1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Utils/CodeExtractor.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <limits> 59 #include <string> 60 61 #define DEBUG_TYPE "hotcoldsplit" 62 63 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 64 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 65 66 using namespace llvm; 67 68 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<int> 72 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 73 cl::desc("Base penalty for splitting cold code (as a " 74 "multiple of TCC_Basic)")); 75 76 static cl::opt<bool> EnableColdSection( 77 "enable-cold-section", cl::init(false), cl::Hidden, 78 cl::desc("Enable placement of extracted cold functions" 79 " into a separate section after hot-cold splitting.")); 80 81 static cl::opt<std::string> 82 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 83 cl::Hidden, 84 cl::desc("Name for the section containing cold functions " 85 "extracted by hot-cold splitting.")); 86 87 static cl::opt<int> MaxParametersForSplit( 88 "hotcoldsplit-max-params", cl::init(4), cl::Hidden, 89 cl::desc("Maximum number of parameters for a split function")); 90 91 namespace { 92 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 93 // this function unless you modify the MBB version as well. 94 // 95 /// A no successor, non-return block probably ends in unreachable and is cold. 96 /// Also consider a block that ends in an indirect branch to be a return block, 97 /// since many targets use plain indirect branches to return. 98 bool blockEndsInUnreachable(const BasicBlock &BB) { 99 if (!succ_empty(&BB)) 100 return false; 101 if (BB.empty()) 102 return true; 103 const Instruction *I = BB.getTerminator(); 104 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 105 } 106 107 bool unlikelyExecuted(BasicBlock &BB) { 108 // Exception handling blocks are unlikely executed. 109 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 110 return true; 111 112 // The block is cold if it calls/invokes a cold function. However, do not 113 // mark sanitizer traps as cold. 114 for (Instruction &I : BB) 115 if (auto *CB = dyn_cast<CallBase>(&I)) 116 if (CB->hasFnAttr(Attribute::Cold) && 117 !CB->getMetadata(LLVMContext::MD_nosanitize)) 118 return true; 119 120 // The block is cold if it has an unreachable terminator, unless it's 121 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 122 if (blockEndsInUnreachable(BB)) { 123 if (auto *CI = 124 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 125 if (CI->hasFnAttr(Attribute::NoReturn)) 126 return false; 127 return true; 128 } 129 130 return false; 131 } 132 133 /// Check whether it's safe to outline \p BB. 134 static bool mayExtractBlock(const BasicBlock &BB) { 135 // EH pads are unsafe to outline because doing so breaks EH type tables. It 136 // follows that invoke instructions cannot be extracted, because CodeExtractor 137 // requires unwind destinations to be within the extraction region. 138 // 139 // Resumes that are not reachable from a cleanup landing pad are considered to 140 // be unreachable. It’s not safe to split them out either. 141 if (BB.hasAddressTaken() || BB.isEHPad()) 142 return false; 143 auto Term = BB.getTerminator(); 144 return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term); 145 } 146 147 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 148 /// If \p UpdateEntryCount is true (set when this is a new split function and 149 /// module has profile data), set entry count to 0 to ensure treated as cold. 150 /// Return true if the function is changed. 151 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 152 assert(!F.hasOptNone() && "Can't mark this cold"); 153 bool Changed = false; 154 if (!F.hasFnAttribute(Attribute::Cold)) { 155 F.addFnAttr(Attribute::Cold); 156 Changed = true; 157 } 158 if (!F.hasFnAttribute(Attribute::MinSize)) { 159 F.addFnAttr(Attribute::MinSize); 160 Changed = true; 161 } 162 if (UpdateEntryCount) { 163 // Set the entry count to 0 to ensure it is placed in the unlikely text 164 // section when function sections are enabled. 165 F.setEntryCount(0); 166 Changed = true; 167 } 168 169 return Changed; 170 } 171 172 class HotColdSplittingLegacyPass : public ModulePass { 173 public: 174 static char ID; 175 HotColdSplittingLegacyPass() : ModulePass(ID) { 176 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 177 } 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 181 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 182 AU.addRequired<TargetTransformInfoWrapperPass>(); 183 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 184 } 185 186 bool runOnModule(Module &M) override; 187 }; 188 189 } // end anonymous namespace 190 191 /// Check whether \p F is inherently cold. 192 bool HotColdSplitting::isFunctionCold(const Function &F) const { 193 if (F.hasFnAttribute(Attribute::Cold)) 194 return true; 195 196 if (F.getCallingConv() == CallingConv::Cold) 197 return true; 198 199 if (PSI->isFunctionEntryCold(&F)) 200 return true; 201 202 return false; 203 } 204 205 // Returns false if the function should not be considered for hot-cold split 206 // optimization. 