1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Utils/CodeExtractor.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <limits> 57 #include <string> 58 59 #define DEBUG_TYPE "hotcoldsplit" 60 61 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 62 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 63 64 using namespace llvm; 65 66 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<int> 70 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 71 cl::desc("Base penalty for splitting cold code (as a " 72 "multiple of TCC_Basic)")); 73 74 static cl::opt<bool> EnableColdSection( 75 "enable-cold-section", cl::init(false), cl::Hidden, 76 cl::desc("Enable placement of extracted cold functions" 77 " into a separate section after hot-cold splitting.")); 78 79 static cl::opt<std::string> 80 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 81 cl::Hidden, 82 cl::desc("Name for the section containing cold functions " 83 "extracted by hot-cold splitting.")); 84 85 static cl::opt<int> MaxParametersForSplit( 86 "hotcoldsplit-max-params", cl::init(4), cl::Hidden, 87 cl::desc("Maximum number of parameters for a split function")); 88 89 namespace { 90 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 91 // this function unless you modify the MBB version as well. 92 // 93 /// A no successor, non-return block probably ends in unreachable and is cold. 94 /// Also consider a block that ends in an indirect branch to be a return block, 95 /// since many targets use plain indirect branches to return. 96 bool blockEndsInUnreachable(const BasicBlock &BB) { 97 if (!succ_empty(&BB)) 98 return false; 99 if (BB.empty()) 100 return true; 101 const Instruction *I = BB.getTerminator(); 102 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 103 } 104 105 bool unlikelyExecuted(BasicBlock &BB) { 106 // Exception handling blocks are unlikely executed. 107 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 108 return true; 109 110 // The block is cold if it calls/invokes a cold function. However, do not 111 // mark sanitizer traps as cold. 112 for (Instruction &I : BB) 113 if (auto *CB = dyn_cast<CallBase>(&I)) 114 if (CB->hasFnAttr(Attribute::Cold) && 115 !CB->getMetadata(LLVMContext::MD_nosanitize)) 116 return true; 117 118 // The block is cold if it has an unreachable terminator, unless it's 119 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 120 if (blockEndsInUnreachable(BB)) { 121 if (auto *CI = 122 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 123 if (CI->hasFnAttr(Attribute::NoReturn)) 124 return false; 125 return true; 126 } 127 128 return false; 129 } 130 131 /// Check whether it's safe to outline \p BB. 132 static bool mayExtractBlock(const BasicBlock &BB) { 133 // EH pads are unsafe to outline because doing so breaks EH type tables. It 134 // follows that invoke instructions cannot be extracted, because CodeExtractor 135 // requires unwind destinations to be within the extraction region. 136 // 137 // Resumes that are not reachable from a cleanup landing pad are considered to 138 // be unreachable. It’s not safe to split them out either. 139 if (BB.hasAddressTaken() || BB.isEHPad()) 140 return false; 141 auto Term = BB.getTerminator(); 142 return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term); 143 } 144 145 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 146 /// If \p UpdateEntryCount is true (set when this is a new split function and 147 /// module has profile data), set entry count to 0 to ensure treated as cold. 148 /// Return true if the function is changed. 149 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 150 assert(!F.hasOptNone() && "Can't mark this cold"); 151 bool Changed = false; 152 if (!F.hasFnAttribute(Attribute::Cold)) { 153 F.addFnAttr(Attribute::Cold); 154 Changed = true; 155 } 156 if (!F.hasFnAttribute(Attribute::MinSize)) { 157 F.addFnAttr(Attribute::MinSize); 158 Changed = true; 159 } 160 if (UpdateEntryCount) { 161 // Set the entry count to 0 to ensure it is placed in the unlikely text 162 // section when function sections are enabled. 163 F.setEntryCount(0); 164 Changed = true; 165 } 166 167 return Changed; 168 } 169 170 } // end anonymous namespace 171 172 /// Check whether \p F is inherently cold. 173 bool HotColdSplitting::isFunctionCold(const Function &F) const { 174 if (F.hasFnAttribute(Attribute::Cold)) 175 return true; 176 177 if (F.getCallingConv() == CallingConv::Cold) 178 return true; 179 180 if (PSI->isFunctionEntryCold(&F)) 181 return true; 182 183 return false; 184 } 185 186 // Returns false if the function should not be considered for hot-cold split 187 // optimization. 