xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/PostDominators.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/ProfDataUtils.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/IPO.h"
54 #include "llvm/Transforms/Utils/CodeExtractor.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <limits>
58 #include <string>
59 
60 #define DEBUG_TYPE "hotcoldsplit"
61 
62 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
63 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
64 
65 using namespace llvm;
66 
67 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
68                                           cl::init(true), cl::Hidden);
69 
70 static cl::opt<int>
71     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
72                        cl::desc("Base penalty for splitting cold code (as a "
73                                 "multiple of TCC_Basic)"));
74 
75 static cl::opt<bool> EnableColdSection(
76     "enable-cold-section", cl::init(false), cl::Hidden,
77     cl::desc("Enable placement of extracted cold functions"
78              " into a separate section after hot-cold splitting."));
79 
80 static cl::opt<std::string>
81     ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
82                     cl::Hidden,
83                     cl::desc("Name for the section containing cold functions "
84                              "extracted by hot-cold splitting."));
85 
86 static cl::opt<int> MaxParametersForSplit(
87     "hotcoldsplit-max-params", cl::init(4), cl::Hidden,
88     cl::desc("Maximum number of parameters for a split function"));
89 
90 static cl::opt<int> ColdBranchProbDenom(
91     "hotcoldsplit-cold-probability-denom", cl::init(100), cl::Hidden,
92     cl::desc("Divisor of cold branch probability."
93              "BranchProbability = 1/ColdBranchProbDenom"));
94 
95 namespace {
96 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
97 // this function unless you modify the MBB version as well.
98 //
99 /// A no successor, non-return block probably ends in unreachable and is cold.
100 /// Also consider a block that ends in an indirect branch to be a return block,
101 /// since many targets use plain indirect branches to return.
102 bool blockEndsInUnreachable(const BasicBlock &BB) {
103   if (!succ_empty(&BB))
104     return false;
105   if (BB.empty())
106     return true;
107   const Instruction *I = BB.getTerminator();
108   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
109 }
110 
111 void analyzeProfMetadata(BasicBlock *BB,
112                          BranchProbability ColdProbThresh,
113                          SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks) {
114   // TODO: Handle branches with > 2 successors.
115   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
116   if (!CondBr)
117     return;
118 
119   uint64_t TrueWt, FalseWt;
120   if (!extractBranchWeights(*CondBr, TrueWt, FalseWt))
121     return;
122 
123   auto SumWt = TrueWt + FalseWt;
124   if (SumWt == 0)
125     return;
126 
127   auto TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt);
128   auto FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt);
129 
130   if (TrueProb <= ColdProbThresh)
131     AnnotatedColdBlocks.insert(CondBr->getSuccessor(0));
132 
133   if (FalseProb <= ColdProbThresh)
134     AnnotatedColdBlocks.insert(CondBr->getSuccessor(1));
135 }
136 
137 bool unlikelyExecuted(BasicBlock &BB) {
138   // Exception handling blocks are unlikely executed.
139   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
140     return true;
141 
142   // The block is cold if it calls/invokes a cold function. However, do not
143   // mark sanitizer traps as cold.
144   for (Instruction &I : BB)
145     if (auto *CB = dyn_cast<CallBase>(&I))
146       if (CB->hasFnAttr(Attribute::Cold) &&
147           !CB->getMetadata(LLVMContext::MD_nosanitize))
148         return true;
149 
150   // The block is cold if it has an unreachable terminator, unless it's
151   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
152   if (blockEndsInUnreachable(BB)) {
153     if (auto *CI =
154             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
155       if (CI->hasFnAttr(Attribute::NoReturn))
156         return false;
157     return true;
158   }
159 
160   return false;
161 }
162 
163 /// Check whether it's safe to outline \p BB.
164 static bool mayExtractBlock(const BasicBlock &BB) {
165   // EH pads are unsafe to outline because doing so breaks EH type tables. It
166   // follows that invoke instructions cannot be extracted, because CodeExtractor
167   // requires unwind destinations to be within the extraction region.
168   //
169   // Resumes that are not reachable from a cleanup landing pad are considered to
170   // be unreachable. It’s not safe to split them out either.
