an extracted argument to decide between which output path
610   // to use in the basic block.  It is used in a switch statement and only
611   // needs to be an integer.
612   if (OutputGVNCombinations.size() > 1)
613     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
614 }
615 
616 /// Get the subprogram if it exists for one of the outlined regions.
617 ///
618 /// \param [in] Group - The set of regions to find a subprogram for.
619 /// \returns the subprogram if it exists, or nullptr.
620 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
621   for (OutlinableRegion *OS : Group.Regions)
622     if (Function *F = OS->Call->getFunction())
623       if (DISubprogram *SP = F->getSubprogram())
624         return SP;
625 
626   return nullptr;
627 }
628 
629 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
630                                      unsigned FunctionNameSuffix) {
631   assert(!Group.OutlinedFunction && "Function is already defined!");
632 
633   Type *RetTy = Type::getVoidTy(M.getContext());
634   // All extracted functions _should_ have the same return type at this point
635   // since the similarity identifier ensures that all branches outside of the
636   // region occur in the same place.
637 
638   // NOTE: Should we ever move to the model that uses a switch at every point
639   // needed, meaning that we could branch within the region or out, it is
640   // possible that we will need to switch to using the most general case all of
641   // the time.
642   for (OutlinableRegion *R : Group.Regions) {
643     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
644     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
645         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
646       RetTy = ExtractedFuncType;
647   }
648 
649   Group.OutlinedFunctionType = FunctionType::get(
650       RetTy, Group.ArgumentTypes, false);
651 
652   // These functions will only be called from within the same module, so
653   // we can set an internal linkage.
654   Group.OutlinedFunction = Function::Create(
655       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
656       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
657 
658   // Transfer the swifterr attribute to the correct function parameter.
659   if (Group.SwiftErrorArgument)
660     Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
661                                          Attribute::SwiftError);
662 
663   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
664   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
665 
666   // If there's a DISubprogram associated with this outlined function, then
667   // emit debug info for the outlined function.
668   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
669     Function *F = Group.OutlinedFunction;
670     // We have a DISubprogram. Get its DICompileUnit.
671     DICompileUnit *CU = SP->getUnit();
672     DIBuilder DB(M, true, CU);
673     DIFile *Unit = SP->getFile();
674     Mangler Mg;
675     // Get the mangled name of the function for the linkage name.
676     std::string Dummy;
677     llvm::raw_string_ostream MangledNameStream(Dummy);
678     Mg.getNameWithPrefix(MangledNameStream, F, false);
679 
680     DISubprogram *OutlinedSP = DB.createFunction(
681         Unit /* Context */, F->getName(), Dummy,
682         Unit /* File */,
683         0 /* Line 0 is reserved for compiler-generated code. */,
684         DB.createSubroutineType(
685             DB.getOrCreateTypeArray(std::nullopt)), /* void type */
686         0, /* Line 0 is reserved for compiler-generated code. */
687         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
688         /* Outlined code is optimized code by definition. */
689         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
690 
691     // Don't add any new variables to the subprogram.
692     DB.finalizeSubprogram(OutlinedSP);
693 
694     // Attach subprogram to the function.
695     F->setSubprogram(OutlinedSP);
696     // We're done with the DIBuilder.
697     DB.finalize();
698   }
699 
700   return Group.OutlinedFunction;
701 }
702 
703 /// Move each BasicBlock in \p Old to \p New.
704 ///
705 /// \param [in] Old - The function to move the basic blocks from.
706 /// \param [in] New - The function to move the basic blocks to.
707 /// \param [out] NewEnds - The return blocks of the new overall function.
708 static void moveFunctionData(Function &Old, Function &New,
709                              DenseMap<Value *, BasicBlock *> &NewEnds) {
710   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
711     CurrBB.removeFromParent();
712     CurrBB.insertInto(&New);
713     Instruction *I = CurrBB.getTerminator();
714 
715     // For each block we find a return instruction is, it is a potential exit
716     // path for the function.  We keep track of each block based on the return
717     // value here.
718     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
719       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
720 
721     std::vector<Instruction *> DebugInsts;
722 
723     for (Instruction &Val : CurrBB) {
724       // Since debug-info originates from many different locations in the
725       // program, it will cause incorrect reporting from a debugger if we keep
726       // the same debug instructions. Drop non-intrinsic DbgVariableRecords
727       // here, collect intrinsics for removal later.
728       Val.dropDbgRecords();
729 
730       // We must handle the scoping of called functions differently than
731       // other outlined instructions.
732       if (!isa<CallInst>(&Val)) {
733         // Remove the debug information for outlined functions.
734         Val.setDebugLoc(DebugLoc());
735 
736         // Loop info metadata may contain line locations. Update them to have no
737         // value in the new subprogram since the outlined code could be from
738         // several locations.
739         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
740           if (DISubprogram *SP = New.getSubprogram())
741             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
742               return DILocation::get(New.getContext(), Loc->getLine(),
743                                      Loc->getColumn(), SP, nullptr);
744           return MD;
745         };
746         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
747         continue;
748       }
749 
750       // From this point we are only handling call instructions.
751       CallInst *CI = cast<CallInst>(&Val);
752 
753       // Collect debug intrinsics for later removal.
754       if (isa<DbgInfoIntrinsic>(CI)) {
755         DebugInsts.push_back(&Val);
756         continue;
757       }
758 
759       // Edit the scope of called functions inside of outlined functions.
760       if (DISubprogram *SP = New.getSubprogram()) {
761         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
762         Val.setDebugLoc(DI);
763       }
764     }
765 
766     for (Instruction *I : DebugInsts)
767       I->eraseFromParent();
768   }
769 }
770 
771 /// Find the constants that will need to be lifted into arguments
772 /// as they are not the same in each instance of the region.
773 ///
774 /// \param [in] C - The IRSimilarityCandidate containing the region we are
775 /// analyzing.
776 /// \param [in] NotSame - The set of global value numbers that do not have a
777 /// single Constant across all OutlinableRegions similar to \p C.
778 /// \param [out] Inputs - The list containing the global value numbers of the
779 /// arguments needed for the region of code.
780 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
781                           std::vector<unsigned> &Inputs) {
782   DenseSet<unsigned> Seen;
783   // Iterate over the instructions, and find what constants will need to be
784   // extracted into arguments.
785   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
786        IDIt != EndIDIt; IDIt++) {
787     for (Value *V : (*IDIt).OperVals) {
788       // Since these are stored before any outlining, they will be in the
789       // global value numbering.
790       unsigned GVN = *C.getGVN(V);
791       if (isa<Constant>(V))
792         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
793           Inputs.push_back(GVN);
794           Seen.insert(GVN);
795         }
796     }
797   }
798 }
799 
800 /// Find the GVN for the inputs that have been found by the CodeExtractor.
801 ///
802 /// \param [in] C - The IRSimilarityCandidate containing the region we are
803 /// analyzing.
804 /// \param [in] CurrentInputs - The set of inputs found by the
805 /// CodeExtractor.
806 /// \param [in] OutputMappings - The mapping of values that have been replaced
807 /// by a new output value.
808 /// \param [out] EndInputNumbers - The global value numbers for the extracted
809 /// arguments.
810 static void mapInputsToGVNs(IRSimilarityCandidate &C,
811                             SetVector<Value *> &CurrentInputs,
812                             const DenseMap<Value *, Value *> &OutputMappings,
813                             std::vector<unsigned> &EndInputNumbers) {
814   // Get the Global Value Number for each input.  We check if the Value has been
815   // replaced by a different value at output, and use the original value before
816   // replacement.
817   for (Value *Input : CurrentInputs) {
818     assert(Input && "Have a nullptr as an input");
819     if (OutputMappings.contains(Input))
820       Input = OutputMappings.find(Input)->second;
821     assert(C.getGVN(Input) && "Could not find a numbering for the given input");
822     EndInputNumbers.push_back(*C.getGVN(Input));
823   }
824 }
825 
826 /// Find the original value for the \p ArgInput values if any one of them was
827 /// replaced during a previous extraction.
828 ///
829 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
830 /// \param [in] OutputMappings - The mapping of values that have been replaced
831 /// by a new output value.
832 /// \param [out] RemappedArgInputs - The remapped values according to
833 /// \p OutputMappings that will be extracted.
834 static void
835 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
836                      const DenseMap<Value *, Value *> &OutputMappings,
837                      SetVector<Value *> &RemappedArgInputs) {
838   // Get the global value number for each input that will be extracted as an
839   // argument by the code extractor, remapping if needed for reloaded values.
840   for (Value *Input : ArgInputs) {
841     if (OutputMappings.contains(Input))
842       Input = OutputMappings.find(Input)->second;
843     RemappedArgInputs.insert(Input);
844   }
845 }
846 
847 /// Find the input GVNs and the output values for a region of Instructions.
848 /// Using the code extractor, we collect the inputs to the extracted function.
849 ///
850 /// The \p Region can be identified as needing to be ignored in this function.
851 /// It should be checked whether it should be ignored after a call to this
852 /// function.
853 ///
854 /// \param [in,out] Region - The region of code to be analyzed.
855 /// \param [out] InputGVNs - The global value numbers for the extracted
856 /// arguments.
857 /// \param [in] NotSame - The global value numbers in the region that do not
858 /// have the same constant value in the regions structurally similar to
859 /// \p Region.
860 /// \param [in] OutputMappings - The mapping of values that have been replaced
861 /// by a new output value after extraction.
862 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
863 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
864 /// as outputs.
865 static void getCodeExtractorArguments(
866     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
867     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
868     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
869   IRSimilarityCandidate &C = *Region.Candidate;
870 
871   // OverallInputs are the inputs to the region found by the CodeExtractor,
872   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
873   // allocas of values whose lifetimes are contained completely within the
874   // outlined region. PremappedInputs are the arguments found by the
875   // CodeExtractor, removing conditions such as sunken allocas, but that
876   // may need to be remapped due to the extracted output values replacing
877   // the original values. We use DummyOutputs for this first run of finding
878   // inputs and outputs since the outputs could change during findAllocas,
879   // the correct set of extracted outputs will be in the final Outputs ValueSet.
880   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
881       DummyOutputs;
882 
883   // Use the code extractor to get the inputs and outputs, without sunken
884   // allocas or removing llvm.assumes.
885   CodeExtractor *CE = Region.CE;
886   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
887   assert(Region.StartBB && "Region must have a start BasicBlock!");
888   Function *OrigF = Region.StartBB->getParent();
889   CodeExtractorAnalysisCache CEAC(*OrigF);
890   BasicBlock *Dummy = nullptr;
891 
892   // The region may be ineligible due to VarArgs in the parent function. In this
893   // case we ignore the region.
