xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/AtomicOrdering.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/IPO.h"
62 #include "llvm/Transforms/Utils/CtorUtils.h"
63 #include "llvm/Transforms/Utils/Evaluator.h"
64 #include "llvm/Transforms/Utils/GlobalStatus.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <cassert>
67 #include <cstdint>
68 #include <optional>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "globalopt"
75 
76 STATISTIC(NumMarked    , "Number of globals marked constant");
77 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
78 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
79 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
80 STATISTIC(NumDeleted   , "Number of globals deleted");
81 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
82 STATISTIC(NumLocalized , "Number of globals localized");
83 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
84 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
85 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
86 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
87 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
88 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
89 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
90 STATISTIC(NumInternalFunc, "Number of internal functions");
91 STATISTIC(NumColdCC, "Number of functions marked coldcc");
92 
93 static cl::opt<bool>
94     EnableColdCCStressTest("enable-coldcc-stress-test",
95                            cl::desc("Enable stress test of coldcc by adding "
96                                     "calling conv to all internal functions."),
97                            cl::init(false), cl::Hidden);
98 
99 static cl::opt<int> ColdCCRelFreq(
100     "coldcc-rel-freq", cl::Hidden, cl::init(2),
101     cl::desc(
102         "Maximum block frequency, expressed as a percentage of caller's "
103         "entry frequency, for a call site to be considered cold for enabling"
104         "coldcc"));
105 
106 /// Is this global variable possibly used by a leak checker as a root?  If so,
107 /// we might not really want to eliminate the stores to it.
108 static bool isLeakCheckerRoot(GlobalVariable *GV) {
109   // A global variable is a root if it is a pointer, or could plausibly contain
110   // a pointer.  There are two challenges; one is that we could have a struct
111   // the has an inner member which is a pointer.  We recurse through the type to
112   // detect these (up to a point).  The other is that we may actually be a union
113   // of a pointer and another type, and so our LLVM type is an integer which
114   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
115   // potentially contained here.
116 
117   if (GV->hasPrivateLinkage())
118     return false;
119 
120   SmallVector<Type *, 4> Types;
121   Types.push_back(GV->getValueType());
122 
123   unsigned Limit = 20;
124   do {
125     Type *Ty = Types.pop_back_val();
126     switch (Ty->getTypeID()) {
127       default: break;
128       case Type::PointerTyID:
129         return true;
130       case Type::FixedVectorTyID:
131       case Type::ScalableVectorTyID:
132         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
133           return true;
134         break;
135       case Type::ArrayTyID:
136         Types.push_back(cast<ArrayType>(Ty)->getElementType());
137         break;
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (Type *InnerTy : STy->elements()) {
142           if (isa<PointerType>(InnerTy)) return true;
143           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
144               isa<VectorType>(InnerTy))
145             Types.push_back(InnerTy);
146         }
147         break;
148       }
149     }
150     if (--Limit == 0) return true;
151   } while (!Types.empty());
152   return false;
153 }
154 
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
157 /// store.
158 static bool IsSafeComputationToRemove(
159     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
160   do {
161     if (isa<Constant>(V))
162       return true;
163     if (!V->hasOneUse())
164       return false;
165     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166         isa<GlobalValue>(V))
167       return false;
168     if (isAllocationFn(V, GetTLI))
169       return true;
170 
171     Instruction *I = cast<Instruction>(V);
172     if (I->mayHaveSideEffects())
173       return false;
174     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175       if (!GEP->hasAllConstantIndices())
176         return false;
177     } else if (I->getNumOperands() != 1) {
178       return false;
179     }
180 
181     V = I->getOperand(0);
182   } while (true);
183 }
184 
185 /// This GV is a pointer root.  Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
188 static bool
189 CleanupPointerRootUsers(GlobalVariable *GV,
190                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
191   // A brief explanation of leak checkers.  The goal is to find bugs where
192   // pointers are forgotten, causing an accumulating growth in memory
193   // usage over time.  The common strategy for leak checkers is to explicitly
194   // allow the memory pointed to by globals at exit.  This is popular because it
195   // also solves another problem where the main thread of a C++ program may shut
196   // down before other threads that are still expecting to use those globals. To
197   // handle that case, we expect the program may create a singleton and never
198   // destroy it.
199 
200   bool Changed = false;
201 
202   // If Dead[n].first is the only use of a malloc result, we can delete its
203   // chain of computation and the store to the global in Dead[n].second.
204   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
205 
206   SmallVector<User *> Worklist(GV->users());
207   // Constants can't be pointers to dynamically allocated memory.
208   while (!Worklist.empty()) {
209     User *U = Worklist.pop_back_val();
210     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
211       Value *V = SI->getValueOperand();
212       if (isa<Constant>(V)) {
213         Changed = true;
214         SI->eraseFromParent();
215       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
216         if (I->hasOneUse())
217           Dead.push_back(std::make_pair(I, SI));
218       }
219     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
220       if (isa<Constant>(MSI->getValue())) {
221         Changed = true;
222         MSI->eraseFromParent();
223       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
224         if (I->hasOneUse())
225           Dead.push_back(std::make_pair(I, MSI));
226       }
227     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
228       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
229       if (MemSrc && MemSrc->isConstant()) {
230         Changed = true;
231         MTI->eraseFromParent();
232       } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) {
233         if (I->hasOneUse())
234           Dead.push_back(std::make_pair(I, MTI));
235       }
236     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
237       if (isa<GEPOperator>(CE))
238         append_range(Worklist, CE->users());
239     }
240   }
241 
242   for (int i = 0, e = Dead.size(); i != e; ++i) {
243     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
244       Dead[i].second->eraseFromParent();
245       Instruction *I = Dead[i].first;
246       do {
247         if (isAllocationFn(I, GetTLI))
248           break;
249         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
250         if (!J)
251           break;
252         I->eraseFromParent();
253         I = J;
254       } while (true);
255       I->eraseFromParent();
256       Changed = true;
257     }
258   }
259 
260   GV->removeDeadConstantUsers();
261   return Changed;
262 }
263 
264 /// We just marked GV constant.  Loop over all users of the global, cleaning up
265 /// the obvious ones.  This is largely just a quick scan over the use list to
266 /// clean up the easy and obvious cruft.  This returns true if it made a change.
267 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
268                                        const DataLayout &DL) {
269   Constant *Init = GV->getInitializer();
270   SmallVector<User *, 8> WorkList(GV->users());
271   SmallPtrSet<User *, 8> Visited;
272   bool Changed = false;
273 
274   SmallVector<WeakTrackingVH> MaybeDeadInsts;
275   auto EraseFromParent = [&](Instruction *I) {
276     for (Value *Op : I->operands())
277       if (auto *OpI = dyn_cast<Instruction>(Op))
278         MaybeDeadInsts.push_back(OpI);
279     I->eraseFromParent();
280     Changed = true;
281   };
282   while (!WorkList.empty()) {
283     User *U = WorkList.pop_back_val();
284     if (!Visited.insert(U).second)
285       continue;
286 
287     if (auto *BO = dyn_cast<BitCastOperator>(U))
288       append_range(WorkList, BO->users());
289     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
290       append_range(WorkList, ASC->users());
291     else if (auto *GEP = dyn_cast<GEPOperator>(U))
292       append_range(WorkList, GEP->users());
293     else if (auto *LI = dyn_cast<LoadInst>(U)) {
294       // A load from a uniform value is always the same, regardless of any
295       // applied offset.
