1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 #define DEBUG_TYPE "iroutliner" 33 34 using namespace llvm; 35 using namespace IRSimilarity; 36 37 // A command flag to be used for debugging to exclude branches from similarity 38 // matching and outlining. 39 namespace llvm { 40 extern cl::opt<bool> DisableBranches; 41 42 // A command flag to be used for debugging to indirect calls from similarity 43 // matching and outlining. 44 extern cl::opt<bool> DisableIndirectCalls; 45 46 // A command flag to be used for debugging to exclude intrinsics from similarity 47 // matching and outlining. 48 extern cl::opt<bool> DisableIntrinsics; 49 50 } // namespace llvm 51 52 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 53 // functions. This is false by default because the linker can dedupe linkonceodr 54 // functions. Since the outliner is confined to a single module (modulo LTO), 55 // this is off by default. It should, however, be the default behavior in 56 // LTO. 57 static cl::opt<bool> EnableLinkOnceODRIROutlining( 58 "enable-linkonceodr-ir-outlining", cl::Hidden, 59 cl::desc("Enable the IR outliner on linkonceodr functions"), 60 cl::init(false)); 61 62 // This is a debug option to test small pieces of code to ensure that outlining 63 // works correctly. 64 static cl::opt<bool> NoCostModel( 65 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 66 cl::desc("Debug option to outline greedily, without restriction that " 67 "calculated benefit outweighs cost")); 68 69 /// The OutlinableGroup holds all the overarching information for outlining 70 /// a set of regions that are structurally similar to one another, such as the 71 /// types of the overall function, the output blocks, the sets of stores needed 72 /// and a list of the different regions. This information is used in the 73 /// deduplication of extracted regions with the same structure. 74 struct OutlinableGroup { 75 /// The sections that could be outlined 76 std::vector<OutlinableRegion *> Regions; 77 78 /// The argument types for the function created as the overall function to 79 /// replace the extracted function for each region. 80 std::vector<Type *> ArgumentTypes; 81 /// The FunctionType for the overall function. 82 FunctionType *OutlinedFunctionType = nullptr; 83 /// The Function for the collective overall function. 84 Function *OutlinedFunction = nullptr; 85 86 /// Flag for whether we should not consider this group of OutlinableRegions 87 /// for extraction. 88 bool IgnoreGroup = false; 89 90 /// The return blocks for the overall function. 91 DenseMap<Value *, BasicBlock *> EndBBs; 92 93 /// The PHIBlocks with their corresponding return block based on the return 94 /// value as the key. 95 DenseMap<Value *, BasicBlock *> PHIBlocks; 96 97 /// A set containing the different GVN store sets needed. Each array contains 98 /// a sorted list of the different values that need to be stored into output 99 /// registers. 100 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 101 102 /// Flag for whether the \ref ArgumentTypes have been defined after the 103 /// extraction of the first region. 104 bool InputTypesSet = false; 105 106 /// The number of input values in \ref ArgumentTypes. Anything after this 107 /// index in ArgumentTypes is an output argument. 108 unsigned NumAggregateInputs = 0; 109 110 /// The mapping of the canonical numbering of the values in outlined sections 111 /// to specific arguments. 112 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 113 114 /// The number of branches in the region target a basic block that is outside 115 /// of the region. 116 unsigned BranchesToOutside = 0; 117 118 /// Tracker counting backwards from the highest unsigned value possible to 119 /// avoid conflicting with the GVNs of assigned values. We start at -3 since 120 /// -2 and -1 are assigned by the DenseMap. 121 unsigned PHINodeGVNTracker = -3; 122 123 DenseMap<unsigned, 124 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>> 125 PHINodeGVNToGVNs; 126 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN; 127 128 /// The number of instructions that will be outlined by extracting \ref 129 /// Regions. 130 InstructionCost Benefit = 0; 131 /// The number of added instructions needed for the outlining of the \ref 132 /// Regions. 133 InstructionCost Cost = 0; 134 135 /// The argument that needs to be marked with the swifterr attribute. If not 136 /// needed, there is no value. 137 Optional<unsigned> SwiftErrorArgument; 138 139 /// For the \ref Regions, we look at every Value. If it is a constant, 140 /// we check whether it is the same in Region. 141 /// 142 /// \param [in,out] NotSame contains the global value numbers where the 143 /// constant is not always the same, and must be passed in as an argument. 144 void findSameConstants(DenseSet<unsigned> &NotSame); 145 146 /// For the regions, look at each set of GVN stores needed and account for 147 /// each combination. Add an argument to the argument types if there is 148 /// more than one combination. 149 /// 150 /// \param [in] M - The module we are outlining from. 151 void collectGVNStoreSets(Module &M); 152 }; 153 154 /// Move the contents of \p SourceBB to before the last instruction of \p 155 /// TargetBB. 156 /// \param SourceBB - the BasicBlock to pull Instructions from. 157 /// \param TargetBB - the BasicBlock to put Instruction into. 158 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 159 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 160 I.moveBefore(TargetBB, TargetBB.end()); 161 } 162 163 /// A function to sort the keys of \p Map, which must be a mapping of constant 164 /// values to basic blocks and return it in \p SortedKeys 165 /// 166 /// \param SortedKeys - The vector the keys will be return in and sorted. 167 /// \param Map - The DenseMap containing keys to sort. 168 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 169 DenseMap<Value *, BasicBlock *> &Map) { 170 for (auto &VtoBB : Map) 171 SortedKeys.push_back(VtoBB.first); 172 173 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 174 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 175 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 176 assert(RHSC && "Not a constant integer in return value?"); 177 assert(LHSC && "Not a constant integer in return value?"); 178 179 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 180 }); 181 } 182 183 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 184 Value *V) { 185 Optional<unsigned> GVN = Candidate->getGVN(V); 186 assert(GVN.hasValue() && "No GVN for incoming value"); 187 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 188 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 189 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 190 return FoundValueOpt.getValueOr(nullptr); 191 } 192 193 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found 194 /// in \p Included to branch to BasicBlock \p Replace if they currently branch 195 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks 196 /// when PHINodes are included in outlined regions. 197 /// 198 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be 199 /// checked. 200 /// \param Find - The successor block to be replaced. 201 /// \param Replace - The new succesor block to branch to. 202 /// \param Included - The set of blocks about to be outlined. 203 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, 204 BasicBlock *Replace, 205 DenseSet<BasicBlock *> &Included) { 206 for (PHINode &PN : PHIBlock->phis()) { 207 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; 208 ++Idx) { 209 // Check if the incoming block is included in the set of blocks being 210 // outlined. 211 BasicBlock *Incoming = PN.getIncomingBlock(Idx); 212 if (!Included.contains(Incoming)) 213 continue; 214 215 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator()); 216 assert(BI && "Not a branch instruction?"); 217 // Look over the branching instructions into this block to see if we 218 // used to branch to Find in this outlined block. 219 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; 220 Succ++) { 221 // If we have found the block to replace, we do so here. 222 if (BI->getSuccessor(Succ) != Find) 223 continue; 224 BI->setSuccessor(Succ, Replace); 225 } 226 } 227 } 228 } 229 230 231 void OutlinableRegion::splitCandidate() { 232 assert(!CandidateSplit && "Candidate already split!"); 233 234 Instruction *BackInst = Candidate->backInstruction(); 235 236 Instruction *EndInst = nullptr; 237 // Check whether the last instruction is a terminator, if it is, we do 238 // not split on the following instruction. We leave the block as it is. We 239 // also check that this is not the last instruction in the Module, otherwise 240 // the check for whether the current following instruction matches the 241 // previously recorded instruction will be incorrect. 242 if (!BackInst->isTerminator() || 243 BackInst->getParent() != &BackInst->getFunction()->back()) { 244 EndInst = Candidate->end()->Inst; 245 assert(EndInst && "Expected an end instruction?"); 246 } 247 248 // We check if the current instruction following the last instruction in the 249 // region is the same as the recorded instruction following the last 250 // instruction. If they do not match, there could be problems in rewriting 251 // the program after outlining, so we ignore it. 252 if (!BackInst->isTerminator() && 253 EndInst != BackInst->getNextNonDebugInstruction()) 254 return; 255 256 Instruction *StartInst = (*Candidate->begin()).Inst; 257 assert(StartInst && "Expected a start instruction?"); 258 StartBB = StartInst->getParent(); 259 PrevBB = StartBB; 260 261 DenseSet<BasicBlock *> BBSet; 262 Candidate->getBasicBlocks(BBSet); 263 264 // We iterate over the instructions in the region, if we find a PHINode, we 265 // check if there are predecessors outside of the region, if there are, 266 // we ignore this region since we are unable to handle the severing of the 267 // phi node right now. 268 BasicBlock::iterator It = StartInst->getIterator(); 269 while (PHINode *PN = dyn_cast<PHINode>(&*It)) { 270 unsigned NumPredsOutsideRegion = 0; 271 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 272 if (!BBSet.contains(PN->getIncomingBlock(i))) 273 ++NumPredsOutsideRegion; 274 275 if (NumPredsOutsideRegion > 1) 276 return; 277 278 It++; 279 } 280 281 // If the region starts with a PHINode, but is not the initial instruction of 282 // the BasicBlock, we ignore this region for now. 283 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin()) 284 return; 285 286 // If the region ends with a PHINode, but does not contain all of the phi node 287 // instructions of the region, we ignore it for now. 288 if (isa<PHINode>(BackInst)) { 289 EndBB = BackInst->getParent(); 290 if (BackInst != &*std::prev(EndBB->getFirstInsertionPt())) 291 return; 292 } 293 294 // The basic block gets split like so: 295 // block: block: 296 // inst1 inst1 297 // inst2 inst2 298 // region1 br block_to_outline 299 // region2 block_to_outline: 300 // region3 -> region1 301 // region4 region2 302 // inst3 region3 303 // inst4 region4 304 // br block_after_outline 305 // block_after_outline: 306 // inst3 307 // inst4 308 309 std::string OriginalName = PrevBB->getName().str(); 310 311 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 312 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 313 314 CandidateSplit = true; 315 if (!BackInst->isTerminator()) { 316 EndBB = EndInst->getParent(); 317 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 318 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 319 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 320 } else { 321 EndBB = BackInst->getParent(); 322 EndsInBranch = true; 323 FollowBB = nullptr; 324 } 325 326 // Refind the basic block set. 327 BBSet.clear(); 328 Candidate->getBasicBlocks(BBSet); 329 // For the phi nodes in the new starting basic block of the region, we 330 // reassign the targets of the basic blocks branching instructions. 331 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); 332 if (FollowBB) 333 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); 334 } 335 336 void OutlinableRegion::reattachCandidate() { 337 assert(CandidateSplit && "Candidate is not split!"); 338 339 // The basic block gets reattached like so: 340 // block: block: 341 // inst1 inst1 342 // inst2 inst2 343 // br block_to_outline region1 344 // block_to_outline: -> region2 345 // region1 region3 346 // region2 region4 347 // region3 inst3 348 // region4 inst4 349 // br block_after_outline 350 // block_after_outline: 351 // inst3 352 // inst4 353 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 354 355 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 356 PrevBB->getTerminator()->eraseFromParent(); 357 358 // If we reattaching after outlining, we iterate over the phi nodes to 359 // the initial block, and reassign the branch instructions of the incoming 360 // blocks to the block we are remerging into. 361 if (!ExtractedFunction) { 362 DenseSet<BasicBlock *> BBSet; 363 Candidate->getBasicBlocks(BBSet); 364 365 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); 366 if (!EndsInBranch) 367 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); 368 } 369 370 moveBBContents(*StartBB, *PrevBB); 371 372 BasicBlock *PlacementBB = PrevBB; 373 if (StartBB != EndBB) 374 PlacementBB = EndBB; 375 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 376 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 377 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 378 PlacementBB->getTerminator()->eraseFromParent(); 379 moveBBContents(*FollowBB, *PlacementBB); 380 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 381 FollowBB->eraseFromParent(); 382 } 383 384 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 385 StartBB->eraseFromParent(); 386 387 // Make sure to save changes back to the StartBB. 388 StartBB = PrevBB; 389 EndBB = nullptr; 390 PrevBB = nullptr; 391 FollowBB = nullptr; 392 393 CandidateSplit = false; 394 } 395 396 /// Find whether \p V matches the Constants previously found for the \p GVN. 397 /// 398 /// \param V - The value to check for consistency. 399 /// \param GVN - The global value number assigned to \p V. 400 /// \param GVNToConstant - The mapping of global value number to Constants. 401 /// \returns true if the Value matches the Constant mapped to by V and false if 402 /// it \p V is a Constant but does not match. 403 /// \returns None if \p V is not a Constant. 404 static Optional<bool> 405 constantMatches(Value *V, unsigned GVN, 406 DenseMap<unsigned, Constant *> &GVNToConstant) { 407 // See if we have a constants 408 Constant *CST = dyn_cast<Constant>(V); 409 if (!CST) 410 return None; 411 412 // Holds a mapping from a global value number to a Constant. 