188 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 189 if (F.hasFnAttribute(Attribute::AlwaysInline)) 190 return false; 191 192 if (F.hasFnAttribute(Attribute::NoInline)) 193 return false; 194 195 // A function marked `noreturn` may contain unreachable terminators: these 196 // should not be considered cold, as the function may be a trampoline. 197 if (F.hasFnAttribute(Attribute::NoReturn)) 198 return false; 199 200 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 201 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 202 F.hasFnAttribute(Attribute::SanitizeThread) || 203 F.hasFnAttribute(Attribute::SanitizeMemory)) 204 return false; 205 206 return true; 207 } 208 209 /// Get the benefit score of outlining \p Region. 210 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 211 TargetTransformInfo &TTI) { 212 // Sum up the code size costs of non-terminator instructions. Tight coupling 213 // with \ref getOutliningPenalty is needed to model the costs of terminators. 214 InstructionCost Benefit = 0; 215 for (BasicBlock *BB : Region) 216 for (Instruction &I : BB->instructionsWithoutDebug()) 217 if (&I != BB->getTerminator()) 218 Benefit += 219 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 220 221 return Benefit; 222 } 223 224 /// Get the penalty score for outlining \p Region. 225 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 226 unsigned NumInputs, unsigned NumOutputs) { 227 int Penalty = SplittingThreshold; 228 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 229 230 // If the splitting threshold is set at or below zero, skip the usual 231 // profitability check. 232 if (SplittingThreshold <= 0) 233 return Penalty; 234 235 // Find the number of distinct exit blocks for the region. Use a conservative 236 // check to determine whether control returns from the region. 237 bool NoBlocksReturn = true; 238 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 239 for (BasicBlock *BB : Region) { 240 // If a block has no successors, only assume it does not return if it's 241 // unreachable. 242 if (succ_empty(BB)) { 243 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 244 continue; 245 } 246 247 for (BasicBlock *SuccBB : successors(BB)) { 248 if (!is_contained(Region, SuccBB)) { 249 NoBlocksReturn = false; 250 SuccsOutsideRegion.insert(SuccBB); 251 } 252 } 253 } 254 255 // Count the number of phis in exit blocks with >= 2 incoming values from the 256 // outlining region. These phis are split (\ref severSplitPHINodesOfExits), 257 // and new outputs are created to supply the split phis. CodeExtractor can't 258 // report these new outputs until extraction begins, but it's important to 259 // factor the cost of the outputs into the cost calculation. 260 unsigned NumSplitExitPhis = 0; 261 for (BasicBlock *ExitBB : SuccsOutsideRegion) { 262 for (PHINode &PN : ExitBB->phis()) { 263 // Find all incoming values from the outlining region. 264 int NumIncomingVals = 0; 265 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 266 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { 267 ++NumIncomingVals; 268 if (NumIncomingVals > 1) { 269 ++NumSplitExitPhis; 270 break; 271 } 272 } 273 } 274 } 275 276 // Apply a penalty for calling the split function. Factor in the cost of 277 // materializing all of the parameters. 278 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; 279 int NumParams = NumInputs + NumOutputsAndSplitPhis; 280 if (NumParams > MaxParametersForSplit) { 281 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis 282 << " outputs exceeds parameter limit (" 283 << MaxParametersForSplit << ")\n"); 284 return std::numeric_limits<int>::max(); 285 } 286 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; 287 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); 288 Penalty += CostForArgMaterialization * NumParams; 289 290 // Apply the typical code size cost for an output alloca and its associated 291 // reload in the caller. Also penalize the associated store in the callee. 292 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis 293 << " outputs/split phis\n"); 294 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 295 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; 296 297 // Apply a `noreturn` bonus. 298 if (NoBlocksReturn) { 299 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 300 << " non-returning terminators\n"); 301 Penalty -= Region.size(); 302 } 303 304 // Apply a penalty for having more than one successor outside of the region. 305 // This penalty accounts for the switch needed in the caller. 