296       Type *Ty = LI->getType();
297       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
298         LI->replaceAllUsesWith(Res);
299         EraseFromParent(LI);
300         continue;
301       }
302 
303       Value *PtrOp = LI->getPointerOperand();
304       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
305       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
306           DL, Offset, /* AllowNonInbounds */ true);
307       if (PtrOp == GV) {
308         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
309           LI->replaceAllUsesWith(Value);
310           EraseFromParent(LI);
311         }
312       }
313     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
314       // Store must be unreachable or storing Init into the global.
315       EraseFromParent(SI);
316     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
317       if (getUnderlyingObject(MI->getRawDest()) == GV)
318         EraseFromParent(MI);
319     }
320   }
321 
322   Changed |=
323       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
324   GV->removeDeadConstantUsers();
325   return Changed;
326 }
327 
328 /// Part of the global at a specific offset, which is only accessed through
329 /// loads and stores with the given type.
330 struct GlobalPart {
331   Type *Ty;
332   Constant *Initializer = nullptr;
333   bool IsLoaded = false;
334   bool IsStored = false;
335 };
336 
337 /// Look at all uses of the global and determine which (offset, type) pairs it
338 /// can be split into.
339 static bool collectSRATypes(DenseMap<uint64_t, GlobalPart> &Parts,
340                             GlobalVariable *GV, const DataLayout &DL) {
341   SmallVector<Use *, 16> Worklist;
342   SmallPtrSet<Use *, 16> Visited;
343   auto AppendUses = [&](Value *V) {
344     for (Use &U : V->uses())
345       if (Visited.insert(&U).second)
346         Worklist.push_back(&U);
347   };
348   AppendUses(GV);
349   while (!Worklist.empty()) {
350     Use *U = Worklist.pop_back_val();
351     User *V = U->getUser();
352 
353     auto *GEP = dyn_cast<GEPOperator>(V);
354     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
355         (GEP && GEP->hasAllConstantIndices())) {
356       AppendUses(V);
357       continue;
358     }
359 
360     if (Value *Ptr = getLoadStorePointerOperand(V)) {
361       // This is storing the global address into somewhere, not storing into
362       // the global.
363       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
364         return false;
365 
366       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
367       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
368                                                    /* AllowNonInbounds */ true);
369       if (Ptr != GV || Offset.getActiveBits() >= 64)
370         return false;
371 
372       // TODO: We currently require that all accesses at a given offset must
373       // use the same type. This could be relaxed.
374       Type *Ty = getLoadStoreType(V);
375       const auto &[It, Inserted] =
376           Parts.try_emplace(Offset.getZExtValue(), GlobalPart{Ty});
377       if (Ty != It->second.Ty)
378         return false;
379 
380       if (Inserted) {
381         It->second.Initializer =
382             ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
383         if (!It->second.Initializer) {
384           LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
385                             << *GV << " with type " << *Ty << " at offset "
386                             << Offset.getZExtValue());
387           return false;
388         }
389       }
390 
391       // Scalable types not currently supported.
392       if (Ty->isScalableTy())
393         return false;
394 
395       auto IsStored = [](Value *V, Constant *Initializer) {
396         auto *SI = dyn_cast<StoreInst>(V);
397         if (!SI)
398           return false;
399 
400         Constant *StoredConst = dyn_cast<Constant>(SI->getOperand(0));
401         if (!StoredConst)
402           return true;
403 
404         // Don't consider stores that only write the initializer value.
405         return Initializer != StoredConst;
406       };
407 
408       It->second.IsLoaded |= isa<LoadInst>(V);
409       It->second.IsStored |= IsStored(V, It->second.Initializer);
410       continue;
411     }
412 
413     // Ignore dead constant users.
414     if (auto *C = dyn_cast<Constant>(V)) {
415       if (!isSafeToDestroyConstant(C))
416         return false;
417       continue;
418     }
419 
420     // Unknown user.
421     return false;
422   }
423 
424   return true;
425 }
426 
427 /// Copy over the debug info for a variable to its SRA replacements.
428 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
429                                  uint64_t FragmentOffsetInBits,
430                                  uint64_t FragmentSizeInBits,
431                                  uint64_t VarSize) {
432   SmallVector<DIGlobalVariableExpression *, 1> GVs;
433   GV->getDebugInfo(GVs);
434   for (auto *GVE : GVs) {
435     DIVariable *Var = GVE->getVariable();
436     DIExpression *Expr = GVE->getExpression();
437     int64_t CurVarOffsetInBytes = 0;
438     uint64_t CurVarOffsetInBits = 0;
439     uint64_t FragmentEndInBits = FragmentOffsetInBits + FragmentSizeInBits;
440 
441     // Calculate the offset (Bytes), Continue if unknown.
442     if (!Expr->extractIfOffset(CurVarOffsetInBytes))
443       continue;
444 
445     // Ignore negative offset.
446     if (CurVarOffsetInBytes < 0)
447       continue;
448 
449     // Convert offset to bits.
450     CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes;
451 
452     // Current var starts after the fragment, ignore.
453     if (CurVarOffsetInBits >= FragmentEndInBits)
454       continue;
455 
456     uint64_t CurVarSize = Var->getType()->getSizeInBits();
457     uint64_t CurVarEndInBits = CurVarOffsetInBits + CurVarSize;
458     // Current variable ends before start of fragment, ignore.
459     if (CurVarSize != 0 && /* CurVarSize is known */
460         CurVarEndInBits <= FragmentOffsetInBits)
461       continue;
462 
463     // Current variable fits in (not greater than) the fragment,
464     // does not need fragment expression.
465     if (CurVarSize != 0 && /* CurVarSize is known */
466         CurVarOffsetInBits >= FragmentOffsetInBits &&
467         CurVarEndInBits <= FragmentEndInBits) {
468       uint64_t CurVarOffsetInFragment =
469           (CurVarOffsetInBits - FragmentOffsetInBits) / 8;
470       if (CurVarOffsetInFragment != 0)
471         Expr = DIExpression::get(Expr->getContext(), {dwarf::DW_OP_plus_uconst,
472                                                       CurVarOffsetInFragment});
473       else
474         Expr = DIExpression::get(Expr->getContext(), {});
475       auto *NGVE =
476           DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
477       NGV->addDebugInfo(NGVE);
478       continue;
479     }
480     // Current variable does not fit in single fragment,
481     // emit a fragment expression.