171   if (BB.hasAddressTaken() || BB.isEHPad())
172     return false;
173   auto Term = BB.getTerminator();
174   return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term);
175 }
176 
177 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
178 /// If \p UpdateEntryCount is true (set when this is a new split function and
179 /// module has profile data), set entry count to 0 to ensure treated as cold.
180 /// Return true if the function is changed.
181 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
182   assert(!F.hasOptNone() && "Can't mark this cold");
183   bool Changed = false;
184   if (!F.hasFnAttribute(Attribute::Cold)) {
185     F.addFnAttr(Attribute::Cold);
186     Changed = true;
187   }
188   if (!F.hasFnAttribute(Attribute::MinSize)) {
189     F.addFnAttr(Attribute::MinSize);
190     Changed = true;
191   }
192   if (UpdateEntryCount) {
193     // Set the entry count to 0 to ensure it is placed in the unlikely text
194     // section when function sections are enabled.
195     F.setEntryCount(0);
196     Changed = true;
197   }
198 
199   return Changed;
200 }
201 
202 } // end anonymous namespace
203 
204 /// Check whether \p F is inherently cold.
205 bool HotColdSplitting::isFunctionCold(const Function &F) const {
206   if (F.hasFnAttribute(Attribute::Cold))
207     return true;
208 
209   if (F.getCallingConv() == CallingConv::Cold)
210     return true;
211 
212   if (PSI->isFunctionEntryCold(&F))
213     return true;
214 
215   return false;
216 }
217 
218 bool HotColdSplitting::isBasicBlockCold(BasicBlock *BB,
219                           BranchProbability ColdProbThresh,
220                           SmallPtrSetImpl<BasicBlock *> &ColdBlocks,
221                           SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks,
222                           BlockFrequencyInfo *BFI) const {
223   // This block is already part of some outlining region.
224   if (ColdBlocks.count(BB))
225     return true;
226 
227   if (BFI) {
228     if (PSI->isColdBlock(BB, BFI))
229       return true;
230   } else {
231     // Find cold blocks of successors of BB during a reverse postorder traversal.
232     analyzeProfMetadata(BB, ColdProbThresh, AnnotatedColdBlocks);
233 
234     // A statically cold BB would be known before it is visited
235     // because the prof-data of incoming edges are 'analyzed' as part of RPOT.
236     if (AnnotatedColdBlocks.count(BB))
237       return true;
238   }
239 
240   if (EnableStaticAnalysis && unlikelyExecuted(*BB))
241     return true;
242 
243   return false;
244 }
245 
246 // Returns false if the function should not be considered for hot-cold split
247 // optimization.
248 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
249   if (F.hasFnAttribute(Attribute::AlwaysInline))
250     return false;
251 
252   if (F.hasFnAttribute(Attribute::NoInline))
253     return false;
254 
255   // A function marked `noreturn` may contain unreachable terminators: these
256   // should not be considered cold, as the function may be a trampoline.
257   if (F.hasFnAttribute(Attribute::NoReturn))
258     return false;
259 
260   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
261       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
262       F.hasFnAttribute(Attribute::SanitizeThread) ||
263       F.hasFnAttribute(Attribute::SanitizeMemory))
264     return false;
265 
266   return true;
267 }
268 
269 /// Get the benefit score of outlining \p Region.
270 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
271                                            TargetTransformInfo &TTI) {
272   // Sum up the code size costs of non-terminator instructions. Tight coupling
273   // with \ref getOutliningPenalty is needed to model the costs of terminators.
274   InstructionCost Benefit = 0;
275   for (BasicBlock *BB : Region)
276     for (Instruction &I : BB->instructionsWithoutDebug())
277       if (&I != BB->getTerminator())
278         Benefit +=
279             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
280 
281   return Benefit;
282 }
283 
284 /// Get the penalty score for outlining \p Region.
285 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
286                                unsigned NumInputs, unsigned NumOutputs) {
287   int Penalty = SplittingThreshold;
288   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
289 
290   // If the splitting threshold is set at or below zero, skip the usual
291   // profitability check.
