1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/CodeExtractor.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 74 #define DEBUG_TYPE "hotcoldsplit" 75 76 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 78 79 using namespace llvm; 80 81 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<int> 85 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 86 cl::desc("Base penalty for splitting cold code (as a " 87 "multiple of TCC_Basic)")); 88 89 namespace { 90 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 91 // this function unless you modify the MBB version as well. 92 // 93 /// A no successor, non-return block probably ends in unreachable and is cold. 94 /// Also consider a block that ends in an indirect branch to be a return block, 95 /// since many targets use plain indirect branches to return. 96 bool blockEndsInUnreachable(const BasicBlock &BB) { 97 if (!succ_empty(&BB)) 98 return false; 99 if (BB.empty()) 100 return true; 101 const Instruction *I = BB.getTerminator(); 102 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 103 } 104 105 bool unlikelyExecuted(BasicBlock &BB) { 106 // Exception handling blocks are unlikely executed. 107 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 108 return true; 109 110 // The block is cold if it calls/invokes a cold function. However, do not 111 // mark sanitizer traps as cold. 112 for (Instruction &I : BB) 113 if (auto CS = CallSite(&I)) 114 if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize")) 115 return true; 116 117 // The block is cold if it has an unreachable terminator, unless it's 118 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 119 if (blockEndsInUnreachable(BB)) { 120 if (auto *CI = 121 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 122 if (CI->hasFnAttr(Attribute::NoReturn)) 123 return false; 124 return true; 125 } 126 127 return false; 128 } 129 130 /// Check whether it's safe to outline \p BB. 131 static bool mayExtractBlock(const BasicBlock &BB) { 132 // EH pads are unsafe to outline because doing so breaks EH type tables. It 133 // follows that invoke instructions cannot be extracted, because CodeExtractor 134 // requires unwind destinations to be within the extraction region. 135 // 136 // Resumes that are not reachable from a cleanup landing pad are considered to 137 // be unreachable. It’s not safe to split them out either. 138 auto Term = BB.getTerminator(); 139 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 140 !isa<ResumeInst>(Term); 141 } 142 143 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 144 /// If \p UpdateEntryCount is true (set when this is a new split function and 145 /// module has profile data), set entry count to 0 to ensure treated as cold. 146 /// Return true if the function is changed. 147 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 148 assert(!F.hasOptNone() && "Can't mark this cold"); 149 bool Changed = false; 150 if (!F.hasFnAttribute(Attribute::Cold)) { 151 F.addFnAttr(Attribute::Cold); 152 Changed = true; 153 } 154 if (!F.hasFnAttribute(Attribute::MinSize)) { 155 F.addFnAttr(Attribute::MinSize); 156 Changed = true; 157 } 158 if (UpdateEntryCount) { 159 // Set the entry count to 0 to ensure it is placed in the unlikely text 160 // section when function sections are enabled. 161 F.setEntryCount(0); 162 Changed = true; 163 } 164 165 return Changed; 166 } 167 168 class HotColdSplittingLegacyPass : public ModulePass { 169 public: 170 static char ID; 171 HotColdSplittingLegacyPass() : ModulePass(ID) { 172 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 177 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 178 AU.addRequired<TargetTransformInfoWrapperPass>(); 179 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 180 } 181 182 bool runOnModule(Module &M) override; 183 }; 184 185 } // end anonymous namespace 186 187 /// Check whether \p F is inherently cold. 188 bool HotColdSplitting::isFunctionCold(const Function &F) const { 189 if (F.hasFnAttribute(Attribute::Cold)) 190 return true; 191 192 if (F.getCallingConv() == CallingConv::Cold) 193 return true; 194 195 if (PSI->isFunctionEntryCold(&F)) 196 return true; 197 198 return false; 199 } 200 201 // Returns false if the function should not be considered for hot-cold split 202 // optimization. 203 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 204 if (F.hasFnAttribute(Attribute::AlwaysInline)) 205 return false; 206 207 if (F.hasFnAttribute(Attribute::NoInline)) 208 return false; 209 210 // A function marked `noreturn` may contain unreachable terminators: these 211 // should not be considered cold, as the function may be a trampoline. 