1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: 132 return true; 133 case Type::FixedVectorTyID: 134 case Type::ScalableVectorTyID: 135 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 136 return true; 137 break; 138 case Type::ArrayTyID: 139 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 140 break; 141 case Type::StructTyID: { 142 StructType *STy = cast<StructType>(Ty); 143 if (STy->isOpaque()) return true; 144 for (StructType::element_iterator I = STy->element_begin(), 145 E = STy->element_end(); I != E; ++I) { 146 Type *InnerTy = *I; 147 if (isa<PointerType>(InnerTy)) return true; 148 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 149 isa<VectorType>(InnerTy)) 150 Types.push_back(InnerTy); 151 } 152 break; 153 } 154 } 155 if (--Limit == 0) return true; 156 } while (!Types.empty()); 157 return false; 158 } 159 160 /// Given a value that is stored to a global but never read, determine whether 161 /// it's safe to remove the store and the chain of computation that feeds the 162 /// store. 163 static bool IsSafeComputationToRemove( 164 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 165 do { 166 if (isa<Constant>(V)) 167 return true; 168 if (!V->hasOneUse()) 169 return false; 170 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 171 isa<GlobalValue>(V)) 172 return false; 173 if (isAllocationFn(V, GetTLI)) 174 return true; 175 176 Instruction *I = cast<Instruction>(V); 177 if (I->mayHaveSideEffects()) 178 return false; 179 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 180 if (!GEP->hasAllConstantIndices()) 181 return false; 182 } else if (I->getNumOperands() != 1) { 183 return false; 184 } 185 186 V = I->getOperand(0); 187 } while (true); 188 } 189 190 /// This GV is a pointer root. Loop over all users of the global and clean up 191 /// any that obviously don't assign the global a value that isn't dynamically 192 /// allocated. 193 static bool 194 CleanupPointerRootUsers(GlobalVariable *GV, 195 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 196 // A brief explanation of leak checkers. The goal is to find bugs where 197 // pointers are forgotten, causing an accumulating growth in memory 198 // usage over time. The common strategy for leak checkers is to explicitly 199 // allow the memory pointed to by globals at exit. This is popular because it 200 // also solves another problem where the main thread of a C++ program may shut 201 // down before other threads that are still expecting to use those globals. To 202 // handle that case, we expect the program may create a singleton and never 203 // destroy it. 204 205 bool Changed = false; 206 207 // If Dead[n].first is the only use of a malloc result, we can delete its 208 // chain of computation and the store to the global in Dead[n].second. 209 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 210 211 // Constants can't be pointers to dynamically allocated memory. 212 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 213 UI != E;) { 214 User *U = *UI++; 215 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 216 Value *V = SI->getValueOperand(); 217 if (isa<Constant>(V)) { 218 Changed = true; 219 SI->eraseFromParent(); 220 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 221 if (I->hasOneUse()) 222 Dead.push_back(std::make_pair(I, SI)); 223 } 224 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 225 if (isa<Constant>(MSI->getValue())) { 226 Changed = true; 227 MSI->eraseFromParent(); 228 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 229 if (I->hasOneUse()) 230 Dead.push_back(std::make_pair(I, MSI)); 231 } 232 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 233 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 234 if (MemSrc && MemSrc->isConstant()) { 235 Changed = true; 236 MTI->eraseFromParent(); 237 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 238 if (I->hasOneUse()) 239 Dead.push_back(std::make_pair(I, MTI)); 240 } 241 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 242 if (CE->use_empty()) { 243 CE->destroyConstant(); 244 Changed = true; 245 } 246 } else if (Constant *C = dyn_cast<Constant>(U)) { 247 if (isSafeToDestroyConstant(C)) { 248 C->destroyConstant(); 249 // This could have invalidated UI, start over from scratch. 250 Dead.clear(); 251 CleanupPointerRootUsers(GV, GetTLI); 252 return true; 253 } 254 } 255 } 256 257 for (int i = 0, e = Dead.size(); i != e; ++i) { 258 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 259 Dead[i].second->eraseFromParent(); 260 Instruction *I = Dead[i].first; 261 do { 262 if (isAllocationFn(I, GetTLI)) 263 break; 264 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 265 if (!J) 266 break; 267 I->eraseFromParent(); 268 I = J; 269 } while (true); 270 I->eraseFromParent(); 271 } 272 } 273 274 return Changed; 275 } 276 277 /// We just marked GV constant. Loop over all users of the global, cleaning up 278 /// the obvious ones. This is largely just a quick scan over the use list to 279 /// clean up the easy and obvious cruft. This returns true if it made a change. 280 static bool CleanupConstantGlobalUsers( 281 Value *V, Constant *Init, const DataLayout &DL, 282 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 283 bool Changed = false; 284 // Note that we need to use a weak value handle for the worklist items. When 285 // we delete a constant array, we may also be holding pointer to one of its 286 // elements (or an element of one of its elements if we're dealing with an 287 // array of arrays) in the worklist. 288 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 289 while (!WorkList.empty()) { 290 Value *UV = WorkList.pop_back_val(); 291 if (!UV) 292 continue; 293 294 User *U = cast<User>(UV); 295 296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 297 if (Init) { 298 // Replace the load with the initializer. 299 LI->replaceAllUsesWith(Init); 300 LI->eraseFromParent(); 301 Changed = true; 302 } 303 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 304 // Store must be unreachable or storing Init into the global. 305 SI->eraseFromParent(); 306 Changed = true; 307 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 308 if (CE->getOpcode() == Instruction::GetElementPtr) { 309 Constant *SubInit = nullptr; 310 if (Init) 311 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 312 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 313 } else if ((CE->getOpcode() == Instruction::BitCast && 314 CE->getType()->isPointerTy()) || 315 CE->getOpcode() == Instruction::AddrSpaceCast) { 316 // Pointer cast, delete any stores and memsets to the global. 317 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 318 } 319 320 if (CE->use_empty()) { 321 CE->destroyConstant(); 322 Changed = true; 323 } 324 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 325 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 326 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 327 // and will invalidate our notion of what Init is. 328 Constant *SubInit = nullptr; 329 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 330 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 331 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 332 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 333 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 334 335 // If the initializer is an all-null value and we have an inbounds GEP, 336 // we already know what the result of any load from that GEP is. 337 // TODO: Handle splats. 338 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 339 SubInit = Constant::getNullValue(GEP->getResultElementType()); 340 } 341 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 342 343 if (GEP->use_empty()) { 344 GEP->eraseFromParent(); 345 Changed = true; 346 } 347 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 348 if (MI->getRawDest() == V) { 349 MI->eraseFromParent(); 350 Changed = true; 351 } 352 353 } else if (Constant *C = dyn_cast<Constant>(U)) { 354 // If we have a chain of dead constantexprs or other things dangling from 355 // us, and if they are all dead, nuke them without remorse. 356 if (isSafeToDestroyConstant(C)) { 357 C->destroyConstant(); 358 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 359 return true; 360 } 361 } 362 } 363 return Changed; 364 } 365 366 static bool isSafeSROAElementUse(Value *V); 367 368 /// Return true if the specified GEP is a safe user of a derived 369 /// expression from a global that we want to SROA. 370 static bool isSafeSROAGEP(User *U) { 371 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 372 // don't like < 3 operand CE's, and we don't like non-constant integer 373 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 374 // value of C. 375 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 376 !cast<Constant>(U->getOperand(1))->isNullValue()) 377 return false; 378 379 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 380 ++GEPI; // Skip over the pointer index. 381 382 // For all other level we require that the indices are constant and inrange. 383 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 384 // invalid things like allowing i to index an out-of-range subscript that 385 // accesses A[1]. This can also happen between different members of a struct 386 // in llvm IR. 387 for (; GEPI != E; ++GEPI) { 388 if (GEPI.isStruct()) 389 continue; 390 391 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 392 if (!IdxVal || (GEPI.isBoundedSequential() && 393 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 394 return false; 395 } 396 397 return llvm::all_of(U->users(), 398 [](User *UU) { return isSafeSROAElementUse(UU); }); 399 } 400 401 /// Return true if the specified instruction is a safe user of a derived 402 /// expression from a global that we want to SROA. 403 static bool isSafeSROAElementUse(Value *V) { 404 // We might have a dead and dangling constant hanging off of here. 405 if (Constant *C = dyn_cast<Constant>(V)) 406 return isSafeToDestroyConstant(C); 407 408 Instruction *I = dyn_cast<Instruction>(V); 409 if (!I) return false; 410 411 // Loads are ok. 412 if (isa<LoadInst>(I)) return true; 413 414 // Stores *to* the pointer are ok. 415 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 416 return SI->getOperand(0) != V; 417 418 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 419 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 420 } 421 422 /// Look at all uses of the global and decide whether it is safe for us to 423 /// perform this transformation. 424 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 425 for (User *U : GV->users()) { 426 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 427 if (!isa<GetElementPtrInst>(U) && 428 (!isa<ConstantExpr>(U) || 429 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 430 return false; 431 432 // Check the gep and it's users are safe to SRA 433 if (!isSafeSROAGEP(U)) 434 return false; 435 } 436 437 return true; 438 } 439 440 static bool IsSRASequential(Type *T) { 441 return isa<ArrayType>(T) || isa<VectorType>(T); 442 } 443 static uint64_t GetSRASequentialNumElements(Type *T) { 444 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 445 return AT->getNumElements(); 446 return cast<FixedVectorType>(T)->getNumElements(); 447 } 448 static Type *GetSRASequentialElementType(Type *T) { 449 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 450 return AT->getElementType(); 451 return cast<VectorType>(T)->getElementType(); 452 } 453 static bool CanDoGlobalSRA(GlobalVariable *GV) { 454 Constant *Init = GV->getInitializer(); 455 456 if (isa<StructType>(Init->getType())) { 457 // nothing to check 458 } else if (IsSRASequential(Init->getType())) { 459 if (GetSRASequentialNumElements(Init->getType()) > 16 && 460 GV->hasNUsesOrMore(16)) 461 return false; // It's not worth it. 462 } else 463 return false; 464 465 return GlobalUsersSafeToSRA(GV); 466 } 467 468 /// Copy over the debug info for a variable to its SRA replacements. 469 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 470 uint64_t FragmentOffsetInBits, 471 uint64_t FragmentSizeInBits) { 472 SmallVector<DIGlobalVariableExpression *, 1> GVs; 473 GV->getDebugInfo(GVs); 474 for (auto *GVE : GVs) { 475 DIVariable *Var = GVE->getVariable(); 476 Optional<uint64_t> VarSize = Var->getSizeInBits(); 477 478 DIExpression *Expr = GVE->getExpression(); 479 // If the FragmentSize is smaller than the variable, 480 // emit a fragment expression. 481 // If the variable size is unknown a fragment must be 482 // emitted to be safe. 483 if (!VarSize || FragmentSizeInBits < *VarSize) { 484 if (auto E = DIExpression::createFragmentExpression( 485 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 486 Expr = *E; 487 else 488 return; 489 } 490 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 491 NGV->addDebugInfo(NGVE); 492 } 493 } 494 495 /// Perform scalar replacement of aggregates on the specified global variable. 496 /// This opens the door for other optimizations by exposing the behavior of the 497 /// program in a more fine-grained way. We have determined that this 498 /// transformation is safe already. We return the first global variable we 499 /// insert so that the caller can reprocess it. 500 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 501 // Make sure this global only has simple uses that we can SRA. 502 if (!CanDoGlobalSRA(GV)) 503 return nullptr; 504 505 assert(GV->hasLocalLinkage()); 506 Constant *Init = GV->getInitializer(); 507 Type *Ty = Init->getType(); 508 509 std::map<unsigned, GlobalVariable *> NewGlobals; 510 511 // Get the alignment of the global, either explicit or target-specific. 512 Align StartAlignment = 513 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 514 515 // Loop over all users and create replacement variables for used aggregate 516 // elements. 517 for (User *GEP : GV->users()) { 518 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 519 Instruction::GetElementPtr) || 520 isa<GetElementPtrInst>(GEP)) && 521 "NonGEP CE's are not SRAable!"); 522 523 // Ignore the 1th operand, which has to be zero or else the program is quite 524 // broken (undefined). Get the 2nd operand, which is the structure or array 525 // index. 