xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/CFG.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/PostDominators.h"
38 #include "llvm/Analysis/ProfileSummaryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/IPO.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/CodeExtractor.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 
73 #define DEBUG_TYPE "hotcoldsplit"
74 
75 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
76 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
77 
78 using namespace llvm;
79 
80 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
81                               cl::init(true), cl::Hidden);
82 
83 static cl::opt<int>
84     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
85                        cl::desc("Base penalty for splitting cold code (as a "
86                                 "multiple of TCC_Basic)"));
87 
88 namespace {
89 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
90 // this function unless you modify the MBB version as well.
91 //
92 /// A no successor, non-return block probably ends in unreachable and is cold.
93 /// Also consider a block that ends in an indirect branch to be a return block,
94 /// since many targets use plain indirect branches to return.
95 bool blockEndsInUnreachable(const BasicBlock &BB) {
96   if (!succ_empty(&BB))
97     return false;
98   if (BB.empty())
99     return true;
100   const Instruction *I = BB.getTerminator();
101   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
102 }
103 
104 bool unlikelyExecuted(BasicBlock &BB) {
105   // Exception handling blocks are unlikely executed.
106   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
107     return true;
108 
109   // The block is cold if it calls/invokes a cold function. However, do not
110   // mark sanitizer traps as cold.
111   for (Instruction &I : BB)
112     if (auto *CB = dyn_cast<CallBase>(&I))
113       if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize"))
114         return true;
115 
116   // The block is cold if it has an unreachable terminator, unless it's
117   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
118   if (blockEndsInUnreachable(BB)) {
119     if (auto *CI =
120             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
121       if (CI->hasFnAttr(Attribute::NoReturn))
122         return false;
123     return true;
124   }
125 
126   return false;
127 }
128 
129 /// Check whether it's safe to outline \p BB.
130 static bool mayExtractBlock(const BasicBlock &BB) {
131   // EH pads are unsafe to outline because doing so breaks EH type tables. It
132   // follows that invoke instructions cannot be extracted, because CodeExtractor
133   // requires unwind destinations to be within the extraction region.
134   //
135   // Resumes that are not reachable from a cleanup landing pad are considered to
136   // be unreachable. It’s not safe to split them out either.
137   auto Term = BB.getTerminator();
138   return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
139          !isa<ResumeInst>(Term);
140 }
141 
142 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
143 /// If \p UpdateEntryCount is true (set when this is a new split function and
144 /// module has profile data), set entry count to 0 to ensure treated as cold.
145 /// Return true if the function is changed.
146 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
147   assert(!F.hasOptNone() && "Can't mark this cold");
148   bool Changed = false;
149   if (!F.hasFnAttribute(Attribute::Cold)) {
150     F.addFnAttr(Attribute::Cold);
151     Changed = true;
152   }
153   if (!F.hasFnAttribute(Attribute::MinSize)) {
154     F.addFnAttr(Attribute::MinSize);
155     Changed = true;
156   }
157   if (UpdateEntryCount) {
158     // Set the entry count to 0 to ensure it is placed in the unlikely text
159     // section when function sections are enabled.
160     F.setEntryCount(0);
161     Changed = true;
162   }
163 
164   return Changed;
165 }
166 
167 class HotColdSplittingLegacyPass : public ModulePass {
168 public:
169   static char ID;
170   HotColdSplittingLegacyPass() : ModulePass(ID) {
171     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
172   }
173 
174   void getAnalysisUsage(AnalysisUsage &AU) const override {
175     AU.addRequired<BlockFrequencyInfoWrapperPass>();
176     AU.addRequired<ProfileSummaryInfoWrapperPass>();
177     AU.addRequired<TargetTransformInfoWrapperPass>();
178     AU.addUsedIfAvailable<AssumptionCacheTracker>();
179   }
180 
181   bool runOnModule(Module &M) override;
182 };
183 
184 } // end anonymous namespace
185 
186 /// Check whether \p F is inherently cold.
187 bool HotColdSplitting::isFunctionCold(const Function &F) const {
188   if (F.hasFnAttribute(Attribute::Cold))
189     return true;
190 
191   if (F.getCallingConv() == CallingConv::Cold)
192     return true;
193 
194   if (PSI->isFunctionEntryCold(&F))
195     return true;
196 
197   return false;
198 }
199 
200 // Returns false if the function should not be considered for hot-cold split
201 // optimization.