212 if (F.hasFnAttribute(Attribute::NoReturn)) 213 return false; 214 215 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 216 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 217 F.hasFnAttribute(Attribute::SanitizeThread) || 218 F.hasFnAttribute(Attribute::SanitizeMemory)) 219 return false; 220 221 return true; 222 } 223 224 /// Get the benefit score of outlining \p Region. 225 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 226 TargetTransformInfo &TTI) { 227 // Sum up the code size costs of non-terminator instructions. Tight coupling 228 // with \ref getOutliningPenalty is needed to model the costs of terminators. 229 int Benefit = 0; 230 for (BasicBlock *BB : Region) 231 for (Instruction &I : BB->instructionsWithoutDebug()) 232 if (&I != BB->getTerminator()) 233 Benefit += 234 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 235 236 return Benefit; 237 } 238 239 /// Get the penalty score for outlining \p Region. 240 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 241 unsigned NumInputs, unsigned NumOutputs) { 242 int Penalty = SplittingThreshold; 243 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 244 245 // If the splitting threshold is set at or below zero, skip the usual 246 // profitability check. 247 if (SplittingThreshold <= 0) 248 return Penalty; 249 250 // The typical code size cost for materializing an argument for the outlined 251 // call. 252 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 253 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 254 Penalty += CostForArgMaterialization * NumInputs; 255 256 // The typical code size cost for an output alloca, its associated store, and 257 // its associated reload. 258 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 259 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 260 Penalty += CostForRegionOutput * NumOutputs; 261 262 // Find the number of distinct exit blocks for the region. Use a conservative 263 // check to determine whether control returns from the region. 264 bool NoBlocksReturn = true; 265 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 266 for (BasicBlock *BB : Region) { 267 // If a block has no successors, only assume it does not return if it's 268 // unreachable. 269 if (succ_empty(BB)) { 270 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 271 continue; 272 } 273 274 for (BasicBlock *SuccBB : successors(BB)) { 275 if (find(Region, SuccBB) == Region.end()) { 276 NoBlocksReturn = false; 277 SuccsOutsideRegion.insert(SuccBB); 278 } 279 } 280 } 281 282 // Apply a `noreturn` bonus. 283 if (NoBlocksReturn) { 284 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 285 << " non-returning terminators\n"); 286 Penalty -= Region.size(); 287 } 288 289 // Apply a penalty for having more than one successor outside of the region. 290 // This penalty accounts for the switch needed in the caller. 291 if (!SuccsOutsideRegion.empty()) { 292 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 293 << " non-region successors\n"); 294 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 295 } 296 297 return Penalty; 298 } 299 300 Function *HotColdSplitting::extractColdRegion( 301 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 302 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 303 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 304 assert(!Region.empty()); 305 306 // TODO: Pass BFI and BPI to update profile information. 307 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 308 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 309 /* AllowAlloca */ false, 310 /* Suffix */ "cold." + std::to_string(Count)); 311 312 // Perform a simple cost/benefit analysis to decide whether or not to permit 313 // splitting. 314 SetVector<Value *> Inputs, Outputs, Sinks; 315 CE.findInputsOutputs(Inputs, Outputs, Sinks); 316 int OutliningBenefit = getOutliningBenefit(Region, TTI); 317 int OutliningPenalty = 318 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 319 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 320 << ", penalty = " << OutliningPenalty << "\n"); 321 if (OutliningBenefit <= OutliningPenalty) 322 return nullptr; 323 324 Function *OrigF = Region[0]->getParent(); 325 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 326 User *U = *OutF->user_begin(); 327 CallInst *CI = cast<CallInst>(U); 328 CallSite CS(CI); 329 NumColdRegionsOutlined++; 330 if (TTI.useColdCCForColdCall(*OutF)) { 331 OutF->setCallingConv(CallingConv::Cold); 332 CS.setCallingConv(CallingConv::Cold); 333 } 334 CI->setIsNoInline(); 335 336 if (OrigF->hasSection()) 337 OutF->setSection(OrigF->getSection()); 338 339 markFunctionCold(*OutF, BFI != nullptr); 340 341 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 342 ORE.emit([&]() { 343 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 344 &*Region[0]->begin()) 345 << ore::NV("Original", OrigF) << " split cold code into " 346 << ore::NV("Split", OutF); 347 }); 348 return OutF; 349 } 350 351 ORE.emit([&]() { 352 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 353 &*Region[0]->begin()) 354 << "Failed to extract region at block " 355 << ore::NV("Block", Region.front()); 356 }); 357 return nullptr; 358 } 359 360 /// A pair of (basic block, score). 