xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/CFG.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/PostDominators.h"
38 #include "llvm/Analysis/ProfileSummaryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/CodeExtractor.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 
74 #define DEBUG_TYPE "hotcoldsplit"
75 
76 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
78 
79 using namespace llvm;
80 
81 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
82                               cl::init(true), cl::Hidden);
83 
84 static cl::opt<int>
85     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
86                        cl::desc("Base penalty for splitting cold code (as a "
87                                 "multiple of TCC_Basic)"));
88 
89 namespace {
90 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
91 // this function unless you modify the MBB version as well.
92 //
93 /// A no successor, non-return block probably ends in unreachable and is cold.
94 /// Also consider a block that ends in an indirect branch to be a return block,
95 /// since many targets use plain indirect branches to return.
96 bool blockEndsInUnreachable(const BasicBlock &BB) {
97   if (!succ_empty(&BB))
98     return false;
99   if (BB.empty())
100     return true;
101   const Instruction *I = BB.getTerminator();
102   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
103 }
104 
105 bool unlikelyExecuted(BasicBlock &BB) {
106   // Exception handling blocks are unlikely executed.
107   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
108     return true;
109 
110   // The block is cold if it calls/invokes a cold function. However, do not
111   // mark sanitizer traps as cold.
112   for (Instruction &I : BB)
113     if (auto CS = CallSite(&I))
114       if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
115         return true;
116 
117   // The block is cold if it has an unreachable terminator, unless it's
118   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
119   if (blockEndsInUnreachable(BB)) {
120     if (auto *CI =
121             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
122       if (CI->hasFnAttr(Attribute::NoReturn))
123         return false;
124     return true;
125   }
126 
127   return false;
128 }
129 
130 /// Check whether it's safe to outline \p BB.
131 static bool mayExtractBlock(const BasicBlock &BB) {
132   // EH pads are unsafe to outline because doing so breaks EH type tables. It
133   // follows that invoke instructions cannot be extracted, because CodeExtractor
134   // requires unwind destinations to be within the extraction region.
135   //
136   // Resumes that are not reachable from a cleanup landing pad are considered to
137   // be unreachable. It’s not safe to split them out either.
138   auto Term = BB.getTerminator();
139   return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
140          !isa<ResumeInst>(Term);
141 }
142 
143 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
144 /// If \p UpdateEntryCount is true (set when this is a new split function and
145 /// module has profile data), set entry count to 0 to ensure treated as cold.
146 /// Return true if the function is changed.
147 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
148   assert(!F.hasOptNone() && "Can't mark this cold");
149   bool Changed = false;
150   if (!F.hasFnAttribute(Attribute::Cold)) {
151     F.addFnAttr(Attribute::Cold);
152     Changed = true;
153   }
154   if (!F.hasFnAttribute(Attribute::MinSize)) {
155     F.addFnAttr(Attribute::MinSize);
156     Changed = true;
157   }
158   if (UpdateEntryCount) {
159     // Set the entry count to 0 to ensure it is placed in the unlikely text
160     // section when function sections are enabled.
161     F.setEntryCount(0);
162     Changed = true;
163   }
164 
165   return Changed;
166 }
167 
168 class HotColdSplittingLegacyPass : public ModulePass {
169 public:
170   static char ID;
171   HotColdSplittingLegacyPass() : ModulePass(ID) {
172     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
173   }
174 
175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.addRequired<BlockFrequencyInfoWrapperPass>();
177     AU.addRequired<ProfileSummaryInfoWrapperPass>();
178     AU.addRequired<TargetTransformInfoWrapperPass>();
179     AU.addUsedIfAvailable<AssumptionCacheTracker>();
180   }
181 
182   bool runOnModule(Module &M) override;
183 };
184 
185 } // end anonymous namespace
186 
187 /// Check whether \p F is inherently cold.
188 bool HotColdSplitting::isFunctionCold(const Function &F) const {
189   if (F.hasFnAttribute(Attribute::Cold))
190     return true;
191 
192   if (F.getCallingConv() == CallingConv::Cold)
193     return true;
194 
195   if (PSI->isFunctionEntryCold(&F))
196     return true;
197 
198   return false;
199 }
200 
201 // Returns false if the function should not be considered for hot-cold split
202 // optimization.