413 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 414 bool Inserted; 415 416 417 // If we have a constant, try to make a new entry in the GVNToConstant. 418 std::tie(GVNToConstantIt, Inserted) = 419 GVNToConstant.insert(std::make_pair(GVN, CST)); 420 // If it was found and is not equal, it is not the same. We do not 421 // handle this case yet, and exit early. 422 if (Inserted || (GVNToConstantIt->second == CST)) 423 return true; 424 425 return false; 426 } 427 428 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 429 InstructionCost Benefit = 0; 430 431 // Estimate the benefit of outlining a specific sections of the program. We 432 // delegate mostly this task to the TargetTransformInfo so that if the target 433 // has specific changes, we can have a more accurate estimate. 434 435 // However, getInstructionCost delegates the code size calculation for 436 // arithmetic instructions to getArithmeticInstrCost in 437 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 438 // code size for a division and remainder instruction to be equal to 4, and 439 // everything else to 1. This is not an accurate representation of the 440 // division instruction for targets that have a native division instruction. 441 // To be overly conservative, we only add 1 to the number of instructions for 442 // each division instruction. 443 for (IRInstructionData &ID : *Candidate) { 444 Instruction *I = ID.Inst; 445 switch (I->getOpcode()) { 446 case Instruction::FDiv: 447 case Instruction::FRem: 448 case Instruction::SDiv: 449 case Instruction::SRem: 450 case Instruction::UDiv: 451 case Instruction::URem: 452 Benefit += 1; 453 break; 454 default: 455 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 456 break; 457 } 458 } 459 460 return Benefit; 461 } 462 463 /// Check the \p OutputMappings structure for value \p Input, if it exists 464 /// it has been used as an output for outlining, and has been renamed, and we 465 /// return the new value, otherwise, we return the same value. 466 /// 467 /// \param OutputMappings [in] - The mapping of values to their renamed value 468 /// after being used as an output for an outlined region. 469 /// \param Input [in] - The value to find the remapped value of, if it exists. 470 /// \return The remapped value if it has been renamed, and the same value if has 471 /// not. 472 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings, 473 Value *Input) { 474 DenseMap<Value *, Value *>::const_iterator OutputMapping = 475 OutputMappings.find(Input); 476 if (OutputMapping != OutputMappings.end()) 477 return OutputMapping->second; 478 return Input; 479 } 480 481 /// Find whether \p Region matches the global value numbering to Constant 482 /// mapping found so far. 483 /// 484 /// \param Region - The OutlinableRegion we are checking for constants 485 /// \param GVNToConstant - The mapping of global value number to Constants. 486 /// \param NotSame - The set of global value numbers that do not have the same 487 /// constant in each region. 488 /// \returns true if all Constants are the same in every use of a Constant in \p 489 /// Region and false if not 490 static bool 491 collectRegionsConstants(OutlinableRegion &Region, 492 DenseMap<unsigned, Constant *> &GVNToConstant, 493 DenseSet<unsigned> &NotSame) { 494 bool ConstantsTheSame = true; 495 496 IRSimilarityCandidate &C = *Region.Candidate; 497 for (IRInstructionData &ID : C) { 498 499 // Iterate over the operands in an instruction. If the global value number, 500 // assigned by the IRSimilarityCandidate, has been seen before, we check if 501 // the the number has been found to be not the same value in each instance. 502 for (Value *V : ID.OperVals) { 503 Optional<unsigned> GVNOpt = C.getGVN(V); 504 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 505 unsigned GVN = GVNOpt.getValue(); 506 507 // Check if this global value has been found to not be the same already. 508 if (NotSame.contains(GVN)) { 509 if (isa<Constant>(V)) 510 ConstantsTheSame = false; 511 continue; 512 } 513 514 // If it has been the same so far, we check the value for if the 515 // associated Constant value match the previous instances of the same 516 // global value number. If the global value does not map to a Constant, 517 // it is considered to not be the same value. 518 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 519 if (ConstantMatches.hasValue()) { 520 if (ConstantMatches.getValue()) 521 continue; 522 else 523 ConstantsTheSame = false; 524 } 525 526 // While this value is a register, it might not have been previously, 527 // make sure we don't already have a constant mapped to this global value 528 // number. 529 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 530 ConstantsTheSame = false; 531 532 NotSame.insert(GVN); 533 } 534 } 535 536 return ConstantsTheSame; 537 } 538 539 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 540 DenseMap<unsigned, Constant *> GVNToConstant; 541 542 for (OutlinableRegion *Region : Regions) 543 collectRegionsConstants(*Region, GVNToConstant, NotSame); 544 } 545 546 void OutlinableGroup::collectGVNStoreSets(Module &M) { 547 for (OutlinableRegion *OS : Regions) 548 OutputGVNCombinations.insert(OS->GVNStores); 549 550 // We are adding an extracted argument to decide between which output path 551 // to use in the basic block. It is used in a switch statement and only 552 // needs to be an integer. 553 if (OutputGVNCombinations.size() > 1) 554 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 555 } 556 557 /// Get the subprogram if it exists for one of the outlined regions. 558 /// 559 /// \param [in] Group - The set of regions to find a subprogram for. 560 /// \returns the subprogram if it exists, or nullptr. 561 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 562 for (OutlinableRegion *OS : Group.Regions) 563 if (Function *F = OS->Call->getFunction()) 564 if (DISubprogram *SP = F->getSubprogram()) 565 return SP; 566 567 return nullptr; 568 } 569 570 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 571 unsigned FunctionNameSuffix) { 572 assert(!Group.OutlinedFunction && "Function is already defined!"); 573 574 Type *RetTy = Type::getVoidTy(M.getContext()); 575 // All extracted functions _should_ have the same return type at this point 576 // since the similarity identifier ensures that all branches outside of the 577 // region occur in the same place. 578 579 // NOTE: Should we ever move to the model that uses a switch at every point 580 // needed, meaning that we could branch within the region or out, it is 581 // possible that we will need to switch to using the most general case all of 582 // the time. 583 for (OutlinableRegion *R : Group.Regions) { 584 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 585 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 586 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 587 RetTy = ExtractedFuncType; 588 } 589 590 Group.OutlinedFunctionType = FunctionType::get( 591 RetTy, Group.ArgumentTypes, false); 592 593 // These functions will only be called from within the same module, so 594 // we can set an internal linkage. 595 Group.OutlinedFunction = Function::Create( 596 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 597 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 598 599 // Transfer the swifterr attribute to the correct function parameter. 600 if (Group.SwiftErrorArgument.hasValue()) 601 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 602 Attribute::SwiftError); 603 604 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 605 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 606 607 // If there's a DISubprogram associated with this outlined function, then 608 // emit debug info for the outlined function. 609 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 610 Function *F = Group.OutlinedFunction; 611 // We have a DISubprogram. Get its DICompileUnit. 612 DICompileUnit *CU = SP->getUnit(); 613 DIBuilder DB(M, true, CU); 614 DIFile *Unit = SP->getFile(); 615 Mangler Mg; 616 // Get the mangled name of the function for the linkage name. 617 std::string Dummy; 618 llvm::raw_string_ostream MangledNameStream(Dummy); 619 Mg.getNameWithPrefix(MangledNameStream, F, false); 620 621 DISubprogram *OutlinedSP = DB.createFunction( 622 Unit /* Context */, F->getName(), MangledNameStream.str(), 623 Unit /* File */, 624 0 /* Line 0 is reserved for compiler-generated code. */, 625 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 626 0, /* Line 0 is reserved for compiler-generated code. */ 627 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 628 /* Outlined code is optimized code by definition. */ 629 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 630 631 // Don't add any new variables to the subprogram. 632 DB.finalizeSubprogram(OutlinedSP); 633 634 // Attach subprogram to the function. 635 F->setSubprogram(OutlinedSP); 636 // We're done with the DIBuilder. 637 DB.finalize(); 638 } 639 640 return Group.OutlinedFunction; 641 } 642 643 /// Move each BasicBlock in \p Old to \p New. 644 /// 645 /// \param [in] Old - The function to move the basic blocks from. 646 /// \param [in] New - The function to move the basic blocks to. 647 /// \param [out] NewEnds - The return blocks of the new overall function. 648 static void moveFunctionData(Function &Old, Function &New, 649 DenseMap<Value *, BasicBlock *> &NewEnds) { 650 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 651 CurrBB.removeFromParent(); 652 CurrBB.insertInto(&New); 653 Instruction *I = CurrBB.getTerminator(); 654 655 // For each block we find a return instruction is, it is a potential exit 656 // path for the function. We keep track of each block based on the return 657 // value here. 658 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 659 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 660 661 std::vector<Instruction *> DebugInsts; 662 663 for (Instruction &Val : CurrBB) { 664 // We must handle the scoping of called functions differently than 665 // other outlined instructions. 666 if (!isa<CallInst>(&Val)) { 667 // Remove the debug information for outlined functions. 668 Val.setDebugLoc(DebugLoc()); 669 continue; 670 } 671 672 // From this point we are only handling call instructions. 673 CallInst *CI = cast<CallInst>(&Val); 674 675 // We add any debug statements here, to be removed after. Since the 676 // instructions originate from many different locations in the program, 677 // it will cause incorrect reporting from a debugger if we keep the 678 // same debug instructions. 679 if (isa<DbgInfoIntrinsic>(CI)) { 680 DebugInsts.push_back(&Val); 681 continue; 682 } 683 684 // Edit the scope of called functions inside of outlined functions. 685 if (DISubprogram *SP = New.getSubprogram()) { 686 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 687 Val.setDebugLoc(DI); 688 } 689 } 690 691 for (Instruction *I : DebugInsts) 692 I->eraseFromParent(); 693 } 694 695 assert(NewEnds.size() > 0 && "No return instruction for new function?"); 696 } 697 698 /// Find the the constants that will need to be lifted into arguments 699 /// as they are not the same in each instance of the region. 700 /// 701 /// \param [in] C - The IRSimilarityCandidate containing the region we are 702 /// analyzing. 703 /// \param [in] NotSame - The set of global value numbers that do not have a 704 /// single Constant across all OutlinableRegions similar to \p C. 705 /// \param [out] Inputs - The list containing the global value numbers of the 706 /// arguments needed for the region of code. 707 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 708 std::vector<unsigned> &Inputs) { 709 DenseSet<unsigned> Seen; 710 // Iterate over the instructions, and find what constants will need to be 711 // extracted into arguments. 712 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 713 IDIt != EndIDIt; IDIt++) { 714 for (Value *V : (*IDIt).OperVals) { 715 // Since these are stored before any outlining, they will be in the 716 // global value numbering. 717 unsigned GVN = C.getGVN(V).getValue(); 718 if (isa<Constant>(V)) 719 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 720 Inputs.push_back(GVN); 721 Seen.insert(GVN); 722 } 723 } 724 } 725 } 726 727 /// Find the GVN for the inputs that have been found by the CodeExtractor. 728 /// 729 /// \param [in] C - The IRSimilarityCandidate containing the region we are 730 /// analyzing. 731 /// \param [in] CurrentInputs - The set of inputs found by the 732 /// CodeExtractor. 733 /// \param [in] OutputMappings - The mapping of values that have been replaced 734 /// by a new output value. 735 /// \param [out] EndInputNumbers - The global value numbers for the extracted 736 /// arguments. 737 static void mapInputsToGVNs(IRSimilarityCandidate &C, 738 SetVector<Value *> &CurrentInputs, 739 const DenseMap<Value *, Value *> &OutputMappings, 740 std::vector<unsigned> &EndInputNumbers) { 741 // Get the Global Value Number for each input. We check if the Value has been 742 // replaced by a different value at output, and use the original value before 743 // replacement. 744 for (Value *Input : CurrentInputs) { 745 assert(Input && "Have a nullptr as an input"); 746 if (OutputMappings.find(Input) != OutputMappings.end()) 747 Input = OutputMappings.find(Input)->second; 748 assert(C.getGVN(Input).hasValue() && 749 "Could not find a numbering for the given input"); 750 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 751 } 752 } 753 754 /// Find the original value for the \p ArgInput values if any one of them was 755 /// replaced during a previous extraction. 756 /// 757 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 758 /// \param [in] OutputMappings - The mapping of values that have been replaced 759 /// by a new output value. 760 /// \param [out] RemappedArgInputs - The remapped values according to 761 /// \p OutputMappings that will be extracted. 762 static void 763 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 764 const DenseMap<Value *, Value *> &OutputMappings, 765 SetVector<Value *> &RemappedArgInputs) { 766 // Get the global value number for each input that will be extracted as an 767 // argument by the code extractor, remapping if needed for reloaded values. 768 for (Value *Input : ArgInputs) { 769 if (OutputMappings.find(Input) != OutputMappings.end()) 770 Input = OutputMappings.find(Input)->second; 771 RemappedArgInputs.insert(Input); 772 } 773 } 774 775 /// Find the input GVNs and the output values for a region of Instructions. 776 /// Using the code extractor, we collect the inputs to the extracted function. 777 /// 778 /// The \p Region can be identified as needing to be ignored in this function. 779 /// It should be checked whether it should be ignored after a call to this 780 /// function. 781 /// 782 /// \param [in,out] Region - The region of code to be analyzed. 