202 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
203   if (F.hasFnAttribute(Attribute::AlwaysInline))
204     return false;
205 
206   if (F.hasFnAttribute(Attribute::NoInline))
207     return false;
208 
209   // A function marked `noreturn` may contain unreachable terminators: these
210   // should not be considered cold, as the function may be a trampoline.
211   if (F.hasFnAttribute(Attribute::NoReturn))
212     return false;
213 
214   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
215       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
216       F.hasFnAttribute(Attribute::SanitizeThread) ||
217       F.hasFnAttribute(Attribute::SanitizeMemory))
218     return false;
219 
220   return true;
221 }
222 
223 /// Get the benefit score of outlining \p Region.
224 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
225                                TargetTransformInfo &TTI) {
226   // Sum up the code size costs of non-terminator instructions. Tight coupling
227   // with \ref getOutliningPenalty is needed to model the costs of terminators.
228   int Benefit = 0;
229   for (BasicBlock *BB : Region)
230     for (Instruction &I : BB->instructionsWithoutDebug())
231       if (&I != BB->getTerminator())
232         Benefit +=
233             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
234 
235   return Benefit;
236 }
237 
238 /// Get the penalty score for outlining \p Region.
239 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
240                                unsigned NumInputs, unsigned NumOutputs) {
241   int Penalty = SplittingThreshold;
242   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
243 
244   // If the splitting threshold is set at or below zero, skip the usual
245   // profitability check.
246   if (SplittingThreshold <= 0)
247     return Penalty;
248 
249   // The typical code size cost for materializing an argument for the outlined
250   // call.
251   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
252   const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
253   Penalty += CostForArgMaterialization * NumInputs;
254 
255   // The typical code size cost for an output alloca, its associated store, and
256   // its associated reload.
257   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
258   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
259   Penalty += CostForRegionOutput * NumOutputs;
260 
261   // Find the number of distinct exit blocks for the region. Use a conservative
262   // check to determine whether control returns from the region.
263   bool NoBlocksReturn = true;
264   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
265   for (BasicBlock *BB : Region) {
266     // If a block has no successors, only assume it does not return if it's
267     // unreachable.
268     if (succ_empty(BB)) {
269       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
270       continue;
271     }
272 
273     for (BasicBlock *SuccBB : successors(BB)) {
274       if (find(Region, SuccBB) == Region.end()) {
275         NoBlocksReturn = false;
276         SuccsOutsideRegion.insert(SuccBB);
277       }
278     }
279   }
280 
281   // Apply a `noreturn` bonus.
282   if (NoBlocksReturn) {
283     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
284                       << " non-returning terminators\n");
285     Penalty -= Region.size();
286   }
287 
288   // Apply a penalty for having more than one successor outside of the region.
289   // This penalty accounts for the switch needed in the caller.
290   if (!SuccsOutsideRegion.empty()) {
291     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
292                       << " non-region successors\n");
293     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
294   }
295 
296   return Penalty;
297 }
298 
299 Function *HotColdSplitting::extractColdRegion(
300     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
301     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
302     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
303   assert(!Region.empty());
304 
305   // TODO: Pass BFI and BPI to update profile information.
306   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
307                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
308                    /* AllowAlloca */ false,
309                    /* Suffix */ "cold." + std::to_string(Count));
310 
311   // Perform a simple cost/benefit analysis to decide whether or not to permit
312   // splitting.
313   SetVector<Value *> Inputs, Outputs, Sinks;
314   CE.findInputsOutputs(Inputs, Outputs, Sinks);
315   int OutliningBenefit = getOutliningBenefit(Region, TTI);
316   int OutliningPenalty =
317       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
318   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
319                     << ", penalty = " << OutliningPenalty << "\n");
320   if (OutliningBenefit <= OutliningPenalty)
321     return nullptr;
322 
323   Function *OrigF = Region[0]->getParent();
324   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
325     User *U = *OutF->user_begin();
326     CallInst *CI = cast<CallInst>(U);
327     NumColdRegionsOutlined++;
328     if (TTI.useColdCCForColdCall(*OutF)) {
329       OutF->setCallingConv(CallingConv::Cold);
330       CI->setCallingConv(CallingConv::Cold);
331     }
332     CI->setIsNoInline();
333 
334     if (OrigF->hasSection())
335       OutF->setSection(OrigF->getSection());
336 
337     markFunctionCold(*OutF, BFI != nullptr);
338 
339     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
340     ORE.emit([&]() {
341       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
342                                 &*Region[0]->begin())
343              << ore::NV("Original", OrigF) << " split cold code into "
344              << ore::NV("Split", OutF);
345     });
346     return OutF;
347   }
348 
349   ORE.emit([&]() {
350     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
351                                     &*Region[0]->begin())
352            << "Failed to extract region at block "
353            << ore::NV("Block", Region.front());
354   });
355   return nullptr;
356 }
357 
358 /// A pair of (basic block, score).