203 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
204   if (F.hasFnAttribute(Attribute::AlwaysInline))
205     return false;
206 
207   if (F.hasFnAttribute(Attribute::NoInline))
208     return false;
209 
210   // A function marked `noreturn` may contain unreachable terminators: these
211   // should not be considered cold, as the function may be a trampoline.
212   if (F.hasFnAttribute(Attribute::NoReturn))
213     return false;
214 
215   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
216       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
217       F.hasFnAttribute(Attribute::SanitizeThread) ||
218       F.hasFnAttribute(Attribute::SanitizeMemory))
219     return false;
220 
221   return true;
222 }
223 
224 /// Get the benefit score of outlining \p Region.
225 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
226                                TargetTransformInfo &TTI) {
227   // Sum up the code size costs of non-terminator instructions. Tight coupling
228   // with \ref getOutliningPenalty is needed to model the costs of terminators.
229   int Benefit = 0;
230   for (BasicBlock *BB : Region)
231     for (Instruction &I : BB->instructionsWithoutDebug())
232       if (&I != BB->getTerminator())
233         Benefit +=
234             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
235 
236   return Benefit;
237 }
238 
239 /// Get the penalty score for outlining \p Region.
240 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
241                                unsigned NumInputs, unsigned NumOutputs) {
242   int Penalty = SplittingThreshold;
243   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
244 
245   // If the splitting threshold is set at or below zero, skip the usual
246   // profitability check.
247   if (SplittingThreshold <= 0)
248     return Penalty;
249 
250   // The typical code size cost for materializing an argument for the outlined
251   // call.
252   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
253   const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
254   Penalty += CostForArgMaterialization * NumInputs;
255 
256   // The typical code size cost for an output alloca, its associated store, and
257   // its associated reload.
258   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
259   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
260   Penalty += CostForRegionOutput * NumOutputs;
261 
262   // Find the number of distinct exit blocks for the region. Use a conservative
263   // check to determine whether control returns from the region.
264   bool NoBlocksReturn = true;
265   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
266   for (BasicBlock *BB : Region) {
267     // If a block has no successors, only assume it does not return if it's
268     // unreachable.
269     if (succ_empty(BB)) {
270       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
271       continue;
272     }
273 
274     for (BasicBlock *SuccBB : successors(BB)) {
275       if (find(Region, SuccBB) == Region.end()) {
276         NoBlocksReturn = false;
277         SuccsOutsideRegion.insert(SuccBB);
278       }
279     }
280   }
281 
282   // Apply a `noreturn` bonus.
283   if (NoBlocksReturn) {
284     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
285                       << " non-returning terminators\n");
286     Penalty -= Region.size();
287   }
288 
289   // Apply a penalty for having more than one successor outside of the region.
290   // This penalty accounts for the switch needed in the caller.
291   if (!SuccsOutsideRegion.empty()) {
292     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
293                       << " non-region successors\n");
294     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
295   }
296 
297   return Penalty;
298 }
299 
300 Function *HotColdSplitting::extractColdRegion(
301     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
302     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
303     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
304   assert(!Region.empty());
305 
306   // TODO: Pass BFI and BPI to update profile information.
307   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
308                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
309                    /* AllowAlloca */ false,
310                    /* Suffix */ "cold." + std::to_string(Count));
311 
312   // Perform a simple cost/benefit analysis to decide whether or not to permit
313   // splitting.
314   SetVector<Value *> Inputs, Outputs, Sinks;
315   CE.findInputsOutputs(Inputs, Outputs, Sinks);
316   int OutliningBenefit = getOutliningBenefit(Region, TTI);
317   int OutliningPenalty =
318       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
319   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
320                     << ", penalty = " << OutliningPenalty << "\n");
321   if (OutliningBenefit <= OutliningPenalty)
322     return nullptr;
323 
324   Function *OrigF = Region[0]->getParent();
325   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
326     User *U = *OutF->user_begin();
327     CallInst *CI = cast<CallInst>(U);
328     CallSite CS(CI);
329     NumColdRegionsOutlined++;
330     if (TTI.useColdCCForColdCall(*OutF)) {
331       OutF->setCallingConv(CallingConv::Cold);
332       CS.setCallingConv(CallingConv::Cold);
333     }
334     CI->setIsNoInline();
335 
336     if (OrigF->hasSection())
337       OutF->setSection(OrigF->getSection());
338 
339     markFunctionCold(*OutF, BFI != nullptr);
340 
341     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
342     ORE.emit([&]() {
343       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
344                                 &*Region[0]->begin())
345              << ore::NV("Original", OrigF) << " split cold code into "
346              << ore::NV("Split", OutF);
347     });
348     return OutF;
349   }
350 
351   ORE.emit([&]() {
352     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
353                                     &*Region[0]->begin())
354            << "Failed to extract region at block "
355            << ore::NV("Block", Region.front());
356   });
357   return nullptr;
358 }
359 
360 /// A pair of (basic block, score).