207 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 208 if (F.hasFnAttribute(Attribute::AlwaysInline)) 209 return false; 210 211 if (F.hasFnAttribute(Attribute::NoInline)) 212 return false; 213 214 // A function marked `noreturn` may contain unreachable terminators: these 215 // should not be considered cold, as the function may be a trampoline. 216 if (F.hasFnAttribute(Attribute::NoReturn)) 217 return false; 218 219 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 220 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 221 F.hasFnAttribute(Attribute::SanitizeThread) || 222 F.hasFnAttribute(Attribute::SanitizeMemory)) 223 return false; 224 225 return true; 226 } 227 228 /// Get the benefit score of outlining \p Region. 229 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 230 TargetTransformInfo &TTI) { 231 // Sum up the code size costs of non-terminator instructions. Tight coupling 232 // with \ref getOutliningPenalty is needed to model the costs of terminators. 233 InstructionCost Benefit = 0; 234 for (BasicBlock *BB : Region) 235 for (Instruction &I : BB->instructionsWithoutDebug()) 236 if (&I != BB->getTerminator()) 237 Benefit += 238 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 239 240 return Benefit; 241 } 242 243 /// Get the penalty score for outlining \p Region. 244 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 245 unsigned NumInputs, unsigned NumOutputs) { 246 int Penalty = SplittingThreshold; 247 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 248 249 // If the splitting threshold is set at or below zero, skip the usual 250 // profitability check. 251 if (SplittingThreshold <= 0) 252 return Penalty; 253 254 // Find the number of distinct exit blocks for the region. Use a conservative 255 // check to determine whether control returns from the region. 256 bool NoBlocksReturn = true; 257 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 258 for (BasicBlock *BB : Region) { 259 // If a block has no successors, only assume it does not return if it's 260 // unreachable. 261 if (succ_empty(BB)) { 262 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 263 continue; 264 } 265 266 for (BasicBlock *SuccBB : successors(BB)) { 267 if (!is_contained(Region, SuccBB)) { 268 NoBlocksReturn = false; 269 SuccsOutsideRegion.insert(SuccBB); 270 } 271 } 272 } 273 274 // Count the number of phis in exit blocks with >= 2 incoming values from the 275 // outlining region. These phis are split (\ref severSplitPHINodesOfExits), 276 // and new outputs are created to supply the split phis. CodeExtractor can't 277 // report these new outputs until extraction begins, but it's important to 278 // factor the cost of the outputs into the cost calculation. 279 unsigned NumSplitExitPhis = 0; 280 for (BasicBlock *ExitBB : SuccsOutsideRegion) { 281 for (PHINode &PN : ExitBB->phis()) { 282 // Find all incoming values from the outlining region. 283 int NumIncomingVals = 0; 284 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 285 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { 286 ++NumIncomingVals; 287 if (NumIncomingVals > 1) { 288 ++NumSplitExitPhis; 289 break; 290 } 291 } 292 } 293 } 294 295 // Apply a penalty for calling the split function. Factor in the cost of 296 // materializing all of the parameters. 297 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; 298 int NumParams = NumInputs + NumOutputsAndSplitPhis; 299 if (NumParams > MaxParametersForSplit) { 300 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis 301 << " outputs exceeds parameter limit (" 302 << MaxParametersForSplit << ")\n"); 303 return std::numeric_limits<int>::max(); 304 } 305 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; 306 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); 307 Penalty += CostForArgMaterialization * NumParams; 308 309 // Apply the typical code size cost for an output alloca and its associated 310 // reload in the caller. Also penalize the associated store in the callee. 311 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis 312 << " outputs/split phis\n"); 313 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 314 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; 315 316 // Apply a `noreturn` bonus. 317 if (NoBlocksReturn) { 318 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 319 << " non-returning terminators\n"); 320 Penalty -= Region.size(); 321 } 322 323 // Apply a penalty for having more than one successor outside of the region. 324 // This penalty accounts for the switch needed in the caller. 325 if (SuccsOutsideRegion.size() > 1) { 326 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 327 << " non-region successors\n"); 328 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 329 } 330 331 return Penalty; 332 } 333 334 Function *HotColdSplitting::extractColdRegion( 335 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 336 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 337 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 338 assert(!Region.empty()); 339 340 // TODO: Pass BFI and BPI to update profile information. 