292   if (SplittingThreshold <= 0)
293     return Penalty;
294 
295   // Find the number of distinct exit blocks for the region. Use a conservative
296   // check to determine whether control returns from the region.
297   bool NoBlocksReturn = true;
298   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
299   for (BasicBlock *BB : Region) {
300     // If a block has no successors, only assume it does not return if it's
301     // unreachable.
302     if (succ_empty(BB)) {
303       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
304       continue;
305     }
306 
307     for (BasicBlock *SuccBB : successors(BB)) {
308       if (!is_contained(Region, SuccBB)) {
309         NoBlocksReturn = false;
310         SuccsOutsideRegion.insert(SuccBB);
311       }
312     }
313   }
314 
315   // Count the number of phis in exit blocks with >= 2 incoming values from the
316   // outlining region. These phis are split (\ref severSplitPHINodesOfExits),
317   // and new outputs are created to supply the split phis. CodeExtractor can't
318   // report these new outputs until extraction begins, but it's important to
319   // factor the cost of the outputs into the cost calculation.
320   unsigned NumSplitExitPhis = 0;
321   for (BasicBlock *ExitBB : SuccsOutsideRegion) {
322     for (PHINode &PN : ExitBB->phis()) {
323       // Find all incoming values from the outlining region.
324       int NumIncomingVals = 0;
325       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
326         if (llvm::is_contained(Region, PN.getIncomingBlock(i))) {
327           ++NumIncomingVals;
328           if (NumIncomingVals > 1) {
329             ++NumSplitExitPhis;
330             break;
331           }
332         }
333     }
334   }
335 
336   // Apply a penalty for calling the split function. Factor in the cost of
337   // materializing all of the parameters.
338   int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
339   int NumParams = NumInputs + NumOutputsAndSplitPhis;
340   if (NumParams > MaxParametersForSplit) {
341     LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
342                       << " outputs exceeds parameter limit ("
343                       << MaxParametersForSplit << ")\n");
344     return std::numeric_limits<int>::max();
345   }
346   const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
347   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
348   Penalty += CostForArgMaterialization * NumParams;
349 
350   // Apply the typical code size cost for an output alloca and its associated
351   // reload in the caller. Also penalize the associated store in the callee.
352   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
353                     << " outputs/split phis\n");
354   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
355   Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
356 
357   // Apply a `noreturn` bonus.
358   if (NoBlocksReturn) {
359     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
360                       << " non-returning terminators\n");
361     Penalty -= Region.size();
362   }
363 
364   // Apply a penalty for having more than one successor outside of the region.
365   // This penalty accounts for the switch needed in the caller.
366   if (SuccsOutsideRegion.size() > 1) {
367     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
368                       << " non-region successors\n");
369     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
370   }
371 
372   return Penalty;
373 }
374 
375 Function *HotColdSplitting::extractColdRegion(
376     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
377     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
378     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
379   assert(!Region.empty());
380 
381   // TODO: Pass BFI and BPI to update profile information.
382   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
383                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
384                    /* AllowAlloca */ false, /* AllocaBlock */ nullptr,
385                    /* Suffix */ "cold." + std::to_string(Count));
386 
387   // Perform a simple cost/benefit analysis to decide whether or not to permit
388   // splitting.
389   SetVector<Value *> Inputs, Outputs, Sinks;
390   CE.findInputsOutputs(Inputs, Outputs, Sinks);
391   InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
392   int OutliningPenalty =
393       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
394   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
395                     << ", penalty = " << OutliningPenalty << "\n");
396   if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
397     return nullptr;
398 
399   Function *OrigF = Region[0]->getParent();
400   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
401     User *U = *OutF->user_begin();
402     CallInst *CI = cast<CallInst>(U);
403     NumColdRegionsOutlined++;
404     if (TTI.useColdCCForColdCall(*OutF)) {
405       OutF->setCallingConv(CallingConv::Cold);
406       CI->setCallingConv(CallingConv::Cold);
407     }
408     CI->setIsNoInline();
409 
410     if (EnableColdSection)
411       OutF->setSection(ColdSectionName);
412     else {
413       if (OrigF->hasSection())
414         OutF->setSection(OrigF->getSection());
415     }
416 
417     markFunctionCold(*OutF, BFI != nullptr);
418 
419     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
420     ORE.emit([&]() {
421       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
422                                 &*Region[0]->begin())
423              << ore::NV("Original", OrigF) << " split cold code into "
424              << ore::NV("Split", OutF);
425     });
426     return OutF;
427   }
428 
429   ORE.emit([&]() {
430     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
431                                     &*Region[0]->begin())
432            << "Failed to extract region at block "
433            << ore::NV("Block", Region.front());
434   });
435   return nullptr;
436 }
437 
438 /// A pair of (basic block, score).