482     if (FragmentSizeInBits < VarSize) {
483       if (CurVarOffsetInBits > FragmentOffsetInBits)
484         continue;
485       uint64_t CurVarFragmentOffsetInBits =
486           FragmentOffsetInBits - CurVarOffsetInBits;
487       uint64_t CurVarFragmentSizeInBits = FragmentSizeInBits;
488       if (CurVarSize != 0 && CurVarEndInBits < FragmentEndInBits)
489         CurVarFragmentSizeInBits -= (FragmentEndInBits - CurVarEndInBits);
490       if (CurVarOffsetInBits)
491         Expr = DIExpression::get(Expr->getContext(), {});
492       if (auto E = DIExpression::createFragmentExpression(
493               Expr, CurVarFragmentOffsetInBits, CurVarFragmentSizeInBits))
494         Expr = *E;
495       else
496         continue;
497     }
498     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
499     NGV->addDebugInfo(NGVE);
500   }
501 }
502 
503 /// Perform scalar replacement of aggregates on the specified global variable.
504 /// This opens the door for other optimizations by exposing the behavior of the
505 /// program in a more fine-grained way.  We have determined that this
506 /// transformation is safe already.  We return the first global variable we
507 /// insert so that the caller can reprocess it.
508 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
509   assert(GV->hasLocalLinkage());
510 
511   // Collect types to split into.
512   DenseMap<uint64_t, GlobalPart> Parts;
513   if (!collectSRATypes(Parts, GV, DL) || Parts.empty())
514     return nullptr;
515 
516   // Make sure we don't SRA back to the same type.
517   if (Parts.size() == 1 && Parts.begin()->second.Ty == GV->getValueType())
518     return nullptr;
519 
520   // Don't perform SRA if we would have to split into many globals. Ignore
521   // parts that are either only loaded or only stored, because we expect them
522   // to be optimized away.
523   unsigned NumParts = count_if(Parts, [](const auto &Pair) {
524     return Pair.second.IsLoaded && Pair.second.IsStored;
525   });
526   if (NumParts > 16)
527     return nullptr;
528 
529   // Sort by offset.
530   SmallVector<std::tuple<uint64_t, Type *, Constant *>, 16> TypesVector;
531   for (const auto &Pair : Parts) {
532     TypesVector.push_back(
533         {Pair.first, Pair.second.Ty, Pair.second.Initializer});
534   }
535   sort(TypesVector, llvm::less_first());
536 
537   // Check that the types are non-overlapping.
538   uint64_t Offset = 0;
539   for (const auto &[OffsetForTy, Ty, _] : TypesVector) {
540     // Overlaps with previous type.
541     if (OffsetForTy < Offset)
542       return nullptr;
543 
544     Offset = OffsetForTy + DL.getTypeAllocSize(Ty);
545   }
546 
547   // Some accesses go beyond the end of the global, don't bother.
548   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
549     return nullptr;
550 
551   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
552 
553   // Get the alignment of the global, either explicit or target-specific.
554   Align StartAlignment =
555       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
556   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
557 
558   // Create replacement globals.
559   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
560   unsigned NameSuffix = 0;
561   for (auto &[OffsetForTy, Ty, Initializer] : TypesVector) {
562     GlobalVariable *NGV = new GlobalVariable(
563         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
564         Initializer, GV->getName() + "." + Twine(NameSuffix++), GV,
565         GV->getThreadLocalMode(), GV->getAddressSpace());
566     NGV->copyAttributesFrom(GV);
567     NewGlobals.insert({OffsetForTy, NGV});
568 
569     // Calculate the known alignment of the field.  If the original aggregate
570     // had 256 byte alignment for example, something might depend on that:
571     // propagate info to each field.
572     Align NewAlign = commonAlignment(StartAlignment, OffsetForTy);
573     if (NewAlign > DL.getABITypeAlign(Ty))
574       NGV->setAlignment(NewAlign);
575 
576     // Copy over the debug info for the variable.
577     transferSRADebugInfo(GV, NGV, OffsetForTy * 8,
578                          DL.getTypeAllocSizeInBits(Ty), VarSize);
579   }
580 
581   // Replace uses of the original global with uses of the new global.
582   SmallVector<Value *, 16> Worklist;
583   SmallPtrSet<Value *, 16> Visited;
584   SmallVector<WeakTrackingVH, 16> DeadInsts;
585   auto AppendUsers = [&](Value *V) {
586     for (User *U : V->users())
587       if (Visited.insert(U).second)
588         Worklist.push_back(U);
589   };
590   AppendUsers(GV);
591   while (!Worklist.empty()) {
592     Value *V = Worklist.pop_back_val();
593     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
594         isa<GEPOperator>(V)) {
595       AppendUsers(V);
596       if (isa<Instruction>(V))
597         DeadInsts.push_back(V);
598       continue;
599     }
600 
601     if (Value *Ptr = getLoadStorePointerOperand(V)) {
602       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
603       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
604                                                    /* AllowNonInbounds */ true);
605       assert(Ptr == GV && "Load/store must be from/to global");
606       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
607       assert(NGV && "Must have replacement global for this offset");
608 
609       // Update the pointer operand and recalculate alignment.
610       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
611       Align NewAlign =
612           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
613 
614       if (auto *LI = dyn_cast<LoadInst>(V)) {
615         LI->setOperand(0, NGV);
616         LI->setAlignment(NewAlign);
617       } else {
618         auto *SI = cast<StoreInst>(V);
619         SI->setOperand(1, NGV);
620         SI->setAlignment(NewAlign);
621       }
622       continue;
623     }
624 
625     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
626            "Other users can only be dead constants");
627   }
628 
629   // Delete old instructions and global.
630   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
631   GV->removeDeadConstantUsers();
632   GV->eraseFromParent();
633   ++NumSRA;
634 
635   assert(NewGlobals.size() > 0);
636   return NewGlobals.begin()->second;
637 }
638 
639 /// Return true if all users of the specified value will trap if the value is
640 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
641 /// reprocessing them.
642 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
643                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
644   for (const User *U : V->users()) {
645     if (const Instruction *I = dyn_cast<Instruction>(U)) {
646       // If null pointer is considered valid, then all uses are non-trapping.
647       // Non address-space 0 globals have already been pruned by the caller.
648       if (NullPointerIsDefined(I->getFunction()))
649         return false;
650     }
651     if (isa<LoadInst>(U)) {
652       // Will trap.
653     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
654       if (SI->getOperand(0) == V) {
655         return false;  // Storing the value.
656       }
657     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
658       if (CI->getCalledOperand() != V) {
659         return false;  // Not calling the ptr
660       }
661     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
662       if (II->getCalledOperand() != V) {
663         return false;  // Not calling the ptr
664       }
665     } else if (const AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(U)) {
666       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs))
667         return false;
668     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
669       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
670     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
671       // If we've already seen this phi node, ignore it, it has already been
672       // checked.