361 using BlockTy = std::pair<BasicBlock *, unsigned>; 362 363 namespace { 364 /// A maximal outlining region. This contains all blocks post-dominated by a 365 /// sink block, the sink block itself, and all blocks dominated by the sink. 366 /// If sink-predecessors and sink-successors cannot be extracted in one region, 367 /// the static constructor returns a list of suitable extraction regions. 368 class OutliningRegion { 369 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 370 /// viable sub-region entry point. Blocks with higher scores are better entry 371 /// points (i.e. they are more distant ancestors of the sink block). 372 SmallVector<BlockTy, 0> Blocks = {}; 373 374 /// The suggested entry point into the region. If the region has multiple 375 /// entry points, all blocks within the region may not be reachable from this 376 /// entry point. 377 BasicBlock *SuggestedEntryPoint = nullptr; 378 379 /// Whether the entire function is cold. 380 bool EntireFunctionCold = false; 381 382 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 383 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 384 return mayExtractBlock(BB) ? Score : 0; 385 } 386 387 /// These scores should be lower than the score for predecessor blocks, 388 /// because regions starting at predecessor blocks are typically larger. 389 static constexpr unsigned ScoreForSuccBlock = 1; 390 static constexpr unsigned ScoreForSinkBlock = 1; 391 392 OutliningRegion(const OutliningRegion &) = delete; 393 OutliningRegion &operator=(const OutliningRegion &) = delete; 394 395 public: 396 OutliningRegion() = default; 397 OutliningRegion(OutliningRegion &&) = default; 398 OutliningRegion &operator=(OutliningRegion &&) = default; 399 400 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 401 const DominatorTree &DT, 402 const PostDominatorTree &PDT) { 403 std::vector<OutliningRegion> Regions; 404 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 405 406 Regions.emplace_back(); 407 OutliningRegion *ColdRegion = &Regions.back(); 408 409 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 410 RegionBlocks.insert(BB); 411 ColdRegion->Blocks.emplace_back(BB, Score); 412 }; 413 414 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 415 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 416 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 417 unsigned BestScore = SinkScore; 418 419 // Visit SinkBB's ancestors using inverse DFS. 420 auto PredIt = ++idf_begin(&SinkBB); 421 auto PredEnd = idf_end(&SinkBB); 422 while (PredIt != PredEnd) { 423 BasicBlock &PredBB = **PredIt; 424 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 425 426 // If the predecessor is cold and has no predecessors, the entire 427 // function must be cold. 428 if (SinkPostDom && pred_empty(&PredBB)) { 429 ColdRegion->EntireFunctionCold = true; 430 return Regions; 431 } 432 433 // If SinkBB does not post-dominate a predecessor, do not mark the 434 // predecessor (or any of its predecessors) cold. 435 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 436 PredIt.skipChildren(); 437 continue; 438 } 439 440 // Keep track of the post-dominated ancestor farthest away from the sink. 441 // The path length is always >= 2, ensuring that predecessor blocks are 442 // considered as entry points before the sink block. 443 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 444 if (PredScore > BestScore) { 445 ColdRegion->SuggestedEntryPoint = &PredBB; 446 BestScore = PredScore; 447 } 448 449 addBlockToRegion(&PredBB, PredScore); 450 ++PredIt; 451 } 452 453 // If the sink can be added to the cold region, do so. It's considered as 454 // an entry point before any sink-successor blocks. 455 // 456 // Otherwise, split cold sink-successor blocks using a separate region. 457 // This satisfies the requirement that all extraction blocks other than the 458 // first have predecessors within the extraction region. 