439 using BlockTy = std::pair<BasicBlock *, unsigned>;
440 
441 namespace {
442 /// A maximal outlining region. This contains all blocks post-dominated by a
443 /// sink block, the sink block itself, and all blocks dominated by the sink.
444 /// If sink-predecessors and sink-successors cannot be extracted in one region,
445 /// the static constructor returns a list of suitable extraction regions.
446 class OutliningRegion {
447   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
448   /// viable sub-region entry point. Blocks with higher scores are better entry
449   /// points (i.e. they are more distant ancestors of the sink block).
450   SmallVector<BlockTy, 0> Blocks = {};
451 
452   /// The suggested entry point into the region. If the region has multiple
453   /// entry points, all blocks within the region may not be reachable from this
454   /// entry point.
455   BasicBlock *SuggestedEntryPoint = nullptr;
456 
457   /// Whether the entire function is cold.
458   bool EntireFunctionCold = false;
459 
460   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
461   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
462     return mayExtractBlock(BB) ? Score : 0;
463   }
464 
465   /// These scores should be lower than the score for predecessor blocks,
466   /// because regions starting at predecessor blocks are typically larger.
467   static constexpr unsigned ScoreForSuccBlock = 1;
468   static constexpr unsigned ScoreForSinkBlock = 1;
469 
470   OutliningRegion(const OutliningRegion &) = delete;
471   OutliningRegion &operator=(const OutliningRegion &) = delete;
472 
473 public:
474   OutliningRegion() = default;
475   OutliningRegion(OutliningRegion &&) = default;
476   OutliningRegion &operator=(OutliningRegion &&) = default;
477 
478   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
479                                              const DominatorTree &DT,
480                                              const PostDominatorTree &PDT) {
481     std::vector<OutliningRegion> Regions;
482     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
483 
484     Regions.emplace_back();
485     OutliningRegion *ColdRegion = &Regions.back();
486 
487     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
488       RegionBlocks.insert(BB);
489       ColdRegion->Blocks.emplace_back(BB, Score);
490     };
491 
492     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
493     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
494     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
495     unsigned BestScore = SinkScore;
496 
497     // Visit SinkBB's ancestors using inverse DFS.
498     auto PredIt = ++idf_begin(&SinkBB);
499     auto PredEnd = idf_end(&SinkBB);
500     while (PredIt != PredEnd) {
501       BasicBlock &PredBB = **PredIt;
502       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
503 
504       // If the predecessor is cold and has no predecessors, the entire
505       // function must be cold.
506       if (SinkPostDom && pred_empty(&PredBB)) {
507         ColdRegion->EntireFunctionCold = true;
508         return Regions;
509       }
510 
511       // If SinkBB does not post-dominate a predecessor, do not mark the
512       // predecessor (or any of its predecessors) cold.
513       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
514         PredIt.skipChildren();
515         continue;
516       }
517 
518       // Keep track of the post-dominated ancestor farthest away from the sink.
519       // The path length is always >= 2, ensuring that predecessor blocks are
520       // considered as entry points before the sink block.
521       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
522       if (PredScore > BestScore) {
523         ColdRegion->SuggestedEntryPoint = &PredBB;
524         BestScore = PredScore;
525       }
526 
527       addBlockToRegion(&PredBB, PredScore);
528       ++PredIt;
529     }
530 
531     // If the sink can be added to the cold region, do so. It's considered as
532     // an entry point before any sink-successor blocks.