673       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
674         return false;
675     } else if (isa<ICmpInst>(U) &&
676                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
677                isa<LoadInst>(U->getOperand(0)) &&
678                isa<ConstantPointerNull>(U->getOperand(1))) {
679       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
680                                   ->getPointerOperand()
681                                   ->stripPointerCasts()) &&
682              "Should be GlobalVariable");
683       // This and only this kind of non-signed ICmpInst is to be replaced with
684       // the comparing of the value of the created global init bool later in
685       // optimizeGlobalAddressOfAllocation for the global variable.
686     } else {
687       return false;
688     }
689   }
690   return true;
691 }
692 
693 /// Return true if all uses of any loads from GV will trap if the loaded value
694 /// is null.  Note that this also permits comparisons of the loaded value
695 /// against null, as a special case.
696 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
697   SmallVector<const Value *, 4> Worklist;
698   Worklist.push_back(GV);
699   while (!Worklist.empty()) {
700     const Value *P = Worklist.pop_back_val();
701     for (const auto *U : P->users()) {
702       if (auto *LI = dyn_cast<LoadInst>(U)) {
703         SmallPtrSet<const PHINode *, 8> PHIs;
704         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
705           return false;
706       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
707         // Ignore stores to the global.
708         if (SI->getPointerOperand() != P)
709           return false;
710       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
711         if (CE->stripPointerCasts() != GV)
712           return false;
713         // Check further the ConstantExpr.
714         Worklist.push_back(CE);
715       } else {
716         // We don't know or understand this user, bail out.
717         return false;
718       }
719     }
720   }
721 
722   return true;
723 }
724 
725 /// Get all the loads/store uses for global variable \p GV.
726 static void allUsesOfLoadAndStores(GlobalVariable *GV,
727                                    SmallVector<Value *, 4> &Uses) {
728   SmallVector<Value *, 4> Worklist;
729   Worklist.push_back(GV);
730   while (!Worklist.empty()) {
731     auto *P = Worklist.pop_back_val();
732     for (auto *U : P->users()) {
733       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
734         Worklist.push_back(CE);
735         continue;
736       }
737 
738       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
739              "Expect only load or store instructions");
740       Uses.push_back(U);
741     }
742   }
743 }
744 
745 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
746   bool Changed = false;
747   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
748     Instruction *I = cast<Instruction>(*UI++);
749     // Uses are non-trapping if null pointer is considered valid.
750     // Non address-space 0 globals are already pruned by the caller.
751     if (NullPointerIsDefined(I->getFunction()))
752       return false;
753     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
754       LI->setOperand(0, NewV);
755       Changed = true;
756     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
757       if (SI->getOperand(1) == V) {
758         SI->setOperand(1, NewV);
759         Changed = true;
760       }
761     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
762       CallBase *CB = cast<CallBase>(I);
763       if (CB->getCalledOperand() == V) {
764         // Calling through the pointer!  Turn into a direct call, but be careful
765         // that the pointer is not also being passed as an argument.
766         CB->setCalledOperand(NewV);
767         Changed = true;
768         bool PassedAsArg = false;
769         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
770           if (CB->getArgOperand(i) == V) {
771             PassedAsArg = true;
772             CB->setArgOperand(i, NewV);
773           }
774 
775         if (PassedAsArg) {
776           // Being passed as an argument also.  Be careful to not invalidate UI!
777           UI = V->user_begin();
778         }
779       }
780     } else if (AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(I)) {
781       Changed |= OptimizeAwayTrappingUsesOfValue(
782           CI, ConstantExpr::getAddrSpaceCast(NewV, CI->getType()));
783       if (CI->use_empty()) {
784         Changed = true;
785         CI->eraseFromParent();
786       }
787     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
788       // Should handle GEP here.
789       SmallVector<Constant*, 8> Idxs;
790       Idxs.reserve(GEPI->getNumOperands()-1);
791       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
792            i != e; ++i)
793         if (Constant *C = dyn_cast<Constant>(*i))
794           Idxs.push_back(C);
795         else
796           break;
797       if (Idxs.size() == GEPI->getNumOperands()-1)
798         Changed |= OptimizeAwayTrappingUsesOfValue(
799             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
800                                                  NewV, Idxs));
801       if (GEPI->use_empty()) {
802         Changed = true;
803         GEPI->eraseFromParent();
804       }
805     }
806   }
807 
808   return Changed;
809 }
810 
811 /// The specified global has only one non-null value stored into it.  If there
812 /// are uses of the loaded value that would trap if the loaded value is
813 /// dynamically null, then we know that they cannot be reachable with a null
814 /// optimize away the load.
815 static bool OptimizeAwayTrappingUsesOfLoads(
816     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
817     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
818   bool Changed = false;
819 
820   // Keep track of whether we are able to remove all the uses of the global
821   // other than the store that defines it.
822   bool AllNonStoreUsesGone = true;
823 
824   // Replace all uses of loads with uses of uses of the stored value.
825   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
826     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
827       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
828       // If we were able to delete all uses of the loads
829       if (LI->use_empty()) {
830         LI->eraseFromParent();
831         Changed = true;
832       } else {
833         AllNonStoreUsesGone = false;
834       }
835     } else if (isa<StoreInst>(GlobalUser)) {
836       // Ignore the store that stores "LV" to the global.
837       assert(GlobalUser->getOperand(1) == GV &&
838              "Must be storing *to* the global");
839     } else {
840       AllNonStoreUsesGone = false;
841 
842       // If we get here we could have other crazy uses that are transitively
843       // loaded.
844       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
845               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
846               isa<BitCastInst>(GlobalUser) ||
847               isa<GetElementPtrInst>(GlobalUser) ||
848               isa<AddrSpaceCastInst>(GlobalUser)) &&
849              "Only expect load and stores!");
850     }
851   }
852 
853   if (Changed) {
854     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
855                       << "\n");
856     ++NumGlobUses;
857   }
858 
859   // If we nuked all of the loads, then none of the stores are needed either,
860   // nor is the global.
861   if (AllNonStoreUsesGone) {
862     if (isLeakCheckerRoot(GV)) {
863       Changed |= CleanupPointerRootUsers(GV, GetTLI);
864     } else {
865       Changed = true;
866       CleanupConstantGlobalUsers(GV, DL);
867     }
868     if (GV->use_empty()) {
869       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
870       Changed = true;
871       GV->eraseFromParent();
872       ++NumDeleted;
873     }
874   }
875   return Changed;
876 }
877 
878 /// Walk the use list of V, constant folding all of the instructions that are
879 /// foldable.
880 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
881                                 TargetLibraryInfo *TLI) {
882   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
883     if (Instruction *I = dyn_cast<Instruction>(*UI++))
884       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
885         I->replaceAllUsesWith(NewC);
886 
887         // Advance UI to the next non-I use to avoid invalidating it!
888         // Instructions could multiply use V.