526 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 527 if (NewGlobals.count(ElementIdx) == 1) 528 continue; // we`ve already created replacement variable 529 assert(NewGlobals.count(ElementIdx) == 0); 530 531 Type *ElTy = nullptr; 532 if (StructType *STy = dyn_cast<StructType>(Ty)) 533 ElTy = STy->getElementType(ElementIdx); 534 else 535 ElTy = GetSRASequentialElementType(Ty); 536 assert(ElTy); 537 538 Constant *In = Init->getAggregateElement(ElementIdx); 539 assert(In && "Couldn't get element of initializer?"); 540 541 GlobalVariable *NGV = new GlobalVariable( 542 ElTy, false, GlobalVariable::InternalLinkage, In, 543 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 544 GV->getType()->getAddressSpace()); 545 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 546 NGV->copyAttributesFrom(GV); 547 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 548 549 if (StructType *STy = dyn_cast<StructType>(Ty)) { 550 const StructLayout &Layout = *DL.getStructLayout(STy); 551 552 // Calculate the known alignment of the field. If the original aggregate 553 // had 256 byte alignment for example, something might depend on that: 554 // propagate info to each field. 555 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 556 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 557 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 558 NGV->setAlignment(NewAlign); 559 560 // Copy over the debug info for the variable. 561 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 562 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 563 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size); 564 } else { 565 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 566 Align EltAlign = DL.getABITypeAlign(ElTy); 567 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 568 569 // Calculate the known alignment of the field. If the original aggregate 570 // had 256 byte alignment for example, something might depend on that: 571 // propagate info to each field. 572 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 573 if (NewAlign > EltAlign) 574 NGV->setAlignment(NewAlign); 575 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 576 FragmentSizeInBits); 577 } 578 } 579 580 if (NewGlobals.empty()) 581 return nullptr; 582 583 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 584 for (auto NewGlobalVar : NewGlobals) 585 Globals.push_back(NewGlobalVar.second); 586 587 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 588 589 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 590 591 // Loop over all of the uses of the global, replacing the constantexpr geps, 592 // with smaller constantexpr geps or direct references. 593 while (!GV->use_empty()) { 594 User *GEP = GV->user_back(); 595 assert(((isa<ConstantExpr>(GEP) && 596 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 597 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 598 599 // Ignore the 1th operand, which has to be zero or else the program is quite 600 // broken (undefined). Get the 2nd operand, which is the structure or array 601 // index. 602 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 603 assert(NewGlobals.count(ElementIdx) == 1); 604 605 Value *NewPtr = NewGlobals[ElementIdx]; 606 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 607 608 // Form a shorter GEP if needed. 609 if (GEP->getNumOperands() > 3) { 610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 611 SmallVector<Constant*, 8> Idxs; 612 Idxs.push_back(NullInt); 613 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 614 Idxs.push_back(CE->getOperand(i)); 615 NewPtr = 616 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 617 } else { 618 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 619 SmallVector<Value*, 8> Idxs; 620 Idxs.push_back(NullInt); 621 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 622 Idxs.push_back(GEPI->getOperand(i)); 623 NewPtr = GetElementPtrInst::Create( 624 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 625 GEPI); 626 } 627 } 628 GEP->replaceAllUsesWith(NewPtr); 629 630 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 631 GEPI->eraseFromParent(); 632 else 633 cast<ConstantExpr>(GEP)->destroyConstant(); 634 } 635 636 // Delete the old global, now that it is dead. 637 Globals.erase(GV); 638 ++NumSRA; 639 640 assert(NewGlobals.size() > 0); 641 return NewGlobals.begin()->second; 642 } 643 644 /// Return true if all users of the specified value will trap if the value is 645 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 646 /// reprocessing them. 647 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 648 SmallPtrSetImpl<const PHINode*> &PHIs) { 649 for (const User *U : V->users()) { 650 if (const Instruction *I = dyn_cast<Instruction>(U)) { 651 // If null pointer is considered valid, then all uses are non-trapping. 652 // Non address-space 0 globals have already been pruned by the caller. 653 if (NullPointerIsDefined(I->getFunction())) 654 return false; 655 } 656 if (isa<LoadInst>(U)) { 657 // Will trap. 658 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 659 if (SI->getOperand(0) == V) { 660 //cerr << "NONTRAPPING USE: " << *U; 661 return false; // Storing the value. 662 } 663 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 664 if (CI->getCalledOperand() != V) { 665 //cerr << "NONTRAPPING USE: " << *U; 666 return false; // Not calling the ptr 667 } 668 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 669 if (II->getCalledOperand() != V) { 670 //cerr << "NONTRAPPING USE: " << *U; 671 return false; // Not calling the ptr 672 } 673 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 674 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 675 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 676 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 677 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 678 // If we've already seen this phi node, ignore it, it has already been 679 // checked. 680 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 681 return false; 682 } else { 683 //cerr << "NONTRAPPING USE: " << *U; 684 return false; 685 } 686 } 687 return true; 688 } 689 690 /// Return true if all uses of any loads from GV will trap if the loaded value 691 /// is null. Note that this also permits comparisons of the loaded value 692 /// against null, as a special case. 693 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 694 for (const User *U : GV->users()) 695 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 696 SmallPtrSet<const PHINode*, 8> PHIs; 697 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 698 return false; 699 } else if (isa<StoreInst>(U)) { 700 // Ignore stores to the global. 701 } else { 702 // We don't know or understand this user, bail out. 703 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 704 return false; 705 } 706 return true; 707 } 708 709 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 710 bool Changed = false; 711 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 712 Instruction *I = cast<Instruction>(*UI++); 713 // Uses are non-trapping if null pointer is considered valid. 714 // Non address-space 0 globals are already pruned by the caller. 715 if (NullPointerIsDefined(I->getFunction())) 716 return false; 717 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 718 LI->setOperand(0, NewV); 719 Changed = true; 720 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 721 if (SI->getOperand(1) == V) { 722 SI->setOperand(1, NewV); 723 Changed = true; 724 } 725 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 726 CallBase *CB = cast<CallBase>(I); 727 if (CB->getCalledOperand() == V) { 728 // Calling through the pointer! Turn into a direct call, but be careful 729 // that the pointer is not also being passed as an argument. 730 CB->setCalledOperand(NewV); 731 Changed = true; 732 bool PassedAsArg = false; 733 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 734 if (CB->getArgOperand(i) == V) { 735 PassedAsArg = true; 736 CB->setArgOperand(i, NewV); 737 } 738 739 if (PassedAsArg) { 740 // Being passed as an argument also. Be careful to not invalidate UI! 741 UI = V->user_begin(); 742 } 743 } 744 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 745 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 746 ConstantExpr::getCast(CI->getOpcode(), 747 NewV, CI->getType())); 748 if (CI->use_empty()) { 749 Changed = true; 750 CI->eraseFromParent(); 751 } 752 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 753 // Should handle GEP here. 754 SmallVector<Constant*, 8> Idxs; 755 Idxs.reserve(GEPI->getNumOperands()-1); 756 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 757 i != e; ++i) 758 if (Constant *C = dyn_cast<Constant>(*i)) 759 Idxs.push_back(C); 760 else 761 break; 762 if (Idxs.size() == GEPI->getNumOperands()-1) 763 Changed |= OptimizeAwayTrappingUsesOfValue( 764 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 765 NewV, Idxs)); 766 if (GEPI->use_empty()) { 767 Changed = true; 768 GEPI->eraseFromParent(); 769 } 770 } 771 } 772 773 return Changed; 774 } 775 776 /// The specified global has only one non-null value stored into it. If there 777 /// are uses of the loaded value that would trap if the loaded value is 778 /// dynamically null, then we know that they cannot be reachable with a null 779 /// optimize away the load. 780 static bool OptimizeAwayTrappingUsesOfLoads( 781 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 782 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 783 bool Changed = false; 784 785 // Keep track of whether we are able to remove all the uses of the global 786 // other than the store that defines it. 787 bool AllNonStoreUsesGone = true; 788 789 // Replace all uses of loads with uses of uses of the stored value. 790 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 791 User *GlobalUser = *GUI++; 792 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 793 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 794 // If we were able to delete all uses of the loads 795 if (LI->use_empty()) { 796 LI->eraseFromParent(); 797 Changed = true; 798 } else { 799 AllNonStoreUsesGone = false; 800 } 801 } else if (isa<StoreInst>(GlobalUser)) { 802 // Ignore the store that stores "LV" to the global. 803 assert(GlobalUser->getOperand(1) == GV && 804 "Must be storing *to* the global"); 805 } else { 806 AllNonStoreUsesGone = false; 807 808 // If we get here we could have other crazy uses that are transitively 809 // loaded. 810 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 811 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 812 isa<BitCastInst>(GlobalUser) || 813 isa<GetElementPtrInst>(GlobalUser)) && 814 "Only expect load and stores!"); 815 } 816 } 817 818 if (Changed) { 819 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 820 << "\n"); 821 ++NumGlobUses; 822 } 823 824 // If we nuked all of the loads, then none of the stores are needed either, 825 // nor is the global. 826 if (AllNonStoreUsesGone) { 827 if (isLeakCheckerRoot(GV)) { 828 Changed |= CleanupPointerRootUsers(GV, GetTLI); 829 } else { 830 Changed = true; 831 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 832 } 833 if (GV->use_empty()) { 834 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 835 Changed = true; 836 GV->eraseFromParent(); 837 ++NumDeleted; 838 } 839 } 840 return Changed; 841 } 842 843 /// Walk the use list of V, constant folding all of the instructions that are 844 /// foldable. 845 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 846 TargetLibraryInfo *TLI) { 847 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 848 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 849 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 850 I->replaceAllUsesWith(NewC); 851 852 // Advance UI to the next non-I use to avoid invalidating it! 853 // Instructions could multiply use V. 854 while (UI != E && *UI == I) 855 ++UI; 856 if (isInstructionTriviallyDead(I, TLI)) 857 I->eraseFromParent(); 858 } 859 } 860 861 /// This function takes the specified global variable, and transforms the 862 /// program as if it always contained the result of the specified malloc. 863 /// Because it is always the result of the specified malloc, there is no reason 864 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 865 /// loads of GV as uses of the new global. 866 static GlobalVariable * 867 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 868 ConstantInt *NElements, const DataLayout &DL, 869 TargetLibraryInfo *TLI) { 870 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 871 << '\n'); 872 873 Type *GlobalType; 874 if (NElements->getZExtValue() == 1) 875 GlobalType = AllocTy; 876 else 877 // If we have an array allocation, the global variable is of an array. 878 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 879 880 // Create the new global variable. The contents of the malloc'd memory is 881 // undefined, so initialize with an undef value. 882 GlobalVariable *NewGV = new GlobalVariable( 883 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 884 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 885 GV->getThreadLocalMode()); 886 887 // If there are bitcast users of the malloc (which is typical, usually we have 888 // a malloc + bitcast) then replace them with uses of the new global. Update 889 // other users to use the global as well. 890 BitCastInst *TheBC = nullptr; 891 while (!CI->use_empty()) { 892 Instruction *User = cast<Instruction>(CI->user_back()); 893 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 894 if (BCI->getType() == NewGV->getType()) { 895 BCI->replaceAllUsesWith(NewGV); 896 BCI->eraseFromParent(); 897 } else { 898 BCI->setOperand(0, NewGV); 899 } 900 } else { 901 if (!TheBC) 902 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 903 User->replaceUsesOfWith(CI, TheBC); 904 } 905 } 906 907 Constant *RepValue = NewGV; 908 if (NewGV->getType() != GV->getValueType()) 909 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 910 911 // If there is a comparison against null, we will insert a global bool to 912 // keep track of whether the global was initialized yet or not. 913 GlobalVariable *InitBool = 914 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 915 GlobalValue::InternalLinkage, 916 ConstantInt::getFalse(GV->getContext()), 917 GV->getName()+".init", GV->getThreadLocalMode()); 918 bool InitBoolUsed = false; 919 920 // Loop over all uses of GV, processing them in turn. 921 while (!GV->use_empty()) { 922 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 923 // The global is initialized when the store to it occurs. 