459 if (mayExtractBlock(SinkBB)) { 460 addBlockToRegion(&SinkBB, SinkScore); 461 } else { 462 Regions.emplace_back(); 463 ColdRegion = &Regions.back(); 464 BestScore = 0; 465 } 466 467 // Find all successors of SinkBB dominated by SinkBB using DFS. 468 auto SuccIt = ++df_begin(&SinkBB); 469 auto SuccEnd = df_end(&SinkBB); 470 while (SuccIt != SuccEnd) { 471 BasicBlock &SuccBB = **SuccIt; 472 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 473 474 // Don't allow the backwards & forwards DFSes to mark the same block. 475 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 476 477 // If SinkBB does not dominate a successor, do not mark the successor (or 478 // any of its successors) cold. 479 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 480 SuccIt.skipChildren(); 481 continue; 482 } 483 484 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 485 if (SuccScore > BestScore) { 486 ColdRegion->SuggestedEntryPoint = &SuccBB; 487 BestScore = SuccScore; 488 } 489 490 addBlockToRegion(&SuccBB, SuccScore); 491 ++SuccIt; 492 } 493 494 return Regions; 495 } 496 497 /// Whether this region has nothing to extract. 498 bool empty() const { return !SuggestedEntryPoint; } 499 500 /// The blocks in this region. 501 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 502 503 /// Whether the entire function containing this region is cold. 504 bool isEntireFunctionCold() const { return EntireFunctionCold; } 505 506 /// Remove a sub-region from this region and return it as a block sequence. 507 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 508 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 509 510 // Remove blocks dominated by the suggested entry point from this region. 511 // During the removal, identify the next best entry point into the region. 512 // Ensure that the first extracted block is the suggested entry point. 513 BlockSequence SubRegion = {SuggestedEntryPoint}; 514 BasicBlock *NextEntryPoint = nullptr; 515 unsigned NextScore = 0; 516 auto RegionEndIt = Blocks.end(); 517 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 518 BasicBlock *BB = Block.first; 519 unsigned Score = Block.second; 520 bool InSubRegion = 521 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 522 if (!InSubRegion && Score > NextScore) { 523 NextEntryPoint = BB; 524 NextScore = Score; 525 } 526 if (InSubRegion && BB != SuggestedEntryPoint) 527 SubRegion.push_back(BB); 528 return InSubRegion; 529 }); 530 Blocks.erase(RegionStartIt, RegionEndIt); 531 532 // Update the suggested entry point. 533 SuggestedEntryPoint = NextEntryPoint; 534 535 return SubRegion; 536 } 537 }; 538 } // namespace 539 540 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 541 bool Changed = false; 542 543 // The set of cold blocks. 544 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 545 546 // The worklist of non-intersecting regions left to outline. 547 SmallVector<OutliningRegion, 2> OutliningWorklist; 548 549 // Set up an RPO traversal. Experimentally, this performs better (outlines 550 // more) than a PO traversal, because we prevent region overlap by keeping 551 // the first region to contain a block. 552 ReversePostOrderTraversal<Function *> RPOT(&F); 553 554 // Calculate domtrees lazily. This reduces compile-time significantly. 555 std::unique_ptr<DominatorTree> DT; 556 std::unique_ptr<PostDominatorTree> PDT; 557 558 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 559 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 560 // be able to salvage its domtrees instead of recomputing them. 561 BlockFrequencyInfo *BFI = nullptr; 562 if (HasProfileSummary) 563 BFI = GetBFI(F); 564 565 TargetTransformInfo &TTI = GetTTI(F); 566 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 567 AssumptionCache *AC = LookupAC(F); 568 569 // Find all cold regions. 570 for (BasicBlock *BB : RPOT) { 571 // This block is already part of some outlining region. 572 if (ColdBlocks.count(BB)) 573 continue; 574 575 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 576 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 577 if (!Cold) 578 continue; 579 580 LLVM_DEBUG({ 581 dbgs() << "Found a cold block:\n"; 582 BB->dump(); 583 }); 584 585 if (!DT) 586 DT = std::make_unique<DominatorTree>(F); 587 if (!PDT) 588 PDT = std::make_unique<PostDominatorTree>(F); 589 590 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 591 for (OutliningRegion &Region : Regions) { 592 if (Region.empty()) 593 continue; 594 595 if (Region.isEntireFunctionCold()) { 596 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 597 return markFunctionCold(F); 598 } 599 600 // If this outlining region intersects with another, drop the new region. 