889         while (UI != E && *UI == I)
890           ++UI;
891         if (isInstructionTriviallyDead(I, TLI))
892           I->eraseFromParent();
893       }
894 }
895 
896 /// This function takes the specified global variable, and transforms the
897 /// program as if it always contained the result of the specified malloc.
898 /// Because it is always the result of the specified malloc, there is no reason
899 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
900 /// loads of GV as uses of the new global.
901 static GlobalVariable *
902 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
903                                   uint64_t AllocSize, Constant *InitVal,
904                                   const DataLayout &DL,
905                                   TargetLibraryInfo *TLI) {
906   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
907                     << '\n');
908 
909   // Create global of type [AllocSize x i8].
910   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
911                                     AllocSize);
912 
913   // Create the new global variable.  The contents of the allocated memory is
914   // undefined initially, so initialize with an undef value.
915   GlobalVariable *NewGV = new GlobalVariable(
916       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
917       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
918       GV->getThreadLocalMode());
919 
920   // Initialize the global at the point of the original call.  Note that this
921   // is a different point from the initialization referred to below for the
922   // nullability handling.  Sublety: We have not proven the original global was
923   // only initialized once.  As such, we can not fold this into the initializer
924   // of the new global as may need to re-init the storage multiple times.
925   if (!isa<UndefValue>(InitVal)) {
926     IRBuilder<> Builder(CI->getNextNode());
927     // TODO: Use alignment above if align!=1
928     Builder.CreateMemSet(NewGV, InitVal, AllocSize, std::nullopt);
929   }
930 
931   // Update users of the allocation to use the new global instead.
932   CI->replaceAllUsesWith(NewGV);
933 
934   // If there is a comparison against null, we will insert a global bool to
935   // keep track of whether the global was initialized yet or not.
936   GlobalVariable *InitBool =
937     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
938                        GlobalValue::InternalLinkage,
939                        ConstantInt::getFalse(GV->getContext()),
940                        GV->getName()+".init", GV->getThreadLocalMode());
941   bool InitBoolUsed = false;
942 
943   // Loop over all instruction uses of GV, processing them in turn.
944   SmallVector<Value *, 4> Guses;
945   allUsesOfLoadAndStores(GV, Guses);
946   for (auto *U : Guses) {
947     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
948       // The global is initialized when the store to it occurs. If the stored
949       // value is null value, the global bool is set to false, otherwise true.
950       new StoreInst(ConstantInt::getBool(
951                         GV->getContext(),
952                         !isa<ConstantPointerNull>(SI->getValueOperand())),
953                     InitBool, false, Align(1), SI->getOrdering(),
954                     SI->getSyncScopeID(), SI);
955       SI->eraseFromParent();
956       continue;
957     }
958 
959     LoadInst *LI = cast<LoadInst>(U);
960     while (!LI->use_empty()) {
961       Use &LoadUse = *LI->use_begin();
962       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
963       if (!ICI) {
964         LoadUse.set(NewGV);
965         continue;
966       }
967 
968       // Replace the cmp X, 0 with a use of the bool value.
969       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
970                                InitBool->getName() + ".val", false, Align(1),
971                                LI->getOrdering(), LI->getSyncScopeID(), LI);
972       InitBoolUsed = true;
973       switch (ICI->getPredicate()) {
974       default: llvm_unreachable("Unknown ICmp Predicate!");
975       case ICmpInst::ICMP_ULT: // X < null -> always false
976         LV = ConstantInt::getFalse(GV->getContext());
977         break;
978       case ICmpInst::ICMP_UGE: // X >= null -> always true
979         LV = ConstantInt::getTrue(GV->getContext());
980         break;
981       case ICmpInst::ICMP_ULE:
982       case ICmpInst::ICMP_EQ:
983         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
984         break;
985       case ICmpInst::ICMP_NE:
986       case ICmpInst::ICMP_UGT:
987         break;  // no change.
988       }
989       ICI->replaceAllUsesWith(LV);
990       ICI->eraseFromParent();
991     }
992     LI->eraseFromParent();
993   }
994 
995   // If the initialization boolean was used, insert it, otherwise delete it.
996   if (!InitBoolUsed) {
997     while (!InitBool->use_empty())  // Delete initializations
998       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
999     delete InitBool;
1000   } else
1001     GV->getParent()->insertGlobalVariable(GV->getIterator(), InitBool);
1002 
1003   // Now the GV is dead, nuke it and the allocation..
1004   GV->eraseFromParent();
1005   CI->eraseFromParent();
1006 
1007   // To further other optimizations, loop over all users of NewGV and try to
1008   // constant prop them.  This will promote GEP instructions with constant
1009   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1010   ConstantPropUsersOf(NewGV, DL, TLI);
1011 
1012   return NewGV;
1013 }
1014 
1015 /// Scan the use-list of GV checking to make sure that there are no complex uses
1016 /// of GV.  We permit simple things like dereferencing the pointer, but not
1017 /// storing through the address, unless it is to the specified global.
1018 static bool
1019 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1020                                           const GlobalVariable *GV) {
1021   SmallPtrSet<const Value *, 4> Visited;
1022   SmallVector<const Value *, 4> Worklist;
1023   Worklist.push_back(CI);
1024 
1025   while (!Worklist.empty()) {
1026     const Value *V = Worklist.pop_back_val();
1027     if (!Visited.insert(V).second)
1028       continue;
1029 
1030     for (const Use &VUse : V->uses()) {
1031       const User *U = VUse.getUser();
1032       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1033         continue; // Fine, ignore.
1034 
1035       if (auto *SI = dyn_cast<StoreInst>(U)) {
1036         if (SI->getValueOperand() == V &&
1037             SI->getPointerOperand()->stripPointerCasts() != GV)
1038           return false; // Storing the pointer not into GV... bad.
1039         continue; // Otherwise, storing through it, or storing into GV... fine.
1040       }
1041 
1042       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1043         Worklist.push_back(BCI);
1044         continue;
1045       }
1046 
1047       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1048         Worklist.push_back(GEPI);
1049         continue;
1050       }
1051 
1052       return false;
1053     }
1054   }
1055 
1056   return true;
1057 }
1058 
1059 /// If we have a global that is only initialized with a fixed size allocation
1060 /// try to transform the program to use global memory instead of heap
1061 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1062 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1063 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1064                                                    CallInst *CI,
1065                                                    const DataLayout &DL,
1066                                                    TargetLibraryInfo *TLI) {
1067   if (!isRemovableAlloc(CI, TLI))
1068     // Must be able to remove the call when we get done..
1069     return false;
1070 
1071   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1072   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1073   if (!InitVal)
1074     // Must be able to emit a memset for initialization
1075     return false;
1076 
1077   uint64_t AllocSize;
1078   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1079     return false;
1080 
1081   // Restrict this transformation to only working on small allocations
1082   // (2048 bytes currently), as we don't want to introduce a 16M global or
1083   // something.