924 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 925 Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI); 926 SI->eraseFromParent(); 927 continue; 928 } 929 930 LoadInst *LI = cast<LoadInst>(GV->user_back()); 931 while (!LI->use_empty()) { 932 Use &LoadUse = *LI->use_begin(); 933 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 934 if (!ICI) { 935 LoadUse = RepValue; 936 continue; 937 } 938 939 // Replace the cmp X, 0 with a use of the bool value. 940 // Sink the load to where the compare was, if atomic rules allow us to. 941 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 942 InitBool->getName() + ".val", false, Align(1), 943 LI->getOrdering(), LI->getSyncScopeID(), 944 LI->isUnordered() ? (Instruction *)ICI : LI); 945 InitBoolUsed = true; 946 switch (ICI->getPredicate()) { 947 default: llvm_unreachable("Unknown ICmp Predicate!"); 948 case ICmpInst::ICMP_ULT: 949 case ICmpInst::ICMP_SLT: // X < null -> always false 950 LV = ConstantInt::getFalse(GV->getContext()); 951 break; 952 case ICmpInst::ICMP_ULE: 953 case ICmpInst::ICMP_SLE: 954 case ICmpInst::ICMP_EQ: 955 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 956 break; 957 case ICmpInst::ICMP_NE: 958 case ICmpInst::ICMP_UGE: 959 case ICmpInst::ICMP_SGE: 960 case ICmpInst::ICMP_UGT: 961 case ICmpInst::ICMP_SGT: 962 break; // no change. 963 } 964 ICI->replaceAllUsesWith(LV); 965 ICI->eraseFromParent(); 966 } 967 LI->eraseFromParent(); 968 } 969 970 // If the initialization boolean was used, insert it, otherwise delete it. 971 if (!InitBoolUsed) { 972 while (!InitBool->use_empty()) // Delete initializations 973 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 974 delete InitBool; 975 } else 976 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 977 978 // Now the GV is dead, nuke it and the malloc.. 979 GV->eraseFromParent(); 980 CI->eraseFromParent(); 981 982 // To further other optimizations, loop over all users of NewGV and try to 983 // constant prop them. This will promote GEP instructions with constant 984 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 985 ConstantPropUsersOf(NewGV, DL, TLI); 986 if (RepValue != NewGV) 987 ConstantPropUsersOf(RepValue, DL, TLI); 988 989 return NewGV; 990 } 991 992 /// Scan the use-list of V checking to make sure that there are no complex uses 993 /// of V. We permit simple things like dereferencing the pointer, but not 994 /// storing through the address, unless it is to the specified global. 995 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 996 const GlobalVariable *GV, 997 SmallPtrSetImpl<const PHINode*> &PHIs) { 998 for (const User *U : V->users()) { 999 const Instruction *Inst = cast<Instruction>(U); 1000 1001 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 1002 continue; // Fine, ignore. 1003 } 1004 1005 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1006 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 1007 return false; // Storing the pointer itself... bad. 1008 continue; // Otherwise, storing through it, or storing into GV... fine. 1009 } 1010 1011 // Must index into the array and into the struct. 1012 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 1013 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 1014 return false; 1015 continue; 1016 } 1017 1018 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1019 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1020 // cycles. 1021 if (PHIs.insert(PN).second) 1022 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1023 return false; 1024 continue; 1025 } 1026 1027 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1028 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1029 return false; 1030 continue; 1031 } 1032 1033 return false; 1034 } 1035 return true; 1036 } 1037 1038 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1039 /// allocation into loads from the global and uses of the resultant pointer. 1040 /// Further, delete the store into GV. This assumes that these value pass the 1041 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1042 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1043 GlobalVariable *GV) { 1044 while (!Alloc->use_empty()) { 1045 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1046 Instruction *InsertPt = U; 1047 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1048 // If this is the store of the allocation into the global, remove it. 1049 if (SI->getOperand(1) == GV) { 1050 SI->eraseFromParent(); 1051 continue; 1052 } 1053 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1054 // Insert the load in the corresponding predecessor, not right before the 1055 // PHI. 1056 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1057 } else if (isa<BitCastInst>(U)) { 1058 // Must be bitcast between the malloc and store to initialize the global. 1059 ReplaceUsesOfMallocWithGlobal(U, GV); 1060 U->eraseFromParent(); 1061 continue; 1062 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1063 // If this is a "GEP bitcast" and the user is a store to the global, then 1064 // just process it as a bitcast. 1065 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1066 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1067 if (SI->getOperand(1) == GV) { 1068 // Must be bitcast GEP between the malloc and store to initialize 1069 // the global. 1070 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1071 GEPI->eraseFromParent(); 1072 continue; 1073 } 1074 } 1075 1076 // Insert a load from the global, and use it instead of the malloc. 1077 Value *NL = 1078 new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt); 1079 U->replaceUsesOfWith(Alloc, NL); 1080 } 1081 } 1082 1083 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1084 /// perform heap SRA on. This permits GEP's that index through the array and 1085 /// struct field, icmps of null, and PHIs. 1086 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1087 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1088 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1089 // We permit two users of the load: setcc comparing against the null 1090 // pointer, and a getelementptr of a specific form. 1091 for (const User *U : V->users()) { 1092 const Instruction *UI = cast<Instruction>(U); 1093 1094 // Comparison against null is ok. 1095 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1096 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1097 return false; 1098 continue; 1099 } 1100 1101 // getelementptr is also ok, but only a simple form. 1102 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1103 // Must index into the array and into the struct. 1104 if (GEPI->getNumOperands() < 3) 1105 return false; 1106 1107 // Otherwise the GEP is ok. 1108 continue; 1109 } 1110 1111 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1112 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1113 // This means some phi nodes are dependent on each other. 1114 // Avoid infinite looping! 1115 return false; 1116 if (!LoadUsingPHIs.insert(PN).second) 1117 // If we have already analyzed this PHI, then it is safe. 1118 continue; 1119 1120 // Make sure all uses of the PHI are simple enough to transform. 1121 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1122 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1123 return false; 1124 1125 continue; 1126 } 1127 1128 // Otherwise we don't know what this is, not ok. 1129 return false; 1130 } 1131 1132 return true; 1133 } 1134 1135 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1136 /// return true. 1137 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1138 Instruction *StoredVal) { 1139 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1140 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1141 for (const User *U : GV->users()) 1142 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1143 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1144 LoadUsingPHIsPerLoad)) 1145 return false; 1146 LoadUsingPHIsPerLoad.clear(); 1147 } 1148 1149 // If we reach here, we know that all uses of the loads and transitive uses 1150 // (through PHI nodes) are simple enough to transform. However, we don't know 1151 // that all inputs the to the PHI nodes are in the same equivalence sets. 1152 // Check to verify that all operands of the PHIs are either PHIS that can be 1153 // transformed, loads from GV, or MI itself. 1154 for (const PHINode *PN : LoadUsingPHIs) { 1155 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1156 Value *InVal = PN->getIncomingValue(op); 1157 1158 // PHI of the stored value itself is ok. 1159 if (InVal == StoredVal) continue; 1160 1161 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1162 // One of the PHIs in our set is (optimistically) ok. 1163 if (LoadUsingPHIs.count(InPN)) 1164 continue; 1165 return false; 1166 } 1167 1168 // Load from GV is ok. 1169 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1170 if (LI->getOperand(0) == GV) 1171 continue; 1172 1173 // UNDEF? NULL? 1174 1175 // Anything else is rejected. 1176 return false; 1177 } 1178 } 1179 1180 return true; 1181 } 1182 1183 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1184 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1185 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1186 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1187 1188 if (FieldNo >= FieldVals.size()) 1189 FieldVals.resize(FieldNo+1); 1190 1191 // If we already have this value, just reuse the previously scalarized 1192 // version. 1193 if (Value *FieldVal = FieldVals[FieldNo]) 1194 return FieldVal; 1195 1196 // Depending on what instruction this is, we have several cases. 1197 Value *Result; 1198 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1199 // This is a scalarized version of the load from the global. Just create 1200 // a new Load of the scalarized global. 1201 Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo, 1202 InsertedScalarizedValues, PHIsToRewrite); 1203 Result = new LoadInst(V->getType()->getPointerElementType(), V, 1204 LI->getName() + ".f" + Twine(FieldNo), LI); 1205 } else { 1206 PHINode *PN = cast<PHINode>(V); 1207 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1208 // field. 1209 1210 PointerType *PTy = cast<PointerType>(PN->getType()); 1211 StructType *ST = cast<StructType>(PTy->getElementType()); 1212 1213 unsigned AS = PTy->getAddressSpace(); 1214 PHINode *NewPN = 1215 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1216 PN->getNumIncomingValues(), 1217 PN->getName()+".f"+Twine(FieldNo), PN); 1218 Result = NewPN; 1219 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1220 } 1221 1222 return FieldVals[FieldNo] = Result; 1223 } 1224 1225 /// Given a load instruction and a value derived from the load, rewrite the 1226 /// derived value to use the HeapSRoA'd load. 1227 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1228 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1229 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1230 // If this is a comparison against null, handle it. 1231 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1232 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1233 // If we have a setcc of the loaded pointer, we can use a setcc of any 1234 // field. 1235 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1236 InsertedScalarizedValues, PHIsToRewrite); 1237 1238 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1239 Constant::getNullValue(NPtr->getType()), 1240 SCI->getName()); 1241 SCI->replaceAllUsesWith(New); 1242 SCI->eraseFromParent(); 1243 return; 1244 } 1245 1246 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1247 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1248 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1249 && "Unexpected GEPI!"); 1250 1251 // Load the pointer for this field. 1252 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1253 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1254 InsertedScalarizedValues, PHIsToRewrite); 1255 1256 // Create the new GEP idx vector. 1257 SmallVector<Value*, 8> GEPIdx; 1258 GEPIdx.push_back(GEPI->getOperand(1)); 1259 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1260 1261 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1262 GEPI->getName(), GEPI); 1263 GEPI->replaceAllUsesWith(NGEPI); 1264 GEPI->eraseFromParent(); 1265 return; 1266 } 1267 1268 // Recursively transform the users of PHI nodes. This will lazily create the 1269 // PHIs that are needed for individual elements. Keep track of what PHIs we 1270 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1271 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1272 // already been seen first by another load, so its uses have already been 1273 // processed. 1274 PHINode *PN = cast<PHINode>(LoadUser); 1275 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1276 std::vector<Value *>())).second) 1277 return; 1278 1279 // If this is the first time we've seen this PHI, recursively process all 1280 // users. 