361 using BlockTy = std::pair<BasicBlock *, unsigned>;
362 
363 namespace {
364 /// A maximal outlining region. This contains all blocks post-dominated by a
365 /// sink block, the sink block itself, and all blocks dominated by the sink.
366 /// If sink-predecessors and sink-successors cannot be extracted in one region,
367 /// the static constructor returns a list of suitable extraction regions.
368 class OutliningRegion {
369   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
370   /// viable sub-region entry point. Blocks with higher scores are better entry
371   /// points (i.e. they are more distant ancestors of the sink block).
372   SmallVector<BlockTy, 0> Blocks = {};
373 
374   /// The suggested entry point into the region. If the region has multiple
375   /// entry points, all blocks within the region may not be reachable from this
376   /// entry point.
377   BasicBlock *SuggestedEntryPoint = nullptr;
378 
379   /// Whether the entire function is cold.
380   bool EntireFunctionCold = false;
381 
382   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
383   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
384     return mayExtractBlock(BB) ? Score : 0;
385   }
386 
387   /// These scores should be lower than the score for predecessor blocks,
388   /// because regions starting at predecessor blocks are typically larger.
389   static constexpr unsigned ScoreForSuccBlock = 1;
390   static constexpr unsigned ScoreForSinkBlock = 1;
391 
392   OutliningRegion(const OutliningRegion &) = delete;
393   OutliningRegion &operator=(const OutliningRegion &) = delete;
394 
395 public:
396   OutliningRegion() = default;
397   OutliningRegion(OutliningRegion &&) = default;
398   OutliningRegion &operator=(OutliningRegion &&) = default;
399 
400   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
401                                              const DominatorTree &DT,
402                                              const PostDominatorTree &PDT) {
403     std::vector<OutliningRegion> Regions;
404     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
405 
406     Regions.emplace_back();
407     OutliningRegion *ColdRegion = &Regions.back();
408 
409     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
410       RegionBlocks.insert(BB);
411       ColdRegion->Blocks.emplace_back(BB, Score);
412     };
413 
414     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
415     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
416     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
417     unsigned BestScore = SinkScore;
418 
419     // Visit SinkBB's ancestors using inverse DFS.
420     auto PredIt = ++idf_begin(&SinkBB);
421     auto PredEnd = idf_end(&SinkBB);
422     while (PredIt != PredEnd) {
423       BasicBlock &PredBB = **PredIt;
424       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
425 
426       // If the predecessor is cold and has no predecessors, the entire
427       // function must be cold.
428       if (SinkPostDom && pred_empty(&PredBB)) {
429         ColdRegion->EntireFunctionCold = true;
430         return Regions;
431       }
432 
433       // If SinkBB does not post-dominate a predecessor, do not mark the
434       // predecessor (or any of its predecessors) cold.
435       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
436         PredIt.skipChildren();
437         continue;
438       }
439 
440       // Keep track of the post-dominated ancestor farthest away from the sink.
441       // The path length is always >= 2, ensuring that predecessor blocks are
442       // considered as entry points before the sink block.
443       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
444       if (PredScore > BestScore) {
445         ColdRegion->SuggestedEntryPoint = &PredBB;
446         BestScore = PredScore;
447       }
448 
449       addBlockToRegion(&PredBB, PredScore);
450       ++PredIt;
451     }
452 
453     // If the sink can be added to the cold region, do so. It's considered as
454     // an entry point before any sink-successor blocks.
455     //
456     // Otherwise, split cold sink-successor blocks using a separate region.
457     // This satisfies the requirement that all extraction blocks other than the
458     // first have predecessors within the extraction region.