533     //
534     // Otherwise, split cold sink-successor blocks using a separate region.
535     // This satisfies the requirement that all extraction blocks other than the
536     // first have predecessors within the extraction region.
537     if (mayExtractBlock(SinkBB)) {
538       addBlockToRegion(&SinkBB, SinkScore);
539       if (pred_empty(&SinkBB)) {
540         ColdRegion->EntireFunctionCold = true;
541         return Regions;
542       }
543     } else {
544       Regions.emplace_back();
545       ColdRegion = &Regions.back();
546       BestScore = 0;
547     }
548 
549     // Find all successors of SinkBB dominated by SinkBB using DFS.
550     auto SuccIt = ++df_begin(&SinkBB);
551     auto SuccEnd = df_end(&SinkBB);
552     while (SuccIt != SuccEnd) {
553       BasicBlock &SuccBB = **SuccIt;
554       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
555 
556       // Don't allow the backwards & forwards DFSes to mark the same block.
557       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
558 
559       // If SinkBB does not dominate a successor, do not mark the successor (or
560       // any of its successors) cold.
561       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
562         SuccIt.skipChildren();
563         continue;
564       }
565 
566       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
567       if (SuccScore > BestScore) {
568         ColdRegion->SuggestedEntryPoint = &SuccBB;
569         BestScore = SuccScore;
570       }
571 
572       addBlockToRegion(&SuccBB, SuccScore);
573       ++SuccIt;
574     }
575 
576     return Regions;
577   }
578 
579   /// Whether this region has nothing to extract.
580   bool empty() const { return !SuggestedEntryPoint; }
581 
582   /// The blocks in this region.
583   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
584 
585   /// Whether the entire function containing this region is cold.
586   bool isEntireFunctionCold() const { return EntireFunctionCold; }
587 
588   /// Remove a sub-region from this region and return it as a block sequence.
589   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
590     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
591 
592     // Remove blocks dominated by the suggested entry point from this region.
593     // During the removal, identify the next best entry point into the region.
594     // Ensure that the first extracted block is the suggested entry point.
595     BlockSequence SubRegion = {SuggestedEntryPoint};
596     BasicBlock *NextEntryPoint = nullptr;
597     unsigned NextScore = 0;
598     auto RegionEndIt = Blocks.end();
599     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
600       BasicBlock *BB = Block.first;
601       unsigned Score = Block.second;
602       bool InSubRegion =
603           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
604       if (!InSubRegion && Score > NextScore) {
605         NextEntryPoint = BB;
606         NextScore = Score;
607       }
608       if (InSubRegion && BB != SuggestedEntryPoint)
609         SubRegion.push_back(BB);
610       return InSubRegion;
611     });
612     Blocks.erase(RegionStartIt, RegionEndIt);
613 
614     // Update the suggested entry point.
615     SuggestedEntryPoint = NextEntryPoint;
616 
617     return SubRegion;
618   }
619 };
620 } // namespace
621 
622 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
623   bool Changed = false;
624 
625   // The set of cold blocks.
626   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
627 
628   // Set of cold blocks obtained with RPOT.
629   SmallPtrSet<BasicBlock *, 4> AnnotatedColdBlocks;
630 
631   // The worklist of non-intersecting regions left to outline.
632   SmallVector<OutliningRegion, 2> OutliningWorklist;
633 
634   // Set up an RPO traversal. Experimentally, this performs better (outlines
635   // more) than a PO traversal, because we prevent region overlap by keeping
636   // the first region to contain a block.
637   ReversePostOrderTraversal<Function *> RPOT(&F);
638 
639   // Calculate domtrees lazily. This reduces compile-time significantly.
640   std::unique_ptr<DominatorTree> DT;
641   std::unique_ptr<PostDominatorTree> PDT;
642 
643   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
644   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
645   // be able to salvage its domtrees instead of recomputing them.
