1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/EHPersonalities.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/ProfDataUtils.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Utils/CodeExtractor.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <limits> 59 #include <string> 60 61 #define DEBUG_TYPE "hotcoldsplit" 62 63 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 64 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 65 66 using namespace llvm; 67 68 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<int> 72 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 73 cl::desc("Base penalty for splitting cold code (as a " 74 "multiple of TCC_Basic)")); 75 76 static cl::opt<bool> EnableColdSection( 77 "enable-cold-section", cl::init(false), cl::Hidden, 78 cl::desc("Enable placement of extracted cold functions" 79 " into a separate section after hot-cold splitting.")); 80 81 static cl::opt<std::string> 82 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 83 cl::Hidden, 84 cl::desc("Name for the section containing cold functions " 85 "extracted by hot-cold splitting.")); 86 87 static cl::opt<int> MaxParametersForSplit( 88 "hotcoldsplit-max-params", cl::init(4), cl::Hidden, 89 cl::desc("Maximum number of parameters for a split function")); 90 91 static cl::opt<int> ColdBranchProbDenom( 92 "hotcoldsplit-cold-probability-denom", cl::init(100), cl::Hidden, 93 cl::desc("Divisor of cold branch probability." 94 "BranchProbability = 1/ColdBranchProbDenom")); 95 96 namespace { 97 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 98 // this function unless you modify the MBB version as well. 99 // 100 /// A no successor, non-return block probably ends in unreachable and is cold. 101 /// Also consider a block that ends in an indirect branch to be a return block, 102 /// since many targets use plain indirect branches to return. 103 bool blockEndsInUnreachable(const BasicBlock &BB) { 104 if (!succ_empty(&BB)) 105 return false; 106 if (BB.empty()) 107 return true; 108 const Instruction *I = BB.getTerminator(); 109 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 110 } 111 112 void analyzeProfMetadata(BasicBlock *BB, 113 BranchProbability ColdProbThresh, 114 SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks) { 115 // TODO: Handle branches with > 2 successors. 116 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 117 if (!CondBr) 118 return; 119 120 uint64_t TrueWt, FalseWt; 121 if (!extractBranchWeights(*CondBr, TrueWt, FalseWt)) 122 return; 123 124 auto SumWt = TrueWt + FalseWt; 125 if (SumWt == 0) 126 return; 127 128 auto TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt); 129 auto FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt); 130 131 if (TrueProb <= ColdProbThresh) 132 AnnotatedColdBlocks.insert(CondBr->getSuccessor(0)); 133 134 if (FalseProb <= ColdProbThresh) 135 AnnotatedColdBlocks.insert(CondBr->getSuccessor(1)); 136 } 137 138 bool unlikelyExecuted(BasicBlock &BB) { 139 // Exception handling blocks are unlikely executed. 140 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 141 return true; 142 143 // The block is cold if it calls/invokes a cold function. However, do not 144 // mark sanitizer traps as cold. 145 for (Instruction &I : BB) 146 if (auto *CB = dyn_cast<CallBase>(&I)) 147 if (CB->hasFnAttr(Attribute::Cold) && 148 !CB->getMetadata(LLVMContext::MD_nosanitize)) 149 return true; 150 151 // The block is cold if it has an unreachable terminator, unless it's 152 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 153 if (blockEndsInUnreachable(BB)) { 154 if (auto *CI = 155 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 156 if (CI->hasFnAttr(Attribute::NoReturn)) 157 return false; 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check whether it's safe to outline \p BB. 165 static bool mayExtractBlock(const BasicBlock &BB) { 166 // EH pads are unsafe to outline because doing so breaks EH type tables. It 167 // follows that invoke instructions cannot be extracted, because CodeExtractor 168 // requires unwind destinations to be within the extraction region. 169 // 170 // Resumes that are not reachable from a cleanup landing pad are considered to 171 // be unreachable. It’s not safe to split them out either. 