459     if (mayExtractBlock(SinkBB)) {
460       addBlockToRegion(&SinkBB, SinkScore);
461     } else {
462       Regions.emplace_back();
463       ColdRegion = &Regions.back();
464       BestScore = 0;
465     }
466 
467     // Find all successors of SinkBB dominated by SinkBB using DFS.
468     auto SuccIt = ++df_begin(&SinkBB);
469     auto SuccEnd = df_end(&SinkBB);
470     while (SuccIt != SuccEnd) {
471       BasicBlock &SuccBB = **SuccIt;
472       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
473 
474       // Don't allow the backwards & forwards DFSes to mark the same block.
475       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
476 
477       // If SinkBB does not dominate a successor, do not mark the successor (or
478       // any of its successors) cold.
479       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
480         SuccIt.skipChildren();
481         continue;
482       }
483 
484       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
485       if (SuccScore > BestScore) {
486         ColdRegion->SuggestedEntryPoint = &SuccBB;
487         BestScore = SuccScore;
488       }
489 
490       addBlockToRegion(&SuccBB, SuccScore);
491       ++SuccIt;
492     }
493 
494     return Regions;
495   }
496 
497   /// Whether this region has nothing to extract.
498   bool empty() const { return !SuggestedEntryPoint; }
499 
500   /// The blocks in this region.
501   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
502 
503   /// Whether the entire function containing this region is cold.
504   bool isEntireFunctionCold() const { return EntireFunctionCold; }
505 
506   /// Remove a sub-region from this region and return it as a block sequence.
507   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
508     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
509 
510     // Remove blocks dominated by the suggested entry point from this region.
511     // During the removal, identify the next best entry point into the region.
512     // Ensure that the first extracted block is the suggested entry point.
513     BlockSequence SubRegion = {SuggestedEntryPoint};
514     BasicBlock *NextEntryPoint = nullptr;
515     unsigned NextScore = 0;
516     auto RegionEndIt = Blocks.end();
517     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
518       BasicBlock *BB = Block.first;
519       unsigned Score = Block.second;
520       bool InSubRegion =
521           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
522       if (!InSubRegion && Score > NextScore) {
523         NextEntryPoint = BB;
524         NextScore = Score;
525       }
526       if (InSubRegion && BB != SuggestedEntryPoint)
527         SubRegion.push_back(BB);
528       return InSubRegion;
529     });
530     Blocks.erase(RegionStartIt, RegionEndIt);
531 
532     // Update the suggested entry point.
533     SuggestedEntryPoint = NextEntryPoint;
534 
535     return SubRegion;
536   }
537 };
538 } // namespace
539 
540 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
541   bool Changed = false;
542 
543   // The set of cold blocks.
544   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
545 
546   // The worklist of non-intersecting regions left to outline.
547   SmallVector<OutliningRegion, 2> OutliningWorklist;
548 
549   // Set up an RPO traversal. Experimentally, this performs better (outlines
550   // more) than a PO traversal, because we prevent region overlap by keeping
551   // the first region to contain a block.
552   ReversePostOrderTraversal<Function *> RPOT(&F);
553 
554   // Calculate domtrees lazily. This reduces compile-time significantly.
555   std::unique_ptr<DominatorTree> DT;
556   std::unique_ptr<PostDominatorTree> PDT;
557 
558   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
559   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
560   // be able to salvage its domtrees instead of recomputing them.
561   BlockFrequencyInfo *BFI = nullptr;
562   if (HasProfileSummary)
563     BFI = GetBFI(F);
564 
565   TargetTransformInfo &TTI = GetTTI(F);
566   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
567   AssumptionCache *AC = LookupAC(F);
568 
569   // Find all cold regions.
570   for (BasicBlock *BB : RPOT) {
571     // This block is already part of some outlining region.
572     if (ColdBlocks.count(BB))
573       continue;
574 
575     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
576                 (EnableStaticAnalyis && unlikelyExecuted(*BB));
577     if (!Cold)
578       continue;
579 
580     LLVM_DEBUG({
581       dbgs() << "Found a cold block:\n";
582       BB->dump();
583     });
584 
585     if (!DT)
586       DT = std::make_unique<DominatorTree>(F);
587     if (!PDT)
588       PDT = std::make_unique<PostDominatorTree>(F);
589 
590     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
591     for (OutliningRegion &Region : Regions) {
592       if (Region.empty())
593         continue;
594 
595       if (Region.isEntireFunctionCold()) {
596         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
597         return markFunctionCold(F);
598       }
599 
600       // If this outlining region intersects with another, drop the new region.