359 using BlockTy = std::pair<BasicBlock *, unsigned>;
360 
361 namespace {
362 /// A maximal outlining region. This contains all blocks post-dominated by a
363 /// sink block, the sink block itself, and all blocks dominated by the sink.
364 /// If sink-predecessors and sink-successors cannot be extracted in one region,
365 /// the static constructor returns a list of suitable extraction regions.
366 class OutliningRegion {
367   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
368   /// viable sub-region entry point. Blocks with higher scores are better entry
369   /// points (i.e. they are more distant ancestors of the sink block).
370   SmallVector<BlockTy, 0> Blocks = {};
371 
372   /// The suggested entry point into the region. If the region has multiple
373   /// entry points, all blocks within the region may not be reachable from this
374   /// entry point.
375   BasicBlock *SuggestedEntryPoint = nullptr;
376 
377   /// Whether the entire function is cold.
378   bool EntireFunctionCold = false;
379 
380   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
381   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
382     return mayExtractBlock(BB) ? Score : 0;
383   }
384 
385   /// These scores should be lower than the score for predecessor blocks,
386   /// because regions starting at predecessor blocks are typically larger.
387   static constexpr unsigned ScoreForSuccBlock = 1;
388   static constexpr unsigned ScoreForSinkBlock = 1;
389 
390   OutliningRegion(const OutliningRegion &) = delete;
391   OutliningRegion &operator=(const OutliningRegion &) = delete;
392 
393 public:
394   OutliningRegion() = default;
395   OutliningRegion(OutliningRegion &&) = default;
396   OutliningRegion &operator=(OutliningRegion &&) = default;
397 
398   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
399                                              const DominatorTree &DT,
400                                              const PostDominatorTree &PDT) {
401     std::vector<OutliningRegion> Regions;
402     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
403 
404     Regions.emplace_back();
405     OutliningRegion *ColdRegion = &Regions.back();
406 
407     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
408       RegionBlocks.insert(BB);
409       ColdRegion->Blocks.emplace_back(BB, Score);
410     };
411 
412     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
413     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
414     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
415     unsigned BestScore = SinkScore;
416 
417     // Visit SinkBB's ancestors using inverse DFS.
418     auto PredIt = ++idf_begin(&SinkBB);
419     auto PredEnd = idf_end(&SinkBB);
420     while (PredIt != PredEnd) {
421       BasicBlock &PredBB = **PredIt;
422       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
423 
424       // If the predecessor is cold and has no predecessors, the entire
425       // function must be cold.
426       if (SinkPostDom && pred_empty(&PredBB)) {
427         ColdRegion->EntireFunctionCold = true;
428         return Regions;
429       }
430 
431       // If SinkBB does not post-dominate a predecessor, do not mark the
432       // predecessor (or any of its predecessors) cold.
433       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
434         PredIt.skipChildren();
435         continue;
436       }
437 
438       // Keep track of the post-dominated ancestor farthest away from the sink.
439       // The path length is always >= 2, ensuring that predecessor blocks are
440       // considered as entry points before the sink block.
441       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
442       if (PredScore > BestScore) {
443         ColdRegion->SuggestedEntryPoint = &PredBB;
444         BestScore = PredScore;
445       }
446 
447       addBlockToRegion(&PredBB, PredScore);
448       ++PredIt;
449     }
450 
451     // If the sink can be added to the cold region, do so. It's considered as
452     // an entry point before any sink-successor blocks.
453     //
454     // Otherwise, split cold sink-successor blocks using a separate region.
455     // This satisfies the requirement that all extraction blocks other than the
456     // first have predecessors within the extraction region.