341 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 342 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 343 /* AllowAlloca */ false, /* AllocaBlock */ nullptr, 344 /* Suffix */ "cold." + std::to_string(Count)); 345 346 // Perform a simple cost/benefit analysis to decide whether or not to permit 347 // splitting. 348 SetVector<Value *> Inputs, Outputs, Sinks; 349 CE.findInputsOutputs(Inputs, Outputs, Sinks); 350 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 351 int OutliningPenalty = 352 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 353 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 354 << ", penalty = " << OutliningPenalty << "\n"); 355 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 356 return nullptr; 357 358 Function *OrigF = Region[0]->getParent(); 359 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 360 User *U = *OutF->user_begin(); 361 CallInst *CI = cast<CallInst>(U); 362 NumColdRegionsOutlined++; 363 if (TTI.useColdCCForColdCall(*OutF)) { 364 OutF->setCallingConv(CallingConv::Cold); 365 CI->setCallingConv(CallingConv::Cold); 366 } 367 CI->setIsNoInline(); 368 369 if (EnableColdSection) 370 OutF->setSection(ColdSectionName); 371 else { 372 if (OrigF->hasSection()) 373 OutF->setSection(OrigF->getSection()); 374 } 375 376 markFunctionCold(*OutF, BFI != nullptr); 377 378 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 379 ORE.emit([&]() { 380 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 381 &*Region[0]->begin()) 382 << ore::NV("Original", OrigF) << " split cold code into " 383 << ore::NV("Split", OutF); 384 }); 385 return OutF; 386 } 387 388 ORE.emit([&]() { 389 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 390 &*Region[0]->begin()) 391 << "Failed to extract region at block " 392 << ore::NV("Block", Region.front()); 393 }); 394 return nullptr; 395 } 396 397 /// A pair of (basic block, score). 398 using BlockTy = std::pair<BasicBlock *, unsigned>; 399 400 namespace { 401 /// A maximal outlining region. This contains all blocks post-dominated by a 402 /// sink block, the sink block itself, and all blocks dominated by the sink. 403 /// If sink-predecessors and sink-successors cannot be extracted in one region, 404 /// the static constructor returns a list of suitable extraction regions. 405 class OutliningRegion { 406 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 407 /// viable sub-region entry point. Blocks with higher scores are better entry 408 /// points (i.e. they are more distant ancestors of the sink block). 409 SmallVector<BlockTy, 0> Blocks = {}; 410 411 /// The suggested entry point into the region. If the region has multiple 412 /// entry points, all blocks within the region may not be reachable from this 413 /// entry point. 414 BasicBlock *SuggestedEntryPoint = nullptr; 415 416 /// Whether the entire function is cold. 417 bool EntireFunctionCold = false; 418 419 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 420 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 421 return mayExtractBlock(BB) ? Score : 0; 422 } 423 424 /// These scores should be lower than the score for predecessor blocks, 425 /// because regions starting at predecessor blocks are typically larger. 426 static constexpr unsigned ScoreForSuccBlock = 1; 427 static constexpr unsigned ScoreForSinkBlock = 1; 428 429 OutliningRegion(const OutliningRegion &) = delete; 430 OutliningRegion &operator=(const OutliningRegion &) = delete; 431 432 public: 433 OutliningRegion() = default; 434 OutliningRegion(OutliningRegion &&) = default; 435 OutliningRegion &operator=(OutliningRegion &&) = default; 436 437 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 438 const DominatorTree &DT, 439 const PostDominatorTree &PDT) { 440 std::vector<OutliningRegion> Regions; 441 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 442 443 Regions.emplace_back(); 444 OutliningRegion *ColdRegion = &Regions.back(); 445 446 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 447 RegionBlocks.insert(BB); 448 ColdRegion->Blocks.emplace_back(BB, Score); 449 }; 450 451 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 452 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 453 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 454 unsigned BestScore = SinkScore; 455 456 // Visit SinkBB's ancestors using inverse DFS. 457 auto PredIt = ++idf_begin(&SinkBB); 458 auto PredEnd = idf_end(&SinkBB); 459 while (PredIt != PredEnd) { 460 BasicBlock &PredBB = **PredIt; 461 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 462 463 // If the predecessor is cold and has no predecessors, the entire 464 // function must be cold. 465 if (SinkPostDom && pred_empty(&PredBB)) { 466 ColdRegion->EntireFunctionCold = true; 467 return Regions; 468 } 469 470 // If SinkBB does not post-dominate a predecessor, do not mark the 471 // predecessor (or any of its predecessors) cold. 472 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 473 PredIt.skipChildren(); 474 continue; 475 } 476 477 // Keep track of the post-dominated ancestor farthest away from the sink. 478 // The path length is always >= 2, ensuring that predecessor blocks are 479 // considered as entry points before the sink block. 