783 /// \param [out] InputGVNs - The global value numbers for the extracted 784 /// arguments. 785 /// \param [in] NotSame - The global value numbers in the region that do not 786 /// have the same constant value in the regions structurally similar to 787 /// \p Region. 788 /// \param [in] OutputMappings - The mapping of values that have been replaced 789 /// by a new output value after extraction. 790 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 791 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 792 /// as outputs. 793 static void getCodeExtractorArguments( 794 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 795 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 796 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 797 IRSimilarityCandidate &C = *Region.Candidate; 798 799 // OverallInputs are the inputs to the region found by the CodeExtractor, 800 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 801 // allocas of values whose lifetimes are contained completely within the 802 // outlined region. PremappedInputs are the arguments found by the 803 // CodeExtractor, removing conditions such as sunken allocas, but that 804 // may need to be remapped due to the extracted output values replacing 805 // the original values. We use DummyOutputs for this first run of finding 806 // inputs and outputs since the outputs could change during findAllocas, 807 // the correct set of extracted outputs will be in the final Outputs ValueSet. 808 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 809 DummyOutputs; 810 811 // Use the code extractor to get the inputs and outputs, without sunken 812 // allocas or removing llvm.assumes. 813 CodeExtractor *CE = Region.CE; 814 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 815 assert(Region.StartBB && "Region must have a start BasicBlock!"); 816 Function *OrigF = Region.StartBB->getParent(); 817 CodeExtractorAnalysisCache CEAC(*OrigF); 818 BasicBlock *Dummy = nullptr; 819 820 // The region may be ineligible due to VarArgs in the parent function. In this 821 // case we ignore the region. 822 if (!CE->isEligible()) { 823 Region.IgnoreRegion = true; 824 return; 825 } 826 827 // Find if any values are going to be sunk into the function when extracted 828 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 829 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 830 831 // TODO: Support regions with sunken allocas: values whose lifetimes are 832 // contained completely within the outlined region. These are not guaranteed 833 // to be the same in every region, so we must elevate them all to arguments 834 // when they appear. If these values are not equal, it means there is some 835 // Input in OverallInputs that was removed for ArgInputs. 836 if (OverallInputs.size() != PremappedInputs.size()) { 837 Region.IgnoreRegion = true; 838 return; 839 } 840 841 findConstants(C, NotSame, InputGVNs); 842 843 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 844 845 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 846 ArgInputs); 847 848 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 849 // we need to make sure they are in a deterministic order. 850 stable_sort(InputGVNs); 851 } 852 853 /// Look over the inputs and map each input argument to an argument in the 854 /// overall function for the OutlinableRegions. This creates a way to replace 855 /// the arguments of the extracted function with the arguments of the new 856 /// overall function. 857 /// 858 /// \param [in,out] Region - The region of code to be analyzed. 859 /// \param [in] InputGVNs - The global value numbering of the input values 860 /// collected. 861 /// \param [in] ArgInputs - The values of the arguments to the extracted 862 /// function. 863 static void 864 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 865 std::vector<unsigned> &InputGVNs, 866 SetVector<Value *> &ArgInputs) { 867 868 IRSimilarityCandidate &C = *Region.Candidate; 869 OutlinableGroup &Group = *Region.Parent; 870 871 // This counts the argument number in the overall function. 872 unsigned TypeIndex = 0; 873 874 // This counts the argument number in the extracted function. 875 unsigned OriginalIndex = 0; 876 877 // Find the mapping of the extracted arguments to the arguments for the 878 // overall function. Since there may be extra arguments in the overall 879 // function to account for the extracted constants, we have two different 880 // counters as we find extracted arguments, and as we come across overall 881 // arguments. 882 883 // Additionally, in our first pass, for the first extracted function, 884 // we find argument locations for the canonical value numbering. This 885 // numbering overrides any discovered location for the extracted code. 886 for (unsigned InputVal : InputGVNs) { 887 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 888 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 889 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 890 891 Optional<Value *> InputOpt = C.fromGVN(InputVal); 892 assert(InputOpt.hasValue() && "Global value number not found?"); 893 Value *Input = InputOpt.getValue(); 894 895 DenseMap<unsigned, unsigned>::iterator AggArgIt = 896 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 897 898 if (!Group.InputTypesSet) { 899 Group.ArgumentTypes.push_back(Input->getType()); 900 // If the input value has a swifterr attribute, make sure to mark the 901 // argument in the overall function. 902 if (Input->isSwiftError()) { 903 assert( 904 !Group.SwiftErrorArgument.hasValue() && 905 "Argument already marked with swifterr for this OutlinableGroup!"); 906 Group.SwiftErrorArgument = TypeIndex; 907 } 908 } 909 910 // Check if we have a constant. If we do add it to the overall argument 911 // number to Constant map for the region, and continue to the next input. 912 if (Constant *CST = dyn_cast<Constant>(Input)) { 913 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 914 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 915 else { 916 Group.CanonicalNumberToAggArg.insert( 917 std::make_pair(CanonicalNumber, TypeIndex)); 918 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 919 } 920 TypeIndex++; 921 continue; 922 } 923 924 // It is not a constant, we create the mapping from extracted argument list 925 // to the overall argument list, using the canonical location, if it exists. 926 assert(ArgInputs.count(Input) && "Input cannot be found!"); 927 928 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 929 if (OriginalIndex != AggArgIt->second) 930 Region.ChangedArgOrder = true; 931 Region.ExtractedArgToAgg.insert( 932 std::make_pair(OriginalIndex, AggArgIt->second)); 933 Region.AggArgToExtracted.insert( 934 std::make_pair(AggArgIt->second, OriginalIndex)); 935 } else { 936 Group.CanonicalNumberToAggArg.insert( 937 std::make_pair(CanonicalNumber, TypeIndex)); 938 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 939 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 940 } 941 OriginalIndex++; 942 TypeIndex++; 943 } 944 945 // If the function type definitions for the OutlinableGroup holding the region 946 // have not been set, set the length of the inputs here. We should have the 947 // same inputs for all of the different regions contained in the 948 // OutlinableGroup since they are all structurally similar to one another. 949 if (!Group.InputTypesSet) { 950 Group.NumAggregateInputs = TypeIndex; 951 Group.InputTypesSet = true; 952 } 953 954 Region.NumExtractedInputs = OriginalIndex; 955 } 956 957 /// Check if the \p V has any uses outside of the region other than \p PN. 958 /// 959 /// \param V [in] - The value to check. 960 /// \param PHILoc [in] - The location in the PHINode of \p V. 961 /// \param PN [in] - The PHINode using \p V. 962 /// \param Exits [in] - The potential blocks we exit to from the outlined 963 /// region. 964 /// \param BlocksInRegion [in] - The basic blocks contained in the region. 965 /// \returns true if \p V has any use soutside its region other than \p PN. 966 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, 967 SmallPtrSet<BasicBlock *, 1> &Exits, 968 DenseSet<BasicBlock *> &BlocksInRegion) { 969 // We check to see if the value is used by the PHINode from some other 970 // predecessor not included in the region. If it is, we make sure 971 // to keep it as an output. 972 SmallVector<unsigned, 2> IncomingNumbers(PN.getNumIncomingValues()); 973 std::iota(IncomingNumbers.begin(), IncomingNumbers.end(), 0); 974 if (any_of(IncomingNumbers, [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { 975 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && 976 !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); 977 })) 978 return true; 979 980 // Check if the value is used by any other instructions outside the region. 981 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { 982 Instruction *I = dyn_cast<Instruction>(U); 983 if (!I) 984 return false; 985 986 // If the use of the item is inside the region, we skip it. Uses 987 // inside the region give us useful information about how the item could be 988 // used as an output. 989 BasicBlock *Parent = I->getParent(); 990 if (BlocksInRegion.contains(Parent)) 991 return false; 992 993 // If it's not a PHINode then we definitely know the use matters. This 994 // output value will not completely combined with another item in a PHINode 995 // as it is directly reference by another non-phi instruction 996 if (!isa<PHINode>(I)) 997 return true; 998 999 // If we have a PHINode outside one of the exit locations, then it 1000 // can be considered an outside use as well. If there is a PHINode 1001 // contained in the Exit where this values use matters, it will be 1002 // caught when we analyze that PHINode. 1003 if (!Exits.contains(Parent)) 1004 return true; 1005 1006 return false; 1007 }); 1008 } 1009 1010 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be 1011 /// considered outputs. A PHINodes is an output when more than one incoming 1012 /// value has been marked by the CodeExtractor as an output. 1013 /// 1014 /// \param CurrentExitFromRegion [in] - The block to analyze. 1015 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the 1016 /// region. 1017 /// \param RegionBlocks [in] - The basic blocks in the region. 1018 /// \param Outputs [in, out] - The existing outputs for the region, we may add 1019 /// PHINodes to this as we find that they replace output values. 1020 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are 1021 /// totally replaced by a PHINode. 1022 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used 1023 /// in PHINodes, but have other uses, and should still be considered outputs. 1024 static void analyzeExitPHIsForOutputUses( 1025 BasicBlock *CurrentExitFromRegion, 1026 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion, 1027 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs, 1028 DenseSet<Value *> &OutputsReplacedByPHINode, 1029 DenseSet<Value *> &OutputsWithNonPhiUses) { 1030 for (PHINode &PN : CurrentExitFromRegion->phis()) { 1031 // Find all incoming values from the outlining region. 1032 SmallVector<unsigned, 2> IncomingVals; 1033 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) 1034 if (RegionBlocks.contains(PN.getIncomingBlock(I))) 1035 IncomingVals.push_back(I); 1036 1037 // Do not process PHI if there are no predecessors from region. 1038 unsigned NumIncomingVals = IncomingVals.size(); 1039 if (NumIncomingVals == 0) 1040 continue; 1041 1042 // If there is one predecessor, we mark it as a value that needs to be kept 1043 // as an output. 1044 if (NumIncomingVals == 1) { 1045 Value *V = PN.getIncomingValue(*IncomingVals.begin()); 1046 OutputsWithNonPhiUses.insert(V); 1047 OutputsReplacedByPHINode.erase(V); 1048 continue; 1049 } 1050 1051 // This PHINode will be used as an output value, so we add it to our list. 1052 Outputs.insert(&PN); 1053 1054 // Not all of the incoming values should be ignored as other inputs and 1055 // outputs may have uses in outlined region. If they have other uses 1056 // outside of the single PHINode we should not skip over it. 1057 for (unsigned Idx : IncomingVals) { 1058 Value *V = PN.getIncomingValue(Idx); 1059 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { 1060 OutputsWithNonPhiUses.insert(V); 1061 OutputsReplacedByPHINode.erase(V); 1062 continue; 1063 } 1064 if (!OutputsWithNonPhiUses.contains(V)) 1065 OutputsReplacedByPHINode.insert(V); 1066 } 1067 } 1068 } 1069 1070 // Represents the type for the unsigned number denoting the output number for 1071 // phi node, along with the canonical number for the exit block. 1072 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>; 1073 // The list of canonical numbers for the incoming values to a PHINode. 1074 using CanonList = SmallVector<unsigned, 2>; 1075 // The pair type representing the set of canonical values being combined in the 1076 // PHINode, along with the location data for the PHINode. 1077 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>; 1078 1079 /// Encode \p PND as an integer for easy lookup based on the argument location, 1080 /// the parent BasicBlock canonical numbering, and the canonical numbering of 1081 /// the values stored in the PHINode. 1082 /// 1083 /// \param PND - The data to hash. 1084 /// \returns The hash code of \p PND. 1085 static hash_code encodePHINodeData(PHINodeData &PND) { 1086 return llvm::hash_combine( 1087 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), 1088 llvm::hash_combine_range(PND.second.begin(), PND.second.end())); 1089 } 1090 1091 /// Create a special GVN for PHINodes that will be used outside of 1092 /// the region. We create a hash code based on the Canonical number of the 1093 /// parent BasicBlock, the canonical numbering of the values stored in the 1094 /// PHINode and the aggregate argument location. This is used to find whether 1095 /// this PHINode type has been given a canonical numbering already. If not, we 1096 /// assign it a value and store it for later use. The value is returned to 1097 /// identify different output schemes for the set of regions. 1098 /// 1099 /// \param Region - The region that \p PN is an output for. 1100 /// \param PN - The PHINode we are analyzing. 1101 /// \param AggArgIdx - The argument \p PN will be stored into. 1102 /// \returns An optional holding the assigned canonical number, or None if 1103 /// there is some attribute of the PHINode blocking it from being used. 1104 static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region, 1105 PHINode *PN, unsigned AggArgIdx) { 1106 OutlinableGroup &Group = *Region.Parent; 1107 IRSimilarityCandidate &Cand = *Region.Candidate; 1108 BasicBlock *PHIBB = PN->getParent(); 1109 CanonList PHIGVNs; 1110 for (Value *Incoming : PN->incoming_values()) { 1111 // If we cannot find a GVN, this means that the input to the PHINode is 1112 // not included in the region we are trying to analyze, meaning, that if 1113 // it was outlined, we would be adding an extra input. We ignore this 1114 // case for now, and so ignore the region. 