457     if (mayExtractBlock(SinkBB)) {
458       addBlockToRegion(&SinkBB, SinkScore);
459       if (pred_empty(&SinkBB)) {
460         ColdRegion->EntireFunctionCold = true;
461         return Regions;
462       }
463     } else {
464       Regions.emplace_back();
465       ColdRegion = &Regions.back();
466       BestScore = 0;
467     }
468 
469     // Find all successors of SinkBB dominated by SinkBB using DFS.
470     auto SuccIt = ++df_begin(&SinkBB);
471     auto SuccEnd = df_end(&SinkBB);
472     while (SuccIt != SuccEnd) {
473       BasicBlock &SuccBB = **SuccIt;
474       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
475 
476       // Don't allow the backwards & forwards DFSes to mark the same block.
477       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
478 
479       // If SinkBB does not dominate a successor, do not mark the successor (or
480       // any of its successors) cold.
481       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
482         SuccIt.skipChildren();
483         continue;
484       }
485 
486       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
487       if (SuccScore > BestScore) {
488         ColdRegion->SuggestedEntryPoint = &SuccBB;
489         BestScore = SuccScore;
490       }
491 
492       addBlockToRegion(&SuccBB, SuccScore);
493       ++SuccIt;
494     }
495 
496     return Regions;
497   }
498 
499   /// Whether this region has nothing to extract.
500   bool empty() const { return !SuggestedEntryPoint; }
501 
502   /// The blocks in this region.
503   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
504 
505   /// Whether the entire function containing this region is cold.
506   bool isEntireFunctionCold() const { return EntireFunctionCold; }
507 
508   /// Remove a sub-region from this region and return it as a block sequence.
509   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
510     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
511 
512     // Remove blocks dominated by the suggested entry point from this region.
513     // During the removal, identify the next best entry point into the region.
514     // Ensure that the first extracted block is the suggested entry point.
515     BlockSequence SubRegion = {SuggestedEntryPoint};
516     BasicBlock *NextEntryPoint = nullptr;
517     unsigned NextScore = 0;
518     auto RegionEndIt = Blocks.end();
519     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
520       BasicBlock *BB = Block.first;
521       unsigned Score = Block.second;
522       bool InSubRegion =
523           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
524       if (!InSubRegion && Score > NextScore) {
525         NextEntryPoint = BB;
526         NextScore = Score;
527       }
528       if (InSubRegion && BB != SuggestedEntryPoint)
529         SubRegion.push_back(BB);
530       return InSubRegion;
531     });
532     Blocks.erase(RegionStartIt, RegionEndIt);
533 
534     // Update the suggested entry point.
535     SuggestedEntryPoint = NextEntryPoint;
536 
537     return SubRegion;
538   }
539 };
540 } // namespace
541 
542 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
543   bool Changed = false;
544 
545   // The set of cold blocks.
546   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
547 
548   // The worklist of non-intersecting regions left to outline.
549   SmallVector<OutliningRegion, 2> OutliningWorklist;
550 
551   // Set up an RPO traversal. Experimentally, this performs better (outlines
552   // more) than a PO traversal, because we prevent region overlap by keeping
553   // the first region to contain a block.
554   ReversePostOrderTraversal<Function *> RPOT(&F);
555 
556   // Calculate domtrees lazily. This reduces compile-time significantly.
557   std::unique_ptr<DominatorTree> DT;
558   std::unique_ptr<PostDominatorTree> PDT;
559 
560   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
561   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
562   // be able to salvage its domtrees instead of recomputing them.
563   BlockFrequencyInfo *BFI = nullptr;
564   if (HasProfileSummary)
565     BFI = GetBFI(F);
566 
567   TargetTransformInfo &TTI = GetTTI(F);
568   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
569   AssumptionCache *AC = LookupAC(F);
570 
571   // Find all cold regions.
572   for (BasicBlock *BB : RPOT) {
573     // This block is already part of some outlining region.
574     if (ColdBlocks.count(BB))
575       continue;
576 
577     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
578                 (EnableStaticAnalyis && unlikelyExecuted(*BB));
579     if (!Cold)
580       continue;
581 
582     LLVM_DEBUG({
583       dbgs() << "Found a cold block:\n";
584       BB->dump();
585     });
586 
587     if (!DT)
588       DT = std::make_unique<DominatorTree>(F);
589     if (!PDT)
590       PDT = std::make_unique<PostDominatorTree>(F);
591 
592     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
593     for (OutliningRegion &Region : Regions) {
594       if (Region.empty())
595         continue;
596 
597       if (Region.isEntireFunctionCold()) {
598         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
599         return markFunctionCold(F);
600       }
601 
602       // If this outlining region intersects with another, drop the new region.