172 173 if (BB.hasAddressTaken() || BB.isEHPad()) 174 return false; 175 auto Term = BB.getTerminator(); 176 if (isa<InvokeInst>(Term) || isa<ResumeInst>(Term)) 177 return false; 178 179 // Do not outline basic blocks that have token type instructions. e.g., 180 // exception: 181 // %0 = cleanuppad within none [] 182 // call void @"?terminate@@YAXXZ"() [ "funclet"(token %0) ] 183 // br label %continue-exception 184 if (llvm::any_of( 185 BB, [](const Instruction &I) { return I.getType()->isTokenTy(); })) { 186 return false; 187 } 188 189 return true; 190 } 191 192 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 193 /// If \p UpdateEntryCount is true (set when this is a new split function and 194 /// module has profile data), set entry count to 0 to ensure treated as cold. 195 /// Return true if the function is changed. 196 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 197 assert(!F.hasOptNone() && "Can't mark this cold"); 198 bool Changed = false; 199 if (!F.hasFnAttribute(Attribute::Cold)) { 200 F.addFnAttr(Attribute::Cold); 201 Changed = true; 202 } 203 if (!F.hasFnAttribute(Attribute::MinSize)) { 204 F.addFnAttr(Attribute::MinSize); 205 Changed = true; 206 } 207 if (UpdateEntryCount) { 208 // Set the entry count to 0 to ensure it is placed in the unlikely text 209 // section when function sections are enabled. 210 F.setEntryCount(0); 211 Changed = true; 212 } 213 214 return Changed; 215 } 216 217 } // end anonymous namespace 218 219 /// Check whether \p F is inherently cold. 220 bool HotColdSplitting::isFunctionCold(const Function &F) const { 221 if (F.hasFnAttribute(Attribute::Cold)) 222 return true; 223 224 if (F.getCallingConv() == CallingConv::Cold) 225 return true; 226 227 if (PSI->isFunctionEntryCold(&F)) 228 return true; 229 230 return false; 231 } 232 233 bool HotColdSplitting::isBasicBlockCold( 234 BasicBlock *BB, BranchProbability ColdProbThresh, 235 SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks, 236 BlockFrequencyInfo *BFI) const { 237 if (BFI) { 238 if (PSI->isColdBlock(BB, BFI)) 239 return true; 240 } else { 241 // Find cold blocks of successors of BB during a reverse postorder traversal. 242 analyzeProfMetadata(BB, ColdProbThresh, AnnotatedColdBlocks); 243 244 // A statically cold BB would be known before it is visited 245 // because the prof-data of incoming edges are 'analyzed' as part of RPOT. 246 if (AnnotatedColdBlocks.count(BB)) 247 return true; 248 } 249 250 if (EnableStaticAnalysis && unlikelyExecuted(*BB)) 251 return true; 252 253 return false; 254 } 255 256 // Returns false if the function should not be considered for hot-cold split 257 // optimization. 258 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 259 if (F.hasFnAttribute(Attribute::AlwaysInline)) 260 return false; 261 262 if (F.hasFnAttribute(Attribute::NoInline)) 263 return false; 264 265 // A function marked `noreturn` may contain unreachable terminators: these 266 // should not be considered cold, as the function may be a trampoline. 267 if (F.hasFnAttribute(Attribute::NoReturn)) 268 return false; 269 270 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 271 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 272 F.hasFnAttribute(Attribute::SanitizeThread) || 273 F.hasFnAttribute(Attribute::SanitizeMemory)) 274 return false; 275 276 // Do not outline scoped EH personality functions. 277 if (F.hasPersonalityFn()) 278 if (isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 279 return false; 280 281 return true; 282 } 283 284 /// Get the benefit score of outlining \p Region. 285 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 286 TargetTransformInfo &TTI) { 287 // Sum up the code size costs of non-terminator instructions. Tight coupling 288 // with \ref getOutliningPenalty is needed to model the costs of terminators. 289 InstructionCost Benefit = 0; 290 for (BasicBlock *BB : Region) 291 for (Instruction &I : BB->instructionsWithoutDebug()) 292 if (&I != BB->getTerminator()) 293 Benefit += 294 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 295 296 return Benefit; 297 } 298 299 /// Get the penalty score for outlining \p Region. 300 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 301 unsigned NumInputs, unsigned NumOutputs) { 302 int Penalty = SplittingThreshold; 303 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 304 305 // If the splitting threshold is set at or below zero, skip the usual 306 // profitability check. 307 if (SplittingThreshold <= 0) 308 return Penalty; 309 310 // Find the number of distinct exit blocks for the region. Use a conservative 311 // check to determine whether control returns from the region. 312 bool NoBlocksReturn = true; 313 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 314 for (BasicBlock *BB : Region) { 315 // If a block has no successors, only assume it does not return if it's 316 // unreachable. 