1084   if (AllocSize >= 2048)
1085     return false;
1086 
1087   // We can't optimize this global unless all uses of it are *known* to be
1088   // of the malloc value, not of the null initializer value (consider a use
1089   // that compares the global's value against zero to see if the malloc has
1090   // been reached).  To do this, we check to see if all uses of the global
1091   // would trap if the global were null: this proves that they must all
1092   // happen after the malloc.
1093   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1094     return false;
1095 
1096   // We can't optimize this if the malloc itself is used in a complex way,
1097   // for example, being stored into multiple globals.  This allows the
1098   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1099   // These are all things we could transform to using the global for.
1100   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1101     return false;
1102 
1103   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1104   return true;
1105 }
1106 
1107 // Try to optimize globals based on the knowledge that only one value (besides
1108 // its initializer) is ever stored to the global.
1109 static bool
1110 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1111                          const DataLayout &DL,
1112                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1113   // Ignore no-op GEPs and bitcasts.
1114   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1115 
1116   // If we are dealing with a pointer global that is initialized to null and
1117   // only has one (non-null) value stored into it, then we can optimize any
1118   // users of the loaded value (often calls and loads) that would trap if the
1119   // value was null.
1120   if (GV->getInitializer()->getType()->isPointerTy() &&
1121       GV->getInitializer()->isNullValue() &&
1122       StoredOnceVal->getType()->isPointerTy() &&
1123       !NullPointerIsDefined(
1124           nullptr /* F */,
1125           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1126     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1127       // Optimize away any trapping uses of the loaded value.
1128       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1129         return true;
1130     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1131       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1132         auto *TLI = &GetTLI(*CI->getFunction());
1133         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI))
1134           return true;
1135       }
1136     }
1137   }
1138 
1139   return false;
1140 }
1141 
1142 /// At this point, we have learned that the only two values ever stored into GV
1143 /// are its initializer and OtherVal.  See if we can shrink the global into a
1144 /// boolean and select between the two values whenever it is used.  This exposes
1145 /// the values to other scalar optimizations.
1146 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1147   Type *GVElType = GV->getValueType();
1148 
1149   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1150   // an FP value, pointer or vector, don't do this optimization because a select
1151   // between them is very expensive and unlikely to lead to later
1152   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1153   // where v1 and v2 both require constant pool loads, a big loss.
1154   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1155       GVElType->isFloatingPointTy() ||
1156       GVElType->isPointerTy() || GVElType->isVectorTy())
1157     return false;
1158 
1159   // Walk the use list of the global seeing if all the uses are load or store.
1160   // If there is anything else, bail out.
1161   for (User *U : GV->users()) {
1162     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1163       return false;
1164     if (getLoadStoreType(U) != GVElType)
1165       return false;
1166   }
1167 
1168   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1169 
1170   // Create the new global, initializing it to false.
1171   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1172                                              false,
1173                                              GlobalValue::InternalLinkage,
1174                                         ConstantInt::getFalse(GV->getContext()),
1175                                              GV->getName()+".b",
1176                                              GV->getThreadLocalMode(),
1177                                              GV->getType()->getAddressSpace());
1178   NewGV->copyAttributesFrom(GV);
1179   GV->getParent()->insertGlobalVariable(GV->getIterator(), NewGV);
1180 
1181   Constant *InitVal = GV->getInitializer();
1182   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1183          "No reason to shrink to bool!");
1184 
1185   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1186   GV->getDebugInfo(GVs);
1187 
1188   // If initialized to zero and storing one into the global, we can use a cast
1189   // instead of a select to synthesize the desired value.
1190   bool IsOneZero = false;
1191   bool EmitOneOrZero = true;
1192   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1193   if (CI && CI->getValue().getActiveBits() <= 64) {
1194     IsOneZero = InitVal->isNullValue() && CI->isOne();
1195 
1196     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1197     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1198       uint64_t ValInit = CIInit->getZExtValue();
1199       uint64_t ValOther = CI->getZExtValue();
1200       uint64_t ValMinus = ValOther - ValInit;
1201 
1202       for(auto *GVe : GVs){
1203         DIGlobalVariable *DGV = GVe->getVariable();
1204         DIExpression *E = GVe->getExpression();
1205         const DataLayout &DL = GV->getParent()->getDataLayout();
1206         unsigned SizeInOctets =
1207             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1208 
1209         // It is expected that the address of global optimized variable is on
1210         // top of the stack. After optimization, value of that variable will
1211         // be ether 0 for initial value or 1 for other value. The following
1212         // expression should return constant integer value depending on the
1213         // value at global object address:
1214         // val * (ValOther - ValInit) + ValInit:
1215         // DW_OP_deref DW_OP_constu <ValMinus>
1216         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1217         SmallVector<uint64_t, 12> Ops = {
1218             dwarf::DW_OP_deref_size, SizeInOctets,
1219             dwarf::DW_OP_constu, ValMinus,
1220             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1221             dwarf::DW_OP_plus};
1222         bool WithStackValue = true;
1223         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1224         DIGlobalVariableExpression *DGVE =
1225           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1226         NewGV->addDebugInfo(DGVE);
1227      }
1228      EmitOneOrZero = false;
1229     }
1230   }
1231 
1232   if (EmitOneOrZero) {
1233      // FIXME: This will only emit address for debugger on which will
1234      // be written only 0 or 1.
1235      for(auto *GV : GVs)
1236        NewGV->addDebugInfo(GV);
1237    }
1238 
1239   while (!GV->use_empty()) {
1240     Instruction *UI = cast<Instruction>(GV->user_back());
1241     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1242       // Change the store into a boolean store.
1243       bool StoringOther = SI->getOperand(0) == OtherVal;
1244       // Only do this if we weren't storing a loaded value.
1245       Value *StoreVal;
1246       if (StoringOther || SI->getOperand(0) == InitVal) {
1247         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1248                                     StoringOther);
1249       } else {
1250         // Otherwise, we are storing a previously loaded copy.  To do this,
1251         // change the copy from copying the original value to just copying the
1252         // bool.
1253         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1254 
1255         // If we've already replaced the input, StoredVal will be a cast or
1256         // select instruction.  If not, it will be a load of the original
1257         // global.
1258         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1259           assert(LI->getOperand(0) == GV && "Not a copy!");
1260           // Insert a new load, to preserve the saved value.
1261           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1262                                   LI->getName() + ".b", false, Align(1),
1263                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1264         } else {
1265           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1266                  "This is not a form that we understand!");
1267           StoreVal = StoredVal->getOperand(0);
1268           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1269         }
1270       }
1271       StoreInst *NSI =
1272           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1273                         SI->getSyncScopeID(), SI);
1274       NSI->setDebugLoc(SI->getDebugLoc());
1275     } else {
1276       // Change the load into a load of bool then a select.