1281 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1282 Instruction *User = cast<Instruction>(*UI++); 1283 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1284 } 1285 } 1286 1287 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1288 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1289 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1290 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1291 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1292 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1293 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1294 Instruction *User = cast<Instruction>(*UI++); 1295 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1296 } 1297 1298 if (Load->use_empty()) { 1299 Load->eraseFromParent(); 1300 InsertedScalarizedValues.erase(Load); 1301 } 1302 } 1303 1304 /// CI is an allocation of an array of structures. Break it up into multiple 1305 /// allocations of arrays of the fields. 1306 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1307 Value *NElems, const DataLayout &DL, 1308 const TargetLibraryInfo *TLI) { 1309 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI 1310 << '\n'); 1311 Type *MAT = getMallocAllocatedType(CI, TLI); 1312 StructType *STy = cast<StructType>(MAT); 1313 1314 // There is guaranteed to be at least one use of the malloc (storing 1315 // it into GV). If there are other uses, change them to be uses of 1316 // the global to simplify later code. This also deletes the store 1317 // into GV. 1318 ReplaceUsesOfMallocWithGlobal(CI, GV); 1319 1320 // Okay, at this point, there are no users of the malloc. Insert N 1321 // new mallocs at the same place as CI, and N globals. 1322 std::vector<Value *> FieldGlobals; 1323 std::vector<Value *> FieldMallocs; 1324 1325 SmallVector<OperandBundleDef, 1> OpBundles; 1326 CI->getOperandBundlesAsDefs(OpBundles); 1327 1328 unsigned AS = GV->getType()->getPointerAddressSpace(); 1329 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1330 Type *FieldTy = STy->getElementType(FieldNo); 1331 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1332 1333 GlobalVariable *NGV = new GlobalVariable( 1334 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1335 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1336 nullptr, GV->getThreadLocalMode()); 1337 NGV->copyAttributesFrom(GV); 1338 FieldGlobals.push_back(NGV); 1339 1340 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1341 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1342 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1343 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1344 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1345 ConstantInt::get(IntPtrTy, TypeSize), 1346 NElems, OpBundles, nullptr, 1347 CI->getName() + ".f" + Twine(FieldNo)); 1348 FieldMallocs.push_back(NMI); 1349 new StoreInst(NMI, NGV, CI); 1350 } 1351 1352 // The tricky aspect of this transformation is handling the case when malloc 1353 // fails. In the original code, malloc failing would set the result pointer 1354 // of malloc to null. In this case, some mallocs could succeed and others 1355 // could fail. As such, we emit code that looks like this: 1356 // F0 = malloc(field0) 1357 // F1 = malloc(field1) 1358 // F2 = malloc(field2) 1359 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1360 // if (F0) { free(F0); F0 = 0; } 1361 // if (F1) { free(F1); F1 = 0; } 1362 // if (F2) { free(F2); F2 = 0; } 1363 // } 1364 // The malloc can also fail if its argument is too large. 1365 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1366 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1367 ConstantZero, "isneg"); 1368 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1369 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1370 Constant::getNullValue(FieldMallocs[i]->getType()), 1371 "isnull"); 1372 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1373 } 1374 1375 // Split the basic block at the old malloc. 1376 BasicBlock *OrigBB = CI->getParent(); 1377 BasicBlock *ContBB = 1378 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1379 1380 // Create the block to check the first condition. Put all these blocks at the 1381 // end of the function as they are unlikely to be executed. 1382 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1383 "malloc_ret_null", 1384 OrigBB->getParent()); 1385 1386 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1387 // branch on RunningOr. 1388 OrigBB->getTerminator()->eraseFromParent(); 1389 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1390 1391 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1392 // pointer, because some may be null while others are not. 1393 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1394 Value *GVVal = 1395 new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(), 1396 FieldGlobals[i], "tmp", NullPtrBlock); 1397 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1398 Constant::getNullValue(GVVal->getType())); 1399 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1400 OrigBB->getParent()); 1401 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1402 OrigBB->getParent()); 1403 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1404 Cmp, NullPtrBlock); 1405 1406 // Fill in FreeBlock. 1407 CallInst::CreateFree(GVVal, OpBundles, BI); 1408 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1409 FreeBlock); 1410 BranchInst::Create(NextBlock, FreeBlock); 1411 1412 NullPtrBlock = NextBlock; 1413 } 1414 1415 BranchInst::Create(ContBB, NullPtrBlock); 1416 1417 // CI is no longer needed, remove it. 1418 CI->eraseFromParent(); 1419 1420 /// As we process loads, if we can't immediately update all uses of the load, 1421 /// keep track of what scalarized loads are inserted for a given load. 1422 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1423 InsertedScalarizedValues[GV] = FieldGlobals; 1424 1425 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1426 1427 // Okay, the malloc site is completely handled. All of the uses of GV are now 1428 // loads, and all uses of those loads are simple. Rewrite them to use loads 1429 // of the per-field globals instead. 1430 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1431 Instruction *User = cast<Instruction>(*UI++); 1432 1433 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1434 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1435 continue; 1436 } 1437 1438 // Must be a store of null. 1439 StoreInst *SI = cast<StoreInst>(User); 1440 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1441 "Unexpected heap-sra user!"); 1442 1443 // Insert a store of null into each global. 1444 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1445 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1446 Constant *Null = Constant::getNullValue(ValTy); 1447 new StoreInst(Null, FieldGlobals[i], SI); 1448 } 1449 // Erase the original store. 1450 SI->eraseFromParent(); 1451 } 1452 1453 // While we have PHIs that are interesting to rewrite, do it. 1454 while (!PHIsToRewrite.empty()) { 1455 PHINode *PN = PHIsToRewrite.back().first; 1456 unsigned FieldNo = PHIsToRewrite.back().second; 1457 PHIsToRewrite.pop_back(); 1458 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1459 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1460 1461 // Add all the incoming values. This can materialize more phis. 1462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1463 Value *InVal = PN->getIncomingValue(i); 1464 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1465 PHIsToRewrite); 1466 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1467 } 1468 } 1469 1470 // Drop all inter-phi links and any loads that made it this far. 1471 for (DenseMap<Value *, std::vector<Value *>>::iterator 1472 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1473 I != E; ++I) { 1474 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1475 PN->dropAllReferences(); 1476 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1477 LI->dropAllReferences(); 1478 } 1479 1480 // Delete all the phis and loads now that inter-references are dead. 1481 for (DenseMap<Value *, std::vector<Value *>>::iterator 1482 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1483 I != E; ++I) { 1484 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1485 PN->eraseFromParent(); 1486 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1487 LI->eraseFromParent(); 1488 } 1489 1490 // The old global is now dead, remove it. 1491 GV->eraseFromParent(); 1492 1493 ++NumHeapSRA; 1494 return cast<GlobalVariable>(FieldGlobals[0]); 1495 } 1496 1497 /// This function is called when we see a pointer global variable with a single 1498 /// value stored it that is a malloc or cast of malloc. 1499 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1500 Type *AllocTy, 1501 AtomicOrdering Ordering, 1502 const DataLayout &DL, 1503 TargetLibraryInfo *TLI) { 1504 // If this is a malloc of an abstract type, don't touch it. 1505 if (!AllocTy->isSized()) 1506 return false; 1507 1508 // We can't optimize this global unless all uses of it are *known* to be 1509 // of the malloc value, not of the null initializer value (consider a use 1510 // that compares the global's value against zero to see if the malloc has 1511 // been reached). To do this, we check to see if all uses of the global 1512 // would trap if the global were null: this proves that they must all 1513 // happen after the malloc. 1514 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1515 return false; 1516 1517 // We can't optimize this if the malloc itself is used in a complex way, 1518 // for example, being stored into multiple globals. This allows the 1519 // malloc to be stored into the specified global, loaded icmp'd, and 1520 // GEP'd. These are all things we could transform to using the global 1521 // for. 1522 SmallPtrSet<const PHINode*, 8> PHIs; 1523 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1524 return false; 1525 1526 // If we have a global that is only initialized with a fixed size malloc, 1527 // transform the program to use global memory instead of malloc'd memory. 1528 // This eliminates dynamic allocation, avoids an indirection accessing the 1529 // data, and exposes the resultant global to further GlobalOpt. 1530 // We cannot optimize the malloc if we cannot determine malloc array size. 1531 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1532 if (!NElems) 1533 return false; 1534 1535 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1536 // Restrict this transformation to only working on small allocations 1537 // (2048 bytes currently), as we don't want to introduce a 16M global or 1538 // something. 1539 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1540 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1541 return true; 1542 } 1543 1544 // If the allocation is an array of structures, consider transforming this 1545 // into multiple malloc'd arrays, one for each field. This is basically 1546 // SRoA for malloc'd memory. 1547 1548 if (Ordering != AtomicOrdering::NotAtomic) 1549 return false; 1550 1551 // If this is an allocation of a fixed size array of structs, analyze as a 1552 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1553 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1554 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1555 AllocTy = AT->getElementType(); 1556 1557 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1558 if (!AllocSTy) 1559 return false; 1560 1561 // This the structure has an unreasonable number of fields, leave it 1562 // alone. 1563 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1564 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1565 1566 // If this is a fixed size array, transform the Malloc to be an alloc of 1567 // structs. malloc [100 x struct],1 -> malloc struct, 100 1568 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1569 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1570 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1571 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1572 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1573 SmallVector<OperandBundleDef, 1> OpBundles; 1574 CI->getOperandBundlesAsDefs(OpBundles); 1575 Instruction *Malloc = 1576 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1577 OpBundles, nullptr, CI->getName()); 1578 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1579 CI->replaceAllUsesWith(Cast); 1580 CI->eraseFromParent(); 1581 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1582 CI = cast<CallInst>(BCI->getOperand(0)); 1583 else 1584 CI = cast<CallInst>(Malloc); 1585 } 1586 1587 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1588 TLI); 1589 return true; 1590 } 1591 1592 return false; 1593 } 1594 1595 // Try to optimize globals based on the knowledge that only one value (besides 1596 // its initializer) is ever stored to the global. 1597 static bool 1598 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1599 AtomicOrdering Ordering, const DataLayout &DL, 1600 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1601 // Ignore no-op GEPs and bitcasts. 1602 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1603 1604 // If we are dealing with a pointer global that is initialized to null and 1605 // only has one (non-null) value stored into it, then we can optimize any 1606 // users of the loaded value (often calls and loads) that would trap if the 1607 // value was null. 1608 if (GV->getInitializer()->getType()->isPointerTy() && 1609 GV->getInitializer()->isNullValue() && 1610 !NullPointerIsDefined( 1611 nullptr /* F */, 1612 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1613 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1614 if (GV->getInitializer()->getType() != SOVC->getType()) 1615 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1616 1617 // Optimize away any trapping uses of the loaded value. 1618 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1619 return true; 1620 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1621 auto *TLI = &GetTLI(*CI->getFunction()); 1622 Type *MallocType = getMallocAllocatedType(CI, TLI); 1623 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1624 Ordering, DL, TLI)) 1625 return true; 1626 } 1627 } 1628 1629 return false; 1630 } 1631 1632 /// At this point, we have learned that the only two values ever stored into GV 1633 /// are its initializer and OtherVal. See if we can shrink the global into a 1634 /// boolean and select between the two values whenever it is used. This exposes 1635 /// the values to other scalar optimizations. 