1115 Optional<unsigned> OGVN = Cand.getGVN(Incoming); 1116 if (!OGVN.hasValue()) { 1117 Region.IgnoreRegion = true; 1118 return None; 1119 } 1120 1121 // Collect the canonical numbers of the values in the PHINode. 1122 unsigned GVN = OGVN.getValue(); 1123 OGVN = Cand.getCanonicalNum(GVN); 1124 assert(OGVN.hasValue() && "No GVN found for incoming value?"); 1125 PHIGVNs.push_back(*OGVN); 1126 } 1127 1128 // Now that we have the GVNs for the incoming values, we are going to combine 1129 // them with the GVN of the incoming bock, and the output location of the 1130 // PHINode to generate a hash value representing this instance of the PHINode. 1131 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt; 1132 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt; 1133 Optional<unsigned> BBGVN = Cand.getGVN(PHIBB); 1134 assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!"); 1135 1136 BBGVN = Cand.getCanonicalNum(BBGVN.getValue()); 1137 assert(BBGVN.hasValue() && 1138 "Could not find canonical number for the incoming block!"); 1139 // Create a pair of the exit block canonical value, and the aggregate 1140 // argument location, connected to the canonical numbers stored in the 1141 // PHINode. 1142 PHINodeData TemporaryPair = 1143 std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs); 1144 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); 1145 1146 // Look for and create a new entry in our connection between canonical 1147 // numbers for PHINodes, and the set of objects we just created. 1148 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); 1149 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { 1150 bool Inserted = false; 1151 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( 1152 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); 1153 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( 1154 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); 1155 } 1156 1157 return GVNToPHIIt->second; 1158 } 1159 1160 /// Create a mapping of the output arguments for the \p Region to the output 1161 /// arguments of the overall outlined function. 1162 /// 1163 /// \param [in,out] Region - The region of code to be analyzed. 1164 /// \param [in] Outputs - The values found by the code extractor. 1165 static void 1166 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 1167 SetVector<Value *> &Outputs) { 1168 OutlinableGroup &Group = *Region.Parent; 1169 IRSimilarityCandidate &C = *Region.Candidate; 1170 1171 SmallVector<BasicBlock *> BE; 1172 DenseSet<BasicBlock *> BlocksInRegion; 1173 C.getBasicBlocks(BlocksInRegion, BE); 1174 1175 // Find the exits to the region. 1176 SmallPtrSet<BasicBlock *, 1> Exits; 1177 for (BasicBlock *Block : BE) 1178 for (BasicBlock *Succ : successors(Block)) 1179 if (!BlocksInRegion.contains(Succ)) 1180 Exits.insert(Succ); 1181 1182 // After determining which blocks exit to PHINodes, we add these PHINodes to 1183 // the set of outputs to be processed. We also check the incoming values of 1184 // the PHINodes for whether they should no longer be considered outputs. 1185 DenseSet<Value *> OutputsReplacedByPHINode; 1186 DenseSet<Value *> OutputsWithNonPhiUses; 1187 for (BasicBlock *ExitBB : Exits) 1188 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, 1189 OutputsReplacedByPHINode, 1190 OutputsWithNonPhiUses); 1191 1192 // This counts the argument number in the extracted function. 1193 unsigned OriginalIndex = Region.NumExtractedInputs; 1194 1195 // This counts the argument number in the overall function. 1196 unsigned TypeIndex = Group.NumAggregateInputs; 1197 bool TypeFound; 1198 DenseSet<unsigned> AggArgsUsed; 1199 1200 // Iterate over the output types and identify if there is an aggregate pointer 1201 // type whose base type matches the current output type. If there is, we mark 1202 // that we will use this output register for this value. If not we add another 1203 // type to the overall argument type list. We also store the GVNs used for 1204 // stores to identify which values will need to be moved into an special 1205 // block that holds the stores to the output registers. 1206 for (Value *Output : Outputs) { 1207 TypeFound = false; 1208 // We can do this since it is a result value, and will have a number 1209 // that is necessarily the same. BUT if in the future, the instructions 1210 // do not have to be in same order, but are functionally the same, we will 1211 // have to use a different scheme, as one-to-one correspondence is not 1212 // guaranteed. 1213 unsigned ArgumentSize = Group.ArgumentTypes.size(); 1214 1215 // If the output is combined in a PHINode, we make sure to skip over it. 1216 if (OutputsReplacedByPHINode.contains(Output)) 1217 continue; 1218 1219 unsigned AggArgIdx = 0; 1220 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 1221 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 1222 continue; 1223 1224 if (AggArgsUsed.contains(Jdx)) 1225 continue; 1226 1227 TypeFound = true; 1228 AggArgsUsed.insert(Jdx); 1229 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 1230 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 1231 AggArgIdx = Jdx; 1232 break; 1233 } 1234 1235 // We were unable to find an unused type in the output type set that matches 1236 // the output, so we add a pointer type to the argument types of the overall 1237 // function to handle this output and create a mapping to it. 1238 if (!TypeFound) { 1239 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 1240 // Mark the new pointer type as the last value in the aggregate argument 1241 // list. 1242 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; 1243 AggArgsUsed.insert(ArgTypeIdx); 1244 Region.ExtractedArgToAgg.insert( 1245 std::make_pair(OriginalIndex, ArgTypeIdx)); 1246 Region.AggArgToExtracted.insert( 1247 std::make_pair(ArgTypeIdx, OriginalIndex)); 1248 AggArgIdx = ArgTypeIdx; 1249 } 1250 1251 // TODO: Adapt to the extra input from the PHINode. 1252 PHINode *PN = dyn_cast<PHINode>(Output); 1253 1254 Optional<unsigned> GVN; 1255 if (PN && !BlocksInRegion.contains(PN->getParent())) { 1256 // Values outside the region can be combined into PHINode when we 1257 // have multiple exits. We collect both of these into a list to identify 1258 // which values are being used in the PHINode. Each list identifies a 1259 // different PHINode, and a different output. We store the PHINode as it's 1260 // own canonical value. These canonical values are also dependent on the 1261 // output argument it is saved to. 1262 1263 // If two PHINodes have the same canonical values, but different aggregate 1264 // argument locations, then they will have distinct Canonical Values. 1265 GVN = getGVNForPHINode(Region, PN, AggArgIdx); 1266 if (!GVN.hasValue()) 1267 return; 1268 } else { 1269 // If we do not have a PHINode we use the global value numbering for the 1270 // output value, to find the canonical number to add to the set of stored 1271 // values. 1272 GVN = C.getGVN(Output); 1273 GVN = C.getCanonicalNum(*GVN); 1274 } 1275 1276 // Each region has a potentially unique set of outputs. We save which 1277 // values are output in a list of canonical values so we can differentiate 1278 // among the different store schemes. 1279 Region.GVNStores.push_back(*GVN); 1280 1281 OriginalIndex++; 1282 TypeIndex++; 1283 } 1284 1285 // We sort the stored values to make sure that we are not affected by analysis 1286 // order when determining what combination of items were stored. 1287 stable_sort(Region.GVNStores); 1288 } 1289 1290 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 1291 DenseSet<unsigned> &NotSame) { 1292 std::vector<unsigned> Inputs; 1293 SetVector<Value *> ArgInputs, Outputs; 1294 1295 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 1296 Outputs); 1297 1298 if (Region.IgnoreRegion) 1299 return; 1300 1301 // Map the inputs found by the CodeExtractor to the arguments found for 1302 // the overall function. 1303 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 1304 1305 // Map the outputs found by the CodeExtractor to the arguments found for 1306 // the overall function. 1307 findExtractedOutputToOverallOutputMapping(Region, Outputs); 1308 } 1309 1310 /// Replace the extracted function in the Region with a call to the overall 1311 /// function constructed from the deduplicated similar regions, replacing and 1312 /// remapping the values passed to the extracted function as arguments to the 1313 /// new arguments of the overall function. 1314 /// 1315 /// \param [in] M - The module to outline from. 1316 /// \param [in] Region - The regions of extracted code to be replaced with a new 1317 /// function. 1318 /// \returns a call instruction with the replaced function. 1319 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 1320 std::vector<Value *> NewCallArgs; 1321 DenseMap<unsigned, unsigned>::iterator ArgPair; 1322 1323 OutlinableGroup &Group = *Region.Parent; 1324 CallInst *Call = Region.Call; 1325 assert(Call && "Call to replace is nullptr?"); 1326 Function *AggFunc = Group.OutlinedFunction; 1327 assert(AggFunc && "Function to replace with is nullptr?"); 1328 1329 // If the arguments are the same size, there are not values that need to be 1330 // made into an argument, the argument ordering has not been change, or 1331 // different output registers to handle. We can simply replace the called 1332 // function in this case. 1333 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 1334 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1335 << *AggFunc << " with same number of arguments\n"); 1336 Call->setCalledFunction(AggFunc); 1337 return Call; 1338 } 1339 1340 // We have a different number of arguments than the new function, so 1341 // we need to use our previously mappings off extracted argument to overall 1342 // function argument, and constants to overall function argument to create the 1343 // new argument list. 1344 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 1345 1346 if (AggArgIdx == AggFunc->arg_size() - 1 && 1347 Group.OutputGVNCombinations.size() > 1) { 1348 // If we are on the last argument, and we need to differentiate between 1349 // output blocks, add an integer to the argument list to determine 1350 // what block to take 1351 LLVM_DEBUG(dbgs() << "Set switch block argument to " 1352 << Region.OutputBlockNum << "\n"); 1353 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 1354 Region.OutputBlockNum)); 1355 continue; 1356 } 1357 1358 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1359 if (ArgPair != Region.AggArgToExtracted.end()) { 1360 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1361 // If we found the mapping from the extracted function to the overall 1362 // function, we simply add it to the argument list. We use the same 1363 // value, it just needs to honor the new order of arguments. 1364 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1365 << *ArgumentValue << "\n"); 1366 NewCallArgs.push_back(ArgumentValue); 1367 continue; 1368 } 1369 1370 // If it is a constant, we simply add it to the argument list as a value. 1371 if (Region.AggArgToConstant.find(AggArgIdx) != 1372 Region.AggArgToConstant.end()) { 1373 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1374 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1375 << *CST << "\n"); 1376 NewCallArgs.push_back(CST); 1377 continue; 1378 } 1379 1380 // Add a nullptr value if the argument is not found in the extracted 1381 // function. If we cannot find a value, it means it is not in use 1382 // for the region, so we should not pass anything to it. 1383 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1384 NewCallArgs.push_back(ConstantPointerNull::get( 1385 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1386 } 1387 1388 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1389 << *AggFunc << " with new set of arguments\n"); 1390 // Create the new call instruction and erase the old one. 1391 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1392 Call); 1393 1394 // It is possible that the call to the outlined function is either the first 1395 // instruction is in the new block, the last instruction, or both. If either 1396 // of these is the case, we need to make sure that we replace the instruction 1397 // in the IRInstructionData struct with the new call. 1398 CallInst *OldCall = Region.Call; 1399 if (Region.NewFront->Inst == OldCall) 1400 Region.NewFront->Inst = Call; 1401 if (Region.NewBack->Inst == OldCall) 1402 Region.NewBack->Inst = Call; 1403 1404 // Transfer any debug information. 1405 Call->setDebugLoc(Region.Call->getDebugLoc()); 1406 // Since our output may determine which branch we go to, we make sure to 1407 // propogate this new call value through the module. 1408 OldCall->replaceAllUsesWith(Call); 1409 1410 // Remove the old instruction. 1411 OldCall->eraseFromParent(); 1412 Region.Call = Call; 1413 1414 // Make sure that the argument in the new function has the SwiftError 1415 // argument. 1416 if (Group.SwiftErrorArgument.hasValue()) 1417 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1418 Attribute::SwiftError); 1419 1420 return Call; 1421 } 1422 1423 /// Find or create a BasicBlock in the outlined function containing PhiBlocks 1424 /// for \p RetVal. 1425 /// 1426 /// \param Group - The OutlinableGroup containing the information about the 1427 /// overall outlined function. 1428 /// \param RetVal - The return value or exit option that we are currently 1429 /// evaluating. 1430 /// \returns The found or newly created BasicBlock to contain the needed 1431 /// PHINodes to be used as outputs. 1432 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { 1433 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal, 1434 ReturnBlockForRetVal; 1435 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1436 ReturnBlockForRetVal = Group.EndBBs.find(RetVal); 1437 assert(ReturnBlockForRetVal != Group.EndBBs.end() && 1438 "Could not find output value!"); 1439 BasicBlock *ReturnBB = ReturnBlockForRetVal->second; 1440 1441 // Find if a PHIBlock exists for this return value already. If it is 1442 // the first time we are analyzing this, we will not, so we record it. 1443 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); 1444 if (PhiBlockForRetVal != Group.PHIBlocks.end()) 1445 return PhiBlockForRetVal->second; 1446 1447 // If we did not find a block, we create one, and insert it into the 1448 // overall function and record it. 1449 bool Inserted = false; 1450 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", 1451 ReturnBB->getParent()); 1452 std::tie(PhiBlockForRetVal, Inserted) = 1453 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1454 1455 // We find the predecessors of the return block in the newly created outlined 1456 // function in order to point them to the new PHIBlock rather than the already 1457 // existing return block. 