894   if (!CE->isEligible()) {
895     Region.IgnoreRegion = true;
896     return;
897   }
898 
899   // Find if any values are going to be sunk into the function when extracted
900   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
901   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
902 
903   // TODO: Support regions with sunken allocas: values whose lifetimes are
904   // contained completely within the outlined region.  These are not guaranteed
905   // to be the same in every region, so we must elevate them all to arguments
906   // when they appear.  If these values are not equal, it means there is some
907   // Input in OverallInputs that was removed for ArgInputs.
908   if (OverallInputs.size() != PremappedInputs.size()) {
909     Region.IgnoreRegion = true;
910     return;
911   }
912 
913   findConstants(C, NotSame, InputGVNs);
914 
915   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
916 
917   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
918                        ArgInputs);
919 
920   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
921   // we need to make sure they are in a deterministic order.
922   stable_sort(InputGVNs);
923 }
924 
925 /// Look over the inputs and map each input argument to an argument in the
926 /// overall function for the OutlinableRegions.  This creates a way to replace
927 /// the arguments of the extracted function with the arguments of the new
928 /// overall function.
929 ///
930 /// \param [in,out] Region - The region of code to be analyzed.
931 /// \param [in] InputGVNs - The global value numbering of the input values
932 /// collected.
933 /// \param [in] ArgInputs - The values of the arguments to the extracted
934 /// function.
935 static void
936 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
937                                         std::vector<unsigned> &InputGVNs,
938                                         SetVector<Value *> &ArgInputs) {
939 
940   IRSimilarityCandidate &C = *Region.Candidate;
941   OutlinableGroup &Group = *Region.Parent;
942 
943   // This counts the argument number in the overall function.
944   unsigned TypeIndex = 0;
945 
946   // This counts the argument number in the extracted function.
947   unsigned OriginalIndex = 0;
948 
949   // Find the mapping of the extracted arguments to the arguments for the
950   // overall function. Since there may be extra arguments in the overall
951   // function to account for the extracted constants, we have two different
952   // counters as we find extracted arguments, and as we come across overall
953   // arguments.
954 
955   // Additionally, in our first pass, for the first extracted function,
956   // we find argument locations for the canonical value numbering.  This
957   // numbering overrides any discovered location for the extracted code.
958   for (unsigned InputVal : InputGVNs) {
959     std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
960     assert(CanonicalNumberOpt && "Canonical number not found?");
961     unsigned CanonicalNumber = *CanonicalNumberOpt;
962 
963     std::optional<Value *> InputOpt = C.fromGVN(InputVal);
964     assert(InputOpt && "Global value number not found?");
965     Value *Input = *InputOpt;
966 
967     DenseMap<unsigned, unsigned>::iterator AggArgIt =
968         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
969 
970     if (!Group.InputTypesSet) {
971       Group.ArgumentTypes.push_back(Input->getType());
972       // If the input value has a swifterr attribute, make sure to mark the
973       // argument in the overall function.
974       if (Input->isSwiftError()) {
975         assert(
976             !Group.SwiftErrorArgument &&
977             "Argument already marked with swifterr for this OutlinableGroup!");
978         Group.SwiftErrorArgument = TypeIndex;
979       }
980     }
981 
982     // Check if we have a constant. If we do add it to the overall argument
983     // number to Constant map for the region, and continue to the next input.
984     if (Constant *CST = dyn_cast<Constant>(Input)) {
985       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
986         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
987       else {
988         Group.CanonicalNumberToAggArg.insert(
989             std::make_pair(CanonicalNumber, TypeIndex));
990         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
991       }
992       TypeIndex++;
993       continue;
994     }
995 
996     // It is not a constant, we create the mapping from extracted argument list
997     // to the overall argument list, using the canonical location, if it exists.
998     assert(ArgInputs.count(Input) && "Input cannot be found!");
999 
1000     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
1001       if (OriginalIndex != AggArgIt->second)
1002         Region.ChangedArgOrder = true;
1003       Region.ExtractedArgToAgg.insert(
1004           std::make_pair(OriginalIndex, AggArgIt->second));
1005       Region.AggArgToExtracted.insert(
1006           std::make_pair(AggArgIt->second, OriginalIndex));
1007     } else {
1008       Group.CanonicalNumberToAggArg.insert(
1009           std::make_pair(CanonicalNumber, TypeIndex));
1010       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1011       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1012     }
1013     OriginalIndex++;
1014     TypeIndex++;
1015   }
1016 
1017   // If the function type definitions for the OutlinableGroup holding the region
1018   // have not been set, set the length of the inputs here.  We should have the
1019   // same inputs for all of the different regions contained in the
1020   // OutlinableGroup since they are all structurally similar to one another.
1021   if (!Group.InputTypesSet) {
1022     Group.NumAggregateInputs = TypeIndex;
1023     Group.InputTypesSet = true;
1024   }
1025 
1026   Region.NumExtractedInputs = OriginalIndex;
1027 }
1028 
1029 /// Check if the \p V has any uses outside of the region other than \p PN.
1030 ///
1031 /// \param V [in] - The value to check.
1032 /// \param PHILoc [in] - The location in the PHINode of \p V.
1033 /// \param PN [in] - The PHINode using \p V.
1034 /// \param Exits [in] - The potential blocks we exit to from the outlined
1035 /// region.
1036 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1037 /// \returns true if \p V has any use soutside its region other than \p PN.
1038 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1039                             SmallPtrSet<BasicBlock *, 1> &Exits,
1040                             DenseSet<BasicBlock *> &BlocksInRegion) {
1041   // We check to see if the value is used by the PHINode from some other
1042   // predecessor not included in the region.  If it is, we make sure
1043   // to keep it as an output.
1044   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1045              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1046                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1047                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1048              }))
1049     return true;
1050 
1051   // Check if the value is used by any other instructions outside the region.
1052   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1053     Instruction *I = dyn_cast<Instruction>(U);
1054     if (!I)
1055       return false;
1056 
1057     // If the use of the item is inside the region, we skip it.  Uses
1058     // inside the region give us useful information about how the item could be
1059     // used as an output.
1060     BasicBlock *Parent = I->getParent();
1061     if (BlocksInRegion.contains(Parent))
1062       return false;
1063 
1064     // If it's not a PHINode then we definitely know the use matters.  This
1065     // output value will not completely combined with another item in a PHINode
1066     // as it is directly reference by another non-phi instruction
1067     if (!isa<PHINode>(I))
1068       return true;
1069 
1070     // If we have a PHINode outside one of the exit locations, then it
1071     // can be considered an outside use as well.  If there is a PHINode
1072     // contained in the Exit where this values use matters, it will be
1073     // caught when we analyze that PHINode.
1074     if (!Exits.contains(Parent))
1075       return true;
1076 
1077     return false;
1078   });
1079 }
1080 
1081 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1082 /// considered outputs. A PHINodes is an output when more than one incoming
1083 /// value has been marked by the CodeExtractor as an output.
1084 ///
1085 /// \param CurrentExitFromRegion [in] - The block to analyze.
1086 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1087 /// region.
1088 /// \param RegionBlocks [in] - The basic blocks in the region.
1089 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1090 /// PHINodes to this as we find that they replace output values.
1091 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1092 /// totally replaced  by a PHINode.
1093 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1094 /// in PHINodes, but have other uses, and should still be considered outputs.
1095 static void analyzeExitPHIsForOutputUses(
1096     BasicBlock *CurrentExitFromRegion,
1097     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1098     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1099     DenseSet<Value *> &OutputsReplacedByPHINode,
1100     DenseSet<Value *> &OutputsWithNonPhiUses) {
1101   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1102     // Find all incoming values from the outlining region.
1103     SmallVector<unsigned, 2> IncomingVals;
1104     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1105       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1106         IncomingVals.push_back(I);
1107 
1108     // Do not process PHI if there are no predecessors from region.
1109     unsigned NumIncomingVals = IncomingVals.size();
1110     if (NumIncomingVals == 0)
1111       continue;
1112 
1113     // If there is one predecessor, we mark it as a value that needs to be kept
1114     // as an output.
1115     if (NumIncomingVals == 1) {
1116       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1117       OutputsWithNonPhiUses.insert(V);
1118       OutputsReplacedByPHINode.erase(V);
1119       continue;
1120     }
1121 
1122     // This PHINode will be used as an output value, so we add it to our list.
1123     Outputs.insert(&PN);
1124 
1125     // Not all of the incoming values should be ignored as other inputs and
1126     // outputs may have uses in outlined region.  If they have other uses
1127     // outside of the single PHINode we should not skip over it.
1128     for (unsigned Idx : IncomingVals) {
1129       Value *V = PN.getIncomingValue(Idx);
1130       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1131         OutputsWithNonPhiUses.insert(V);
1132         OutputsReplacedByPHINode.erase(V);
1133         continue;
1134       }
1135       if (!OutputsWithNonPhiUses.contains(V))
1136         OutputsReplacedByPHINode.insert(V);
1137     }
1138   }
1139 }
1140 
1141 // Represents the type for the unsigned number denoting the output number for
1142 // phi node, along with the canonical number for the exit block.
1143 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1144 // The list of canonical numbers for the incoming values to a PHINode.
1145 using CanonList = SmallVector<unsigned, 2>;
1146 // The pair type representing the set of canonical values being combined in the
1147 // PHINode, along with the location data for the PHINode.
1148 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1149 
1150 /// Encode \p PND as an integer for easy lookup based on the argument location,
1151 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1152 /// the values stored in the PHINode.
1153 ///
1154 /// \param PND - The data to hash.
1155 /// \returns The hash code of \p PND.
1156 static hash_code encodePHINodeData(PHINodeData &PND) {
1157   return llvm::hash_combine(
1158       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1159       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1160 }
1161 
1162 /// Create a special GVN for PHINodes that will be used outside of
1163 /// the region.  We create a hash code based on the Canonical number of the
1164 /// parent BasicBlock, the canonical numbering of the values stored in the
1165 /// PHINode and the aggregate argument location.  This is used to find whether
1166 /// this PHINode type has been given a canonical numbering already.  If not, we
1167 /// assign it a value and store it for later use.  The value is returned to
1168 /// identify different output schemes for the set of regions.
1169 ///
1170 /// \param Region - The region that \p PN is an output for.
1171 /// \param PN - The PHINode we are analyzing.
1172 /// \param Blocks - The blocks for the region we are analyzing.
1173 /// \param AggArgIdx - The argument \p PN will be stored into.
1174 /// \returns An optional holding the assigned canonical number, or std::nullopt
1175 /// if there is some attribute of the PHINode blocking it from being used.