480 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 481 if (PredScore > BestScore) { 482 ColdRegion->SuggestedEntryPoint = &PredBB; 483 BestScore = PredScore; 484 } 485 486 addBlockToRegion(&PredBB, PredScore); 487 ++PredIt; 488 } 489 490 // If the sink can be added to the cold region, do so. It's considered as 491 // an entry point before any sink-successor blocks. 492 // 493 // Otherwise, split cold sink-successor blocks using a separate region. 494 // This satisfies the requirement that all extraction blocks other than the 495 // first have predecessors within the extraction region. 496 if (mayExtractBlock(SinkBB)) { 497 addBlockToRegion(&SinkBB, SinkScore); 498 if (pred_empty(&SinkBB)) { 499 ColdRegion->EntireFunctionCold = true; 500 return Regions; 501 } 502 } else { 503 Regions.emplace_back(); 504 ColdRegion = &Regions.back(); 505 BestScore = 0; 506 } 507 508 // Find all successors of SinkBB dominated by SinkBB using DFS. 509 auto SuccIt = ++df_begin(&SinkBB); 510 auto SuccEnd = df_end(&SinkBB); 511 while (SuccIt != SuccEnd) { 512 BasicBlock &SuccBB = **SuccIt; 513 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 514 515 // Don't allow the backwards & forwards DFSes to mark the same block. 516 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 517 518 // If SinkBB does not dominate a successor, do not mark the successor (or 519 // any of its successors) cold. 520 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 521 SuccIt.skipChildren(); 522 continue; 523 } 524 525 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 526 if (SuccScore > BestScore) { 527 ColdRegion->SuggestedEntryPoint = &SuccBB; 528 BestScore = SuccScore; 529 } 530 531 addBlockToRegion(&SuccBB, SuccScore); 532 ++SuccIt; 533 } 534 535 return Regions; 536 } 537 538 /// Whether this region has nothing to extract. 539 bool empty() const { return !SuggestedEntryPoint; } 540 541 /// The blocks in this region. 542 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 543 544 /// Whether the entire function containing this region is cold. 545 bool isEntireFunctionCold() const { return EntireFunctionCold; } 546 547 /// Remove a sub-region from this region and return it as a block sequence. 548 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 549 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 550 551 // Remove blocks dominated by the suggested entry point from this region. 552 // During the removal, identify the next best entry point into the region. 553 // Ensure that the first extracted block is the suggested entry point. 554 BlockSequence SubRegion = {SuggestedEntryPoint}; 555 BasicBlock *NextEntryPoint = nullptr; 556 unsigned NextScore = 0; 557 auto RegionEndIt = Blocks.end(); 558 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 559 BasicBlock *BB = Block.first; 560 unsigned Score = Block.second; 561 bool InSubRegion = 562 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 563 if (!InSubRegion && Score > NextScore) { 564 NextEntryPoint = BB; 565 NextScore = Score; 566 } 567 if (InSubRegion && BB != SuggestedEntryPoint) 568 SubRegion.push_back(BB); 569 return InSubRegion; 570 }); 571 Blocks.erase(RegionStartIt, RegionEndIt); 572 573 // Update the suggested entry point. 574 SuggestedEntryPoint = NextEntryPoint; 575 576 return SubRegion; 577 } 578 }; 579 } // namespace 580 581 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 582 bool Changed = false; 583 584 // The set of cold blocks. 585 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 586 587 // The worklist of non-intersecting regions left to outline. 588 SmallVector<OutliningRegion, 2> OutliningWorklist; 589 590 // Set up an RPO traversal. Experimentally, this performs better (outlines 591 // more) than a PO traversal, because we prevent region overlap by keeping 592 // the first region to contain a block. 593 ReversePostOrderTraversal<Function *> RPOT(&F); 594 595 // Calculate domtrees lazily. This reduces compile-time significantly. 596 std::unique_ptr<DominatorTree> DT; 597 std::unique_ptr<PostDominatorTree> PDT; 598 599 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 600 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 601 // be able to salvage its domtrees instead of recomputing them. 602 BlockFrequencyInfo *BFI = nullptr; 603 if (HasProfileSummary) 604 BFI = GetBFI(F); 605 606 TargetTransformInfo &TTI = GetTTI(F); 607 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 608 AssumptionCache *AC = LookupAC(F); 609 610 // Find all cold regions. 611 for (BasicBlock *BB : RPOT) { 612 // This block is already part of some outlining region. 