306 if (SuccsOutsideRegion.size() > 1) { 307 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 308 << " non-region successors\n"); 309 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 310 } 311 312 return Penalty; 313 } 314 315 Function *HotColdSplitting::extractColdRegion( 316 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 317 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 318 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 319 assert(!Region.empty()); 320 321 // TODO: Pass BFI and BPI to update profile information. 322 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 323 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 324 /* AllowAlloca */ false, /* AllocaBlock */ nullptr, 325 /* Suffix */ "cold." + std::to_string(Count)); 326 327 // Perform a simple cost/benefit analysis to decide whether or not to permit 328 // splitting. 329 SetVector<Value *> Inputs, Outputs, Sinks; 330 CE.findInputsOutputs(Inputs, Outputs, Sinks); 331 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 332 int OutliningPenalty = 333 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 334 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 335 << ", penalty = " << OutliningPenalty << "\n"); 336 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 337 return nullptr; 338 339 Function *OrigF = Region[0]->getParent(); 340 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 341 User *U = *OutF->user_begin(); 342 CallInst *CI = cast<CallInst>(U); 343 NumColdRegionsOutlined++; 344 if (TTI.useColdCCForColdCall(*OutF)) { 345 OutF->setCallingConv(CallingConv::Cold); 346 CI->setCallingConv(CallingConv::Cold); 347 } 348 CI->setIsNoInline(); 349 350 if (EnableColdSection) 351 OutF->setSection(ColdSectionName); 352 else { 353 if (OrigF->hasSection()) 354 OutF->setSection(OrigF->getSection()); 355 } 356 357 markFunctionCold(*OutF, BFI != nullptr); 358 359 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 360 ORE.emit([&]() { 361 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 362 &*Region[0]->begin()) 363 << ore::NV("Original", OrigF) << " split cold code into " 364 << ore::NV("Split", OutF); 365 }); 366 return OutF; 367 } 368 369 ORE.emit([&]() { 370 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 371 &*Region[0]->begin()) 372 << "Failed to extract region at block " 373 << ore::NV("Block", Region.front()); 374 }); 375 return nullptr; 376 } 377 378 /// A pair of (basic block, score). 379 using BlockTy = std::pair<BasicBlock *, unsigned>; 380 381 namespace { 382 /// A maximal outlining region. This contains all blocks post-dominated by a 383 /// sink block, the sink block itself, and all blocks dominated by the sink. 384 /// If sink-predecessors and sink-successors cannot be extracted in one region, 385 /// the static constructor returns a list of suitable extraction regions. 386 class OutliningRegion { 387 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 388 /// viable sub-region entry point. Blocks with higher scores are better entry 389 /// points (i.e. they are more distant ancestors of the sink block). 390 SmallVector<BlockTy, 0> Blocks = {}; 391 392 /// The suggested entry point into the region. If the region has multiple 393 /// entry points, all blocks within the region may not be reachable from this 394 /// entry point. 395 BasicBlock *SuggestedEntryPoint = nullptr; 396 397 /// Whether the entire function is cold. 398 bool EntireFunctionCold = false; 399 400 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 401 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 402 return mayExtractBlock(BB) ? Score : 0; 403 } 404 405 /// These scores should be lower than the score for predecessor blocks, 406 /// because regions starting at predecessor blocks are typically larger. 407 static constexpr unsigned ScoreForSuccBlock = 1; 408 static constexpr unsigned ScoreForSinkBlock = 1; 409 410 OutliningRegion(const OutliningRegion &) = delete; 411 OutliningRegion &operator=(const OutliningRegion &) = delete; 412 413 public: 414 OutliningRegion() = default; 415 OutliningRegion(OutliningRegion &&) = default; 416 OutliningRegion &operator=(OutliningRegion &&) = default; 417 418 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 419 const DominatorTree &DT, 420 const PostDominatorTree &PDT) { 421 std::vector<OutliningRegion> Regions; 422 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 423 424 Regions.emplace_back(); 425 OutliningRegion *ColdRegion = &Regions.back(); 426 427 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 428 RegionBlocks.insert(BB); 429 ColdRegion->Blocks.emplace_back(BB, Score); 430 }; 431 432 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 433 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 434 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 435 unsigned BestScore = SinkScore; 436 437 // Visit