1176 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1177                                                 PHINode *PN,
1178                                                 DenseSet<BasicBlock *> &Blocks,
1179                                                 unsigned AggArgIdx) {
1180   OutlinableGroup &Group = *Region.Parent;
1181   IRSimilarityCandidate &Cand = *Region.Candidate;
1182   BasicBlock *PHIBB = PN->getParent();
1183   CanonList PHIGVNs;
1184   Value *Incoming;
1185   BasicBlock *IncomingBlock;
1186   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1187     Incoming = PN->getIncomingValue(Idx);
1188     IncomingBlock = PN->getIncomingBlock(Idx);
1189     // If we cannot find a GVN, and the incoming block is included in the region
1190     // this means that the input to the PHINode is not included in the region we
1191     // are trying to analyze, meaning, that if it was outlined, we would be
1192     // adding an extra input.  We ignore this case for now, and so ignore the
1193     // region.
1194     std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1195     if (!OGVN && Blocks.contains(IncomingBlock)) {
1196       Region.IgnoreRegion = true;
1197       return std::nullopt;
1198     }
1199 
1200     // If the incoming block isn't in the region, we don't have to worry about
1201     // this incoming value.
1202     if (!Blocks.contains(IncomingBlock))
1203       continue;
1204 
1205     // Collect the canonical numbers of the values in the PHINode.
1206     unsigned GVN = *OGVN;
1207     OGVN = Cand.getCanonicalNum(GVN);
1208     assert(OGVN && "No GVN found for incoming value?");
1209     PHIGVNs.push_back(*OGVN);
1210 
1211     // Find the incoming block and use the canonical numbering as well to define
1212     // the hash for the PHINode.
1213     OGVN = Cand.getGVN(IncomingBlock);
1214 
1215     // If there is no number for the incoming block, it is because we have
1216     // split the candidate basic blocks.  So we use the previous block that it
1217     // was split from to find the valid global value numbering for the PHINode.
1218     if (!OGVN) {
1219       assert(Cand.getStartBB() == IncomingBlock &&
1220              "Unknown basic block used in exit path PHINode.");
1221 
1222       BasicBlock *PrevBlock = nullptr;
1223       // Iterate over the predecessors to the incoming block of the
1224       // PHINode, when we find a block that is not contained in the region
1225       // we know that this is the first block that we split from, and should
1226       // have a valid global value numbering.
1227       for (BasicBlock *Pred : predecessors(IncomingBlock))
1228         if (!Blocks.contains(Pred)) {
1229           PrevBlock = Pred;
1230           break;
1231         }
1232       assert(PrevBlock && "Expected a predecessor not in the reigon!");
1233       OGVN = Cand.getGVN(PrevBlock);
1234     }
1235     GVN = *OGVN;
1236     OGVN = Cand.getCanonicalNum(GVN);
1237     assert(OGVN && "No GVN found for incoming block?");
1238     PHIGVNs.push_back(*OGVN);
1239   }
1240 
1241   // Now that we have the GVNs for the incoming values, we are going to combine
1242   // them with the GVN of the incoming bock, and the output location of the
1243   // PHINode to generate a hash value representing this instance of the PHINode.
1244   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1245   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1246   std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1247   assert(BBGVN && "Could not find GVN for the incoming block!");
1248 
1249   BBGVN = Cand.getCanonicalNum(*BBGVN);
1250   assert(BBGVN && "Could not find canonical number for the incoming block!");
1251   // Create a pair of the exit block canonical value, and the aggregate
1252   // argument location, connected to the canonical numbers stored in the
1253   // PHINode.
1254   PHINodeData TemporaryPair =
1255       std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1256   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1257 
1258   // Look for and create a new entry in our connection between canonical
1259   // numbers for PHINodes, and the set of objects we just created.
1260   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1261   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1262     bool Inserted = false;
1263     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1264         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1265     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1266         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1267   }
1268 
1269   return GVNToPHIIt->second;
1270 }
1271 
1272 /// Create a mapping of the output arguments for the \p Region to the output
1273 /// arguments of the overall outlined function.
1274 ///
1275 /// \param [in,out] Region - The region of code to be analyzed.
1276 /// \param [in] Outputs - The values found by the code extractor.
1277 static void
1278 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1279                                           SetVector<Value *> &Outputs) {
1280   OutlinableGroup &Group = *Region.Parent;
1281   IRSimilarityCandidate &C = *Region.Candidate;
1282 
1283   SmallVector<BasicBlock *> BE;
1284   DenseSet<BasicBlock *> BlocksInRegion;
1285   C.getBasicBlocks(BlocksInRegion, BE);
1286 
1287   // Find the exits to the region.
1288   SmallPtrSet<BasicBlock *, 1> Exits;
1289   for (BasicBlock *Block : BE)
1290     for (BasicBlock *Succ : successors(Block))
1291       if (!BlocksInRegion.contains(Succ))
1292         Exits.insert(Succ);
1293 
1294   // After determining which blocks exit to PHINodes, we add these PHINodes to
1295   // the set of outputs to be processed.  We also check the incoming values of
1296   // the PHINodes for whether they should no longer be considered outputs.
1297   DenseSet<Value *> OutputsReplacedByPHINode;
1298   DenseSet<Value *> OutputsWithNonPhiUses;
1299   for (BasicBlock *ExitBB : Exits)
1300     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1301                                  OutputsReplacedByPHINode,
1302                                  OutputsWithNonPhiUses);
1303 
1304   // This counts the argument number in the extracted function.
1305   unsigned OriginalIndex = Region.NumExtractedInputs;
1306 
1307   // This counts the argument number in the overall function.
1308   unsigned TypeIndex = Group.NumAggregateInputs;
1309   bool TypeFound;
1310   DenseSet<unsigned> AggArgsUsed;
1311 
1312   // Iterate over the output types and identify if there is an aggregate pointer
1313   // type whose base type matches the current output type. If there is, we mark
1314   // that we will use this output register for this value. If not we add another
1315   // type to the overall argument type list. We also store the GVNs used for
1316   // stores to identify which values will need to be moved into an special
1317   // block that holds the stores to the output registers.
1318   for (Value *Output : Outputs) {
1319     TypeFound = false;
1320     // We can do this since it is a result value, and will have a number
1321     // that is necessarily the same. BUT if in the future, the instructions
1322     // do not have to be in same order, but are functionally the same, we will
1323     // have to use a different scheme, as one-to-one correspondence is not
1324     // guaranteed.
1325     unsigned ArgumentSize = Group.ArgumentTypes.size();
1326 
1327     // If the output is combined in a PHINode, we make sure to skip over it.
1328     if (OutputsReplacedByPHINode.contains(Output))
1329       continue;
1330 
1331     unsigned AggArgIdx = 0;
1332     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1333       if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
1334         continue;
1335 
1336       if (AggArgsUsed.contains(Jdx))
1337         continue;
1338 
1339       TypeFound = true;
1340       AggArgsUsed.insert(Jdx);
1341       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1342       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1343       AggArgIdx = Jdx;
1344       break;
1345     }
1346 
1347     // We were unable to find an unused type in the output type set that matches
1348     // the output, so we add a pointer type to the argument types of the overall
1349     // function to handle this output and create a mapping to it.
1350     if (!TypeFound) {
1351       Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(),
1352           M.getDataLayout().getAllocaAddrSpace()));
1353       // Mark the new pointer type as the last value in the aggregate argument
1354       // list.
1355       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1356       AggArgsUsed.insert(ArgTypeIdx);
1357       Region.ExtractedArgToAgg.insert(
1358           std::make_pair(OriginalIndex, ArgTypeIdx));
1359       Region.AggArgToExtracted.insert(
1360           std::make_pair(ArgTypeIdx, OriginalIndex));
1361       AggArgIdx = ArgTypeIdx;
1362     }
1363 
1364     // TODO: Adapt to the extra input from the PHINode.
1365     PHINode *PN = dyn_cast<PHINode>(Output);
1366 
1367     std::optional<unsigned> GVN;
1368     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1369       // Values outside the region can be combined into PHINode when we
1370       // have multiple exits. We collect both of these into a list to identify
1371       // which values are being used in the PHINode. Each list identifies a
1372       // different PHINode, and a different output. We store the PHINode as it's
1373       // own canonical value.  These canonical values are also dependent on the
1374       // output argument it is saved to.
1375 
1376       // If two PHINodes have the same canonical values, but different aggregate
1377       // argument locations, then they will have distinct Canonical Values.
1378       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1379       if (!GVN)
1380         return;
1381     } else {
1382       // If we do not have a PHINode we use the global value numbering for the
1383       // output value, to find the canonical number to add to the set of stored
1384       // values.
1385       GVN = C.getGVN(Output);
1386       GVN = C.getCanonicalNum(*GVN);
1387     }
1388 
1389     // Each region has a potentially unique set of outputs.  We save which
1390     // values are output in a list of canonical values so we can differentiate
1391     // among the different store schemes.
1392     Region.GVNStores.push_back(*GVN);
1393 
1394     OriginalIndex++;
1395     TypeIndex++;
1396   }
1397 
1398   // We sort the stored values to make sure that we are not affected by analysis
1399   // order when determining what combination of items were stored.
1400   stable_sort(Region.GVNStores);
1401 }
1402 
1403 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1404                                       DenseSet<unsigned> &NotSame) {
1405   std::vector<unsigned> Inputs;
1406   SetVector<Value *> ArgInputs, Outputs;
1407 
1408   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1409                             Outputs);
1410 
1411   if (Region.IgnoreRegion)
1412     return;
1413 
1414   // Map the inputs found by the CodeExtractor to the arguments found for
1415   // the overall function.
1416   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1417 
1418   // Map the outputs found by the CodeExtractor to the arguments found for
1419   // the overall function.
1420   findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1421 }
1422 
1423 /// Replace the extracted function in the Region with a call to the overall
1424 /// function constructed from the deduplicated similar regions, replacing and
1425 /// remapping the values passed to the extracted function as arguments to the
1426 /// new arguments of the overall function.
1427 ///
1428 /// \param [in] M - The module to outline from.
1429 /// \param [in] Region - The regions of extracted code to be replaced with a new
1430 /// function.
1431 /// \returns a call instruction with the replaced function.
1432 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1433   std::vector<Value *> NewCallArgs;
1434   DenseMap<unsigned, unsigned>::iterator ArgPair;
1435 
1436   OutlinableGroup &Group = *Region.Parent;
1437   CallInst *Call = Region.Call;
1438   assert(Call && "Call to replace is nullptr?");
1439   Function *AggFunc = Group.OutlinedFunction;
1440   assert(AggFunc && "Function to replace with is nullptr?");
1441 
1442   // If the arguments are the same size, there are not values that need to be
1443   // made into an argument, the argument ordering has not been change, or
1444   // different output registers to handle.  We can simply replace the called
1445   // function in this case.
1446   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1447     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1448                       << *AggFunc << " with same number of arguments\n");
1449     Call->setCalledFunction(AggFunc);
1450     return Call;
1451   }
1452 
1453   // We have a different number of arguments than the new function, so
1454   // we need to use our previously mappings off extracted argument to overall
1455   // function argument, and constants to overall function argument to create the
1456   // new argument list.