1458 SmallVector<BranchInst *, 2> BranchesToChange; 1459 for (BasicBlock *Pred : predecessors(ReturnBB)) 1460 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator())); 1461 1462 // Now we mark the branch instructions found, and change the references of the 1463 // return block to the newly created PHIBlock. 1464 for (BranchInst *BI : BranchesToChange) 1465 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { 1466 if (BI->getSuccessor(Succ) != ReturnBB) 1467 continue; 1468 BI->setSuccessor(Succ, PHIBlock); 1469 } 1470 1471 BranchInst::Create(ReturnBB, PHIBlock); 1472 1473 return PhiBlockForRetVal->second; 1474 } 1475 1476 /// For the function call now representing the \p Region, find the passed value 1477 /// to that call that represents Argument \p A at the call location if the 1478 /// call has already been replaced with a call to the overall, aggregate 1479 /// function. 1480 /// 1481 /// \param A - The Argument to get the passed value for. 1482 /// \param Region - The extracted Region corresponding to the outlined function. 1483 /// \returns The Value representing \p A at the call site. 1484 static Value * 1485 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, 1486 const OutlinableRegion &Region) { 1487 // If we don't need to adjust the argument number at all (since the call 1488 // has already been replaced by a call to the overall outlined function) 1489 // we can just get the specified argument. 1490 return Region.Call->getArgOperand(A->getArgNo()); 1491 } 1492 1493 /// For the function call now representing the \p Region, find the passed value 1494 /// to that call that represents Argument \p A at the call location if the 1495 /// call has only been replaced by the call to the aggregate function. 1496 /// 1497 /// \param A - The Argument to get the passed value for. 1498 /// \param Region - The extracted Region corresponding to the outlined function. 1499 /// \returns The Value representing \p A at the call site. 1500 static Value * 1501 getPassedArgumentAndAdjustArgumentLocation(const Argument *A, 1502 const OutlinableRegion &Region) { 1503 unsigned ArgNum = A->getArgNo(); 1504 1505 // If it is a constant, we can look at our mapping from when we created 1506 // the outputs to figure out what the constant value is. 1507 if (Region.AggArgToConstant.count(ArgNum)) 1508 return Region.AggArgToConstant.find(ArgNum)->second; 1509 1510 // If it is not a constant, and we are not looking at the overall function, we 1511 // need to adjust which argument we are looking at. 1512 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; 1513 return Region.Call->getArgOperand(ArgNum); 1514 } 1515 1516 /// Find the canonical numbering for the incoming Values into the PHINode \p PN. 1517 /// 1518 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1519 /// \param Region [in] - The OutlinableRegion containing \p PN. 1520 /// \param OutputMappings [in] - The mapping of output values from outlined 1521 /// region to their original values. 1522 /// \param CanonNums [out] - The canonical numbering for the incoming values to 1523 /// \p PN. 1524 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call 1525 /// of \p Region rather than the overall function's call. 1526 static void 1527 findCanonNumsForPHI(PHINode *PN, OutlinableRegion &Region, 1528 const DenseMap<Value *, Value *> &OutputMappings, 1529 DenseSet<unsigned> &CanonNums, 1530 bool ReplacedWithOutlinedCall = true) { 1531 // Iterate over the incoming values. 1532 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { 1533 Value *IVal = PN->getIncomingValue(Idx); 1534 // If we have an argument as incoming value, we need to grab the passed 1535 // value from the call itself. 1536 if (Argument *A = dyn_cast<Argument>(IVal)) { 1537 if (ReplacedWithOutlinedCall) 1538 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); 1539 else 1540 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); 1541 } 1542 1543 // Get the original value if it has been replaced by an output value. 1544 IVal = findOutputMapping(OutputMappings, IVal); 1545 1546 // Find and add the canonical number for the incoming value. 1547 Optional<unsigned> GVN = Region.Candidate->getGVN(IVal); 1548 assert(GVN.hasValue() && "No GVN for incoming value"); 1549 Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN); 1550 assert(CanonNum.hasValue() && "No Canonical Number for GVN"); 1551 CanonNums.insert(*CanonNum); 1552 } 1553 } 1554 1555 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock 1556 /// in order to condense the number of instructions added to the outlined 1557 /// function. 1558 /// 1559 /// \param PN [in] - The PHINode that we are finding the canonical numbers for. 1560 /// \param Region [in] - The OutlinableRegion containing \p PN. 1561 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find 1562 /// \p PN in. 1563 /// \param OutputMappings [in] - The mapping of output values from outlined 1564 /// region to their original values. 1565 /// \return the newly found or created PHINode in \p OverallPhiBlock. 1566 static PHINode* 1567 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, 1568 BasicBlock *OverallPhiBlock, 1569 const DenseMap<Value *, Value *> &OutputMappings) { 1570 OutlinableGroup &Group = *Region.Parent; 1571 1572 DenseSet<unsigned> PNCanonNums; 1573 // We have to use the extracted function since we have merged this region into 1574 // the overall function yet. We make sure to reassign the argument numbering 1575 // since it is possible that the argument ordering is different between the 1576 // functions. 1577 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, 1578 /* ReplacedWithOutlinedCall = */ false); 1579 1580 OutlinableRegion *FirstRegion = Group.Regions[0]; 1581 DenseSet<unsigned> CurrentCanonNums; 1582 // Find the Canonical Numbering for each PHINode, if it matches, we replace 1583 // the uses of the PHINode we are searching for, with the found PHINode. 1584 for (PHINode &CurrPN : OverallPhiBlock->phis()) { 1585 CurrentCanonNums.clear(); 1586 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, 1587 /* ReplacedWithOutlinedCall = */ true); 1588 1589 if (all_of(PNCanonNums, [&CurrentCanonNums](unsigned CanonNum) { 1590 return CurrentCanonNums.contains(CanonNum); 1591 })) 1592 return &CurrPN; 1593 } 1594 1595 // If we've made it here, it means we weren't able to replace the PHINode, so 1596 // we must insert it ourselves. 1597 PHINode *NewPN = cast<PHINode>(PN.clone()); 1598 NewPN->insertBefore(&*OverallPhiBlock->begin()); 1599 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; 1600 Idx++) { 1601 Value *IncomingVal = NewPN->getIncomingValue(Idx); 1602 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); 1603 1604 // Find corresponding basic block in the overall function for the incoming 1605 // block. 1606 Instruction *FirstNonPHI = IncomingBlock->getFirstNonPHI(); 1607 assert(FirstNonPHI && "Incoming block is empty?"); 1608 Value *CorrespondingVal = 1609 Region.findCorrespondingValueIn(*FirstRegion, FirstNonPHI); 1610 assert(CorrespondingVal && "Value is nullptr?"); 1611 BasicBlock *BlockToUse = cast<Instruction>(CorrespondingVal)->getParent(); 1612 NewPN->setIncomingBlock(Idx, BlockToUse); 1613 1614 // If we have an argument we make sure we replace using the argument from 1615 // the correct function. 1616 if (Argument *A = dyn_cast<Argument>(IncomingVal)) { 1617 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); 1618 NewPN->setIncomingValue(Idx, Val); 1619 continue; 1620 } 1621 1622 // Find the corresponding value in the overall function. 1623 IncomingVal = findOutputMapping(OutputMappings, IncomingVal); 1624 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); 1625 assert(Val && "Value is nullptr?"); 1626 NewPN->setIncomingValue(Idx, Val); 1627 } 1628 return NewPN; 1629 } 1630 1631 // Within an extracted function, replace the argument uses of the extracted 1632 // region with the arguments of the function for an OutlinableGroup. 1633 // 1634 /// \param [in] Region - The region of extracted code to be changed. 1635 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1636 /// region. 1637 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1638 /// function to define the overall outlined function for all the regions, or 1639 /// if we are operating on one of the following regions. 1640 static void 1641 replaceArgumentUses(OutlinableRegion &Region, 1642 DenseMap<Value *, BasicBlock *> &OutputBBs, 1643 const DenseMap<Value *, Value *> &OutputMappings, 1644 bool FirstFunction = false) { 1645 OutlinableGroup &Group = *Region.Parent; 1646 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1647 1648 Function *DominatingFunction = Region.ExtractedFunction; 1649 if (FirstFunction) 1650 DominatingFunction = Group.OutlinedFunction; 1651 DominatorTree DT(*DominatingFunction); 1652 1653 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1654 ArgIdx++) { 1655 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1656 Region.ExtractedArgToAgg.end() && 1657 "No mapping from extracted to outlined?"); 1658 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1659 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1660 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1661 // The argument is an input, so we can simply replace it with the overall 1662 // argument value 1663 if (ArgIdx < Region.NumExtractedInputs) { 1664 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1665 << *Region.ExtractedFunction << " with " << *AggArg 1666 << " in function " << *Group.OutlinedFunction << "\n"); 1667 Arg->replaceAllUsesWith(AggArg); 1668 continue; 1669 } 1670 1671 // If we are replacing an output, we place the store value in its own 1672 // block inside the overall function before replacing the use of the output 1673 // in the function. 1674 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1675 User *InstAsUser = Arg->user_back(); 1676 assert(InstAsUser && "User is nullptr!"); 1677 1678 Instruction *I = cast<Instruction>(InstAsUser); 1679 BasicBlock *BB = I->getParent(); 1680 SmallVector<BasicBlock *, 4> Descendants; 1681 DT.getDescendants(BB, Descendants); 1682 bool EdgeAdded = false; 1683 if (Descendants.size() == 0) { 1684 EdgeAdded = true; 1685 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1686 DT.getDescendants(BB, Descendants); 1687 } 1688 1689 // Iterate over the following blocks, looking for return instructions, 1690 // if we find one, find the corresponding output block for the return value 1691 // and move our store instruction there. 1692 for (BasicBlock *DescendBB : Descendants) { 1693 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1694 if (!RI) 1695 continue; 1696 Value *RetVal = RI->getReturnValue(); 1697 auto VBBIt = OutputBBs.find(RetVal); 1698 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1699 1700 // If this is storing a PHINode, we must make sure it is included in the 1701 // overall function. 1702 StoreInst *SI = cast<StoreInst>(I); 1703 1704 Value *ValueOperand = SI->getValueOperand(); 1705 1706 StoreInst *NewI = cast<StoreInst>(I->clone()); 1707 NewI->setDebugLoc(DebugLoc()); 1708 BasicBlock *OutputBB = VBBIt->second; 1709 OutputBB->getInstList().push_back(NewI); 1710 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1711 << *OutputBB << "\n"); 1712 1713 // If this is storing a PHINode, we must make sure it is included in the 1714 // overall function. 1715 if (!isa<PHINode>(ValueOperand) || 1716 Region.Candidate->getGVN(ValueOperand).hasValue()) { 1717 if (FirstFunction) 1718 continue; 1719 Value *CorrVal = 1720 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1721 assert(CorrVal && "Value is nullptr?"); 1722 NewI->setOperand(0, CorrVal); 1723 continue; 1724 } 1725 PHINode *PN = cast<PHINode>(SI->getValueOperand()); 1726 // If it has a value, it was not split by the code extractor, which 1727 // is what we are looking for. 1728 if (Region.Candidate->getGVN(PN).hasValue()) 1729 continue; 1730 1731 // We record the parent block for the PHINode in the Region so that 1732 // we can exclude it from checks later on. 1733 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); 1734 1735 // If this is the first function, we do not need to worry about mergiing 1736 // this with any other block in the overall outlined function, so we can 1737 // just continue. 1738 if (FirstFunction) { 1739 BasicBlock *PHIBlock = PN->getParent(); 1740 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); 1741 continue; 1742 } 1743 1744 // We look for the aggregate block that contains the PHINodes leading into 1745 // this exit path. If we can't find one, we create one. 1746 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); 1747 1748 // For our PHINode, we find the combined canonical numbering, and 1749 // attempt to find a matching PHINode in the overall PHIBlock. If we 1750 // cannot, we copy the PHINode and move it into this new block. 1751 PHINode *NewPN = 1752 findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, OutputMappings); 1753 NewI->setOperand(0, NewPN); 1754 } 1755 1756 // If we added an edge for basic blocks without a predecessor, we remove it 1757 // here. 1758 if (EdgeAdded) 1759 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1760 I->eraseFromParent(); 1761 1762 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1763 << *Region.ExtractedFunction << " with " << *AggArg 1764 << " in function " << *Group.OutlinedFunction << "\n"); 1765 Arg->replaceAllUsesWith(AggArg); 1766 } 1767 } 1768 1769 /// Within an extracted function, replace the constants that need to be lifted 1770 /// into arguments with the actual argument. 1771 /// 1772 /// \param Region [in] - The region of extracted code to be changed. 1773 void replaceConstants(OutlinableRegion &Region) { 1774 OutlinableGroup &Group = *Region.Parent; 1775 // Iterate over the constants that need to be elevated into arguments 1776 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1777 unsigned AggArgIdx = Const.first; 1778 Function *OutlinedFunction = Group.OutlinedFunction; 1779 assert(OutlinedFunction && "Overall Function is not defined?"); 1780 Constant *CST = Const.second; 1781 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1782 // Identify the argument it will be elevated to, and replace instances of 1783 // that constant in the function. 1784 1785 // TODO: If in the future constants do not have one global value number, 1786 // i.e. a constant 1 could be mapped to several values, this check will 1787 // have to be more strict. It cannot be using only replaceUsesWithIf. 