1636 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1637 Type *GVElType = GV->getValueType(); 1638 1639 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1640 // an FP value, pointer or vector, don't do this optimization because a select 1641 // between them is very expensive and unlikely to lead to later 1642 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1643 // where v1 and v2 both require constant pool loads, a big loss. 1644 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1645 GVElType->isFloatingPointTy() || 1646 GVElType->isPointerTy() || GVElType->isVectorTy()) 1647 return false; 1648 1649 // Walk the use list of the global seeing if all the uses are load or store. 1650 // If there is anything else, bail out. 1651 for (User *U : GV->users()) 1652 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1653 return false; 1654 1655 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1656 1657 // Create the new global, initializing it to false. 1658 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1659 false, 1660 GlobalValue::InternalLinkage, 1661 ConstantInt::getFalse(GV->getContext()), 1662 GV->getName()+".b", 1663 GV->getThreadLocalMode(), 1664 GV->getType()->getAddressSpace()); 1665 NewGV->copyAttributesFrom(GV); 1666 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1667 1668 Constant *InitVal = GV->getInitializer(); 1669 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1670 "No reason to shrink to bool!"); 1671 1672 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1673 GV->getDebugInfo(GVs); 1674 1675 // If initialized to zero and storing one into the global, we can use a cast 1676 // instead of a select to synthesize the desired value. 1677 bool IsOneZero = false; 1678 bool EmitOneOrZero = true; 1679 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1680 if (CI && CI->getValue().getActiveBits() <= 64) { 1681 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1682 1683 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1684 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1685 uint64_t ValInit = CIInit->getZExtValue(); 1686 uint64_t ValOther = CI->getZExtValue(); 1687 uint64_t ValMinus = ValOther - ValInit; 1688 1689 for(auto *GVe : GVs){ 1690 DIGlobalVariable *DGV = GVe->getVariable(); 1691 DIExpression *E = GVe->getExpression(); 1692 const DataLayout &DL = GV->getParent()->getDataLayout(); 1693 unsigned SizeInOctets = 1694 DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8; 1695 1696 // It is expected that the address of global optimized variable is on 1697 // top of the stack. After optimization, value of that variable will 1698 // be ether 0 for initial value or 1 for other value. The following 1699 // expression should return constant integer value depending on the 1700 // value at global object address: 1701 // val * (ValOther - ValInit) + ValInit: 1702 // DW_OP_deref DW_OP_constu <ValMinus> 1703 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1704 SmallVector<uint64_t, 12> Ops = { 1705 dwarf::DW_OP_deref_size, SizeInOctets, 1706 dwarf::DW_OP_constu, ValMinus, 1707 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1708 dwarf::DW_OP_plus}; 1709 bool WithStackValue = true; 1710 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1711 DIGlobalVariableExpression *DGVE = 1712 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1713 NewGV->addDebugInfo(DGVE); 1714 } 1715 EmitOneOrZero = false; 1716 } 1717 } 1718 1719 if (EmitOneOrZero) { 1720 // FIXME: This will only emit address for debugger on which will 1721 // be written only 0 or 1. 1722 for(auto *GV : GVs) 1723 NewGV->addDebugInfo(GV); 1724 } 1725 1726 while (!GV->use_empty()) { 1727 Instruction *UI = cast<Instruction>(GV->user_back()); 1728 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1729 // Change the store into a boolean store. 1730 bool StoringOther = SI->getOperand(0) == OtherVal; 1731 // Only do this if we weren't storing a loaded value. 1732 Value *StoreVal; 1733 if (StoringOther || SI->getOperand(0) == InitVal) { 1734 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1735 StoringOther); 1736 } else { 1737 // Otherwise, we are storing a previously loaded copy. To do this, 1738 // change the copy from copying the original value to just copying the 1739 // bool. 1740 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1741 1742 // If we've already replaced the input, StoredVal will be a cast or 1743 // select instruction. If not, it will be a load of the original 1744 // global. 1745 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1746 assert(LI->getOperand(0) == GV && "Not a copy!"); 1747 // Insert a new load, to preserve the saved value. 1748 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1749 LI->getName() + ".b", false, Align(1), 1750 LI->getOrdering(), LI->getSyncScopeID(), LI); 1751 } else { 1752 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1753 "This is not a form that we understand!"); 1754 StoreVal = StoredVal->getOperand(0); 1755 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1756 } 1757 } 1758 StoreInst *NSI = 1759 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1760 SI->getSyncScopeID(), SI); 1761 NSI->setDebugLoc(SI->getDebugLoc()); 1762 } else { 1763 // Change the load into a load of bool then a select. 1764 LoadInst *LI = cast<LoadInst>(UI); 1765 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1766 LI->getName() + ".b", false, Align(1), 1767 LI->getOrdering(), LI->getSyncScopeID(), LI); 1768 Instruction *NSI; 1769 if (IsOneZero) 1770 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1771 else 1772 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1773 NSI->takeName(LI); 1774 // Since LI is split into two instructions, NLI and NSI both inherit the 1775 // same DebugLoc 1776 NLI->setDebugLoc(LI->getDebugLoc()); 1777 NSI->setDebugLoc(LI->getDebugLoc()); 1778 LI->replaceAllUsesWith(NSI); 1779 } 1780 UI->eraseFromParent(); 1781 } 1782 1783 // Retain the name of the old global variable. People who are debugging their 1784 // programs may expect these variables to be named the same. 1785 NewGV->takeName(GV); 1786 GV->eraseFromParent(); 1787 return true; 1788 } 1789 1790 static bool deleteIfDead( 1791 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1792 GV.removeDeadConstantUsers(); 1793 1794 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1795 return false; 1796 1797 if (const Comdat *C = GV.getComdat()) 1798 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1799 return false; 1800 1801 bool Dead; 1802 if (auto *F = dyn_cast<Function>(&GV)) 1803 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1804 else 1805 Dead = GV.use_empty(); 1806 if (!Dead) 1807 return false; 1808 1809 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1810 GV.eraseFromParent(); 1811 ++NumDeleted; 1812 return true; 1813 } 1814 1815 static bool isPointerValueDeadOnEntryToFunction( 1816 const Function *F, GlobalValue *GV, 1817 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1818 // Find all uses of GV. We expect them all to be in F, and if we can't 1819 // identify any of the uses we bail out. 1820 // 1821 // On each of these uses, identify if the memory that GV points to is 1822 // used/required/live at the start of the function. If it is not, for example 1823 // if the first thing the function does is store to the GV, the GV can 1824 // possibly be demoted. 1825 // 1826 // We don't do an exhaustive search for memory operations - simply look 1827 // through bitcasts as they're quite common and benign. 1828 const DataLayout &DL = GV->getParent()->getDataLayout(); 1829 SmallVector<LoadInst *, 4> Loads; 1830 SmallVector<StoreInst *, 4> Stores; 1831 for (auto *U : GV->users()) { 1832 if (Operator::getOpcode(U) == Instruction::BitCast) { 1833 for (auto *UU : U->users()) { 1834 if (auto *LI = dyn_cast<LoadInst>(UU)) 1835 Loads.push_back(LI); 1836 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1837 Stores.push_back(SI); 1838 else 1839 return false; 1840 } 1841 continue; 1842 } 1843 1844 Instruction *I = dyn_cast<Instruction>(U); 1845 if (!I) 1846 return false; 1847 assert(I->getParent()->getParent() == F); 1848 1849 if (auto *LI = dyn_cast<LoadInst>(I)) 1850 Loads.push_back(LI); 1851 else if (auto *SI = dyn_cast<StoreInst>(I)) 1852 Stores.push_back(SI); 1853 else 1854 return false; 1855 } 1856 1857 // We have identified all uses of GV into loads and stores. Now check if all 1858 // of them are known not to depend on the value of the global at the function 1859 // entry point. We do this by ensuring that every load is dominated by at 1860 // least one store. 1861 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1862 1863 // The below check is quadratic. Check we're not going to do too many tests. 1864 // FIXME: Even though this will always have worst-case quadratic time, we 1865 // could put effort into minimizing the average time by putting stores that 1866 // have been shown to dominate at least one load at the beginning of the 1867 // Stores array, making subsequent dominance checks more likely to succeed 1868 // early. 1869 // 1870 // The threshold here is fairly large because global->local demotion is a 1871 // very powerful optimization should it fire. 1872 const unsigned Threshold = 100; 1873 if (Loads.size() * Stores.size() > Threshold) 1874 return false; 1875 1876 for (auto *L : Loads) { 1877 auto *LTy = L->getType(); 1878 if (none_of(Stores, [&](const StoreInst *S) { 1879 auto *STy = S->getValueOperand()->getType(); 1880 // The load is only dominated by the store if DomTree says so 1881 // and the number of bits loaded in L is less than or equal to 1882 // the number of bits stored in S. 1883 return DT.dominates(S, L) && 1884 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1885 })) 1886 return false; 1887 } 1888 // All loads have known dependences inside F, so the global can be localized. 1889 return true; 1890 } 1891 1892 /// C may have non-instruction users. Can all of those users be turned into 1893 /// instructions? 1894 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1895 // We don't do this exhaustively. The most common pattern that we really need 1896 // to care about is a constant GEP or constant bitcast - so just looking 1897 // through one single ConstantExpr. 1898 // 1899 // The set of constants that this function returns true for must be able to be 1900 // handled by makeAllConstantUsesInstructions. 1901 for (auto *U : C->users()) { 1902 if (isa<Instruction>(U)) 1903 continue; 1904 if (!isa<ConstantExpr>(U)) 1905 // Non instruction, non-constantexpr user; cannot convert this. 1906 return false; 1907 for (auto *UU : U->users()) 1908 if (!isa<Instruction>(UU)) 1909 // A constantexpr used by another constant. We don't try and recurse any 1910 // further but just bail out at this point. 1911 return false; 1912 } 1913 1914 return true; 1915 } 1916 1917 /// C may have non-instruction users, and 1918 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1919 /// non-instruction users to instructions. 1920 static void makeAllConstantUsesInstructions(Constant *C) { 1921 SmallVector<ConstantExpr*,4> Users; 1922 for (auto *U : C->users()) { 1923 if (isa<ConstantExpr>(U)) 1924 Users.push_back(cast<ConstantExpr>(U)); 1925 else 1926 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1927 // should not have returned true for C. 1928 assert( 1929 isa<Instruction>(U) && 1930 "Can't transform non-constantexpr non-instruction to instruction!"); 1931 } 1932 1933 SmallVector<Value*,4> UUsers; 1934 for (auto *U : Users) { 1935 UUsers.clear(); 1936 for (auto *UU : U->users()) 1937 UUsers.push_back(UU); 1938 for (auto *UU : UUsers) { 1939 Instruction *UI = cast<Instruction>(UU); 1940 Instruction *NewU = U->getAsInstruction(); 1941 NewU->insertBefore(UI); 1942 UI->replaceUsesOfWith(U, NewU); 1943 } 1944 // We've replaced all the uses, so destroy the constant. (destroyConstant 1945 // will update value handles and metadata.) 1946 U->destroyConstant(); 1947 } 1948 } 1949 1950 /// Analyze the specified global variable and optimize 1951 /// it if possible. If we make a change, return true. 1952 static bool 1953 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1954 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1955 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1956 auto &DL = GV->getParent()->getDataLayout(); 1957 // If this is a first class global and has only one accessing function and 1958 // this function is non-recursive, we replace the global with a local alloca 1959 // in this function. 1960 // 1961 // NOTE: It doesn't make sense to promote non-single-value types since we 1962 // are just replacing static memory to stack memory. 1963 // 1964 // If the global is in different address space, don't bring it to stack. 1965 if (!GS.HasMultipleAccessingFunctions && 1966 GS.AccessingFunction && 1967 GV->getValueType()->isSingleValueType() && 1968 GV->getType()->getAddressSpace() == 0 && 1969 !GV->isExternallyInitialized() && 1970 allNonInstructionUsersCanBeMadeInstructions(GV) && 1971 GS.AccessingFunction->doesNotRecurse() && 1972 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1973 LookupDomTree)) { 1974 const DataLayout &DL = GV->getParent()->getDataLayout(); 1975 1976 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1977 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1978 ->getEntryBlock().begin()); 1979 Type *ElemTy = GV->getValueType(); 1980 // FIXME: Pass Global's alignment when globals have alignment 1981 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1982 GV->getName(), &FirstI); 1983 if (!isa<UndefValue>(GV->getInitializer())) 1984 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1985 1986 makeAllConstantUsesInstructions(GV); 1987 1988 GV->replaceAllUsesWith(Alloca); 1989 GV->eraseFromParent(); 1990 ++NumLocalized; 1991 return true; 1992 } 1993 1994 // If the global is never loaded (but may be stored to), it is dead. 1995 // Delete it now. 1996 if (!GS.IsLoaded) { 1997 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1998 1999 bool Changed; 2000 if (isLeakCheckerRoot(GV)) { 2001 // Delete any constant stores to the global. 