1457   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1458 
1459     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1460         Group.OutputGVNCombinations.size() > 1) {
1461       // If we are on the last argument, and we need to differentiate between
1462       // output blocks, add an integer to the argument list to determine
1463       // what block to take
1464       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1465                         << Region.OutputBlockNum << "\n");
1466       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1467                                              Region.OutputBlockNum));
1468       continue;
1469     }
1470 
1471     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1472     if (ArgPair != Region.AggArgToExtracted.end()) {
1473       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1474       // If we found the mapping from the extracted function to the overall
1475       // function, we simply add it to the argument list.  We use the same
1476       // value, it just needs to honor the new order of arguments.
1477       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1478                         << *ArgumentValue << "\n");
1479       NewCallArgs.push_back(ArgumentValue);
1480       continue;
1481     }
1482 
1483     // If it is a constant, we simply add it to the argument list as a value.
1484     if (Region.AggArgToConstant.contains(AggArgIdx)) {
1485       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1486       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1487                         << *CST << "\n");
1488       NewCallArgs.push_back(CST);
1489       continue;
1490     }
1491 
1492     // Add a nullptr value if the argument is not found in the extracted
1493     // function.  If we cannot find a value, it means it is not in use
1494     // for the region, so we should not pass anything to it.
1495     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1496     NewCallArgs.push_back(ConstantPointerNull::get(
1497         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1498   }
1499 
1500   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1501                     << *AggFunc << " with new set of arguments\n");
1502   // Create the new call instruction and erase the old one.
1503   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1504                           Call->getIterator());
1505 
1506   // It is possible that the call to the outlined function is either the first
1507   // instruction is in the new block, the last instruction, or both.  If either
1508   // of these is the case, we need to make sure that we replace the instruction
1509   // in the IRInstructionData struct with the new call.
1510   CallInst *OldCall = Region.Call;
1511   if (Region.NewFront->Inst == OldCall)
1512     Region.NewFront->Inst = Call;
1513   if (Region.NewBack->Inst == OldCall)
1514     Region.NewBack->Inst = Call;
1515 
1516   // Transfer any debug information.
1517   Call->setDebugLoc(Region.Call->getDebugLoc());
1518   // Since our output may determine which branch we go to, we make sure to
1519   // propogate this new call value through the module.
1520   OldCall->replaceAllUsesWith(Call);
1521 
1522   // Remove the old instruction.
1523   OldCall->eraseFromParent();
1524   Region.Call = Call;
1525 
1526   // Make sure that the argument in the new function has the SwiftError
1527   // argument.
1528   if (Group.SwiftErrorArgument)
1529     Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1530 
1531   return Call;
1532 }
1533 
1534 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1535 /// for \p RetVal.
1536 ///
1537 /// \param Group - The OutlinableGroup containing the information about the
1538 /// overall outlined function.
1539 /// \param RetVal - The return value or exit option that we are currently
1540 /// evaluating.
1541 /// \returns The found or newly created BasicBlock to contain the needed
1542 /// PHINodes to be used as outputs.
1543 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1544   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1545       ReturnBlockForRetVal;
1546   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1547   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1548   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1549          "Could not find output value!");
1550   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1551 
1552   // Find if a PHIBlock exists for this return value already.  If it is
1553   // the first time we are analyzing this, we will not, so we record it.
1554   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1555   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1556     return PhiBlockForRetVal->second;
1557 
1558   // If we did not find a block, we create one, and insert it into the
1559   // overall function and record it.
1560   bool Inserted = false;
1561   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1562                                             ReturnBB->getParent());
1563   std::tie(PhiBlockForRetVal, Inserted) =
1564       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1565 
1566   // We find the predecessors of the return block in the newly created outlined
1567   // function in order to point them to the new PHIBlock rather than the already
1568   // existing return block.
1569   SmallVector<BranchInst *, 2> BranchesToChange;
1570   for (BasicBlock *Pred : predecessors(ReturnBB))
1571     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1572 
1573   // Now we mark the branch instructions found, and change the references of the
1574   // return block to the newly created PHIBlock.
1575   for (BranchInst *BI : BranchesToChange)
1576     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1577       if (BI->getSuccessor(Succ) != ReturnBB)
1578         continue;
1579       BI->setSuccessor(Succ, PHIBlock);
1580     }
1581 
1582   BranchInst::Create(ReturnBB, PHIBlock);
1583 
1584   return PhiBlockForRetVal->second;
1585 }
1586 
1587 /// For the function call now representing the \p Region, find the passed value
1588 /// to that call that represents Argument \p A at the call location if the
1589 /// call has already been replaced with a call to the  overall, aggregate
1590 /// function.
1591 ///
1592 /// \param A - The Argument to get the passed value for.
1593 /// \param Region - The extracted Region corresponding to the outlined function.
1594 /// \returns The Value representing \p A at the call site.
1595 static Value *
1596 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1597                                            const OutlinableRegion &Region) {
1598   // If we don't need to adjust the argument number at all (since the call
1599   // has already been replaced by a call to the overall outlined function)
1600   // we can just get the specified argument.
1601   return Region.Call->getArgOperand(A->getArgNo());
1602 }
1603 
1604 /// For the function call now representing the \p Region, find the passed value
1605 /// to that call that represents Argument \p A at the call location if the
1606 /// call has only been replaced by the call to the aggregate function.
1607 ///
1608 /// \param A - The Argument to get the passed value for.
1609 /// \param Region - The extracted Region corresponding to the outlined function.
1610 /// \returns The Value representing \p A at the call site.
1611 static Value *
1612 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1613                                            const OutlinableRegion &Region) {
1614   unsigned ArgNum = A->getArgNo();
1615 
1616   // If it is a constant, we can look at our mapping from when we created
1617   // the outputs to figure out what the constant value is.
1618   if (Region.AggArgToConstant.count(ArgNum))
1619     return Region.AggArgToConstant.find(ArgNum)->second;
1620 
1621   // If it is not a constant, and we are not looking at the overall function, we
1622   // need to adjust which argument we are looking at.
1623   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1624   return Region.Call->getArgOperand(ArgNum);
1625 }
1626 
1627 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1628 ///
1629 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1630 /// \param Region [in] - The OutlinableRegion containing \p PN.
1631 /// \param OutputMappings [in] - The mapping of output values from outlined
1632 /// region to their original values.
1633 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1634 /// \p PN paired with their incoming block.
1635 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1636 /// of \p Region rather than the overall function's call.
1637 static void findCanonNumsForPHI(
1638     PHINode *PN, OutlinableRegion &Region,
1639     const DenseMap<Value *, Value *> &OutputMappings,
1640     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1641     bool ReplacedWithOutlinedCall = true) {
1642   // Iterate over the incoming values.
1643   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1644     Value *IVal = PN->getIncomingValue(Idx);
1645     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1646     // If we have an argument as incoming value, we need to grab the passed
1647     // value from the call itself.
1648     if (Argument *A = dyn_cast<Argument>(IVal)) {
1649       if (ReplacedWithOutlinedCall)
1650         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1651       else
1652         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1653     }
1654 
1655     // Get the original value if it has been replaced by an output value.
1656     IVal = findOutputMapping(OutputMappings, IVal);
1657 
1658     // Find and add the canonical number for the incoming value.
1659     std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1660     assert(GVN && "No GVN for incoming value");
1661     std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1662     assert(CanonNum && "No Canonical Number for GVN");
1663     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1664   }
1665 }
1666 
1667 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1668 /// in order to condense the number of instructions added to the outlined
1669 /// function.
1670 ///
1671 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1672 /// \param Region [in] - The OutlinableRegion containing \p PN.
1673 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1674 /// \p PN in.
1675 /// \param OutputMappings [in] - The mapping of output values from outlined
1676 /// region to their original values.
1677 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1678 /// matched.
1679 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1680 static PHINode*
1681 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1682                        BasicBlock *OverallPhiBlock,
1683                        const DenseMap<Value *, Value *> &OutputMappings,
1684                        DenseSet<PHINode *> &UsedPHIs) {
1685   OutlinableGroup &Group = *Region.Parent;
1686 
1687 
1688   // A list of the canonical numbering assigned to each incoming value, paired
1689   // with the incoming block for the PHINode passed into this function.
1690   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1691 
1692   // We have to use the extracted function since we have merged this region into
1693   // the overall function yet.  We make sure to reassign the argument numbering
1694   // since it is possible that the argument ordering is different between the
1695   // functions.
1696   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1697                       /* ReplacedWithOutlinedCall = */ false);
1698 
1699   OutlinableRegion *FirstRegion = Group.Regions[0];
1700 
1701   // A list of the canonical numbering assigned to each incoming value, paired
1702   // with the incoming block for the PHINode that we are currently comparing
1703   // the passed PHINode to.
1704   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1705 
1706   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1707   // the uses of the PHINode we are searching for, with the found PHINode.
1708   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1709     // If this PHINode has already been matched to another PHINode to be merged,
1710     // we skip it.
1711     if (UsedPHIs.contains(&CurrPN))
1712       continue;
1713 
1714     CurrentCanonNums.clear();
1715     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1716                         /* ReplacedWithOutlinedCall = */ true);
1717 
1718     // If the list of incoming values is not the same length, then they cannot
1719     // match since there is not an analogue for each incoming value.
1720     if (PNCanonNums.size() != CurrentCanonNums.size())
1721       continue;
1722 
1723     bool FoundMatch = true;
1724 
1725     // We compare the canonical value for each incoming value in the passed
1726     // in PHINode to one already present in the outlined region.  If the
1727     // incoming values do not match, then the PHINodes do not match.
1728 
1729     // We also check to make sure that the incoming block matches as well by
1730     // finding the corresponding incoming block in the combined outlined region
1731     // for the current outlined region.
1732     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1733       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1734       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1735       if (ToCompareTo.first != ToAdd.first) {
1736         FoundMatch = false;
1737         break;
1738       }
1739 
1740       BasicBlock *CorrespondingBlock =
1741           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1742       assert(CorrespondingBlock && "Found block is nullptr");
1743       if (CorrespondingBlock != ToCompareTo.second) {
1744         FoundMatch = false;
1745         break;
1746       }
1747     }
1748 
1749     // If all incoming values and branches matched, then we can merge
1750     // into the found PHINode.
1751     if (FoundMatch) {
1752       UsedPHIs.insert(&CurrPN);
1753       return &CurrPN;
1754     }
1755   }
1756 
1757   // If we've made it here, it means we weren't able to replace the PHINode, so
1758   // we must insert it ourselves.
1759   PHINode *NewPN = cast<PHINode>(PN.clone());
1760   NewPN->insertBefore(&*OverallPhiBlock->begin());
1761   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1762        Idx++) {
1763     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1764     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1765 
1766     // Find corresponding basic block in the overall function for the incoming
1767     // block.