1788 1789 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1790 << " in function " << *OutlinedFunction << " with " 1791 << *Arg << "\n"); 1792 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1793 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1794 return I->getFunction() == OutlinedFunction; 1795 return false; 1796 }); 1797 } 1798 } 1799 1800 /// It is possible that there is a basic block that already performs the same 1801 /// stores. This returns a duplicate block, if it exists 1802 /// 1803 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1804 /// \param OutputStoreBBs [in] The existing output blocks. 1805 /// \returns an optional value with the number output block if there is a match. 1806 Optional<unsigned> findDuplicateOutputBlock( 1807 DenseMap<Value *, BasicBlock *> &OutputBBs, 1808 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1809 1810 bool Mismatch = false; 1811 unsigned MatchingNum = 0; 1812 // We compare the new set output blocks to the other sets of output blocks. 1813 // If they are the same number, and have identical instructions, they are 1814 // considered to be the same. 1815 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1816 Mismatch = false; 1817 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1818 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1819 OutputBBs.find(VToB.first); 1820 if (OutputBBIt == OutputBBs.end()) { 1821 Mismatch = true; 1822 break; 1823 } 1824 1825 BasicBlock *CompBB = VToB.second; 1826 BasicBlock *OutputBB = OutputBBIt->second; 1827 if (CompBB->size() - 1 != OutputBB->size()) { 1828 Mismatch = true; 1829 break; 1830 } 1831 1832 BasicBlock::iterator NIt = OutputBB->begin(); 1833 for (Instruction &I : *CompBB) { 1834 if (isa<BranchInst>(&I)) 1835 continue; 1836 1837 if (!I.isIdenticalTo(&(*NIt))) { 1838 Mismatch = true; 1839 break; 1840 } 1841 1842 NIt++; 1843 } 1844 } 1845 1846 if (!Mismatch) 1847 return MatchingNum; 1848 1849 MatchingNum++; 1850 } 1851 1852 return None; 1853 } 1854 1855 /// Remove empty output blocks from the outlined region. 1856 /// 1857 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 1858 /// Region. 1859 /// \param Region - The OutlinableRegion we are analyzing. 1860 static bool 1861 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 1862 OutlinableRegion &Region) { 1863 bool AllRemoved = true; 1864 Value *RetValueForBB; 1865 BasicBlock *NewBB; 1866 SmallVector<Value *, 4> ToRemove; 1867 // Iterate over the output blocks created in the outlined section. 1868 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 1869 RetValueForBB = VtoBB.first; 1870 NewBB = VtoBB.second; 1871 1872 // If there are no instructions, we remove it from the module, and also 1873 // mark the value for removal from the return value to output block mapping. 1874 if (NewBB->size() == 0) { 1875 NewBB->eraseFromParent(); 1876 ToRemove.push_back(RetValueForBB); 1877 continue; 1878 } 1879 1880 // Mark that we could not remove all the blocks since they were not all 1881 // empty. 1882 AllRemoved = false; 1883 } 1884 1885 // Remove the return value from the mapping. 1886 for (Value *V : ToRemove) 1887 BlocksToPrune.erase(V); 1888 1889 // Mark the region as having the no output scheme. 1890 if (AllRemoved) 1891 Region.OutputBlockNum = -1; 1892 1893 return AllRemoved; 1894 } 1895 1896 /// For the outlined section, move needed the StoreInsts for the output 1897 /// registers into their own block. Then, determine if there is a duplicate 1898 /// output block already created. 1899 /// 1900 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1901 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1902 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 1903 /// placed in. 1904 /// \param [in] EndBBs - the final blocks of the extracted function. 1905 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1906 /// been replaced by a new output value. 1907 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1908 static void alignOutputBlockWithAggFunc( 1909 OutlinableGroup &OG, OutlinableRegion &Region, 1910 DenseMap<Value *, BasicBlock *> &OutputBBs, 1911 DenseMap<Value *, BasicBlock *> &EndBBs, 1912 const DenseMap<Value *, Value *> &OutputMappings, 1913 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1914 // If none of the output blocks have any instructions, this means that we do 1915 // not have to determine if it matches any of the other output schemes, and we 1916 // don't have to do anything else. 1917 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 1918 return; 1919 1920 // Determine is there is a duplicate set of blocks. 1921 Optional<unsigned> MatchingBB = 1922 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 1923 1924 // If there is, we remove the new output blocks. If it does not, 1925 // we add it to our list of sets of output blocks. 1926 if (MatchingBB.hasValue()) { 1927 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1928 << Region.ExtractedFunction << " to " 1929 << MatchingBB.getValue()); 1930 1931 Region.OutputBlockNum = MatchingBB.getValue(); 1932 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 1933 VtoBB.second->eraseFromParent(); 1934 return; 1935 } 1936 1937 Region.OutputBlockNum = OutputStoreBBs.size(); 1938 1939 Value *RetValueForBB; 1940 BasicBlock *NewBB; 1941 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1942 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 1943 RetValueForBB = VtoBB.first; 1944 NewBB = VtoBB.second; 1945 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1946 EndBBs.find(RetValueForBB); 1947 LLVM_DEBUG(dbgs() << "Create output block for region in" 1948 << Region.ExtractedFunction << " to " 1949 << *NewBB); 1950 BranchInst::Create(VBBIt->second, NewBB); 1951 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 1952 } 1953 } 1954 1955 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 1956 /// before creating a basic block for each \p NewMap, and inserting into the new 1957 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 1958 /// 1959 /// \param OldMap [in] - The mapping to base the new mapping off of. 1960 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 1961 /// \param ParentFunc [in] - The function to put the new basic block in. 1962 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 1963 /// by an index value. 1964 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 1965 DenseMap<Value *, BasicBlock *> &NewMap, 1966 Function *ParentFunc, Twine BaseName) { 1967 unsigned Idx = 0; 1968 std::vector<Value *> SortedKeys; 1969 1970 getSortedConstantKeys(SortedKeys, OldMap); 1971 1972 for (Value *RetVal : SortedKeys) { 1973 BasicBlock *NewBB = BasicBlock::Create( 1974 ParentFunc->getContext(), 1975 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 1976 ParentFunc); 1977 NewMap.insert(std::make_pair(RetVal, NewBB)); 1978 } 1979 } 1980 1981 /// Create the switch statement for outlined function to differentiate between 1982 /// all the output blocks. 1983 /// 1984 /// For the outlined section, determine if an outlined block already exists that 1985 /// matches the needed stores for the extracted section. 1986 /// \param [in] M - The module we are outlining from. 1987 /// \param [in] OG - The group of regions to be outlined. 1988 /// \param [in] EndBBs - The final blocks of the extracted function. 1989 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1990 void createSwitchStatement( 1991 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 1992 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1993 // We only need the switch statement if there is more than one store 1994 // combination, or there is more than one set of output blocks. The first 1995 // will occur when we store different sets of values for two different 1996 // regions. The second will occur when we have two outputs that are combined 1997 // in a PHINode outside of the region in one outlined instance, and are used 1998 // seaparately in another. This will create the same set of OutputGVNs, but 1999 // will generate two different output schemes. 2000 if (OG.OutputGVNCombinations.size() > 1) { 2001 Function *AggFunc = OG.OutlinedFunction; 2002 // Create a final block for each different return block. 2003 DenseMap<Value *, BasicBlock *> ReturnBBs; 2004 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 2005 2006 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 2007 std::pair<Value *, BasicBlock *> &OutputBlock = 2008 *OG.EndBBs.find(RetBlockPair.first); 2009 BasicBlock *ReturnBlock = RetBlockPair.second; 2010 BasicBlock *EndBB = OutputBlock.second; 2011 Instruction *Term = EndBB->getTerminator(); 2012 // Move the return value to the final block instead of the original exit 2013 // stub. 2014 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 2015 // Put the switch statement in the old end basic block for the function 2016 // with a fall through to the new return block. 2017 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 2018 << OutputStoreBBs.size() << "\n"); 2019 SwitchInst *SwitchI = 2020 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 2021 ReturnBlock, OutputStoreBBs.size(), EndBB); 2022 2023 unsigned Idx = 0; 2024 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 2025 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 2026 OutputStoreBB.find(OutputBlock.first); 2027 2028 if (OSBBIt == OutputStoreBB.end()) 2029 continue; 2030 2031 BasicBlock *BB = OSBBIt->second; 2032 SwitchI->addCase( 2033 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 2034 Term = BB->getTerminator(); 2035 Term->setSuccessor(0, ReturnBlock); 2036 Idx++; 2037 } 2038 } 2039 return; 2040 } 2041 2042 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); 2043 2044 // If there needs to be stores, move them from the output blocks to their 2045 // corresponding ending block. We do not check that the OutputGVNCombinations 2046 // is equal to 1 here since that could just been the case where there are 0 2047 // outputs. Instead, we check whether there is more than one set of output 2048 // blocks since this is the only case where we would have to move the 2049 // stores, and erase the extraneous blocks. 2050 if (OutputStoreBBs.size() == 1) { 2051 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 2052 << *OG.OutlinedFunction << "\n"); 2053 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 2054 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 2055 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 2056 EndBBs.find(VBPair.first); 2057 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 2058 BasicBlock *EndBB = EndBBIt->second; 2059 BasicBlock *OutputBB = VBPair.second; 2060 Instruction *Term = OutputBB->getTerminator(); 2061 Term->eraseFromParent(); 2062 Term = EndBB->getTerminator(); 2063 moveBBContents(*OutputBB, *EndBB); 2064 Term->moveBefore(*EndBB, EndBB->end()); 2065 OutputBB->eraseFromParent(); 2066 } 2067 } 2068 } 2069 2070 /// Fill the new function that will serve as the replacement function for all of 2071 /// the extracted regions of a certain structure from the first region in the 2072 /// list of regions. Replace this first region's extracted function with the 2073 /// new overall function. 2074 /// 2075 /// \param [in] M - The module we are outlining from. 2076 /// \param [in] CurrentGroup - The group of regions to be outlined. 2077 /// \param [in,out] OutputStoreBBs - The output blocks for each different 2078 /// set of stores needed for the different functions. 2079 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 2080 /// once outlining is complete. 2081 /// \param [in] OutputMappings - Extracted functions to erase from module 2082 /// once outlining is complete. 2083 static void fillOverallFunction( 2084 Module &M, OutlinableGroup &CurrentGroup, 2085 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 2086 std::vector<Function *> &FuncsToRemove, 2087 const DenseMap<Value *, Value *> &OutputMappings) { 2088 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 2089 2090 // Move first extracted function's instructions into new function. 2091 LLVM_DEBUG(dbgs() << "Move instructions from " 2092 << *CurrentOS->ExtractedFunction << " to instruction " 2093 << *CurrentGroup.OutlinedFunction << "\n"); 2094 moveFunctionData(*CurrentOS->ExtractedFunction, 2095 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 2096 2097 // Transfer the attributes from the function to the new function. 2098 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 2099 CurrentGroup.OutlinedFunction->addFnAttr(A); 2100 2101 // Create a new set of output blocks for the first extracted function. 2102 DenseMap<Value *, BasicBlock *> NewBBs; 2103 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 2104 CurrentGroup.OutlinedFunction, "output_block_0"); 2105 CurrentOS->OutputBlockNum = 0; 2106 2107 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); 2108 replaceConstants(*CurrentOS); 2109 2110 // We first identify if any output blocks are empty, if they are we remove 2111 // them. We then create a branch instruction to the basic block to the return 2112 // block for the function for each non empty output block. 2113 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 2114 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 2115 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 2116 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 2117 CurrentGroup.EndBBs.find(VToBB.first); 2118 BasicBlock *EndBB = VBBIt->second; 2119 BranchInst::Create(EndBB, VToBB.second); 2120 OutputStoreBBs.back().insert(VToBB); 2121 } 2122 } 2123 2124 // Replace the call to the extracted function with the outlined function. 2125 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2126 2127 // We only delete the extracted functions at the end since we may need to 2128 // reference instructions contained in them for mapping purposes. 2129 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2130 } 2131 2132 void IROutliner::deduplicateExtractedSections( 2133 Module &M, OutlinableGroup &CurrentGroup, 2134 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 2135 createFunction(M, CurrentGroup, OutlinedFunctionNum); 2136 2137 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 2138 2139 OutlinableRegion *CurrentOS; 2140 2141 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, 2142 OutputMappings); 2143 2144 std::vector<Value *> SortedKeys; 2145 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 2146 CurrentOS = CurrentGroup.Regions[Idx]; 2147 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 2148 *CurrentOS->ExtractedFunction); 2149 2150 // Create a set of BasicBlocks, one for each return block, to hold the 2151 // needed store instructions. 