2002 Changed = CleanupPointerRootUsers(GV, GetTLI); 2003 } else { 2004 // Delete any stores we can find to the global. We may not be able to 2005 // make it completely dead though. 2006 Changed = 2007 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2008 } 2009 2010 // If the global is dead now, delete it. 2011 if (GV->use_empty()) { 2012 GV->eraseFromParent(); 2013 ++NumDeleted; 2014 Changed = true; 2015 } 2016 return Changed; 2017 2018 } 2019 if (GS.StoredType <= GlobalStatus::InitializerStored) { 2020 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 2021 2022 // Don't actually mark a global constant if it's atomic because atomic loads 2023 // are implemented by a trivial cmpxchg in some edge-cases and that usually 2024 // requires write access to the variable even if it's not actually changed. 2025 if (GS.Ordering == AtomicOrdering::NotAtomic) 2026 GV->setConstant(true); 2027 2028 // Clean up any obviously simplifiable users now. 2029 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2030 2031 // If the global is dead now, just nuke it. 2032 if (GV->use_empty()) { 2033 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 2034 << "all users and delete global!\n"); 2035 GV->eraseFromParent(); 2036 ++NumDeleted; 2037 return true; 2038 } 2039 2040 // Fall through to the next check; see if we can optimize further. 2041 ++NumMarked; 2042 } 2043 if (!GV->getInitializer()->getType()->isSingleValueType()) { 2044 const DataLayout &DL = GV->getParent()->getDataLayout(); 2045 if (SRAGlobal(GV, DL)) 2046 return true; 2047 } 2048 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 2049 // If the initial value for the global was an undef value, and if only 2050 // one other value was stored into it, we can just change the 2051 // initializer to be the stored value, then delete all stores to the 2052 // global. This allows us to mark it constant. 2053 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2054 if (isa<UndefValue>(GV->getInitializer())) { 2055 // Change the initial value here. 2056 GV->setInitializer(SOVConstant); 2057 2058 // Clean up any obviously simplifiable users now. 2059 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2060 2061 if (GV->use_empty()) { 2062 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2063 << "simplify all users and delete global!\n"); 2064 GV->eraseFromParent(); 2065 ++NumDeleted; 2066 } 2067 ++NumSubstitute; 2068 return true; 2069 } 2070 2071 // Try to optimize globals based on the knowledge that only one value 2072 // (besides its initializer) is ever stored to the global. 2073 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 2074 GetTLI)) 2075 return true; 2076 2077 // Otherwise, if the global was not a boolean, we can shrink it to be a 2078 // boolean. 2079 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2080 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2081 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2082 ++NumShrunkToBool; 2083 return true; 2084 } 2085 } 2086 } 2087 } 2088 2089 return false; 2090 } 2091 2092 /// Analyze the specified global variable and optimize it if possible. If we 2093 /// make a change, return true. 2094 static bool 2095 processGlobal(GlobalValue &GV, 2096 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2097 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2098 if (GV.getName().startswith("llvm.")) 2099 return false; 2100 2101 GlobalStatus GS; 2102 2103 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2104 return false; 2105 2106 bool Changed = false; 2107 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2108 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2109 : GlobalValue::UnnamedAddr::Local; 2110 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2111 GV.setUnnamedAddr(NewUnnamedAddr); 2112 NumUnnamed++; 2113 Changed = true; 2114 } 2115 } 2116 2117 // Do more involved optimizations if the global is internal. 2118 if (!GV.hasLocalLinkage()) 2119 return Changed; 2120 2121 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2122 if (!GVar) 2123 return Changed; 2124 2125 if (GVar->isConstant() || !GVar->hasInitializer()) 2126 return Changed; 2127 2128 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 2129 } 2130 2131 /// Walk all of the direct calls of the specified function, changing them to 2132 /// FastCC. 2133 static void ChangeCalleesToFastCall(Function *F) { 2134 for (User *U : F->users()) { 2135 if (isa<BlockAddress>(U)) 2136 continue; 2137 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 2138 } 2139 } 2140 2141 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 2142 Attribute::AttrKind A) { 2143 unsigned AttrIndex; 2144 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 2145 return Attrs.removeAttribute(C, AttrIndex, A); 2146 return Attrs; 2147 } 2148 2149 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 2150 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 2151 for (User *U : F->users()) { 2152 if (isa<BlockAddress>(U)) 2153 continue; 2154 CallBase *CB = cast<CallBase>(U); 2155 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 2156 } 2157 } 2158 2159 /// Return true if this is a calling convention that we'd like to change. The 2160 /// idea here is that we don't want to mess with the convention if the user 2161 /// explicitly requested something with performance implications like coldcc, 2162 /// GHC, or anyregcc. 2163 static bool hasChangeableCC(Function *F) { 2164 CallingConv::ID CC = F->getCallingConv(); 2165 2166 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2167 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2168 return false; 2169 2170 // FIXME: Change CC for the whole chain of musttail calls when possible. 2171 // 2172 // Can't change CC of the function that either has musttail calls, or is a 2173 // musttail callee itself 2174 for (User *U : F->users()) { 2175 if (isa<BlockAddress>(U)) 2176 continue; 2177 CallInst* CI = dyn_cast<CallInst>(U); 2178 if (!CI) 2179 continue; 2180 2181 if (CI->isMustTailCall()) 2182 return false; 2183 } 2184 2185 for (BasicBlock &BB : *F) 2186 if (BB.getTerminatingMustTailCall()) 2187 return false; 2188 2189 return true; 2190 } 2191 2192 /// Return true if the block containing the call site has a BlockFrequency of 2193 /// less than ColdCCRelFreq% of the entry block. 2194 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 2195 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2196 auto *CallSiteBB = CB.getParent(); 2197 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2198 auto CallerEntryFreq = 2199 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 2200 return CallSiteFreq < CallerEntryFreq * ColdProb; 2201 } 2202 2203 // This function checks if the input function F is cold at all call sites. It 2204 // also looks each call site's containing function, returning false if the 2205 // caller function contains other non cold calls. The input vector AllCallsCold 2206 // contains a list of functions that only have call sites in cold blocks. 2207 static bool 2208 isValidCandidateForColdCC(Function &F, 2209 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2210 const std::vector<Function *> &AllCallsCold) { 2211 2212 if (F.user_empty()) 2213 return false; 2214 2215 for (User *U : F.users()) { 2216 if (isa<BlockAddress>(U)) 2217 continue; 2218 2219 CallBase &CB = cast<CallBase>(*U); 2220 Function *CallerFunc = CB.getParent()->getParent(); 2221 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2222 if (!isColdCallSite(CB, CallerBFI)) 2223 return false; 2224 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2225 if (It == AllCallsCold.end()) 2226 return false; 2227 } 2228 return true; 2229 } 2230 2231 static void changeCallSitesToColdCC(Function *F) { 2232 for (User *U : F->users()) { 2233 if (isa<BlockAddress>(U)) 2234 continue; 2235 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 2236 } 2237 } 2238 2239 // This function iterates over all the call instructions in the input Function 2240 // and checks that all call sites are in cold blocks and are allowed to use the 2241 // coldcc calling convention. 2242 static bool 2243 hasOnlyColdCalls(Function &F, 2244 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2245 for (BasicBlock &BB : F) { 2246 for (Instruction &I : BB) { 2247 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2248 // Skip over isline asm instructions since they aren't function calls. 2249 if (CI->isInlineAsm()) 2250 continue; 2251 Function *CalledFn = CI->getCalledFunction(); 2252 if (!CalledFn) 2253 return false; 2254 if (!CalledFn->hasLocalLinkage()) 2255 return false; 2256 // Skip over instrinsics since they won't remain as function calls. 2257 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2258 continue; 2259 // Check if it's valid to use coldcc calling convention. 2260 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2261 CalledFn->hasAddressTaken()) 2262 return false; 2263 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2264 if (!isColdCallSite(*CI, CallerBFI)) 2265 return false; 2266 } 2267 } 2268 } 2269 return true; 2270 } 2271 2272 static bool hasMustTailCallers(Function *F) { 2273 for (User *U : F->users()) { 2274 CallBase *CB = dyn_cast<CallBase>(U); 2275 if (!CB) { 2276 assert(isa<BlockAddress>(U) && 2277 "Expected either CallBase or BlockAddress"); 2278 continue; 2279 } 2280 if (CB->isMustTailCall()) 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 static bool hasInvokeCallers(Function *F) { 2287 for (User *U : F->users()) 2288 if (isa<InvokeInst>(U)) 2289 return true; 2290 return false; 2291 } 2292 2293 static void RemovePreallocated(Function *F) { 2294 RemoveAttribute(F, Attribute::Preallocated); 2295 2296 auto *M = F->getParent(); 2297 2298 IRBuilder<> Builder(M->getContext()); 2299 2300 // Cannot modify users() while iterating over it, so make a copy. 2301 SmallVector<User *, 4> PreallocatedCalls(F->users()); 2302 for (User *U : PreallocatedCalls) { 2303 CallBase *CB = dyn_cast<CallBase>(U); 2304 if (!CB) 2305 continue; 2306 2307 assert( 2308 !CB->isMustTailCall() && 2309 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 2310 // Create copy of call without "preallocated" operand bundle. 2311 SmallVector<OperandBundleDef, 1> OpBundles; 2312 CB->getOperandBundlesAsDefs(OpBundles); 2313 CallBase *PreallocatedSetup = nullptr; 2314 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 2315 if (It->getTag() == "preallocated") { 2316 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 2317 OpBundles.erase(It); 2318 break; 2319 } 2320 } 2321 assert(PreallocatedSetup && "Did not find preallocated bundle"); 2322 uint64_t ArgCount = 2323 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 2324 2325 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 2326 "Unknown indirect call type"); 2327 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 2328 CB->replaceAllUsesWith(NewCB); 2329 NewCB->takeName(CB); 2330 CB->eraseFromParent(); 2331 2332 Builder.SetInsertPoint(PreallocatedSetup); 2333 auto *StackSave = 2334 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 2335 2336 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 2337 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 2338 StackSave); 2339 2340 // Replace @llvm.call.preallocated.arg() with alloca. 2341 // Cannot modify users() while iterating over it, so make a copy. 2342 // @llvm.call.preallocated.arg() can be called with the same index multiple 2343 // times. So for each @llvm.call.preallocated.arg(), we see if we have 2344 // already created a Value* for the index, and if not, create an alloca and 2345 // bitcast right after the @llvm.call.preallocated.setup() so that it 2346 // dominates all uses. 2347 SmallVector<Value *, 2> ArgAllocas(ArgCount); 2348 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 2349 for (auto *User : PreallocatedArgs) { 2350 auto *UseCall = cast<CallBase>(User); 2351 assert(UseCall->getCalledFunction()->getIntrinsicID() == 2352 Intrinsic::call_preallocated_arg && 2353 "preallocated token use was not a llvm.call.preallocated.arg"); 2354 uint64_t AllocArgIndex = 2355 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 2356 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 2357 if (!AllocaReplacement) { 2358 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 2359 auto *ArgType = UseCall 2360 ->getAttribute(AttributeList::FunctionIndex, 2361 Attribute::Preallocated) 2362 .getValueAsType(); 2363 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 2364 Builder.SetInsertPoint(InsertBefore); 2365 auto *Alloca = 2366 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 2367 auto *BitCast = Builder.CreateBitCast( 2368 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 2369 ArgAllocas[AllocArgIndex] = BitCast; 2370 AllocaReplacement = BitCast; 2371 } 2372 2373 UseCall->replaceAllUsesWith(AllocaReplacement); 2374 UseCall->eraseFromParent(); 2375 } 2376 // Remove @llvm.call.preallocated.setup(). 2377 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 2378 } 2379 } 2380 2381 static bool 2382 OptimizeFunctions(Module &M, 2383 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2384 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2385 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2386 function_ref<DominatorTree &(Function &)> LookupDomTree, 2387 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2388 2389 bool Changed = false; 2390 2391 std::vector<Function *> AllCallsCold; 2392 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2393 Function *F = &*FI++; 2394 if (hasOnlyColdCalls(*F, GetBFI)) 2395 AllCallsCold.push_back(F); 2396 } 2397 2398 // Optimize functions. 