317 if (succ_empty(BB)) { 318 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 319 continue; 320 } 321 322 for (BasicBlock *SuccBB : successors(BB)) { 323 if (!is_contained(Region, SuccBB)) { 324 NoBlocksReturn = false; 325 SuccsOutsideRegion.insert(SuccBB); 326 } 327 } 328 } 329 330 // Count the number of phis in exit blocks with >= 2 incoming values from the 331 // outlining region. These phis are split (\ref severSplitPHINodesOfExits), 332 // and new outputs are created to supply the split phis. CodeExtractor can't 333 // report these new outputs until extraction begins, but it's important to 334 // factor the cost of the outputs into the cost calculation. 335 unsigned NumSplitExitPhis = 0; 336 for (BasicBlock *ExitBB : SuccsOutsideRegion) { 337 for (PHINode &PN : ExitBB->phis()) { 338 // Find all incoming values from the outlining region. 339 int NumIncomingVals = 0; 340 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 341 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { 342 ++NumIncomingVals; 343 if (NumIncomingVals > 1) { 344 ++NumSplitExitPhis; 345 break; 346 } 347 } 348 } 349 } 350 351 // Apply a penalty for calling the split function. Factor in the cost of 352 // materializing all of the parameters. 353 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; 354 int NumParams = NumInputs + NumOutputsAndSplitPhis; 355 if (NumParams > MaxParametersForSplit) { 356 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis 357 << " outputs exceeds parameter limit (" 358 << MaxParametersForSplit << ")\n"); 359 return std::numeric_limits<int>::max(); 360 } 361 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; 362 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); 363 Penalty += CostForArgMaterialization * NumParams; 364 365 // Apply the typical code size cost for an output alloca and its associated 366 // reload in the caller. Also penalize the associated store in the callee. 367 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis 368 << " outputs/split phis\n"); 369 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 370 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; 371 372 // Apply a `noreturn` bonus. 373 if (NoBlocksReturn) { 374 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 375 << " non-returning terminators\n"); 376 Penalty -= Region.size(); 377 } 378 379 // Apply a penalty for having more than one successor outside of the region. 380 // This penalty accounts for the switch needed in the caller. 381 if (SuccsOutsideRegion.size() > 1) { 382 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 383 << " non-region successors\n"); 384 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 385 } 386 387 return Penalty; 388 } 389 390 // Determine if it is beneficial to split the \p Region. 391 bool HotColdSplitting::isSplittingBeneficial(CodeExtractor &CE, 392 const BlockSequence &Region, 393 TargetTransformInfo &TTI) { 394 assert(!Region.empty()); 395 396 // Perform a simple cost/benefit analysis to decide whether or not to permit 397 // splitting. 398 SetVector<Value *> Inputs, Outputs, Sinks; 399 CE.findInputsOutputs(Inputs, Outputs, Sinks); 400 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 401 int OutliningPenalty = 402 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 403 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 404 << ", penalty = " << OutliningPenalty << "\n"); 405 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 406 return false; 407 408 return true; 409 } 410 411 // Split the single \p EntryPoint cold region. \p CE is the region code 412 // extractor. 413 Function *HotColdSplitting::extractColdRegion( 414 BasicBlock &EntryPoint, CodeExtractor &CE, 415 const CodeExtractorAnalysisCache &CEAC, BlockFrequencyInfo *BFI, 416 TargetTransformInfo &TTI, OptimizationRemarkEmitter &ORE) { 417 Function *OrigF = EntryPoint.getParent(); 418 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 419 User *U = *OutF->user_begin(); 420 CallInst *CI = cast<CallInst>(U); 421 NumColdRegionsOutlined++; 422 if (TTI.useColdCCForColdCall(*OutF)) { 423 OutF->setCallingConv(CallingConv::Cold); 424 CI->setCallingConv(CallingConv::Cold); 425 } 426 CI->setIsNoInline(); 427 428 if (EnableColdSection) 429 OutF->setSection(ColdSectionName); 430 else { 431 if (OrigF->hasSection()) 432 OutF->setSection(OrigF->getSection()); 433 } 434 435 markFunctionCold(*OutF, BFI != nullptr); 436 437 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 438 ORE.emit([&]() { 439 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 440 &*EntryPoint.begin()) 441 << ore::NV("Original", OrigF) << " split cold code into " 442 << ore::NV("Split", OutF); 443 }); 444 return OutF; 445 } 446 447 ORE.emit([&]() { 448 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 449 &*EntryPoint.begin()) 450 << "Failed to extract region at block " 451 << ore::NV("Block", &EntryPoint); 452 }); 453 return nullptr; 454 } 455 456 /// A pair of (basic block, score). 