613 if (ColdBlocks.count(BB)) 614 continue; 615 616 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 617 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 618 if (!Cold) 619 continue; 620 621 LLVM_DEBUG({ 622 dbgs() << "Found a cold block:\n"; 623 BB->dump(); 624 }); 625 626 if (!DT) 627 DT = std::make_unique<DominatorTree>(F); 628 if (!PDT) 629 PDT = std::make_unique<PostDominatorTree>(F); 630 631 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 632 for (OutliningRegion &Region : Regions) { 633 if (Region.empty()) 634 continue; 635 636 if (Region.isEntireFunctionCold()) { 637 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 638 return markFunctionCold(F); 639 } 640 641 // If this outlining region intersects with another, drop the new region. 642 // 643 // TODO: It's theoretically possible to outline more by only keeping the 644 // largest region which contains a block, but the extra bookkeeping to do 645 // this is tricky/expensive. 646 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 647 return !ColdBlocks.insert(Block.first).second; 648 }); 649 if (RegionsOverlap) 650 continue; 651 652 OutliningWorklist.emplace_back(std::move(Region)); 653 ++NumColdRegionsFound; 654 } 655 } 656 657 if (OutliningWorklist.empty()) 658 return Changed; 659 660 // Outline single-entry cold regions, splitting up larger regions as needed. 661 unsigned OutlinedFunctionID = 1; 662 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 663 CodeExtractorAnalysisCache CEAC(F); 664 do { 665 OutliningRegion Region = OutliningWorklist.pop_back_val(); 666 assert(!Region.empty() && "Empty outlining region in worklist"); 667 do { 668 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 669 LLVM_DEBUG({ 670 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 671 for (BasicBlock *BB : SubRegion) 672 BB->dump(); 673 }); 674 675 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 676 ORE, AC, OutlinedFunctionID); 677 if (Outlined) { 678 ++OutlinedFunctionID; 679 Changed = true; 680 } 681 } while (!Region.empty()); 682 } while (!OutliningWorklist.empty()); 683 684 return Changed; 685 } 686 687 bool HotColdSplitting::run(Module &M) { 688 bool Changed = false; 689 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 690 for (Function &F : M) { 691 // Do not touch declarations. 692 if (F.isDeclaration()) 693 continue; 694 695 // Do not modify `optnone` functions. 696 if (F.hasOptNone()) 697 continue; 698 699 // Detect inherently cold functions and mark them as such. 700 if (isFunctionCold(F)) { 701 Changed |= markFunctionCold(F); 702 continue; 703 } 704 705 if (!shouldOutlineFrom(F)) { 706 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 707 continue; 708 } 709 710 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 711 Changed |= outlineColdRegions(F, HasProfileSummary); 712 } 713 return Changed; 714 } 715 716 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 717 if (skipModule(M)) 718 return false; 719 ProfileSummaryInfo *PSI = 720 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 721 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 722 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 723 }; 724 auto GBFI = [this](Function &F) { 725 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 726 }; 727 std::unique_ptr<OptimizationRemarkEmitter> ORE; 728 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 729 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 730 ORE.reset(new OptimizationRemarkEmitter(&F)); 731 return *ORE; 732 }; 733 auto LookupAC = [this](Function &F) -> AssumptionCache * { 734 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 735 return ACT->lookupAssumptionCache(F); 736 return nullptr; 737 }; 738 739 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 740 } 741 742 PreservedAnalyses 743 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 744 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 745 746 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 747 return FAM.getCachedResult<AssumptionAnalysis>(F); 748 }; 749 750 auto GBFI = [&FAM](Function &F) { 751 return &FAM.getResult<BlockFrequencyAnalysis>(F); 752 }; 753 754 std::function<TargetTransformInfo &(Function &)> GTTI = 755 [&FAM](Function &F) -> TargetTransformInfo & { 756 return FAM.getResult<TargetIRAnalysis>(F); 757 }; 758 759 std::unique_ptr<OptimizationRemarkEmitter> ORE; 760 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 761 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 762 ORE.reset(new OptimizationRemarkEmitter(&F)); 763 return *ORE; 764 }; 765 766 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 767 768 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 769 return PreservedAnalyses::none(); 770 return PreservedAnalyses::all(); 771 } 772 773 char HotColdSplittingLegacyPass::ID = 0; 774 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 775 "Hot Cold Splitting", false, false) 776 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 777 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 778 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 779 "Hot Cold Splitting", false, false) 780 781 ModulePass *llvm::createHotColdSplittingPass() { 782 return new HotColdSplittingLegacyPass(); 783 } 784