2399 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2400 Function *F = &*FI++; 2401 2402 // Don't perform global opt pass on naked functions; we don't want fast 2403 // calling conventions for naked functions. 2404 if (F->hasFnAttribute(Attribute::Naked)) 2405 continue; 2406 2407 // Functions without names cannot be referenced outside this module. 2408 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2409 F->setLinkage(GlobalValue::InternalLinkage); 2410 2411 if (deleteIfDead(*F, NotDiscardableComdats)) { 2412 Changed = true; 2413 continue; 2414 } 2415 2416 // LLVM's definition of dominance allows instructions that are cyclic 2417 // in unreachable blocks, e.g.: 2418 // %pat = select i1 %condition, @global, i16* %pat 2419 // because any instruction dominates an instruction in a block that's 2420 // not reachable from entry. 2421 // So, remove unreachable blocks from the function, because a) there's 2422 // no point in analyzing them and b) GlobalOpt should otherwise grow 2423 // some more complicated logic to break these cycles. 2424 // Removing unreachable blocks might invalidate the dominator so we 2425 // recalculate it. 2426 if (!F->isDeclaration()) { 2427 if (removeUnreachableBlocks(*F)) { 2428 auto &DT = LookupDomTree(*F); 2429 DT.recalculate(*F); 2430 Changed = true; 2431 } 2432 } 2433 2434 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 2435 2436 if (!F->hasLocalLinkage()) 2437 continue; 2438 2439 // If we have an inalloca parameter that we can safely remove the 2440 // inalloca attribute from, do so. This unlocks optimizations that 2441 // wouldn't be safe in the presence of inalloca. 2442 // FIXME: We should also hoist alloca affected by this to the entry 2443 // block if possible. 2444 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2445 !F->hasAddressTaken() && !hasMustTailCallers(F)) { 2446 RemoveAttribute(F, Attribute::InAlloca); 2447 Changed = true; 2448 } 2449 2450 // FIXME: handle invokes 2451 // FIXME: handle musttail 2452 if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 2453 if (!F->hasAddressTaken() && !hasMustTailCallers(F) && 2454 !hasInvokeCallers(F)) { 2455 RemovePreallocated(F); 2456 Changed = true; 2457 } 2458 continue; 2459 } 2460 2461 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2462 NumInternalFunc++; 2463 TargetTransformInfo &TTI = GetTTI(*F); 2464 // Change the calling convention to coldcc if either stress testing is 2465 // enabled or the target would like to use coldcc on functions which are 2466 // cold at all call sites and the callers contain no other non coldcc 2467 // calls. 2468 if (EnableColdCCStressTest || 2469 (TTI.useColdCCForColdCall(*F) && 2470 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 2471 F->setCallingConv(CallingConv::Cold); 2472 changeCallSitesToColdCC(F); 2473 Changed = true; 2474 NumColdCC++; 2475 } 2476 } 2477 2478 if (hasChangeableCC(F) && !F->isVarArg() && 2479 !F->hasAddressTaken()) { 2480 // If this function has a calling convention worth changing, is not a 2481 // varargs function, and is only called directly, promote it to use the 2482 // Fast calling convention. 2483 F->setCallingConv(CallingConv::Fast); 2484 ChangeCalleesToFastCall(F); 2485 ++NumFastCallFns; 2486 Changed = true; 2487 } 2488 2489 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2490 !F->hasAddressTaken()) { 2491 // The function is not used by a trampoline intrinsic, so it is safe 2492 // to remove the 'nest' attribute. 2493 RemoveAttribute(F, Attribute::Nest); 2494 ++NumNestRemoved; 2495 Changed = true; 2496 } 2497 } 2498 return Changed; 2499 } 2500 2501 static bool 2502 OptimizeGlobalVars(Module &M, 2503 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2504 function_ref<DominatorTree &(Function &)> LookupDomTree, 2505 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2506 bool Changed = false; 2507 2508 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2509 GVI != E; ) { 2510 GlobalVariable *GV = &*GVI++; 2511 // Global variables without names cannot be referenced outside this module. 2512 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2513 GV->setLinkage(GlobalValue::InternalLinkage); 2514 // Simplify the initializer. 2515 if (GV->hasInitializer()) 2516 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2517 auto &DL = M.getDataLayout(); 2518 // TLI is not used in the case of a Constant, so use default nullptr 2519 // for that optional parameter, since we don't have a Function to 2520 // provide GetTLI anyway. 2521 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2522 if (New != C) 2523 GV->setInitializer(New); 2524 } 2525 2526 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2527 Changed = true; 2528 continue; 2529 } 2530 2531 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2532 } 2533 return Changed; 2534 } 2535 2536 /// Evaluate a piece of a constantexpr store into a global initializer. This 2537 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2538 /// GEP operands of Addr [0, OpNo) have been stepped into. 2539 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2540 ConstantExpr *Addr, unsigned OpNo) { 2541 // Base case of the recursion. 2542 if (OpNo == Addr->getNumOperands()) { 2543 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2544 return Val; 2545 } 2546 2547 SmallVector<Constant*, 32> Elts; 2548 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2549 // Break up the constant into its elements. 2550 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2551 Elts.push_back(Init->getAggregateElement(i)); 2552 2553 // Replace the element that we are supposed to. 2554 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2555 unsigned Idx = CU->getZExtValue(); 2556 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2557 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2558 2559 // Return the modified struct. 2560 return ConstantStruct::get(STy, Elts); 2561 } 2562 2563 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2564 uint64_t NumElts; 2565 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2566 NumElts = ATy->getNumElements(); 2567 else 2568 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2569 2570 // Break up the array into elements. 2571 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2572 Elts.push_back(Init->getAggregateElement(i)); 2573 2574 assert(CI->getZExtValue() < NumElts); 2575 Elts[CI->getZExtValue()] = 2576 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2577 2578 if (Init->getType()->isArrayTy()) 2579 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2580 return ConstantVector::get(Elts); 2581 } 2582 2583 /// We have decided that Addr (which satisfies the predicate 2584 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2585 static void CommitValueTo(Constant *Val, Constant *Addr) { 2586 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2587 assert(GV->hasInitializer()); 2588 GV->setInitializer(Val); 2589 return; 2590 } 2591 2592 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2593 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2594 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2595 } 2596 2597 /// Given a map of address -> value, where addresses are expected to be some form 2598 /// of either a global or a constant GEP, set the initializer for the address to 2599 /// be the value. This performs mostly the same function as CommitValueTo() 2600 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2601 /// case where the set of addresses are GEPs sharing the same underlying global, 2602 /// processing the GEPs in batches rather than individually. 2603 /// 2604 /// To give an example, consider the following C++ code adapted from the clang 2605 /// regression tests: 2606 /// struct S { 2607 /// int n = 10; 2608 /// int m = 2 * n; 2609 /// S(int a) : n(a) {} 2610 /// }; 2611 /// 2612 /// template<typename T> 2613 /// struct U { 2614 /// T *r = &q; 2615 /// T q = 42; 2616 /// U *p = this; 2617 /// }; 2618 /// 2619 /// U<S> e; 2620 /// 2621 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2622 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2623 /// members. This batch algorithm will simply use general CommitValueTo() method 2624 /// to handle the complex nested S struct initialization of 'q', before 2625 /// processing the outermost members in a single batch. Using CommitValueTo() to 2626 /// handle member in the outer struct is inefficient when the struct/array is 2627 /// very large as we end up creating and destroy constant arrays for each 2628 /// initialization. 2629 /// For the above case, we expect the following IR to be generated: 2630 /// 2631 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2632 /// %struct.S = type { i32, i32 } 2633 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2634 /// i64 0, i32 1), 2635 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2636 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2637 /// constant expression, while the other two elements of @e are "simple". 2638 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2639 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2640 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2641 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2642 SimpleCEs.reserve(Mem.size()); 2643 2644 for (const auto &I : Mem) { 2645 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2646 GVs.push_back(std::make_pair(GV, I.second)); 2647 } else { 2648 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2649 // We don't handle the deeply recursive case using the batch method. 2650 if (GEP->getNumOperands() > 3) 2651 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2652 else 2653 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2654 } 2655 } 2656 2657 // The algorithm below doesn't handle cases like nested structs, so use the 2658 // slower fully general method if we have to. 2659 for (auto ComplexCE : ComplexCEs) 2660 CommitValueTo(ComplexCE.second, ComplexCE.first); 2661 2662 for (auto GVPair : GVs) { 2663 assert(GVPair.first->hasInitializer()); 2664 GVPair.first->setInitializer(GVPair.second); 2665 } 2666 2667 if (SimpleCEs.empty()) 2668 return; 2669 2670 // We cache a single global's initializer elements in the case where the 2671 // subsequent address/val pair uses the same one. This avoids throwing away and 2672 // rebuilding the constant struct/vector/array just because one element is 2673 // modified at a time. 2674 SmallVector<Constant *, 32> Elts; 2675 Elts.reserve(SimpleCEs.size()); 2676 GlobalVariable *CurrentGV = nullptr; 2677 2678 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2679 Constant *Init = GV->getInitializer(); 2680 Type *Ty = Init->getType(); 2681 if (Update) { 2682 if (CurrentGV) { 2683 assert(CurrentGV && "Expected a GV to commit to!"); 2684 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2685 // We have a valid cache that needs to be committed. 2686 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2687 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2688 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2689 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2690 else 2691 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2692 } 2693 if (CurrentGV == GV) 2694 return; 2695 // Need to clear and set up cache for new initializer. 2696 CurrentGV = GV; 2697 Elts.clear(); 2698 unsigned NumElts; 2699 if (auto *STy = dyn_cast<StructType>(Ty)) 2700 NumElts = STy->getNumElements(); 2701 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2702 NumElts = ATy->getNumElements(); 2703 else 2704 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2705 for (unsigned i = 0, e = NumElts; i != e; ++i) 2706 Elts.push_back(Init->getAggregateElement(i)); 2707 } 2708 }; 2709 2710 for (auto CEPair : SimpleCEs) { 2711 ConstantExpr *GEP = CEPair.first; 2712 Constant *Val = CEPair.second; 2713 2714 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2715 commitAndSetupCache(GV, GV != CurrentGV); 2716 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2717 Elts[CI->getZExtValue()] = Val; 2718 } 2719 // The last initializer in the list needs to be committed, others 2720 // will be committed on a new initializer being processed. 2721 commitAndSetupCache(CurrentGV, true); 2722 } 2723 2724 /// Evaluate static constructors in the function, if we can. Return true if we 2725 /// can, false otherwise. 2726 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2727 TargetLibraryInfo *TLI) { 2728 // Call the function. 2729 Evaluator Eval(DL, TLI); 2730 Constant *RetValDummy; 2731 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2732 SmallVector<Constant*, 0>()); 2733 2734 if (EvalSuccess) { 2735 ++NumCtorsEvaluated; 2736 2737 // We succeeded at evaluation: commit the result. 2738 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2739 << F->getName() << "' to " 2740 << Eval.getMutatedMemory().size() << " stores.\n"); 2741 BatchCommitValueTo(Eval.getMutatedMemory()); 2742 for (GlobalVariable *GV : Eval.getInvariants()) 2743 GV->setConstant(true); 2744 } 2745 2746 return EvalSuccess; 2747 } 2748 2749 static int compareNames(Constant *const *A, Constant *const *B) { 2750 Value *AStripped = (*A)->stripPointerCasts(); 2751 Value *BStripped = (*B)->stripPointerCasts(); 2752 return AStripped->getName().compare(BStripped->getName()); 2753 } 2754 2755 static void setUsedInitializer(GlobalVariable &V, 2756 const SmallPtrSetImpl<GlobalValue *> &Init) { 2757 if (Init.empty()) { 2758 V.eraseFromParent(); 2759 return; 2760 } 2761 2762 // Type of pointer to the array of pointers. 2763 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2764 2765 SmallVector<Constant *, 8> UsedArray; 2766 for (GlobalValue *GV : Init) { 2767 Constant *Cast 2768 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2769 UsedArray.push_back(Cast); 2770 } 2771 // Sort to get deterministic order. 