1277       LoadInst *LI = cast<LoadInst>(UI);
1278       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1279                                    LI->getName() + ".b", false, Align(1),
1280                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1281       Instruction *NSI;
1282       if (IsOneZero)
1283         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1284       else
1285         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1286       NSI->takeName(LI);
1287       // Since LI is split into two instructions, NLI and NSI both inherit the
1288       // same DebugLoc
1289       NLI->setDebugLoc(LI->getDebugLoc());
1290       NSI->setDebugLoc(LI->getDebugLoc());
1291       LI->replaceAllUsesWith(NSI);
1292     }
1293     UI->eraseFromParent();
1294   }
1295 
1296   // Retain the name of the old global variable. People who are debugging their
1297   // programs may expect these variables to be named the same.
1298   NewGV->takeName(GV);
1299   GV->eraseFromParent();
1300   return true;
1301 }
1302 
1303 static bool
1304 deleteIfDead(GlobalValue &GV,
1305              SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1306              function_ref<void(Function &)> DeleteFnCallback = nullptr) {
1307   GV.removeDeadConstantUsers();
1308 
1309   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1310     return false;
1311 
1312   if (const Comdat *C = GV.getComdat())
1313     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1314       return false;
1315 
1316   bool Dead;
1317   if (auto *F = dyn_cast<Function>(&GV))
1318     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1319   else
1320     Dead = GV.use_empty();
1321   if (!Dead)
1322     return false;
1323 
1324   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1325   if (auto *F = dyn_cast<Function>(&GV)) {
1326     if (DeleteFnCallback)
1327       DeleteFnCallback(*F);
1328   }
1329   GV.eraseFromParent();
1330   ++NumDeleted;
1331   return true;
1332 }
1333 
1334 static bool isPointerValueDeadOnEntryToFunction(
1335     const Function *F, GlobalValue *GV,
1336     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1337   // Find all uses of GV. We expect them all to be in F, and if we can't
1338   // identify any of the uses we bail out.
1339   //
1340   // On each of these uses, identify if the memory that GV points to is
1341   // used/required/live at the start of the function. If it is not, for example
1342   // if the first thing the function does is store to the GV, the GV can
1343   // possibly be demoted.
1344   //
1345   // We don't do an exhaustive search for memory operations - simply look
1346   // through bitcasts as they're quite common and benign.
1347   const DataLayout &DL = GV->getParent()->getDataLayout();
1348   SmallVector<LoadInst *, 4> Loads;
1349   SmallVector<StoreInst *, 4> Stores;
1350   for (auto *U : GV->users()) {
1351     Instruction *I = dyn_cast<Instruction>(U);
1352     if (!I)
1353       return false;
1354     assert(I->getParent()->getParent() == F);
1355 
1356     if (auto *LI = dyn_cast<LoadInst>(I))
1357       Loads.push_back(LI);
1358     else if (auto *SI = dyn_cast<StoreInst>(I))
1359       Stores.push_back(SI);
1360     else
1361       return false;
1362   }
1363 
1364   // We have identified all uses of GV into loads and stores. Now check if all
1365   // of them are known not to depend on the value of the global at the function
1366   // entry point. We do this by ensuring that every load is dominated by at
1367   // least one store.
1368   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1369 
1370   // The below check is quadratic. Check we're not going to do too many tests.
1371   // FIXME: Even though this will always have worst-case quadratic time, we
1372   // could put effort into minimizing the average time by putting stores that
1373   // have been shown to dominate at least one load at the beginning of the
1374   // Stores array, making subsequent dominance checks more likely to succeed
1375   // early.
1376   //
1377   // The threshold here is fairly large because global->local demotion is a
1378   // very powerful optimization should it fire.
1379   const unsigned Threshold = 100;
1380   if (Loads.size() * Stores.size() > Threshold)
1381     return false;
1382 
1383   for (auto *L : Loads) {
1384     auto *LTy = L->getType();
1385     if (none_of(Stores, [&](const StoreInst *S) {
1386           auto *STy = S->getValueOperand()->getType();
1387           // The load is only dominated by the store if DomTree says so
1388           // and the number of bits loaded in L is less than or equal to
1389           // the number of bits stored in S.
1390           return DT.dominates(S, L) &&
1391                  DL.getTypeStoreSize(LTy).getFixedValue() <=
1392                      DL.getTypeStoreSize(STy).getFixedValue();
1393         }))
1394       return false;
1395   }
1396   // All loads have known dependences inside F, so the global can be localized.
1397   return true;
1398 }
1399 
1400 // For a global variable with one store, if the store dominates any loads,
1401 // those loads will always load the stored value (as opposed to the
1402 // initializer), even in the presence of recursion.
1403 static bool forwardStoredOnceStore(
1404     GlobalVariable *GV, const StoreInst *StoredOnceStore,
1405     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1406   const Value *StoredOnceValue = StoredOnceStore->getValueOperand();
1407   // We can do this optimization for non-constants in nosync + norecurse
1408   // functions, but globals used in exactly one norecurse functions are already
1409   // promoted to an alloca.
1410   if (!isa<Constant>(StoredOnceValue))
1411     return false;
1412   const Function *F = StoredOnceStore->getFunction();
1413   SmallVector<LoadInst *> Loads;
1414   for (User *U : GV->users()) {
1415     if (auto *LI = dyn_cast<LoadInst>(U)) {
1416       if (LI->getFunction() == F &&
1417           LI->getType() == StoredOnceValue->getType() && LI->isSimple())
1418         Loads.push_back(LI);
1419     }
1420   }
1421   // Only compute DT if we have any loads to examine.
1422   bool MadeChange = false;
1423   if (!Loads.empty()) {
1424     auto &DT = LookupDomTree(*const_cast<Function *>(F));
1425     for (auto *LI : Loads) {
1426       if (DT.dominates(StoredOnceStore, LI)) {
1427         LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue));
1428         LI->eraseFromParent();
1429         MadeChange = true;
1430       }
1431     }
1432   }
1433   return MadeChange;
1434 }
1435 
1436 /// Analyze the specified global variable and optimize
1437 /// it if possible.  If we make a change, return true.
1438 static bool
1439 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1440                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1441                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1442                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1443   auto &DL = GV->getParent()->getDataLayout();
1444   // If this is a first class global and has only one accessing function and
1445   // this function is non-recursive, we replace the global with a local alloca
1446   // in this function.
1447   //
1448   // NOTE: It doesn't make sense to promote non-single-value types since we
1449   // are just replacing static memory to stack memory.
1450   //
1451   // If the global is in different address space, don't bring it to stack.