457 using BlockTy = std::pair<BasicBlock *, unsigned>; 458 459 namespace { 460 /// A maximal outlining region. This contains all blocks post-dominated by a 461 /// sink block, the sink block itself, and all blocks dominated by the sink. 462 /// If sink-predecessors and sink-successors cannot be extracted in one region, 463 /// the static constructor returns a list of suitable extraction regions. 464 class OutliningRegion { 465 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 466 /// viable sub-region entry point. Blocks with higher scores are better entry 467 /// points (i.e. they are more distant ancestors of the sink block). 468 SmallVector<BlockTy, 0> Blocks = {}; 469 470 /// The suggested entry point into the region. If the region has multiple 471 /// entry points, all blocks within the region may not be reachable from this 472 /// entry point. 473 BasicBlock *SuggestedEntryPoint = nullptr; 474 475 /// Whether the entire function is cold. 476 bool EntireFunctionCold = false; 477 478 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 479 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 480 return mayExtractBlock(BB) ? Score : 0; 481 } 482 483 /// These scores should be lower than the score for predecessor blocks, 484 /// because regions starting at predecessor blocks are typically larger. 485 static constexpr unsigned ScoreForSuccBlock = 1; 486 static constexpr unsigned ScoreForSinkBlock = 1; 487 488 OutliningRegion(const OutliningRegion &) = delete; 489 OutliningRegion &operator=(const OutliningRegion &) = delete; 490 491 public: 492 OutliningRegion() = default; 493 OutliningRegion(OutliningRegion &&) = default; 494 OutliningRegion &operator=(OutliningRegion &&) = default; 495 496 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 497 const DominatorTree &DT, 498 const PostDominatorTree &PDT) { 499 std::vector<OutliningRegion> Regions; 500 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 501 502 Regions.emplace_back(); 503 OutliningRegion *ColdRegion = &Regions.back(); 504 505 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 506 RegionBlocks.insert(BB); 507 ColdRegion->Blocks.emplace_back(BB, Score); 508 }; 509 510 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 511 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 512 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 513 unsigned BestScore = SinkScore; 514 515 // Visit SinkBB's ancestors using inverse DFS. 516 auto PredIt = ++idf_begin(&SinkBB); 517 auto PredEnd = idf_end(&SinkBB); 518 while (PredIt != PredEnd) { 519 BasicBlock &PredBB = **PredIt; 520 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 521 522 // If the predecessor is cold and has no predecessors, the entire 523 // function must be cold. 524 if (SinkPostDom && pred_empty(&PredBB)) { 525 ColdRegion->EntireFunctionCold = true; 526 return Regions; 527 } 528 529 // If SinkBB does not post-dominate a predecessor, do not mark the 530 // predecessor (or any of its predecessors) cold. 531 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 532 PredIt.skipChildren(); 533 continue; 534 } 535 536 // Keep track of the post-dominated ancestor farthest away from the sink. 537 // The path length is always >= 2, ensuring that predecessor blocks are 538 // considered as entry points before the sink block. 539 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 540 if (PredScore > BestScore) { 541 ColdRegion->SuggestedEntryPoint = &PredBB; 542 BestScore = PredScore; 543 } 544 545 addBlockToRegion(&PredBB, PredScore); 546 ++PredIt; 547 } 548 549 // If the sink can be added to the cold region, do so. It's considered as 550 // an entry point before any sink-successor blocks. 551 // 552 // Otherwise, split cold sink-successor blocks using a separate region. 553 // This satisfies the requirement that all extraction blocks other than the 554 // first have predecessors within the extraction region. 