1768     BasicBlock *BlockToUse =
1769         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1770     NewPN->setIncomingBlock(Idx, BlockToUse);
1771 
1772     // If we have an argument we make sure we replace using the argument from
1773     // the correct function.
1774     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1775       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1776       NewPN->setIncomingValue(Idx, Val);
1777       continue;
1778     }
1779 
1780     // Find the corresponding value in the overall function.
1781     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1782     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1783     assert(Val && "Value is nullptr?");
1784     DenseMap<Value *, Value *>::iterator RemappedIt =
1785         FirstRegion->RemappedArguments.find(Val);
1786     if (RemappedIt != FirstRegion->RemappedArguments.end())
1787       Val = RemappedIt->second;
1788     NewPN->setIncomingValue(Idx, Val);
1789   }
1790   return NewPN;
1791 }
1792 
1793 // Within an extracted function, replace the argument uses of the extracted
1794 // region with the arguments of the function for an OutlinableGroup.
1795 //
1796 /// \param [in] Region - The region of extracted code to be changed.
1797 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1798 /// region.
1799 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1800 /// function to define the overall outlined function for all the regions, or
1801 /// if we are operating on one of the following regions.
1802 static void
1803 replaceArgumentUses(OutlinableRegion &Region,
1804                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1805                     const DenseMap<Value *, Value *> &OutputMappings,
1806                     bool FirstFunction = false) {
1807   OutlinableGroup &Group = *Region.Parent;
1808   assert(Region.ExtractedFunction && "Region has no extracted function?");
1809 
1810   Function *DominatingFunction = Region.ExtractedFunction;
1811   if (FirstFunction)
1812     DominatingFunction = Group.OutlinedFunction;
1813   DominatorTree DT(*DominatingFunction);
1814   DenseSet<PHINode *> UsedPHIs;
1815 
1816   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1817        ArgIdx++) {
1818     assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
1819            "No mapping from extracted to outlined?");
1820     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1821     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1822     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1823     // The argument is an input, so we can simply replace it with the overall
1824     // argument value
1825     if (ArgIdx < Region.NumExtractedInputs) {
1826       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1827                         << *Region.ExtractedFunction << " with " << *AggArg
1828                         << " in function " << *Group.OutlinedFunction << "\n");
1829       Arg->replaceAllUsesWith(AggArg);
1830       Value *V = Region.Call->getArgOperand(ArgIdx);
1831       Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1832       continue;
1833     }
1834 
1835     // If we are replacing an output, we place the store value in its own
1836     // block inside the overall function before replacing the use of the output
1837     // in the function.
1838     assert(Arg->hasOneUse() && "Output argument can only have one use");
1839     User *InstAsUser = Arg->user_back();
1840     assert(InstAsUser && "User is nullptr!");
1841 
1842     Instruction *I = cast<Instruction>(InstAsUser);
1843     BasicBlock *BB = I->getParent();
1844     SmallVector<BasicBlock *, 4> Descendants;
1845     DT.getDescendants(BB, Descendants);
1846     bool EdgeAdded = false;
1847     if (Descendants.size() == 0) {
1848       EdgeAdded = true;
1849       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1850       DT.getDescendants(BB, Descendants);
1851     }
1852 
1853     // Iterate over the following blocks, looking for return instructions,
1854     // if we find one, find the corresponding output block for the return value
1855     // and move our store instruction there.
1856     for (BasicBlock *DescendBB : Descendants) {
1857       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1858       if (!RI)
1859         continue;
1860       Value *RetVal = RI->getReturnValue();
1861       auto VBBIt = OutputBBs.find(RetVal);
1862       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1863 
1864       // If this is storing a PHINode, we must make sure it is included in the
1865       // overall function.
1866       StoreInst *SI = cast<StoreInst>(I);
1867 
1868       Value *ValueOperand = SI->getValueOperand();
1869 
1870       StoreInst *NewI = cast<StoreInst>(I->clone());
1871       NewI->setDebugLoc(DebugLoc());
1872       BasicBlock *OutputBB = VBBIt->second;
1873       NewI->insertInto(OutputBB, OutputBB->end());
1874       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1875                         << *OutputBB << "\n");
1876 
1877       // If this is storing a PHINode, we must make sure it is included in the
1878       // overall function.
1879       if (!isa<PHINode>(ValueOperand) ||
1880           Region.Candidate->getGVN(ValueOperand).has_value()) {
1881         if (FirstFunction)
1882           continue;
1883         Value *CorrVal =
1884             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1885         assert(CorrVal && "Value is nullptr?");
1886         NewI->setOperand(0, CorrVal);
1887         continue;
1888       }
1889       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1890       // If it has a value, it was not split by the code extractor, which
1891       // is what we are looking for.
1892       if (Region.Candidate->getGVN(PN))
1893         continue;
1894 
1895       // We record the parent block for the PHINode in the Region so that
1896       // we can exclude it from checks later on.
1897       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1898 
1899       // If this is the first function, we do not need to worry about mergiing
1900       // this with any other block in the overall outlined function, so we can
1901       // just continue.
1902       if (FirstFunction) {
1903         BasicBlock *PHIBlock = PN->getParent();
1904         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1905         continue;
1906       }
1907 
1908       // We look for the aggregate block that contains the PHINodes leading into
1909       // this exit path. If we can't find one, we create one.
1910       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1911 
1912       // For our PHINode, we find the combined canonical numbering, and
1913       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1914       // cannot, we copy the PHINode and move it into this new block.
1915       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1916                                               OutputMappings, UsedPHIs);
1917       NewI->setOperand(0, NewPN);
1918     }
1919 
1920     // If we added an edge for basic blocks without a predecessor, we remove it
1921     // here.
1922     if (EdgeAdded)
1923       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1924     I->eraseFromParent();
1925 
1926     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1927                       << *Region.ExtractedFunction << " with " << *AggArg
1928                       << " in function " << *Group.OutlinedFunction << "\n");
1929     Arg->replaceAllUsesWith(AggArg);
1930   }
1931 }
1932 
1933 /// Within an extracted function, replace the constants that need to be lifted
1934 /// into arguments with the actual argument.
1935 ///
1936 /// \param Region [in] - The region of extracted code to be changed.
1937 void replaceConstants(OutlinableRegion &Region) {
1938   OutlinableGroup &Group = *Region.Parent;
1939   // Iterate over the constants that need to be elevated into arguments
1940   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1941     unsigned AggArgIdx = Const.first;
1942     Function *OutlinedFunction = Group.OutlinedFunction;
1943     assert(OutlinedFunction && "Overall Function is not defined?");
1944     Constant *CST = Const.second;
1945     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1946     // Identify the argument it will be elevated to, and replace instances of
1947     // that constant in the function.
1948 
1949     // TODO: If in the future constants do not have one global value number,
1950     // i.e. a constant 1 could be mapped to several values, this check will
1951     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1952 
1953     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1954                       << " in function " << *OutlinedFunction << " with "
1955                       << *Arg << "\n");
1956     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1957       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1958         return I->getFunction() == OutlinedFunction;
1959       return false;
1960     });
1961   }
1962 }
1963 
1964 /// It is possible that there is a basic block that already performs the same
1965 /// stores. This returns a duplicate block, if it exists
1966 ///
1967 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1968 /// \param OutputStoreBBs [in] The existing output blocks.
1969 /// \returns an optional value with the number output block if there is a match.
1970 std::optional<unsigned> findDuplicateOutputBlock(
1971     DenseMap<Value *, BasicBlock *> &OutputBBs,
1972     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1973 
1974   bool Mismatch = false;
1975   unsigned MatchingNum = 0;
1976   // We compare the new set output blocks to the other sets of output blocks.
1977   // If they are the same number, and have identical instructions, they are
1978   // considered to be the same.
1979   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1980     Mismatch = false;
1981     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1982       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1983           OutputBBs.find(VToB.first);
1984       if (OutputBBIt == OutputBBs.end()) {
1985         Mismatch = true;
1986         break;
1987       }
1988 
1989       BasicBlock *CompBB = VToB.second;
1990       BasicBlock *OutputBB = OutputBBIt->second;
1991       if (CompBB->size() - 1 != OutputBB->size()) {
1992         Mismatch = true;
1993         break;
1994       }
1995 
1996       BasicBlock::iterator NIt = OutputBB->begin();
1997       for (Instruction &I : *CompBB) {
1998         if (isa<BranchInst>(&I))
1999           continue;
2000 
2001         if (!I.isIdenticalTo(&(*NIt))) {
2002           Mismatch = true;
2003           break;
2004         }
2005 
2006         NIt++;
2007       }
2008     }
2009 
2010     if (!Mismatch)
2011       return MatchingNum;
2012 
2013     MatchingNum++;
2014   }
2015 
2016   return std::nullopt;
2017 }
2018 
2019 /// Remove empty output blocks from the outlined region.
2020 ///
2021 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2022 /// Region.
2023 /// \param Region - The OutlinableRegion we are analyzing.
2024 static bool
2025 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2026                             OutlinableRegion &Region) {
2027   bool AllRemoved = true;
2028   Value *RetValueForBB;
2029   BasicBlock *NewBB;
2030   SmallVector<Value *, 4> ToRemove;
2031   // Iterate over the output blocks created in the outlined section.
2032   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2033     RetValueForBB = VtoBB.first;
2034     NewBB = VtoBB.second;
2035 
2036     // If there are no instructions, we remove it from the module, and also
2037     // mark the value for removal from the return value to output block mapping.
2038     if (NewBB->size() == 0) {
2039       NewBB->eraseFromParent();
2040       ToRemove.push_back(RetValueForBB);
2041       continue;
2042     }
2043 
2044     // Mark that we could not remove all the blocks since they were not all
2045     // empty.
2046     AllRemoved = false;
2047   }
2048 
2049   // Remove the return value from the mapping.
2050   for (Value *V : ToRemove)
2051     BlocksToPrune.erase(V);
2052 
2053   // Mark the region as having the no output scheme.
2054   if (AllRemoved)
2055     Region.OutputBlockNum = -1;
2056 
2057   return AllRemoved;
2058 }
2059 
2060 /// For the outlined section, move needed the StoreInsts for the output
2061 /// registers into their own block. Then, determine if there is a duplicate
2062 /// output block already created.
2063 ///
2064 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2065 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2066 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2067 /// placed in.
2068 /// \param [in] EndBBs - the final blocks of the extracted function.
2069 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2070 /// been replaced by a new output value.
2071 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2072 static void alignOutputBlockWithAggFunc(
2073     OutlinableGroup &OG, OutlinableRegion &Region,
2074     DenseMap<Value *, BasicBlock *> &OutputBBs,
2075     DenseMap<Value *, BasicBlock *> &EndBBs,
2076     const DenseMap<Value *, Value *> &OutputMappings,
2077     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2078   // If none of the output blocks have any instructions, this means that we do
2079   // not have to determine if it matches any of the other output schemes, and we
2080   // don't have to do anything else.