2152 DenseMap<Value *, BasicBlock *> NewBBs; 2153 createAndInsertBasicBlocks( 2154 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 2155 "output_block_" + Twine(static_cast<unsigned>(Idx))); 2156 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); 2157 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 2158 CurrentGroup.EndBBs, OutputMappings, 2159 OutputStoreBBs); 2160 2161 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 2162 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 2163 } 2164 2165 // Create a switch statement to handle the different output schemes. 2166 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 2167 2168 OutlinedFunctionNum++; 2169 } 2170 2171 /// Checks that the next instruction in the InstructionDataList matches the 2172 /// next instruction in the module. If they do not, there could be the 2173 /// possibility that extra code has been inserted, and we must ignore it. 2174 /// 2175 /// \param ID - The IRInstructionData to check the next instruction of. 2176 /// \returns true if the InstructionDataList and actual instruction match. 2177 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 2178 // We check if there is a discrepancy between the InstructionDataList 2179 // and the actual next instruction in the module. If there is, it means 2180 // that an extra instruction was added, likely by the CodeExtractor. 2181 2182 // Since we do not have any similarity data about this particular 2183 // instruction, we cannot confidently outline it, and must discard this 2184 // candidate. 2185 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 2186 Instruction *NextIDLInst = NextIDIt->Inst; 2187 Instruction *NextModuleInst = nullptr; 2188 if (!ID.Inst->isTerminator()) 2189 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 2190 else if (NextIDLInst != nullptr) 2191 NextModuleInst = 2192 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 2193 2194 if (NextIDLInst && NextIDLInst != NextModuleInst) 2195 return false; 2196 2197 return true; 2198 } 2199 2200 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 2201 const OutlinableRegion &Region) { 2202 IRSimilarityCandidate *IRSC = Region.Candidate; 2203 unsigned StartIdx = IRSC->getStartIdx(); 2204 unsigned EndIdx = IRSC->getEndIdx(); 2205 2206 // A check to make sure that we are not about to attempt to outline something 2207 // that has already been outlined. 2208 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2209 if (Outlined.contains(Idx)) 2210 return false; 2211 2212 // We check if the recorded instruction matches the actual next instruction, 2213 // if it does not, we fix it in the InstructionDataList. 2214 if (!Region.Candidate->backInstruction()->isTerminator()) { 2215 Instruction *NewEndInst = 2216 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 2217 assert(NewEndInst && "Next instruction is a nullptr?"); 2218 if (Region.Candidate->end()->Inst != NewEndInst) { 2219 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2220 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 2221 IRInstructionData(*NewEndInst, 2222 InstructionClassifier.visit(*NewEndInst), *IDL); 2223 2224 // Insert the first IRInstructionData of the new region after the 2225 // last IRInstructionData of the IRSimilarityCandidate. 2226 IDL->insert(Region.Candidate->end(), *NewEndIRID); 2227 } 2228 } 2229 2230 return none_of(*IRSC, [this](IRInstructionData &ID) { 2231 if (!nextIRInstructionDataMatchesNextInst(ID)) 2232 return true; 2233 2234 return !this->InstructionClassifier.visit(ID.Inst); 2235 }); 2236 } 2237 2238 void IROutliner::pruneIncompatibleRegions( 2239 std::vector<IRSimilarityCandidate> &CandidateVec, 2240 OutlinableGroup &CurrentGroup) { 2241 bool PreviouslyOutlined; 2242 2243 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 2244 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 2245 const IRSimilarityCandidate &RHS) { 2246 return LHS.getStartIdx() < RHS.getStartIdx(); 2247 }); 2248 2249 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 2250 // Since outlining a call and a branch instruction will be the same as only 2251 // outlinining a call instruction, we ignore it as a space saving. 2252 if (FirstCandidate.getLength() == 2) { 2253 if (isa<CallInst>(FirstCandidate.front()->Inst) && 2254 isa<BranchInst>(FirstCandidate.back()->Inst)) 2255 return; 2256 } 2257 2258 unsigned CurrentEndIdx = 0; 2259 for (IRSimilarityCandidate &IRSC : CandidateVec) { 2260 PreviouslyOutlined = false; 2261 unsigned StartIdx = IRSC.getStartIdx(); 2262 unsigned EndIdx = IRSC.getEndIdx(); 2263 2264 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2265 if (Outlined.contains(Idx)) { 2266 PreviouslyOutlined = true; 2267 break; 2268 } 2269 2270 if (PreviouslyOutlined) 2271 continue; 2272 2273 // Check over the instructions, and if the basic block has its address 2274 // taken for use somewhere else, we do not outline that block. 2275 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 2276 return ID.Inst->getParent()->hasAddressTaken(); 2277 }); 2278 2279 if (BBHasAddressTaken) 2280 continue; 2281 2282 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 2283 !OutlineFromLinkODRs) 2284 continue; 2285 2286 // Greedily prune out any regions that will overlap with already chosen 2287 // regions. 2288 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 2289 continue; 2290 2291 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 2292 if (!nextIRInstructionDataMatchesNextInst(ID)) 2293 return true; 2294 2295 return !this->InstructionClassifier.visit(ID.Inst); 2296 }); 2297 2298 if (BadInst) 2299 continue; 2300 2301 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 2302 OutlinableRegion(IRSC, CurrentGroup); 2303 CurrentGroup.Regions.push_back(OS); 2304 2305 CurrentEndIdx = EndIdx; 2306 } 2307 } 2308 2309 InstructionCost 2310 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 2311 InstructionCost RegionBenefit = 0; 2312 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2313 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2314 // We add the number of instructions in the region to the benefit as an 2315 // estimate as to how much will be removed. 2316 RegionBenefit += Region->getBenefit(TTI); 2317 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 2318 << " saved instructions to overfall benefit.\n"); 2319 } 2320 2321 return RegionBenefit; 2322 } 2323 2324 /// For the \p OutputCanon number passed in find the value represented by this 2325 /// canonical number. If it is from a PHINode, we pick the first incoming 2326 /// value and return that Value instead. 2327 /// 2328 /// \param Region - The OutlinableRegion to get the Value from. 2329 /// \param OutputCanon - The canonical number to find the Value from. 2330 /// \returns The Value represented by a canonical number \p OutputCanon in \p 2331 /// Region. 2332 static Value *findOutputValueInRegion(OutlinableRegion &Region, 2333 unsigned OutputCanon) { 2334 OutlinableGroup &CurrentGroup = *Region.Parent; 2335 // If the value is greater than the value in the tracker, we have a 2336 // PHINode and will instead use one of the incoming values to find the 2337 // type. 2338 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { 2339 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); 2340 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && 2341 "Could not find GVN set for PHINode number!"); 2342 assert(It->second.second.size() > 0 && "PHINode does not have any values!"); 2343 OutputCanon = *It->second.second.begin(); 2344 } 2345 Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); 2346 assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?"); 2347 Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN); 2348 assert(OV.hasValue() && "Could not find value for GVN?"); 2349 return *OV; 2350 } 2351 2352 InstructionCost 2353 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 2354 InstructionCost OverallCost = 0; 2355 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2356 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 2357 2358 // Each output incurs a load after the call, so we add that to the cost. 2359 for (unsigned OutputCanon : Region->GVNStores) { 2360 Value *V = findOutputValueInRegion(*Region, OutputCanon); 2361 InstructionCost LoadCost = 2362 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2363 TargetTransformInfo::TCK_CodeSize); 2364 2365 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 2366 << " instructions to cost for output of type " 2367 << *V->getType() << "\n"); 2368 OverallCost += LoadCost; 2369 } 2370 } 2371 2372 return OverallCost; 2373 } 2374 2375 /// Find the extra instructions needed to handle any output values for the 2376 /// region. 2377 /// 2378 /// \param [in] M - The Module to outline from. 2379 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 2380 /// \param [in] TTI - The TargetTransformInfo used to collect information for 2381 /// new instruction costs. 2382 /// \returns the additional cost to handle the outputs. 2383 static InstructionCost findCostForOutputBlocks(Module &M, 2384 OutlinableGroup &CurrentGroup, 2385 TargetTransformInfo &TTI) { 2386 InstructionCost OutputCost = 0; 2387 unsigned NumOutputBranches = 0; 2388 2389 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; 2390 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 2391 DenseSet<BasicBlock *> CandidateBlocks; 2392 Candidate.getBasicBlocks(CandidateBlocks); 2393 2394 // Count the number of different output branches that point to blocks outside 2395 // of the region. 2396 DenseSet<BasicBlock *> FoundBlocks; 2397 for (IRInstructionData &ID : Candidate) { 2398 if (!isa<BranchInst>(ID.Inst)) 2399 continue; 2400 2401 for (Value *V : ID.OperVals) { 2402 BasicBlock *BB = static_cast<BasicBlock *>(V); 2403 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 2404 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 2405 continue; 2406 FoundBlocks.insert(BB); 2407 NumOutputBranches++; 2408 } 2409 } 2410 2411 CurrentGroup.BranchesToOutside = NumOutputBranches; 2412 2413 for (const ArrayRef<unsigned> &OutputUse : 2414 CurrentGroup.OutputGVNCombinations) { 2415 for (unsigned OutputCanon : OutputUse) { 2416 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); 2417 InstructionCost StoreCost = 2418 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 2419 TargetTransformInfo::TCK_CodeSize); 2420 2421 // An instruction cost is added for each store set that needs to occur for 2422 // various output combinations inside the function, plus a branch to 2423 // return to the exit block. 2424 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 2425 << " instructions to cost for output of type " 2426 << *V->getType() << "\n"); 2427 OutputCost += StoreCost * NumOutputBranches; 2428 } 2429 2430 InstructionCost BranchCost = 2431 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2432 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 2433 << " a branch instruction\n"); 2434 OutputCost += BranchCost * NumOutputBranches; 2435 } 2436 2437 // If there is more than one output scheme, we must have a comparison and 2438 // branch for each different item in the switch statement. 2439 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 2440 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 2441 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 2442 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 2443 TargetTransformInfo::TCK_CodeSize); 2444 InstructionCost BranchCost = 2445 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 2446 2447 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 2448 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 2449 2450 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 2451 << " instructions for each switch case for each different" 2452 << " output path in a function\n"); 2453 OutputCost += TotalCost * NumOutputBranches; 2454 } 2455 2456 return OutputCost; 2457 } 2458 2459 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 2460 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 2461 CurrentGroup.Benefit += RegionBenefit; 2462 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 2463 2464 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 2465 CurrentGroup.Cost += OutputReloadCost; 2466 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2467 2468 InstructionCost AverageRegionBenefit = 2469 RegionBenefit / CurrentGroup.Regions.size(); 2470 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 2471 unsigned NumRegions = CurrentGroup.Regions.size(); 2472 TargetTransformInfo &TTI = 2473 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2474 2475 // We add one region to the cost once, to account for the instructions added 2476 // inside of the newly created function. 2477 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 2478 << " instructions to cost for body of new function.\n"); 2479 CurrentGroup.Cost += AverageRegionBenefit; 2480 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2481 2482 // For each argument, we must add an instruction for loading the argument 2483 // out of the register and into a value inside of the newly outlined function. 2484 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2485 << " instructions to cost for each argument in the new" 2486 << " function.\n"); 2487 CurrentGroup.Cost += 2488 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 2489 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2490 2491 // Each argument needs to either be loaded into a register or onto the stack. 2492 // Some arguments will only be loaded into the stack once the argument 2493 // registers are filled. 2494 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 2495 << " instructions to cost for each argument in the new" 2496 << " function " << NumRegions << " times for the " 2497 << "needed argument handling at the call site.\n"); 2498 CurrentGroup.Cost += 2499 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 2500 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2501 2502 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 2503 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 2504 } 2505 2506 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 2507 ArrayRef<Value *> Outputs, 2508 LoadInst *LI) { 2509 // For and load instructions following the call 2510 Value *Operand = LI->getPointerOperand(); 2511 Optional<unsigned> OutputIdx = None; 2512 // Find if the operand it is an output register. 2513 for (unsigned ArgIdx = Region.NumExtractedInputs; 2514 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 2515 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 2516 OutputIdx = ArgIdx - Region.NumExtractedInputs; 2517 break; 2518 } 2519 } 2520 2521 // If we found an output register, place a mapping of the new value 2522 // to the original in the mapping. 