2772 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2773 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2774 2775 Module *M = V.getParent(); 2776 V.removeFromParent(); 2777 GlobalVariable *NV = 2778 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2779 ConstantArray::get(ATy, UsedArray), ""); 2780 NV->takeName(&V); 2781 NV->setSection("llvm.metadata"); 2782 delete &V; 2783 } 2784 2785 namespace { 2786 2787 /// An easy to access representation of llvm.used and llvm.compiler.used. 2788 class LLVMUsed { 2789 SmallPtrSet<GlobalValue *, 8> Used; 2790 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2791 GlobalVariable *UsedV; 2792 GlobalVariable *CompilerUsedV; 2793 2794 public: 2795 LLVMUsed(Module &M) { 2796 UsedV = collectUsedGlobalVariables(M, Used, false); 2797 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2798 } 2799 2800 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2801 using used_iterator_range = iterator_range<iterator>; 2802 2803 iterator usedBegin() { return Used.begin(); } 2804 iterator usedEnd() { return Used.end(); } 2805 2806 used_iterator_range used() { 2807 return used_iterator_range(usedBegin(), usedEnd()); 2808 } 2809 2810 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2811 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2812 2813 used_iterator_range compilerUsed() { 2814 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2815 } 2816 2817 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2818 2819 bool compilerUsedCount(GlobalValue *GV) const { 2820 return CompilerUsed.count(GV); 2821 } 2822 2823 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2824 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2825 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2826 2827 bool compilerUsedInsert(GlobalValue *GV) { 2828 return CompilerUsed.insert(GV).second; 2829 } 2830 2831 void syncVariablesAndSets() { 2832 if (UsedV) 2833 setUsedInitializer(*UsedV, Used); 2834 if (CompilerUsedV) 2835 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2836 } 2837 }; 2838 2839 } // end anonymous namespace 2840 2841 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2842 if (GA.use_empty()) // No use at all. 2843 return false; 2844 2845 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2846 "We should have removed the duplicated " 2847 "element from llvm.compiler.used"); 2848 if (!GA.hasOneUse()) 2849 // Strictly more than one use. So at least one is not in llvm.used and 2850 // llvm.compiler.used. 2851 return true; 2852 2853 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2854 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2855 } 2856 2857 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2858 const LLVMUsed &U) { 2859 unsigned N = 2; 2860 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2861 "We should have removed the duplicated " 2862 "element from llvm.compiler.used"); 2863 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2864 ++N; 2865 return V.hasNUsesOrMore(N); 2866 } 2867 2868 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2869 if (!GA.hasLocalLinkage()) 2870 return true; 2871 2872 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2873 } 2874 2875 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2876 bool &RenameTarget) { 2877 RenameTarget = false; 2878 bool Ret = false; 2879 if (hasUseOtherThanLLVMUsed(GA, U)) 2880 Ret = true; 2881 2882 // If the alias is externally visible, we may still be able to simplify it. 2883 if (!mayHaveOtherReferences(GA, U)) 2884 return Ret; 2885 2886 // If the aliasee has internal linkage, give it the name and linkage 2887 // of the alias, and delete the alias. This turns: 2888 // define internal ... @f(...) 2889 // @a = alias ... @f 2890 // into: 2891 // define ... @a(...) 2892 Constant *Aliasee = GA.getAliasee(); 2893 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2894 if (!Target->hasLocalLinkage()) 2895 return Ret; 2896 2897 // Do not perform the transform if multiple aliases potentially target the 2898 // aliasee. This check also ensures that it is safe to replace the section 2899 // and other attributes of the aliasee with those of the alias. 2900 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2901 return Ret; 2902 2903 RenameTarget = true; 2904 return true; 2905 } 2906 2907 static bool 2908 OptimizeGlobalAliases(Module &M, 2909 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2910 bool Changed = false; 2911 LLVMUsed Used(M); 2912 2913 for (GlobalValue *GV : Used.used()) 2914 Used.compilerUsedErase(GV); 2915 2916 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2917 I != E;) { 2918 GlobalAlias *J = &*I++; 2919 2920 // Aliases without names cannot be referenced outside this module. 2921 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2922 J->setLinkage(GlobalValue::InternalLinkage); 2923 2924 if (deleteIfDead(*J, NotDiscardableComdats)) { 2925 Changed = true; 2926 continue; 2927 } 2928 2929 // If the alias can change at link time, nothing can be done - bail out. 2930 if (J->isInterposable()) 2931 continue; 2932 2933 Constant *Aliasee = J->getAliasee(); 2934 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2935 // We can't trivially replace the alias with the aliasee if the aliasee is 2936 // non-trivial in some way. 2937 // TODO: Try to handle non-zero GEPs of local aliasees. 2938 if (!Target) 2939 continue; 2940 Target->removeDeadConstantUsers(); 2941 2942 // Make all users of the alias use the aliasee instead. 2943 bool RenameTarget; 2944 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2945 continue; 2946 2947 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2948 ++NumAliasesResolved; 2949 Changed = true; 2950 2951 if (RenameTarget) { 2952 // Give the aliasee the name, linkage and other attributes of the alias. 2953 Target->takeName(&*J); 2954 Target->setLinkage(J->getLinkage()); 2955 Target->setDSOLocal(J->isDSOLocal()); 2956 Target->setVisibility(J->getVisibility()); 2957 Target->setDLLStorageClass(J->getDLLStorageClass()); 2958 2959 if (Used.usedErase(&*J)) 2960 Used.usedInsert(Target); 2961 2962 if (Used.compilerUsedErase(&*J)) 2963 Used.compilerUsedInsert(Target); 2964 } else if (mayHaveOtherReferences(*J, Used)) 2965 continue; 2966 2967 // Delete the alias. 2968 M.getAliasList().erase(J); 2969 ++NumAliasesRemoved; 2970 Changed = true; 2971 } 2972 2973 Used.syncVariablesAndSets(); 2974 2975 return Changed; 2976 } 2977 2978 static Function * 2979 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2980 // Hack to get a default TLI before we have actual Function. 2981 auto FuncIter = M.begin(); 2982 if (FuncIter == M.end()) 2983 return nullptr; 2984 auto *TLI = &GetTLI(*FuncIter); 2985 2986 LibFunc F = LibFunc_cxa_atexit; 2987 if (!TLI->has(F)) 2988 return nullptr; 2989 2990 Function *Fn = M.getFunction(TLI->getName(F)); 2991 if (!Fn) 2992 return nullptr; 2993 2994 // Now get the actual TLI for Fn. 2995 TLI = &GetTLI(*Fn); 2996 2997 // Make sure that the function has the correct prototype. 2998 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2999 return nullptr; 3000 3001 return Fn; 3002 } 3003 3004 /// Returns whether the given function is an empty C++ destructor and can 3005 /// therefore be eliminated. 3006 /// Note that we assume that other optimization passes have already simplified 3007 /// the code so we simply check for 'ret'. 3008 static bool cxxDtorIsEmpty(const Function &Fn) { 3009 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 3010 // nounwind, but that doesn't seem worth doing. 3011 if (Fn.isDeclaration()) 3012 return false; 3013 3014 for (auto &I : Fn.getEntryBlock()) { 3015 if (isa<DbgInfoIntrinsic>(I)) 3016 continue; 3017 if (isa<ReturnInst>(I)) 3018 return true; 3019 break; 3020 } 3021 return false; 3022 } 3023 3024 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 3025 /// Itanium C++ ABI p3.3.5: 3026 /// 3027 /// After constructing a global (or local static) object, that will require 3028 /// destruction on exit, a termination function is registered as follows: 3029 /// 3030 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3031 /// 3032 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3033 /// call f(p) when DSO d is unloaded, before all such termination calls 3034 /// registered before this one. It returns zero if registration is 3035 /// successful, nonzero on failure. 3036 3037 // This pass will look for calls to __cxa_atexit where the function is trivial 3038 // and remove them. 3039 bool Changed = false; 3040 3041 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 3042 I != E;) { 3043 // We're only interested in calls. Theoretically, we could handle invoke 3044 // instructions as well, but neither llvm-gcc nor clang generate invokes 3045 // to __cxa_atexit. 3046 CallInst *CI = dyn_cast<CallInst>(*I++); 3047 if (!CI) 3048 continue; 3049 3050 Function *DtorFn = 3051 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3052 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 3053 continue; 3054 3055 // Just remove the call. 3056 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3057 CI->eraseFromParent(); 3058 3059 ++NumCXXDtorsRemoved; 3060 3061 Changed |= true; 3062 } 3063 3064 return Changed; 3065 } 3066 3067 static bool optimizeGlobalsInModule( 3068 Module &M, const DataLayout &DL, 3069 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 3070 function_ref<TargetTransformInfo &(Function &)> GetTTI, 3071 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 3072 function_ref<DominatorTree &(Function &)> LookupDomTree) { 3073 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 3074 bool Changed = false; 3075 bool LocalChange = true; 3076 while (LocalChange) { 3077 LocalChange = false; 3078 3079 NotDiscardableComdats.clear(); 3080 for (const GlobalVariable &GV : M.globals()) 3081 if (const Comdat *C = GV.getComdat()) 3082 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 3083 NotDiscardableComdats.insert(C); 3084 for (Function &F : M) 3085 if (const Comdat *C = F.getComdat()) 3086 if (!F.isDefTriviallyDead()) 3087 NotDiscardableComdats.insert(C); 3088 for (GlobalAlias &GA : M.aliases()) 3089 if (const Comdat *C = GA.getComdat()) 3090 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 3091 NotDiscardableComdats.insert(C); 3092 3093 // Delete functions that are trivially dead, ccc -> fastcc 3094 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 3095 NotDiscardableComdats); 3096 3097 // Optimize global_ctors list. 3098 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 3099 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 3100 }); 3101 3102 // Optimize non-address-taken globals. 3103 LocalChange |= 3104 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 3105 3106 // Resolve aliases, when possible. 3107 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 3108 3109 // Try to remove trivial global destructors if they are not removed 3110 // already. 3111 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 3112 if (CXAAtExitFn) 3113 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3114 3115 Changed |= LocalChange; 3116 } 3117 3118 // TODO: Move all global ctors functions to the end of the module for code 3119 // layout. 3120 3121 return Changed; 3122 } 3123 3124 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3125 auto &DL = M.getDataLayout(); 3126 auto &FAM = 3127 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3128 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 3129 return FAM.getResult<DominatorTreeAnalysis>(F); 3130 }; 3131 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 3132 return FAM.getResult<TargetLibraryAnalysis>(F); 3133 }; 3134 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 3135 return FAM.getResult<TargetIRAnalysis>(F); 3136 }; 3137 3138 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 3139 return FAM.getResult<BlockFrequencyAnalysis>(F); 3140 }; 3141 3142 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 3143 return PreservedAnalyses::all(); 3144 return PreservedAnalyses::none(); 3145 } 3146 3147 namespace { 3148 3149 struct GlobalOptLegacyPass : public ModulePass { 3150 static char ID; // Pass identification, replacement for typeid 3151 3152 GlobalOptLegacyPass() : ModulePass(ID) { 3153 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 3154 } 3155 3156 bool runOnModule(Module &M) override { 3157 if (skipModule(M)) 3158 return false; 3159 3160 auto &DL = M.getDataLayout(); 3161 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 3162 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 3163 }; 3164 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 3165 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3166 }; 3167 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 3168 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3169 }; 3170 3171 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 3172 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 3173 }; 3174 3175 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 3176 LookupDomTree); 3177 } 3178 3179 void getAnalysisUsage(AnalysisUsage &AU) const override { 3180 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3181 AU.addRequired<TargetTransformInfoWrapperPass>(); 3182 AU.addRequired<DominatorTreeWrapperPass>(); 3183 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3184 } 3185 }; 3186 3187 } // end anonymous namespace 3188 3189 char GlobalOptLegacyPass::ID = 0; 3190 3191 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3192 "Global Variable Optimizer", false, false) 3193 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3194 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3195 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3196 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3197 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3198 "Global Variable Optimizer", false, false) 3199 3200 ModulePass *llvm::createGlobalOptimizerPass() { 3201 return new GlobalOptLegacyPass(); 3202 } 3203