555 if (mayExtractBlock(SinkBB)) { 556 addBlockToRegion(&SinkBB, SinkScore); 557 if (pred_empty(&SinkBB)) { 558 ColdRegion->EntireFunctionCold = true; 559 return Regions; 560 } 561 } else { 562 Regions.emplace_back(); 563 ColdRegion = &Regions.back(); 564 BestScore = 0; 565 } 566 567 // Find all successors of SinkBB dominated by SinkBB using DFS. 568 auto SuccIt = ++df_begin(&SinkBB); 569 auto SuccEnd = df_end(&SinkBB); 570 while (SuccIt != SuccEnd) { 571 BasicBlock &SuccBB = **SuccIt; 572 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 573 574 // Don't allow the backwards & forwards DFSes to mark the same block. 575 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 576 577 // If SinkBB does not dominate a successor, do not mark the successor (or 578 // any of its successors) cold. 579 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 580 SuccIt.skipChildren(); 581 continue; 582 } 583 584 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 585 if (SuccScore > BestScore) { 586 ColdRegion->SuggestedEntryPoint = &SuccBB; 587 BestScore = SuccScore; 588 } 589 590 addBlockToRegion(&SuccBB, SuccScore); 591 ++SuccIt; 592 } 593 594 return Regions; 595 } 596 597 /// Whether this region has nothing to extract. 598 bool empty() const { return !SuggestedEntryPoint; } 599 600 /// The blocks in this region. 601 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 602 603 /// Whether the entire function containing this region is cold. 604 bool isEntireFunctionCold() const { return EntireFunctionCold; } 605 606 /// Remove a sub-region from this region and return it as a block sequence. 607 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 608 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 609 610 // Remove blocks dominated by the suggested entry point from this region. 611 // During the removal, identify the next best entry point into the region. 612 // Ensure that the first extracted block is the suggested entry point. 613 BlockSequence SubRegion = {SuggestedEntryPoint}; 614 BasicBlock *NextEntryPoint = nullptr; 615 unsigned NextScore = 0; 616 auto RegionEndIt = Blocks.end(); 617 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 618 BasicBlock *BB = Block.first; 619 unsigned Score = Block.second; 620 bool InSubRegion = 621 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 622 if (!InSubRegion && Score > NextScore) { 623 NextEntryPoint = BB; 624 NextScore = Score; 625 } 626 if (InSubRegion && BB != SuggestedEntryPoint) 627 SubRegion.push_back(BB); 628 return InSubRegion; 629 }); 630 Blocks.erase(RegionStartIt, RegionEndIt); 631 632 // Update the suggested entry point. 633 SuggestedEntryPoint = NextEntryPoint; 634 635 return SubRegion; 636 } 637 }; 638 } // namespace 639 640 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 641 // The set of cold blocks outlined. 642 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 643 644 // The set of cold blocks cannot be outlined. 645 SmallPtrSet<BasicBlock *, 4> CannotBeOutlinedColdBlocks; 646 647 // Set of cold blocks obtained with RPOT. 648 SmallPtrSet<BasicBlock *, 4> AnnotatedColdBlocks; 649 650 // The worklist of non-intersecting regions left to outline. The first member 651 // of the pair is the entry point into the region to be outlined. 652 SmallVector<std::pair<BasicBlock *, CodeExtractor>, 2> OutliningWorklist; 653 654 // Set up an RPO traversal. Experimentally, this performs better (outlines 655 // more) than a PO traversal, because we prevent region overlap by keeping 656 // the first region to contain a block. 657 ReversePostOrderTraversal<Function *> RPOT(&F); 658 659 // Calculate domtrees lazily. This reduces compile-time significantly. 660 std::unique_ptr<DominatorTree> DT; 661 std::unique_ptr<PostDominatorTree> PDT; 662 663 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 664 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 665 // be able to salvage its domtrees instead of recomputing them. 666 BlockFrequencyInfo *BFI = nullptr; 667 if (HasProfileSummary) 668 BFI = GetBFI(F); 669 670 TargetTransformInfo &TTI = GetTTI(F); 671 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 672 AssumptionCache *AC = LookupAC(F); 673 auto ColdProbThresh = TTI.getPredictableBranchThreshold().getCompl(); 674 675 if (ColdBranchProbDenom.getNumOccurrences()) 676 ColdProbThresh = BranchProbability(1, ColdBranchProbDenom.getValue()); 677 678 unsigned OutlinedFunctionID = 1; 679 // Find all cold regions. 680 for (BasicBlock *BB : RPOT) { 681 // This block is already part of some outlining region. 682 if (ColdBlocks.count(BB)) 683 continue; 684 685 // This block is already part of some region cannot be outlined. 