601       //
602       // TODO: It's theoretically possible to outline more by only keeping the
603       // largest region which contains a block, but the extra bookkeeping to do
604       // this is tricky/expensive.
605       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
606         return !ColdBlocks.insert(Block.first).second;
607       });
608       if (RegionsOverlap)
609         continue;
610 
611       OutliningWorklist.emplace_back(std::move(Region));
612       ++NumColdRegionsFound;
613     }
614   }
615 
616   if (OutliningWorklist.empty())
617     return Changed;
618 
619   // Outline single-entry cold regions, splitting up larger regions as needed.
620   unsigned OutlinedFunctionID = 1;
621   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
622   CodeExtractorAnalysisCache CEAC(F);
623   do {
624     OutliningRegion Region = OutliningWorklist.pop_back_val();
625     assert(!Region.empty() && "Empty outlining region in worklist");
626     do {
627       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
628       LLVM_DEBUG({
629         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
630         for (BasicBlock *BB : SubRegion)
631           BB->dump();
632       });
633 
634       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
635                                              ORE, AC, OutlinedFunctionID);
636       if (Outlined) {
637         ++OutlinedFunctionID;
638         Changed = true;
639       }
640     } while (!Region.empty());
641   } while (!OutliningWorklist.empty());
642 
643   return Changed;
644 }
645 
646 bool HotColdSplitting::run(Module &M) {
647   bool Changed = false;
648   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
649   for (auto It = M.begin(), End = M.end(); It != End; ++It) {
650     Function &F = *It;
651 
652     // Do not touch declarations.
653     if (F.isDeclaration())
654       continue;
655 
656     // Do not modify `optnone` functions.
657     if (F.hasOptNone())
658       continue;
659 
660     // Detect inherently cold functions and mark them as such.
661     if (isFunctionCold(F)) {
662       Changed |= markFunctionCold(F);
663       continue;
664     }
665 
666     if (!shouldOutlineFrom(F)) {
667       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
668       continue;
669     }
670 
671     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
672     Changed |= outlineColdRegions(F, HasProfileSummary);
673   }
674   return Changed;
675 }
676 
677 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
678   if (skipModule(M))
679     return false;
680   ProfileSummaryInfo *PSI =
681       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
682   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
683     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
684   };
685   auto GBFI = [this](Function &F) {
686     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
687   };
688   std::unique_ptr<OptimizationRemarkEmitter> ORE;
689   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
690       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
691     ORE.reset(new OptimizationRemarkEmitter(&F));
692     return *ORE.get();
693   };
694   auto LookupAC = [this](Function &F) -> AssumptionCache * {
695     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
696       return ACT->lookupAssumptionCache(F);
697     return nullptr;
698   };
699 
700   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
701 }
702 
703 PreservedAnalyses
704 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
705   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
706 
707   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
708     return FAM.getCachedResult<AssumptionAnalysis>(F);
709   };
710 
711   auto GBFI = [&FAM](Function &F) {
712     return &FAM.getResult<BlockFrequencyAnalysis>(F);
713   };
714 
715   std::function<TargetTransformInfo &(Function &)> GTTI =
716       [&FAM](Function &F) -> TargetTransformInfo & {
717     return FAM.getResult<TargetIRAnalysis>(F);
718   };
719 
720   std::unique_ptr<OptimizationRemarkEmitter> ORE;
721   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
722       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
723     ORE.reset(new OptimizationRemarkEmitter(&F));
724     return *ORE.get();
725   };
726 
727   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
728 
729   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
730     return PreservedAnalyses::none();
731   return PreservedAnalyses::all();
732 }
733 
734 char HotColdSplittingLegacyPass::ID = 0;
735 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
736                       "Hot Cold Splitting", false, false)
737 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
738 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
739 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
740                     "Hot Cold Splitting", false, false)
741 
742 ModulePass *llvm::createHotColdSplittingPass() {
743   return new HotColdSplittingLegacyPass();
744 }
745