2081   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2082     return;
2083 
2084   // Determine is there is a duplicate set of blocks.
2085   std::optional<unsigned> MatchingBB =
2086       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2087 
2088   // If there is, we remove the new output blocks.  If it does not,
2089   // we add it to our list of sets of output blocks.
2090   if (MatchingBB) {
2091     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2092                       << Region.ExtractedFunction << " to " << *MatchingBB);
2093 
2094     Region.OutputBlockNum = *MatchingBB;
2095     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2096       VtoBB.second->eraseFromParent();
2097     return;
2098   }
2099 
2100   Region.OutputBlockNum = OutputStoreBBs.size();
2101 
2102   Value *RetValueForBB;
2103   BasicBlock *NewBB;
2104   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2105   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2106     RetValueForBB = VtoBB.first;
2107     NewBB = VtoBB.second;
2108     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2109         EndBBs.find(RetValueForBB);
2110     LLVM_DEBUG(dbgs() << "Create output block for region in"
2111                       << Region.ExtractedFunction << " to "
2112                       << *NewBB);
2113     BranchInst::Create(VBBIt->second, NewBB);
2114     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2115   }
2116 }
2117 
2118 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2119 /// before creating a basic block for each \p NewMap, and inserting into the new
2120 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2121 ///
2122 /// \param OldMap [in] - The mapping to base the new mapping off of.
2123 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2124 /// \param ParentFunc [in] - The function to put the new basic block in.
2125 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2126 /// by an index value.
2127 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2128                                        DenseMap<Value *, BasicBlock *> &NewMap,
2129                                        Function *ParentFunc, Twine BaseName) {
2130   unsigned Idx = 0;
2131   std::vector<Value *> SortedKeys;
2132 
2133   getSortedConstantKeys(SortedKeys, OldMap);
2134 
2135   for (Value *RetVal : SortedKeys) {
2136     BasicBlock *NewBB = BasicBlock::Create(
2137         ParentFunc->getContext(),
2138         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2139         ParentFunc);
2140     NewMap.insert(std::make_pair(RetVal, NewBB));
2141   }
2142 }
2143 
2144 /// Create the switch statement for outlined function to differentiate between
2145 /// all the output blocks.
2146 ///
2147 /// For the outlined section, determine if an outlined block already exists that
2148 /// matches the needed stores for the extracted section.
2149 /// \param [in] M - The module we are outlining from.
2150 /// \param [in] OG - The group of regions to be outlined.
2151 /// \param [in] EndBBs - The final blocks of the extracted function.
2152 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2153 void createSwitchStatement(
2154     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2155     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2156   // We only need the switch statement if there is more than one store
2157   // combination, or there is more than one set of output blocks.  The first
2158   // will occur when we store different sets of values for two different
2159   // regions.  The second will occur when we have two outputs that are combined
2160   // in a PHINode outside of the region in one outlined instance, and are used
2161   // seaparately in another. This will create the same set of OutputGVNs, but
2162   // will generate two different output schemes.
2163   if (OG.OutputGVNCombinations.size() > 1) {
2164     Function *AggFunc = OG.OutlinedFunction;
2165     // Create a final block for each different return block.
2166     DenseMap<Value *, BasicBlock *> ReturnBBs;
2167     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2168 
2169     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2170       std::pair<Value *, BasicBlock *> &OutputBlock =
2171           *OG.EndBBs.find(RetBlockPair.first);
2172       BasicBlock *ReturnBlock = RetBlockPair.second;
2173       BasicBlock *EndBB = OutputBlock.second;
2174       Instruction *Term = EndBB->getTerminator();
2175       // Move the return value to the final block instead of the original exit
2176       // stub.
2177       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2178       // Put the switch statement in the old end basic block for the function
2179       // with a fall through to the new return block.
2180       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2181                         << OutputStoreBBs.size() << "\n");
2182       SwitchInst *SwitchI =
2183           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2184                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2185 
2186       unsigned Idx = 0;
2187       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2188         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2189             OutputStoreBB.find(OutputBlock.first);
2190 
2191         if (OSBBIt == OutputStoreBB.end())
2192           continue;
2193 
2194         BasicBlock *BB = OSBBIt->second;
2195         SwitchI->addCase(
2196             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2197         Term = BB->getTerminator();
2198         Term->setSuccessor(0, ReturnBlock);
2199         Idx++;
2200       }
2201     }
2202     return;
2203   }
2204 
2205   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2206 
2207   // If there needs to be stores, move them from the output blocks to their
2208   // corresponding ending block.  We do not check that the OutputGVNCombinations
2209   // is equal to 1 here since that could just been the case where there are 0
2210   // outputs. Instead, we check whether there is more than one set of output
2211   // blocks since this is the only case where we would have to move the
2212   // stores, and erase the extraneous blocks.
2213   if (OutputStoreBBs.size() == 1) {
2214     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2215                       << *OG.OutlinedFunction << "\n");
2216     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2217     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2218       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2219           EndBBs.find(VBPair.first);
2220       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2221       BasicBlock *EndBB = EndBBIt->second;
2222       BasicBlock *OutputBB = VBPair.second;
2223       Instruction *Term = OutputBB->getTerminator();
2224       Term->eraseFromParent();
2225       Term = EndBB->getTerminator();
2226       moveBBContents(*OutputBB, *EndBB);
2227       Term->moveBefore(*EndBB, EndBB->end());
2228       OutputBB->eraseFromParent();
2229     }
2230   }
2231 }
2232 
2233 /// Fill the new function that will serve as the replacement function for all of
2234 /// the extracted regions of a certain structure from the first region in the
2235 /// list of regions.  Replace this first region's extracted function with the
2236 /// new overall function.
2237 ///
2238 /// \param [in] M - The module we are outlining from.
2239 /// \param [in] CurrentGroup - The group of regions to be outlined.
2240 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2241 /// set of stores needed for the different functions.
2242 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2243 /// once outlining is complete.
2244 /// \param [in] OutputMappings - Extracted functions to erase from module
2245 /// once outlining is complete.
2246 static void fillOverallFunction(
2247     Module &M, OutlinableGroup &CurrentGroup,
2248     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2249     std::vector<Function *> &FuncsToRemove,
2250     const DenseMap<Value *, Value *> &OutputMappings) {
2251   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2252 
2253   // Move first extracted function's instructions into new function.
2254   LLVM_DEBUG(dbgs() << "Move instructions from "
2255                     << *CurrentOS->ExtractedFunction << " to instruction "
2256                     << *CurrentGroup.OutlinedFunction << "\n");
2257   moveFunctionData(*CurrentOS->ExtractedFunction,
2258                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2259 
2260   // Transfer the attributes from the function to the new function.
2261   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2262     CurrentGroup.OutlinedFunction->addFnAttr(A);
2263 
2264   // Create a new set of output blocks for the first extracted function.
2265   DenseMap<Value *, BasicBlock *> NewBBs;
2266   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2267                              CurrentGroup.OutlinedFunction, "output_block_0");
2268   CurrentOS->OutputBlockNum = 0;
2269 
2270   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2271   replaceConstants(*CurrentOS);
2272 
2273   // We first identify if any output blocks are empty, if they are we remove
2274   // them. We then create a branch instruction to the basic block to the return
2275   // block for the function for each non empty output block.
2276   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2277     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2278     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2279       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2280           CurrentGroup.EndBBs.find(VToBB.first);
2281       BasicBlock *EndBB = VBBIt->second;
2282       BranchInst::Create(EndBB, VToBB.second);
2283       OutputStoreBBs.back().insert(VToBB);
2284     }
2285   }
2286 
2287   // Replace the call to the extracted function with the outlined function.
2288   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2289 
2290   // We only delete the extracted functions at the end since we may need to
2291   // reference instructions contained in them for mapping purposes.
2292   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2293 }
2294 
2295 void IROutliner::deduplicateExtractedSections(
2296     Module &M, OutlinableGroup &CurrentGroup,
2297     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2298   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2299 
2300   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2301 
2302   OutlinableRegion *CurrentOS;
2303 
2304   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2305                       OutputMappings);
2306 
2307   std::vector<Value *> SortedKeys;
2308   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2309     CurrentOS = CurrentGroup.Regions[Idx];
2310     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2311                                                *CurrentOS->ExtractedFunction);
2312 
2313     // Create a set of BasicBlocks, one for each return block, to hold the
2314     // needed store instructions.
2315     DenseMap<Value *, BasicBlock *> NewBBs;
2316     createAndInsertBasicBlocks(
2317         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2318         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2319     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2320     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2321                                 CurrentGroup.EndBBs, OutputMappings,
2322                                 OutputStoreBBs);
2323 
2324     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2325     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2326   }
2327 
2328   // Create a switch statement to handle the different output schemes.
2329   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2330 
2331   OutlinedFunctionNum++;
2332 }
2333 
2334 /// Checks that the next instruction in the InstructionDataList matches the
2335 /// next instruction in the module.  If they do not, there could be the
2336 /// possibility that extra code has been inserted, and we must ignore it.
2337 ///
2338 /// \param ID - The IRInstructionData to check the next instruction of.
2339 /// \returns true if the InstructionDataList and actual instruction match.
2340 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2341   // We check if there is a discrepancy between the InstructionDataList
2342   // and the actual next instruction in the module.  If there is, it means
2343   // that an extra instruction was added, likely by the CodeExtractor.
2344 
2345   // Since we do not have any similarity data about this particular
2346   // instruction, we cannot confidently outline it, and must discard this
2347   // candidate.
2348   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2349   Instruction *NextIDLInst = NextIDIt->Inst;
2350   Instruction *NextModuleInst = nullptr;
2351   if (!ID.Inst->isTerminator())
2352     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2353   else if (NextIDLInst != nullptr)
2354     NextModuleInst =
2355         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2356 
2357   if (NextIDLInst && NextIDLInst != NextModuleInst)
2358     return false;
2359 
2360   return true;
2361 }
2362 
2363 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2364     const OutlinableRegion &Region) {
2365   IRSimilarityCandidate *IRSC = Region.Candidate;
2366   unsigned StartIdx = IRSC->getStartIdx();
2367   unsigned EndIdx = IRSC->getEndIdx();
2368 
2369   // A check to make sure that we are not about to attempt to outline something
2370   // that has already been outlined.
2371   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2372     if (Outlined.contains(Idx))
2373       return false;
2374 
2375   // We check if the recorded instruction matches the actual next instruction,
2376   // if it does not, we fix it in the InstructionDataList.