SinkBB's ancestors using inverse DFS. 438 auto PredIt = ++idf_begin(&SinkBB); 439 auto PredEnd = idf_end(&SinkBB); 440 while (PredIt != PredEnd) { 441 BasicBlock &PredBB = **PredIt; 442 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 443 444 // If the predecessor is cold and has no predecessors, the entire 445 // function must be cold. 446 if (SinkPostDom && pred_empty(&PredBB)) { 447 ColdRegion->EntireFunctionCold = true; 448 return Regions; 449 } 450 451 // If SinkBB does not post-dominate a predecessor, do not mark the 452 // predecessor (or any of its predecessors) cold. 453 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 454 PredIt.skipChildren(); 455 continue; 456 } 457 458 // Keep track of the post-dominated ancestor farthest away from the sink. 459 // The path length is always >= 2, ensuring that predecessor blocks are 460 // considered as entry points before the sink block. 461 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 462 if (PredScore > BestScore) { 463 ColdRegion->SuggestedEntryPoint = &PredBB; 464 BestScore = PredScore; 465 } 466 467 addBlockToRegion(&PredBB, PredScore); 468 ++PredIt; 469 } 470 471 // If the sink can be added to the cold region, do so. It's considered as 472 // an entry point before any sink-successor blocks. 473 // 474 // Otherwise, split cold sink-successor blocks using a separate region. 475 // This satisfies the requirement that all extraction blocks other than the 476 // first have predecessors within the extraction region. 477 if (mayExtractBlock(SinkBB)) { 478 addBlockToRegion(&SinkBB, SinkScore); 479 if (pred_empty(&SinkBB)) { 480 ColdRegion->EntireFunctionCold = true; 481 return Regions; 482 } 483 } else { 484 Regions.emplace_back(); 485 ColdRegion = &Regions.back(); 486 BestScore = 0; 487 } 488 489 // Find all successors of SinkBB dominated by SinkBB using DFS. 490 auto SuccIt = ++df_begin(&SinkBB); 491 auto SuccEnd = df_end(&SinkBB); 492 while (SuccIt != SuccEnd) { 493 BasicBlock &SuccBB = **SuccIt; 494 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 495 496 // Don't allow the backwards & forwards DFSes to mark the same block. 497 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 498 499 // If SinkBB does not dominate a successor, do not mark the successor (or 500 // any of its successors) cold. 501 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 502 SuccIt.skipChildren(); 503 continue; 504 } 505 506 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 507 if (SuccScore > BestScore) { 508 ColdRegion->SuggestedEntryPoint = &SuccBB; 509 BestScore = SuccScore; 510 } 511 512 addBlockToRegion(&SuccBB, SuccScore); 513 ++SuccIt; 514 } 515 516 return Regions; 517 } 518 519 /// Whether this region has nothing to extract. 520 bool empty() const { return !SuggestedEntryPoint; } 521 522 /// The blocks in this region. 523 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 524 525 /// Whether the entire function containing this region is cold. 526 bool isEntireFunctionCold() const { return EntireFunctionCold; } 527 528 /// Remove a sub-region from this region and return it as a block sequence. 529 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 530 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 531 532 // Remove blocks dominated by the suggested entry point from this region. 533 // During the removal, identify the next best entry point into the region. 534 // Ensure that the first extracted block is the suggested entry point. 535 BlockSequence SubRegion = {SuggestedEntryPoint}; 536 BasicBlock *NextEntryPoint = nullptr; 537 unsigned NextScore = 0; 538 auto RegionEndIt = Blocks.end(); 539 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 540 BasicBlock *BB = Block.first; 541 unsigned Score = Block.second; 542 bool InSubRegion = 543 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 544 if (!InSubRegion && Score > NextScore) { 545 NextEntryPoint = BB; 546 NextScore = Score; 547 } 548 if (InSubRegion && BB != SuggestedEntryPoint) 549 SubRegion.push_back(BB); 550 return InSubRegion; 551 }); 552 Blocks.erase(RegionStartIt, RegionEndIt); 553 554 // Update the suggested entry point. 555 SuggestedEntryPoint = NextEntryPoint; 556 557 return SubRegion; 558 } 559 }; 560 } // namespace 561 562 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 563 bool Changed = false; 564 565 // The set of cold blocks. 566 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 567 568 // The worklist of non-intersecting regions left to outline. 569 SmallVector<OutliningRegion, 2> OutliningWorklist; 570 571 // Set up an RPO traversal. Experimentally, this performs better (outlines 572 // more) than a PO traversal, because we prevent region overlap by keeping 573 // the first region to contain a block. 