603       //
604       // TODO: It's theoretically possible to outline more by only keeping the
605       // largest region which contains a block, but the extra bookkeeping to do
606       // this is tricky/expensive.
607       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
608         return !ColdBlocks.insert(Block.first).second;
609       });
610       if (RegionsOverlap)
611         continue;
612 
613       OutliningWorklist.emplace_back(std::move(Region));
614       ++NumColdRegionsFound;
615     }
616   }
617 
618   if (OutliningWorklist.empty())
619     return Changed;
620 
621   // Outline single-entry cold regions, splitting up larger regions as needed.
622   unsigned OutlinedFunctionID = 1;
623   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
624   CodeExtractorAnalysisCache CEAC(F);
625   do {
626     OutliningRegion Region = OutliningWorklist.pop_back_val();
627     assert(!Region.empty() && "Empty outlining region in worklist");
628     do {
629       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
630       LLVM_DEBUG({
631         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
632         for (BasicBlock *BB : SubRegion)
633           BB->dump();
634       });
635 
636       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
637                                              ORE, AC, OutlinedFunctionID);
638       if (Outlined) {
639         ++OutlinedFunctionID;
640         Changed = true;
641       }
642     } while (!Region.empty());
643   } while (!OutliningWorklist.empty());
644 
645   return Changed;
646 }
647 
648 bool HotColdSplitting::run(Module &M) {
649   bool Changed = false;
650   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
651   for (auto It = M.begin(), End = M.end(); It != End; ++It) {
652     Function &F = *It;
653 
654     // Do not touch declarations.
655     if (F.isDeclaration())
656       continue;
657 
658     // Do not modify `optnone` functions.
659     if (F.hasOptNone())
660       continue;
661 
662     // Detect inherently cold functions and mark them as such.
663     if (isFunctionCold(F)) {
664       Changed |= markFunctionCold(F);
665       continue;
666     }
667 
668     if (!shouldOutlineFrom(F)) {
669       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
670       continue;
671     }
672 
673     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
674     Changed |= outlineColdRegions(F, HasProfileSummary);
675   }
676   return Changed;
677 }
678 
679 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
680   if (skipModule(M))
681     return false;
682   ProfileSummaryInfo *PSI =
683       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
684   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
685     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
686   };
687   auto GBFI = [this](Function &F) {
688     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
689   };
690   std::unique_ptr<OptimizationRemarkEmitter> ORE;
691   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
692       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
693     ORE.reset(new OptimizationRemarkEmitter(&F));
694     return *ORE.get();
695   };
696   auto LookupAC = [this](Function &F) -> AssumptionCache * {
697     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
698       return ACT->lookupAssumptionCache(F);
699     return nullptr;
700   };
701 
702   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
703 }
704 
705 PreservedAnalyses
706 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
707   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
708 
709   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
710     return FAM.getCachedResult<AssumptionAnalysis>(F);
711   };
712 
713   auto GBFI = [&FAM](Function &F) {
714     return &FAM.getResult<BlockFrequencyAnalysis>(F);
715   };
716 
717   std::function<TargetTransformInfo &(Function &)> GTTI =
718       [&FAM](Function &F) -> TargetTransformInfo & {
719     return FAM.getResult<TargetIRAnalysis>(F);
720   };
721 
722   std::unique_ptr<OptimizationRemarkEmitter> ORE;
723   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
724       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
725     ORE.reset(new OptimizationRemarkEmitter(&F));
726     return *ORE.get();
727   };
728 
729   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
730 
731   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
732     return PreservedAnalyses::none();
733   return PreservedAnalyses::all();
734 }
735 
736 char HotColdSplittingLegacyPass::ID = 0;
737 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
738                       "Hot Cold Splitting", false, false)
739 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
740 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
741 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
742                     "Hot Cold Splitting", false, false)
743 
744 ModulePass *llvm::createHotColdSplittingPass() {
745   return new HotColdSplittingLegacyPass();
746 }
747