2377   if (!Region.Candidate->backInstruction()->isTerminator()) {
2378     Instruction *NewEndInst =
2379         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2380     assert(NewEndInst && "Next instruction is a nullptr?");
2381     if (Region.Candidate->end()->Inst != NewEndInst) {
2382       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2383       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2384           IRInstructionData(*NewEndInst,
2385                             InstructionClassifier.visit(*NewEndInst), *IDL);
2386 
2387       // Insert the first IRInstructionData of the new region after the
2388       // last IRInstructionData of the IRSimilarityCandidate.
2389       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2390     }
2391   }
2392 
2393   return none_of(*IRSC, [this](IRInstructionData &ID) {
2394     if (!nextIRInstructionDataMatchesNextInst(ID))
2395       return true;
2396 
2397     return !this->InstructionClassifier.visit(ID.Inst);
2398   });
2399 }
2400 
2401 void IROutliner::pruneIncompatibleRegions(
2402     std::vector<IRSimilarityCandidate> &CandidateVec,
2403     OutlinableGroup &CurrentGroup) {
2404   bool PreviouslyOutlined;
2405 
2406   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2407   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2408                                const IRSimilarityCandidate &RHS) {
2409     return LHS.getStartIdx() < RHS.getStartIdx();
2410   });
2411 
2412   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2413   // Since outlining a call and a branch instruction will be the same as only
2414   // outlinining a call instruction, we ignore it as a space saving.
2415   if (FirstCandidate.getLength() == 2) {
2416     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2417         isa<BranchInst>(FirstCandidate.back()->Inst))
2418       return;
2419   }
2420 
2421   unsigned CurrentEndIdx = 0;
2422   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2423     PreviouslyOutlined = false;
2424     unsigned StartIdx = IRSC.getStartIdx();
2425     unsigned EndIdx = IRSC.getEndIdx();
2426     const Function &FnForCurrCand = *IRSC.getFunction();
2427 
2428     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2429       if (Outlined.contains(Idx)) {
2430         PreviouslyOutlined = true;
2431         break;
2432       }
2433 
2434     if (PreviouslyOutlined)
2435       continue;
2436 
2437     // Check over the instructions, and if the basic block has its address
2438     // taken for use somewhere else, we do not outline that block.
2439     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2440       return ID.Inst->getParent()->hasAddressTaken();
2441     });
2442 
2443     if (BBHasAddressTaken)
2444       continue;
2445 
2446     if (FnForCurrCand.hasOptNone())
2447       continue;
2448 
2449     if (FnForCurrCand.hasFnAttribute("nooutline")) {
2450       LLVM_DEBUG({
2451         dbgs() << "... Skipping function with nooutline attribute: "
2452                << FnForCurrCand.getName() << "\n";
2453       });
2454       continue;
2455     }
2456 
2457     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2458         !OutlineFromLinkODRs)
2459       continue;
2460 
2461     // Greedily prune out any regions that will overlap with already chosen
2462     // regions.
2463     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2464       continue;
2465 
2466     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2467       if (!nextIRInstructionDataMatchesNextInst(ID))
2468         return true;
2469 
2470       return !this->InstructionClassifier.visit(ID.Inst);
2471     });
2472 
2473     if (BadInst)
2474       continue;
2475 
2476     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2477         OutlinableRegion(IRSC, CurrentGroup);
2478     CurrentGroup.Regions.push_back(OS);
2479 
2480     CurrentEndIdx = EndIdx;
2481   }
2482 }
2483 
2484 InstructionCost
2485 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2486   InstructionCost RegionBenefit = 0;
2487   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2488     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2489     // We add the number of instructions in the region to the benefit as an
2490     // estimate as to how much will be removed.
2491     RegionBenefit += Region->getBenefit(TTI);
2492     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2493                       << " saved instructions to overfall benefit.\n");
2494   }
2495 
2496   return RegionBenefit;
2497 }
2498 
2499 /// For the \p OutputCanon number passed in find the value represented by this
2500 /// canonical number. If it is from a PHINode, we pick the first incoming
2501 /// value and return that Value instead.
2502 ///
2503 /// \param Region - The OutlinableRegion to get the Value from.
2504 /// \param OutputCanon - The canonical number to find the Value from.
2505 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2506 /// Region.
2507 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2508                                       unsigned OutputCanon) {
2509   OutlinableGroup &CurrentGroup = *Region.Parent;
2510   // If the value is greater than the value in the tracker, we have a
2511   // PHINode and will instead use one of the incoming values to find the
2512   // type.
2513   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2514     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2515     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2516            "Could not find GVN set for PHINode number!");
2517     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2518     OutputCanon = *It->second.second.begin();
2519   }
2520   std::optional<unsigned> OGVN =
2521       Region.Candidate->fromCanonicalNum(OutputCanon);
2522   assert(OGVN && "Could not find GVN for Canonical Number?");
2523   std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2524   assert(OV && "Could not find value for GVN?");
2525   return *OV;
2526 }
2527 
2528 InstructionCost
2529 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2530   InstructionCost OverallCost = 0;
2531   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2532     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2533 
2534     // Each output incurs a load after the call, so we add that to the cost.
2535     for (unsigned OutputCanon : Region->GVNStores) {
2536       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2537       InstructionCost LoadCost =
2538           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2539                               TargetTransformInfo::TCK_CodeSize);
2540 
2541       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2542                         << " instructions to cost for output of type "
2543                         << *V->getType() << "\n");
2544       OverallCost += LoadCost;
2545     }
2546   }
2547 
2548   return OverallCost;
2549 }
2550 
2551 /// Find the extra instructions needed to handle any output values for the
2552 /// region.
2553 ///
2554 /// \param [in] M - The Module to outline from.
2555 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2556 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2557 /// new instruction costs.
2558 /// \returns the additional cost to handle the outputs.
2559 static InstructionCost findCostForOutputBlocks(Module &M,
2560                                                OutlinableGroup &CurrentGroup,
2561                                                TargetTransformInfo &TTI) {
2562   InstructionCost OutputCost = 0;
2563   unsigned NumOutputBranches = 0;
2564 
2565   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2566   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2567   DenseSet<BasicBlock *> CandidateBlocks;
2568   Candidate.getBasicBlocks(CandidateBlocks);
2569 
2570   // Count the number of different output branches that point to blocks outside
2571   // of the region.
2572   DenseSet<BasicBlock *> FoundBlocks;
2573   for (IRInstructionData &ID : Candidate) {
2574     if (!isa<BranchInst>(ID.Inst))
2575       continue;
2576 
2577     for (Value *V : ID.OperVals) {
2578       BasicBlock *BB = static_cast<BasicBlock *>(V);
2579       if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2580         NumOutputBranches++;
2581     }
2582   }
2583 
2584   CurrentGroup.BranchesToOutside = NumOutputBranches;
2585 
2586   for (const ArrayRef<unsigned> &OutputUse :
2587        CurrentGroup.OutputGVNCombinations) {
2588     for (unsigned OutputCanon : OutputUse) {
2589       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2590       InstructionCost StoreCost =
2591           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2592                               TargetTransformInfo::TCK_CodeSize);
2593 
2594       // An instruction cost is added for each store set that needs to occur for
2595       // various output combinations inside the function, plus a branch to
2596       // return to the exit block.
2597       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2598                         << " instructions to cost for output of type "
2599                         << *V->getType() << "\n");
2600       OutputCost += StoreCost * NumOutputBranches;
2601     }
2602 
2603     InstructionCost BranchCost =
2604         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2605     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2606                       << " a branch instruction\n");
2607     OutputCost += BranchCost * NumOutputBranches;
2608   }
2609 
2610   // If there is more than one output scheme, we must have a comparison and
2611   // branch for each different item in the switch statement.
2612   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2613     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2614         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2615         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2616         TargetTransformInfo::TCK_CodeSize);
2617     InstructionCost BranchCost =
2618         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2619 
2620     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2621     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2622 
2623     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2624                       << " instructions for each switch case for each different"
2625                       << " output path in a function\n");
2626     OutputCost += TotalCost * NumOutputBranches;
2627   }
2628 
2629   return OutputCost;
2630 }
2631 
2632 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2633   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2634   CurrentGroup.Benefit += RegionBenefit;
2635   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2636 
2637   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2638   CurrentGroup.Cost += OutputReloadCost;
2639   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2640 
2641   InstructionCost AverageRegionBenefit =
2642       RegionBenefit / CurrentGroup.Regions.size();
2643   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2644   unsigned NumRegions = CurrentGroup.Regions.size();
2645   TargetTransformInfo &TTI =
2646       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2647 
2648   // We add one region to the cost once, to account for the instructions added
2649   // inside of the newly created function.
2650   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2651                     << " instructions to cost for body of new function.\n");
2652   CurrentGroup.Cost += AverageRegionBenefit;
2653   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2654 
2655   // For each argument, we must add an instruction for loading the argument
2656   // out of the register and into a value inside of the newly outlined function.
2657   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2658                     << " instructions to cost for each argument in the new"
2659                     << " function.\n");
2660   CurrentGroup.Cost +=
2661       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2662   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2663 
2664   // Each argument needs to either be loaded into a register or onto the stack.
2665   // Some arguments will only be loaded into the stack once the argument
2666   // registers are filled.
2667   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2668                     << " instructions to cost for each argument in the new"
2669                     << " function " << NumRegions << " times for the "
2670                     << "needed argument handling at the call site.\n");
2671   CurrentGroup.Cost +=
2672       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2673   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2674 
2675   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2676   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2677 }
2678 
2679 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2680                                      ArrayRef<Value *> Outputs,
2681                                      LoadInst *LI) {
2682   // For and load instructions following the call
2683   Value *Operand = LI->getPointerOperand();
2684   std::optional<unsigned> OutputIdx;
2685   // Find if the operand it is an output register.
2686   for (unsigned ArgIdx = Region.NumExtractedInputs;
2687        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2688     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2689       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2690       break;
2691     }
2692   }
2693 
2694   // If we found an output register, place a mapping of the new value
2695   // to the original in the mapping.
2696   if (!OutputIdx)
2697     return;
2698 
2699   if (!OutputMappings.contains(Outputs[*OutputIdx])) {
2700     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2701                       << *Outputs[*OutputIdx] << "\n");
2702     OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2703   } else {
2704     Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2705     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2706                       << *Outputs[*OutputIdx] << "\n");
2707     OutputMappings.insert(std::make_pair(LI, Orig));
2708   }
2709 }
2710 
2711 bool IROutliner::extractSection(OutlinableRegion &Region) {
2712   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2713   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2714   BasicBlock *InitialStart = Region.StartBB;
2715   Function *OrigF = Region.StartBB->getParent();
2716   CodeExtractorAnalysisCache CEAC(*OrigF);
2717   Region.ExtractedFunction =
2718       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2719 
2720   // If the extraction was successful, find the BasicBlock, and reassign the
2721   // OutlinableRegion blocks
2722   if (!Region.ExtractedFunction) {
2723     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2724                       << "\n");
2725     Region.reattachCandidate();
2726     return false;
2727   }
2728 
2729   // Get the block containing the called branch, and reassign the blocks as
2730   // necessary.  If the original block still exists, it is because we ended on
2731   // a branch instruction, and so we move the contents into the block before
2732   // and assign the previous block correctly.