2523 if (!OutputIdx.hasValue()) 2524 return; 2525 2526 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 2527 OutputMappings.end()) { 2528 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 2529 << *Outputs[OutputIdx.getValue()] << "\n"); 2530 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 2531 } else { 2532 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 2533 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 2534 << *Outputs[OutputIdx.getValue()] << "\n"); 2535 OutputMappings.insert(std::make_pair(LI, Orig)); 2536 } 2537 } 2538 2539 bool IROutliner::extractSection(OutlinableRegion &Region) { 2540 SetVector<Value *> ArgInputs, Outputs, SinkCands; 2541 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 2542 BasicBlock *InitialStart = Region.StartBB; 2543 Function *OrigF = Region.StartBB->getParent(); 2544 CodeExtractorAnalysisCache CEAC(*OrigF); 2545 Region.ExtractedFunction = 2546 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 2547 2548 // If the extraction was successful, find the BasicBlock, and reassign the 2549 // OutlinableRegion blocks 2550 if (!Region.ExtractedFunction) { 2551 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 2552 << "\n"); 2553 Region.reattachCandidate(); 2554 return false; 2555 } 2556 2557 // Get the block containing the called branch, and reassign the blocks as 2558 // necessary. If the original block still exists, it is because we ended on 2559 // a branch instruction, and so we move the contents into the block before 2560 // and assign the previous block correctly. 2561 User *InstAsUser = Region.ExtractedFunction->user_back(); 2562 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 2563 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 2564 assert(Region.PrevBB && "PrevBB is nullptr?"); 2565 if (Region.PrevBB == InitialStart) { 2566 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 2567 Instruction *BI = NewPrev->getTerminator(); 2568 BI->eraseFromParent(); 2569 moveBBContents(*InitialStart, *NewPrev); 2570 Region.PrevBB = NewPrev; 2571 InitialStart->eraseFromParent(); 2572 } 2573 2574 Region.StartBB = RewrittenBB; 2575 Region.EndBB = RewrittenBB; 2576 2577 // The sequences of outlinable regions has now changed. We must fix the 2578 // IRInstructionDataList for consistency. Although they may not be illegal 2579 // instructions, they should not be compared with anything else as they 2580 // should not be outlined in this round. So marking these as illegal is 2581 // allowed. 2582 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 2583 Instruction *BeginRewritten = &*RewrittenBB->begin(); 2584 Instruction *EndRewritten = &*RewrittenBB->begin(); 2585 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 2586 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 2587 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 2588 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 2589 2590 // Insert the first IRInstructionData of the new region in front of the 2591 // first IRInstructionData of the IRSimilarityCandidate. 2592 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 2593 // Insert the first IRInstructionData of the new region after the 2594 // last IRInstructionData of the IRSimilarityCandidate. 2595 IDL->insert(Region.Candidate->end(), *Region.NewBack); 2596 // Remove the IRInstructionData from the IRSimilarityCandidate. 2597 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 2598 2599 assert(RewrittenBB != nullptr && 2600 "Could not find a predecessor after extraction!"); 2601 2602 // Iterate over the new set of instructions to find the new call 2603 // instruction. 2604 for (Instruction &I : *RewrittenBB) 2605 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2606 if (Region.ExtractedFunction == CI->getCalledFunction()) 2607 Region.Call = CI; 2608 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 2609 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 2610 Region.reattachCandidate(); 2611 return true; 2612 } 2613 2614 unsigned IROutliner::doOutline(Module &M) { 2615 // Find the possible similarity sections. 2616 InstructionClassifier.EnableBranches = !DisableBranches; 2617 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; 2618 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; 2619 2620 IRSimilarityIdentifier &Identifier = getIRSI(M); 2621 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 2622 2623 // Sort them by size of extracted sections 2624 unsigned OutlinedFunctionNum = 0; 2625 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 2626 // to sort them by the potential number of instructions to be outlined 2627 if (SimilarityCandidates.size() > 1) 2628 llvm::stable_sort(SimilarityCandidates, 2629 [](const std::vector<IRSimilarityCandidate> &LHS, 2630 const std::vector<IRSimilarityCandidate> &RHS) { 2631 return LHS[0].getLength() * LHS.size() > 2632 RHS[0].getLength() * RHS.size(); 2633 }); 2634 // Creating OutlinableGroups for each SimilarityCandidate to be used in 2635 // each of the following for loops to avoid making an allocator. 2636 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 2637 2638 DenseSet<unsigned> NotSame; 2639 std::vector<OutlinableGroup *> NegativeCostGroups; 2640 std::vector<OutlinableRegion *> OutlinedRegions; 2641 // Iterate over the possible sets of similarity. 2642 unsigned PotentialGroupIdx = 0; 2643 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2644 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2645 2646 // Remove entries that were previously outlined 2647 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2648 2649 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2650 // trying to outlined since there is no compatible similar instance of this 2651 // code. 2652 if (CurrentGroup.Regions.size() < 2) 2653 continue; 2654 2655 // Determine if there are any values that are the same constant throughout 2656 // each section in the set. 2657 NotSame.clear(); 2658 CurrentGroup.findSameConstants(NotSame); 2659 2660 if (CurrentGroup.IgnoreGroup) 2661 continue; 2662 2663 // Create a CodeExtractor for each outlinable region. Identify inputs and 2664 // outputs for each section using the code extractor and create the argument 2665 // types for the Aggregate Outlining Function. 2666 OutlinedRegions.clear(); 2667 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2668 // Break the outlinable region out of its parent BasicBlock into its own 2669 // BasicBlocks (see function implementation). 2670 OS->splitCandidate(); 2671 2672 // There's a chance that when the region is split, extra instructions are 2673 // added to the region. This makes the region no longer viable 2674 // to be split, so we ignore it for outlining. 2675 if (!OS->CandidateSplit) 2676 continue; 2677 2678 SmallVector<BasicBlock *> BE; 2679 DenseSet<BasicBlock *> BlocksInRegion; 2680 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2681 OS->CE = new (ExtractorAllocator.Allocate()) 2682 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2683 false, "outlined"); 2684 findAddInputsOutputs(M, *OS, NotSame); 2685 if (!OS->IgnoreRegion) 2686 OutlinedRegions.push_back(OS); 2687 2688 // We recombine the blocks together now that we have gathered all the 2689 // needed information. 2690 OS->reattachCandidate(); 2691 } 2692 2693 CurrentGroup.Regions = std::move(OutlinedRegions); 2694 2695 if (CurrentGroup.Regions.empty()) 2696 continue; 2697 2698 CurrentGroup.collectGVNStoreSets(M); 2699 2700 if (CostModel) 2701 findCostBenefit(M, CurrentGroup); 2702 2703 // If we are adhering to the cost model, skip those groups where the cost 2704 // outweighs the benefits. 2705 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2706 OptimizationRemarkEmitter &ORE = 2707 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2708 ORE.emit([&]() { 2709 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2710 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2711 C->frontInstruction()); 2712 R << "did not outline " 2713 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2714 << " regions due to estimated increase of " 2715 << ore::NV("InstructionIncrease", 2716 CurrentGroup.Cost - CurrentGroup.Benefit) 2717 << " instructions at locations "; 2718 interleave( 2719 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2720 [&R](OutlinableRegion *Region) { 2721 R << ore::NV( 2722 "DebugLoc", 2723 Region->Candidate->frontInstruction()->getDebugLoc()); 2724 }, 2725 [&R]() { R << " "; }); 2726 return R; 2727 }); 2728 continue; 2729 } 2730 2731 NegativeCostGroups.push_back(&CurrentGroup); 2732 } 2733 2734 ExtractorAllocator.DestroyAll(); 2735 2736 if (NegativeCostGroups.size() > 1) 2737 stable_sort(NegativeCostGroups, 2738 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2739 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2740 }); 2741 2742 std::vector<Function *> FuncsToRemove; 2743 for (OutlinableGroup *CG : NegativeCostGroups) { 2744 OutlinableGroup &CurrentGroup = *CG; 2745 2746 OutlinedRegions.clear(); 2747 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2748 // We check whether our region is compatible with what has already been 2749 // outlined, and whether we need to ignore this item. 2750 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2751 continue; 2752 OutlinedRegions.push_back(Region); 2753 } 2754 2755 if (OutlinedRegions.size() < 2) 2756 continue; 2757 2758 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2759 // we are still outlining enough regions to make up for the added cost. 2760 CurrentGroup.Regions = std::move(OutlinedRegions); 2761 if (CostModel) { 2762 CurrentGroup.Benefit = 0; 2763 CurrentGroup.Cost = 0; 2764 findCostBenefit(M, CurrentGroup); 2765 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2766 continue; 2767 } 2768 OutlinedRegions.clear(); 2769 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2770 Region->splitCandidate(); 2771 if (!Region->CandidateSplit) 2772 continue; 2773 OutlinedRegions.push_back(Region); 2774 } 2775 2776 CurrentGroup.Regions = std::move(OutlinedRegions); 2777 if (CurrentGroup.Regions.size() < 2) { 2778 for (OutlinableRegion *R : CurrentGroup.Regions) 2779 R->reattachCandidate(); 2780 continue; 2781 } 2782 2783 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2784 << " and benefit " << CurrentGroup.Benefit << "\n"); 2785 2786 // Create functions out of all the sections, and mark them as outlined. 2787 OutlinedRegions.clear(); 2788 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2789 SmallVector<BasicBlock *> BE; 2790 DenseSet<BasicBlock *> BlocksInRegion; 2791 OS->Candidate->getBasicBlocks(BlocksInRegion, BE); 2792 OS->CE = new (ExtractorAllocator.Allocate()) 2793 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2794 false, "outlined"); 2795 bool FunctionOutlined = extractSection(*OS); 2796 if (FunctionOutlined) { 2797 unsigned StartIdx = OS->Candidate->getStartIdx(); 2798 unsigned EndIdx = OS->Candidate->getEndIdx(); 2799 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2800 Outlined.insert(Idx); 2801 2802 OutlinedRegions.push_back(OS); 2803 } 2804 } 2805 2806 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2807 << " with benefit " << CurrentGroup.Benefit 2808 << " and cost " << CurrentGroup.Cost << "\n"); 2809 2810 CurrentGroup.Regions = std::move(OutlinedRegions); 2811 2812 if (CurrentGroup.Regions.empty()) 2813 continue; 2814 2815 OptimizationRemarkEmitter &ORE = 2816 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2817 ORE.emit([&]() { 2818 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2819 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2820 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2821 << " regions with decrease of " 2822 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2823 << " instructions at locations "; 2824 interleave( 2825 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2826 [&R](OutlinableRegion *Region) { 2827 R << ore::NV("DebugLoc", 2828 Region->Candidate->frontInstruction()->getDebugLoc()); 2829 }, 2830 [&R]() { R << " "; }); 2831 return R; 2832 }); 2833 2834 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2835 OutlinedFunctionNum); 2836 } 2837 2838 for (Function *F : FuncsToRemove) 2839 F->eraseFromParent(); 2840 2841 return OutlinedFunctionNum; 2842 } 2843 2844 bool IROutliner::run(Module &M) { 2845 CostModel = !NoCostModel; 2846 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 2847 2848 return doOutline(M) > 0; 2849 } 2850 2851 // Pass Manager Boilerplate 2852 namespace { 2853 class IROutlinerLegacyPass : public ModulePass { 2854 public: 2855 static char ID; 2856 IROutlinerLegacyPass() : ModulePass(ID) { 2857 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 2858 } 2859 2860 void getAnalysisUsage(AnalysisUsage &AU) const override { 2861 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2862 AU.addRequired<TargetTransformInfoWrapperPass>(); 2863 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 2864 } 2865 2866 bool runOnModule(Module &M) override; 2867 }; 2868 } // namespace 2869 2870 bool IROutlinerLegacyPass::runOnModule(Module &M) { 2871 if (skipModule(M)) 2872 return false; 2873 2874 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2875 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2876 ORE.reset(new OptimizationRemarkEmitter(&F)); 2877 return *ORE.get(); 2878 }; 2879 2880 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 2881 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2882 }; 2883 2884 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 2885 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 2886 }; 2887 2888 return IROutliner(GTTI, GIRSI, GORE).run(M); 2889 } 2890 2891 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 2892 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2893 2894 std::function<TargetTransformInfo &(Function &)> GTTI = 2895 [&FAM](Function &F) -> TargetTransformInfo & { 2896 return FAM.getResult<TargetIRAnalysis>(F); 2897 }; 2898 2899 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 2900 [&AM](Module &M) -> IRSimilarityIdentifier & { 2901 return AM.getResult<IRSimilarityAnalysis>(M); 2902 }; 2903 2904 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2905 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 2906 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2907 ORE.reset(new OptimizationRemarkEmitter(&F)); 2908 return *ORE.get(); 2909 }; 2910 2911 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 2912 return PreservedAnalyses::none(); 2913 return PreservedAnalyses::all(); 2914 } 2915 2916 char IROutlinerLegacyPass::ID = 0; 2917 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2918 false) 2919 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 2920 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2921 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2922 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2923 false) 2924 2925 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 2926