574 ReversePostOrderTraversal<Function *> RPOT(&F); 575 576 // Calculate domtrees lazily. This reduces compile-time significantly. 577 std::unique_ptr<DominatorTree> DT; 578 std::unique_ptr<PostDominatorTree> PDT; 579 580 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 581 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 582 // be able to salvage its domtrees instead of recomputing them. 583 BlockFrequencyInfo *BFI = nullptr; 584 if (HasProfileSummary) 585 BFI = GetBFI(F); 586 587 TargetTransformInfo &TTI = GetTTI(F); 588 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 589 AssumptionCache *AC = LookupAC(F); 590 591 // Find all cold regions. 592 for (BasicBlock *BB : RPOT) { 593 // This block is already part of some outlining region. 594 if (ColdBlocks.count(BB)) 595 continue; 596 597 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 598 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 599 if (!Cold) 600 continue; 601 602 LLVM_DEBUG({ 603 dbgs() << "Found a cold block:\n"; 604 BB->dump(); 605 }); 606 607 if (!DT) 608 DT = std::make_unique<DominatorTree>(F); 609 if (!PDT) 610 PDT = std::make_unique<PostDominatorTree>(F); 611 612 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 613 for (OutliningRegion &Region : Regions) { 614 if (Region.empty()) 615 continue; 616 617 if (Region.isEntireFunctionCold()) { 618 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 619 return markFunctionCold(F); 620 } 621 622 // If this outlining region intersects with another, drop the new region. 623 // 624 // TODO: It's theoretically possible to outline more by only keeping the 625 // largest region which contains a block, but the extra bookkeeping to do 626 // this is tricky/expensive. 627 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 628 return !ColdBlocks.insert(Block.first).second; 629 }); 630 if (RegionsOverlap) 631 continue; 632 633 OutliningWorklist.emplace_back(std::move(Region)); 634 ++NumColdRegionsFound; 635 } 636 } 637 638 if (OutliningWorklist.empty()) 639 return Changed; 640 641 // Outline single-entry cold regions, splitting up larger regions as needed. 642 unsigned OutlinedFunctionID = 1; 643 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 644 CodeExtractorAnalysisCache CEAC(F); 645 do { 646 OutliningRegion Region = OutliningWorklist.pop_back_val(); 647 assert(!Region.empty() && "Empty outlining region in worklist"); 648 do { 649 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 650 LLVM_DEBUG({ 651 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 652 for (BasicBlock *BB : SubRegion) 653 BB->dump(); 654 }); 655 656 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 657 ORE, AC, OutlinedFunctionID); 658 if (Outlined) { 659 ++OutlinedFunctionID; 660 Changed = true; 661 } 662 } while (!Region.empty()); 663 } while (!OutliningWorklist.empty()); 664 665 return Changed; 666 } 667 668 bool HotColdSplitting::run(Module &M) { 669 bool Changed = false; 670 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 671 for (Function &F : M) { 672 // Do not touch declarations. 673 if (F.isDeclaration()) 674 continue; 675 676 // Do not modify `optnone` functions. 677 if (F.hasOptNone()) 678 continue; 679 680 // Detect inherently cold functions and mark them as such. 681 if (isFunctionCold(F)) { 682 Changed |= markFunctionCold(F); 683 continue; 684 } 685 686 if (!shouldOutlineFrom(F)) { 687 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 688 continue; 689 } 690 691 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 692 Changed |= outlineColdRegions(F, HasProfileSummary); 693 } 694 return Changed; 695 } 696 697 PreservedAnalyses 698 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 699 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 700 701 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 702 return FAM.getCachedResult<AssumptionAnalysis>(F); 703 }; 704 705 auto GBFI = [&FAM](Function &F) { 706 return &FAM.getResult<BlockFrequencyAnalysis>(F); 707 }; 708 709 std::function<TargetTransformInfo &(Function &)> GTTI = 710 [&FAM](Function &F) -> TargetTransformInfo & { 711 return FAM.getResult<TargetIRAnalysis>(F); 712 }; 713 714 std::unique_ptr<OptimizationRemarkEmitter> ORE; 715 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 716 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 717 ORE.reset(new OptimizationRemarkEmitter(&F)); 718 return *ORE; 719 }; 720 721 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 722 723 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 724 return PreservedAnalyses::none(); 725 return PreservedAnalyses::all(); 726 } 727