2733   User *InstAsUser = Region.ExtractedFunction->user_back();
2734   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2735   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2736   assert(Region.PrevBB && "PrevBB is nullptr?");
2737   if (Region.PrevBB == InitialStart) {
2738     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2739     Instruction *BI = NewPrev->getTerminator();
2740     BI->eraseFromParent();
2741     moveBBContents(*InitialStart, *NewPrev);
2742     Region.PrevBB = NewPrev;
2743     InitialStart->eraseFromParent();
2744   }
2745 
2746   Region.StartBB = RewrittenBB;
2747   Region.EndBB = RewrittenBB;
2748 
2749   // The sequences of outlinable regions has now changed.  We must fix the
2750   // IRInstructionDataList for consistency.  Although they may not be illegal
2751   // instructions, they should not be compared with anything else as they
2752   // should not be outlined in this round.  So marking these as illegal is
2753   // allowed.
2754   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2755   Instruction *BeginRewritten = &*RewrittenBB->begin();
2756   Instruction *EndRewritten = &*RewrittenBB->begin();
2757   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2758       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2759   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2760       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2761 
2762   // Insert the first IRInstructionData of the new region in front of the
2763   // first IRInstructionData of the IRSimilarityCandidate.
2764   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2765   // Insert the first IRInstructionData of the new region after the
2766   // last IRInstructionData of the IRSimilarityCandidate.
2767   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2768   // Remove the IRInstructionData from the IRSimilarityCandidate.
2769   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2770 
2771   assert(RewrittenBB != nullptr &&
2772          "Could not find a predecessor after extraction!");
2773 
2774   // Iterate over the new set of instructions to find the new call
2775   // instruction.
2776   for (Instruction &I : *RewrittenBB)
2777     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2778       if (Region.ExtractedFunction == CI->getCalledFunction())
2779         Region.Call = CI;
2780     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2781       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2782   Region.reattachCandidate();
2783   return true;
2784 }
2785 
2786 unsigned IROutliner::doOutline(Module &M) {
2787   // Find the possible similarity sections.
2788   InstructionClassifier.EnableBranches = !DisableBranches;
2789   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2790   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2791 
2792   IRSimilarityIdentifier &Identifier = getIRSI(M);
2793   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2794 
2795   // Sort them by size of extracted sections
2796   unsigned OutlinedFunctionNum = 0;
2797   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2798   // to sort them by the potential number of instructions to be outlined
2799   if (SimilarityCandidates.size() > 1)
2800     llvm::stable_sort(SimilarityCandidates,
2801                       [](const std::vector<IRSimilarityCandidate> &LHS,
2802                          const std::vector<IRSimilarityCandidate> &RHS) {
2803                         return LHS[0].getLength() * LHS.size() >
2804                                RHS[0].getLength() * RHS.size();
2805                       });
2806   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2807   // each of the following for loops to avoid making an allocator.
2808   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2809 
2810   DenseSet<unsigned> NotSame;
2811   std::vector<OutlinableGroup *> NegativeCostGroups;
2812   std::vector<OutlinableRegion *> OutlinedRegions;
2813   // Iterate over the possible sets of similarity.
2814   unsigned PotentialGroupIdx = 0;
2815   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2816     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2817 
2818     // Remove entries that were previously outlined
2819     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2820 
2821     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2822     // trying to outlined since there is no compatible similar instance of this
2823     // code.
2824     if (CurrentGroup.Regions.size() < 2)
2825       continue;
2826 
2827     // Determine if there are any values that are the same constant throughout
2828     // each section in the set.
2829     NotSame.clear();
2830     CurrentGroup.findSameConstants(NotSame);
2831 
2832     if (CurrentGroup.IgnoreGroup)
2833       continue;
2834 
2835     // Create a CodeExtractor for each outlinable region. Identify inputs and
2836     // outputs for each section using the code extractor and create the argument
2837     // types for the Aggregate Outlining Function.
2838     OutlinedRegions.clear();
2839     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2840       // Break the outlinable region out of its parent BasicBlock into its own
2841       // BasicBlocks (see function implementation).
2842       OS->splitCandidate();
2843 
2844       // There's a chance that when the region is split, extra instructions are
2845       // added to the region. This makes the region no longer viable
2846       // to be split, so we ignore it for outlining.
2847       if (!OS->CandidateSplit)
2848         continue;
2849 
2850       SmallVector<BasicBlock *> BE;
2851       DenseSet<BasicBlock *> BlocksInRegion;
2852       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2853       OS->CE = new (ExtractorAllocator.Allocate())
2854           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2855                         false, nullptr, "outlined");
2856       findAddInputsOutputs(M, *OS, NotSame);
2857       if (!OS->IgnoreRegion)
2858         OutlinedRegions.push_back(OS);
2859 
2860       // We recombine the blocks together now that we have gathered all the
2861       // needed information.
2862       OS->reattachCandidate();
2863     }
2864 
2865     CurrentGroup.Regions = std::move(OutlinedRegions);
2866 
2867     if (CurrentGroup.Regions.empty())
2868       continue;
2869 
2870     CurrentGroup.collectGVNStoreSets(M);
2871 
2872     if (CostModel)
2873       findCostBenefit(M, CurrentGroup);
2874 
2875     // If we are adhering to the cost model, skip those groups where the cost
2876     // outweighs the benefits.
2877     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2878       OptimizationRemarkEmitter &ORE =
2879           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2880       ORE.emit([&]() {
2881         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2882         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2883                                    C->frontInstruction());
2884         R << "did not outline "
2885           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2886           << " regions due to estimated increase of "
2887           << ore::NV("InstructionIncrease",
2888                      CurrentGroup.Cost - CurrentGroup.Benefit)
2889           << " instructions at locations ";
2890         interleave(
2891             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2892             [&R](OutlinableRegion *Region) {
2893               R << ore::NV(
2894                   "DebugLoc",
2895                   Region->Candidate->frontInstruction()->getDebugLoc());
2896             },
2897             [&R]() { R << " "; });
2898         return R;
2899       });
2900       continue;
2901     }
2902 
2903     NegativeCostGroups.push_back(&CurrentGroup);
2904   }
2905 
2906   ExtractorAllocator.DestroyAll();
2907 
2908   if (NegativeCostGroups.size() > 1)
2909     stable_sort(NegativeCostGroups,
2910                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2911                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2912                 });
2913 
2914   std::vector<Function *> FuncsToRemove;
2915   for (OutlinableGroup *CG : NegativeCostGroups) {
2916     OutlinableGroup &CurrentGroup = *CG;
2917 
2918     OutlinedRegions.clear();
2919     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2920       // We check whether our region is compatible with what has already been
2921       // outlined, and whether we need to ignore this item.
2922       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2923         continue;
2924       OutlinedRegions.push_back(Region);
2925     }
2926 
2927     if (OutlinedRegions.size() < 2)
2928       continue;
2929 
2930     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2931     // we are still outlining enough regions to make up for the added cost.
2932     CurrentGroup.Regions = std::move(OutlinedRegions);
2933     if (CostModel) {
2934       CurrentGroup.Benefit = 0;
2935       CurrentGroup.Cost = 0;
2936       findCostBenefit(M, CurrentGroup);
2937       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2938         continue;
2939     }
2940     OutlinedRegions.clear();
2941     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2942       Region->splitCandidate();
2943       if (!Region->CandidateSplit)
2944         continue;
2945       OutlinedRegions.push_back(Region);
2946     }
2947 
2948     CurrentGroup.Regions = std::move(OutlinedRegions);
2949     if (CurrentGroup.Regions.size() < 2) {
2950       for (OutlinableRegion *R : CurrentGroup.Regions)
2951         R->reattachCandidate();
2952       continue;
2953     }
2954 
2955     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2956                       << " and benefit " << CurrentGroup.Benefit << "\n");
2957 
2958     // Create functions out of all the sections, and mark them as outlined.
2959     OutlinedRegions.clear();
2960     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2961       SmallVector<BasicBlock *> BE;
2962       DenseSet<BasicBlock *> BlocksInRegion;
2963       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2964       OS->CE = new (ExtractorAllocator.Allocate())
2965           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2966                         false, nullptr, "outlined");
2967       bool FunctionOutlined = extractSection(*OS);
2968       if (FunctionOutlined) {
2969         unsigned StartIdx = OS->Candidate->getStartIdx();
2970         unsigned EndIdx = OS->Candidate->getEndIdx();
2971         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2972           Outlined.insert(Idx);
2973 
2974         OutlinedRegions.push_back(OS);
2975       }
2976     }
2977 
2978     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2979                       << " with benefit " << CurrentGroup.Benefit
2980                       << " and cost " << CurrentGroup.Cost << "\n");
2981 
2982     CurrentGroup.Regions = std::move(OutlinedRegions);
2983 
2984     if (CurrentGroup.Regions.empty())
2985       continue;
2986 
2987     OptimizationRemarkEmitter &ORE =
2988         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2989     ORE.emit([&]() {
2990       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2991       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2992       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2993         << " regions with decrease of "
2994         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2995         << " instructions at locations ";
2996       interleave(
2997           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2998           [&R](OutlinableRegion *Region) {
2999             R << ore::NV("DebugLoc",
3000                          Region->Candidate->frontInstruction()->getDebugLoc());
3001           },
3002           [&R]() { R << " "; });
3003       return R;
3004     });
3005 
3006     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3007                                  OutlinedFunctionNum);
3008   }
3009 
3010   for (Function *F : FuncsToRemove)
3011     F->eraseFromParent();
3012 
3013   return OutlinedFunctionNum;
3014 }
3015 
3016 bool IROutliner::run(Module &M) {
3017   CostModel = !NoCostModel;
3018   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3019 
3020   return doOutline(M) > 0;
3021 }
3022 
3023 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3024   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3025 
3026   std::function<TargetTransformInfo &(Function &)> GTTI =
3027       [&FAM](Function &F) -> TargetTransformInfo & {
3028     return FAM.getResult<TargetIRAnalysis>(F);
3029   };
3030 
3031   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3032       [&AM](Module &M) -> IRSimilarityIdentifier & {
3033     return AM.getResult<IRSimilarityAnalysis>(M);
3034   };
3035 
3036   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3037   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3038       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3039     ORE.reset(new OptimizationRemarkEmitter(&F));
3040     return *ORE;
3041   };
3042 
3043   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3044     return PreservedAnalyses::none();
3045   return PreservedAnalyses::all();
3046 }
3047