601 // 602 // TODO: It's theoretically possible to outline more by only keeping the 603 // largest region which contains a block, but the extra bookkeeping to do 604 // this is tricky/expensive. 605 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 606 return !ColdBlocks.insert(Block.first).second; 607 }); 608 if (RegionsOverlap) 609 continue; 610 611 OutliningWorklist.emplace_back(std::move(Region)); 612 ++NumColdRegionsFound; 613 } 614 } 615 616 if (OutliningWorklist.empty()) 617 return Changed; 618 619 // Outline single-entry cold regions, splitting up larger regions as needed. 620 unsigned OutlinedFunctionID = 1; 621 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 622 CodeExtractorAnalysisCache CEAC(F); 623 do { 624 OutliningRegion Region = OutliningWorklist.pop_back_val(); 625 assert(!Region.empty() && "Empty outlining region in worklist"); 626 do { 627 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 628 LLVM_DEBUG({ 629 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 630 for (BasicBlock *BB : SubRegion) 631 BB->dump(); 632 }); 633 634 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 635 ORE, AC, OutlinedFunctionID); 636 if (Outlined) { 637 ++OutlinedFunctionID; 638 Changed = true; 639 } 640 } while (!Region.empty()); 641 } while (!OutliningWorklist.empty()); 642 643 return Changed; 644 } 645 646 bool HotColdSplitting::run(Module &M) { 647 bool Changed = false; 648 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 649 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 650 Function &F = *It; 651 652 // Do not touch declarations. 653 if (F.isDeclaration()) 654 continue; 655 656 // Do not modify `optnone` functions. 657 if (F.hasOptNone()) 658 continue; 659 660 // Detect inherently cold functions and mark them as such. 661 if (isFunctionCold(F)) { 662 Changed |= markFunctionCold(F); 663 continue; 664 } 665 666 if (!shouldOutlineFrom(F)) { 667 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 668 continue; 669 } 670 671 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 672 Changed |= outlineColdRegions(F, HasProfileSummary); 673 } 674 return Changed; 675 } 676 677 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 678 if (skipModule(M)) 679 return false; 680 ProfileSummaryInfo *PSI = 681 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 682 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 683 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 684 }; 685 auto GBFI = [this](Function &F) { 686 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 687 }; 688 std::unique_ptr<OptimizationRemarkEmitter> ORE; 689 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 690 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 691 ORE.reset(new OptimizationRemarkEmitter(&F)); 692 return *ORE.get(); 693 }; 694 auto LookupAC = [this](Function &F) -> AssumptionCache * { 695 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 696 return ACT->lookupAssumptionCache(F); 697 return nullptr; 698 }; 699 700 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 701 } 702 703 PreservedAnalyses 704 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 705 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 706 707 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 708 return FAM.getCachedResult<AssumptionAnalysis>(F); 709 }; 710 711 auto GBFI = [&FAM](Function &F) { 712 return &FAM.getResult<BlockFrequencyAnalysis>(F); 713 }; 714 715 std::function<TargetTransformInfo &(Function &)> GTTI = 716 [&FAM](Function &F) -> TargetTransformInfo & { 717 return FAM.getResult<TargetIRAnalysis>(F); 718 }; 719 720 std::unique_ptr<OptimizationRemarkEmitter> ORE; 721 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 722 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 723 ORE.reset(new OptimizationRemarkEmitter(&F)); 724 return *ORE.get(); 725 }; 726 727 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 728 729 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 730 return PreservedAnalyses::none(); 731 return PreservedAnalyses::all(); 732 } 733 734 char HotColdSplittingLegacyPass::ID = 0; 735 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 736 "Hot Cold Splitting", false, false) 737 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 738 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 739 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 740 "Hot Cold Splitting", false, false) 741 742 ModulePass *llvm::createHotColdSplittingPass() { 743 return new HotColdSplittingLegacyPass(); 744 } 745