686 if (CannotBeOutlinedColdBlocks.count(BB)) 687 continue; 688 689 if (!isBasicBlockCold(BB, ColdProbThresh, AnnotatedColdBlocks, BFI)) 690 continue; 691 692 LLVM_DEBUG({ 693 dbgs() << "Found a cold block:\n"; 694 BB->dump(); 695 }); 696 697 if (!DT) 698 DT = std::make_unique<DominatorTree>(F); 699 if (!PDT) 700 PDT = std::make_unique<PostDominatorTree>(F); 701 702 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 703 for (OutliningRegion &Region : Regions) { 704 if (Region.empty()) 705 continue; 706 707 if (Region.isEntireFunctionCold()) { 708 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 709 return markFunctionCold(F); 710 } 711 712 do { 713 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 714 LLVM_DEBUG({ 715 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 716 for (BasicBlock *BB : SubRegion) 717 BB->dump(); 718 }); 719 720 // TODO: Pass BFI and BPI to update profile information. 721 CodeExtractor CE( 722 SubRegion, &*DT, /* AggregateArgs */ false, /* BFI */ nullptr, 723 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 724 /* AllowAlloca */ false, /* AllocaBlock */ nullptr, 725 /* Suffix */ "cold." + std::to_string(OutlinedFunctionID)); 726 727 if (CE.isEligible() && isSplittingBeneficial(CE, SubRegion, TTI) && 728 // If this outlining region intersects with another, drop the new 729 // region. 730 // 731 // TODO: It's theoretically possible to outline more by only keeping 732 // the largest region which contains a block, but the extra 733 // bookkeeping to do this is tricky/expensive. 734 none_of(SubRegion, [&](BasicBlock *Block) { 735 return ColdBlocks.contains(Block); 736 })) { 737 ColdBlocks.insert(SubRegion.begin(), SubRegion.end()); 738 739 LLVM_DEBUG({ 740 for (auto *Block : SubRegion) 741 dbgs() << " contains cold block:" << Block->getName() << "\n"; 742 }); 743 744 OutliningWorklist.emplace_back( 745 std::make_pair(SubRegion[0], std::move(CE))); 746 ++OutlinedFunctionID; 747 } else { 748 // The cold block region cannot be outlined. 749 for (auto *Block : SubRegion) 750 if ((DT->dominates(BB, Block) && PDT->dominates(Block, BB)) || 751 (PDT->dominates(BB, Block) && DT->dominates(Block, BB))) 752 // Will skip this cold block in the loop to save the compile time 753 CannotBeOutlinedColdBlocks.insert(Block); 754 } 755 } while (!Region.empty()); 756 757 ++NumColdRegionsFound; 758 } 759 } 760 761 if (OutliningWorklist.empty()) 762 return false; 763 764 // Outline single-entry cold regions, splitting up larger regions as needed. 765 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 766 CodeExtractorAnalysisCache CEAC(F); 767 for (auto &BCE : OutliningWorklist) { 768 Function *Outlined = 769 extractColdRegion(*BCE.first, BCE.second, CEAC, BFI, TTI, ORE); 770 assert(Outlined && "Should be outlined"); 771 (void)Outlined; 772 } 773 774 return true; 775 } 776 777 bool HotColdSplitting::run(Module &M) { 778 bool Changed = false; 779 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 780 for (Function &F : M) { 781 // Do not touch declarations. 782 if (F.isDeclaration()) 783 continue; 784 785 // Do not modify `optnone` functions. 786 if (F.hasOptNone()) 787 continue; 788 789 // Detect inherently cold functions and mark them as such. 790 if (isFunctionCold(F)) { 791 Changed |= markFunctionCold(F); 792 continue; 793 } 794 795 if (!shouldOutlineFrom(F)) { 796 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 797 continue; 798 } 799 800 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 801 Changed |= outlineColdRegions(F, HasProfileSummary); 802 } 803 return Changed; 804 } 805 806 PreservedAnalyses 807 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 808 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 809 810 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 811 return FAM.getCachedResult<AssumptionAnalysis>(F); 812 }; 813 814 auto GBFI = [&FAM](Function &F) { 815 return &FAM.getResult<BlockFrequencyAnalysis>(F); 816 }; 817 818 std::function<TargetTransformInfo &(Function &)> GTTI = 819 [&FAM](Function &F) -> TargetTransformInfo & { 820 return FAM.getResult<TargetIRAnalysis>(F); 821 }; 822 823 std::unique_ptr<OptimizationRemarkEmitter> ORE; 824 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 825 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 826 ORE.reset(new OptimizationRemarkEmitter(&F)); 827 return *ORE; 828 }; 829 830 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 831 832 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 833 return PreservedAnalyses::none(); 834 return PreservedAnalyses::all(); 835 } 836