646   BlockFrequencyInfo *BFI = nullptr;
647   if (HasProfileSummary)
648     BFI = GetBFI(F);
649 
650   TargetTransformInfo &TTI = GetTTI(F);
651   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
652   AssumptionCache *AC = LookupAC(F);
653   auto ColdProbThresh = TTI.getPredictableBranchThreshold().getCompl();
654 
655   if (ColdBranchProbDenom.getNumOccurrences())
656     ColdProbThresh = BranchProbability(1, ColdBranchProbDenom.getValue());
657 
658   // Find all cold regions.
659   for (BasicBlock *BB : RPOT) {
660     if (!isBasicBlockCold(BB, ColdProbThresh, ColdBlocks, AnnotatedColdBlocks,
661                           BFI))
662       continue;
663 
664     LLVM_DEBUG({
665       dbgs() << "Found a cold block:\n";
666       BB->dump();
667     });
668 
669     if (!DT)
670       DT = std::make_unique<DominatorTree>(F);
671     if (!PDT)
672       PDT = std::make_unique<PostDominatorTree>(F);
673 
674     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
675     for (OutliningRegion &Region : Regions) {
676       if (Region.empty())
677         continue;
678 
679       if (Region.isEntireFunctionCold()) {
680         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
681         return markFunctionCold(F);
682       }
683 
684       // If this outlining region intersects with another, drop the new region.
685       //
686       // TODO: It's theoretically possible to outline more by only keeping the
687       // largest region which contains a block, but the extra bookkeeping to do
688       // this is tricky/expensive.
689       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
690         return !ColdBlocks.insert(Block.first).second;
691       });
692       if (RegionsOverlap)
693         continue;
694 
695       OutliningWorklist.emplace_back(std::move(Region));
696       ++NumColdRegionsFound;
697     }
698   }
699 
700   if (OutliningWorklist.empty())
701     return Changed;
702 
703   // Outline single-entry cold regions, splitting up larger regions as needed.
704   unsigned OutlinedFunctionID = 1;
705   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
706   CodeExtractorAnalysisCache CEAC(F);
707   do {
708     OutliningRegion Region = OutliningWorklist.pop_back_val();
709     assert(!Region.empty() && "Empty outlining region in worklist");
710     do {
711       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
712       LLVM_DEBUG({
713         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
714         for (BasicBlock *BB : SubRegion)
715           BB->dump();
716       });
717 
718       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
719                                              ORE, AC, OutlinedFunctionID);
720       if (Outlined) {
721         ++OutlinedFunctionID;
722         Changed = true;
723       }
724     } while (!Region.empty());
725   } while (!OutliningWorklist.empty());
726 
727   return Changed;
728 }
729 
730 bool HotColdSplitting::run(Module &M) {
731   bool Changed = false;
732   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
733   for (Function &F : M) {
734     // Do not touch declarations.
735     if (F.isDeclaration())
736       continue;
737 
738     // Do not modify `optnone` functions.
739     if (F.hasOptNone())
740       continue;
741 
742     // Detect inherently cold functions and mark them as such.
743     if (isFunctionCold(F)) {
744       Changed |= markFunctionCold(F);
745       continue;
746     }
747 
748     if (!shouldOutlineFrom(F)) {
749       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
750       continue;
751     }
752 
753     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
754     Changed |= outlineColdRegions(F, HasProfileSummary);
755   }
756   return Changed;
757 }
758 
759 PreservedAnalyses
760 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
761   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
762 
763   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
764     return FAM.getCachedResult<AssumptionAnalysis>(F);
765   };
766 
767   auto GBFI = [&FAM](Function &F) {
768     return &FAM.getResult<BlockFrequencyAnalysis>(F);
769   };
770 
771   std::function<TargetTransformInfo &(Function &)> GTTI =
772       [&FAM](Function &F) -> TargetTransformInfo & {
773     return FAM.getResult<TargetIRAnalysis>(F);
774   };
775 
776   std::unique_ptr<OptimizationRemarkEmitter> ORE;
777   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
778       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
779     ORE.reset(new OptimizationRemarkEmitter(&F));
780     return *ORE;
781   };
782 
783   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
784 
785   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
786     return PreservedAnalyses::none();
787   return PreservedAnalyses::all();
788 }
789