1452   if (!GS.HasMultipleAccessingFunctions &&
1453       GS.AccessingFunction &&
1454       GV->getValueType()->isSingleValueType() &&
1455       GV->getType()->getAddressSpace() == DL.getAllocaAddrSpace() &&
1456       !GV->isExternallyInitialized() &&
1457       GS.AccessingFunction->doesNotRecurse() &&
1458       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1459                                           LookupDomTree)) {
1460     const DataLayout &DL = GV->getParent()->getDataLayout();
1461 
1462     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1463     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1464                                                    ->getEntryBlock().begin());
1465     Type *ElemTy = GV->getValueType();
1466     // FIXME: Pass Global's alignment when globals have alignment
1467     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1468                                         GV->getName(), &FirstI);
1469     if (!isa<UndefValue>(GV->getInitializer()))
1470       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1471 
1472     GV->replaceAllUsesWith(Alloca);
1473     GV->eraseFromParent();
1474     ++NumLocalized;
1475     return true;
1476   }
1477 
1478   bool Changed = false;
1479 
1480   // If the global is never loaded (but may be stored to), it is dead.
1481   // Delete it now.
1482   if (!GS.IsLoaded) {
1483     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1484 
1485     if (isLeakCheckerRoot(GV)) {
1486       // Delete any constant stores to the global.
1487       Changed = CleanupPointerRootUsers(GV, GetTLI);
1488     } else {
1489       // Delete any stores we can find to the global.  We may not be able to
1490       // make it completely dead though.
1491       Changed = CleanupConstantGlobalUsers(GV, DL);
1492     }
1493 
1494     // If the global is dead now, delete it.
1495     if (GV->use_empty()) {
1496       GV->eraseFromParent();
1497       ++NumDeleted;
1498       Changed = true;
1499     }
1500     return Changed;
1501 
1502   }
1503   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1504     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1505 
1506     // Don't actually mark a global constant if it's atomic because atomic loads
1507     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1508     // requires write access to the variable even if it's not actually changed.
1509     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1510       assert(!GV->isConstant() && "Expected a non-constant global");
1511       GV->setConstant(true);
1512       Changed = true;
1513     }
1514 
1515     // Clean up any obviously simplifiable users now.
1516     Changed |= CleanupConstantGlobalUsers(GV, DL);
1517 
1518     // If the global is dead now, just nuke it.
1519     if (GV->use_empty()) {
1520       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1521                         << "all users and delete global!\n");
1522       GV->eraseFromParent();
1523       ++NumDeleted;
1524       return true;
1525     }
1526 
1527     // Fall through to the next check; see if we can optimize further.
1528     ++NumMarked;
1529   }
1530   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1531     const DataLayout &DL = GV->getParent()->getDataLayout();
1532     if (SRAGlobal(GV, DL))
1533       return true;
1534   }
1535   Value *StoredOnceValue = GS.getStoredOnceValue();
1536   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1537     Function &StoreFn =
1538         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1539     bool CanHaveNonUndefGlobalInitializer =
1540         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1541             GV->getType()->getAddressSpace());
1542     // If the initial value for the global was an undef value, and if only
1543     // one other value was stored into it, we can just change the
1544     // initializer to be the stored value, then delete all stores to the
1545     // global.  This allows us to mark it constant.
1546     // This is restricted to address spaces that allow globals to have
1547     // initializers. NVPTX, for example, does not support initializers for
1548     // shared memory (AS 3).
1549     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1550     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1551         DL.getTypeAllocSize(SOVConstant->getType()) ==
1552             DL.getTypeAllocSize(GV->getValueType()) &&
1553         CanHaveNonUndefGlobalInitializer) {
1554       if (SOVConstant->getType() == GV->getValueType()) {
1555         // Change the initializer in place.
1556         GV->setInitializer(SOVConstant);
1557       } else {
1558         // Create a new global with adjusted type.
1559         auto *NGV = new GlobalVariable(
1560             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1561             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1562             GV->getAddressSpace());
1563         NGV->takeName(GV);
1564         NGV->copyAttributesFrom(GV);
1565         GV->replaceAllUsesWith(NGV);
1566         GV->eraseFromParent();
1567         GV = NGV;
1568       }
1569 
1570       // Clean up any obviously simplifiable users now.
1571       CleanupConstantGlobalUsers(GV, DL);
1572 
1573       if (GV->use_empty()) {
1574         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1575                           << "simplify all users and delete global!\n");
1576         GV->eraseFromParent();
1577         ++NumDeleted;
1578       }
1579       ++NumSubstitute;
1580       return true;
1581     }
1582 
1583     // Try to optimize globals based on the knowledge that only one value
1584     // (besides its initializer) is ever stored to the global.
1585     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI))
1586       return true;
1587 
1588     // Try to forward the store to any loads. If we have more than one store, we
1589     // may have a store of the initializer between StoredOnceStore and a load.
1590     if (GS.NumStores == 1)
1591       if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree))
1592         return true;
1593 
1594     // Otherwise, if the global was not a boolean, we can shrink it to be a
1595     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1596     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1597         (!isa<UndefValue>(GV->getInitializer()) ||
1598          CanHaveNonUndefGlobalInitializer)) {
1599       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1600         ++NumShrunkToBool;
1601         return true;
1602       }
1603     }
1604   }
1605 
1606   return Changed;
1607 }
1608 
1609 /// Analyze the specified global variable and optimize it if possible.  If we
1610 /// make a change, return true.
1611 static bool
1612 processGlobal(GlobalValue &GV,
1613               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1614               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1615               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1616   if (GV.getName().starts_with("llvm."))
1617     return false;
1618 
1619   GlobalStatus GS;
1620 
1621   if (GlobalStatus::analyzeGlobal(&GV, GS))
1622     return false;
1623 
1624   bool Changed = false;
1625   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1626     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1627                                                : GlobalValue::UnnamedAddr::Local;
1628     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1629       GV.setUnnamedAddr(NewUnnamedAddr);
1630       NumUnnamed++;
1631       Changed = true;
1632     }
1633   }
1634 
1635   // Do more involved optimizations if the global is internal.
1636   if (!GV.hasLocalLinkage())
1637     return Changed;
1638 
1639   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1640   if (!GVar)
1641     return Changed;
1642 
1643   if (GVar->isConstant() || !GVar->hasInitializer())
1644     return Changed;
1645 
1646   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1647          Changed;
1648 }
1649 
1650 /// Walk all of the direct calls of the specified function, changing them to
1651 /// FastCC.
1652 static void ChangeCalleesToFastCall(Function *F) {
1653   for (User *U : F->users()) {
1654     if (isa<BlockAddress>(U))
1655       continue;
1656     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1657   }
1658 }
1659 
1660 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1661                                Attribute::AttrKind A) {
1662   unsigned AttrIndex;
1663   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1664     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1665   return Attrs;
1666 }
1667 
1668 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1669   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1670   for (User *U : F->users()) {
1671     if (isa<BlockAddress>(U))
1672       continue;
1673     CallBase *CB = cast<CallBase>(U);
1674     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1675   }
1676 }
1677 
1678 /// Return true if this is a calling convention that we'd like to change.  The
1679 /// idea here is that we don't want to mess with the convention if the user
1680 /// explicitly requested something with performance implications like coldcc,
1681 /// GHC, or anyregcc.
1682 static bool hasChangeableCCImpl(Function *F) {
1683   CallingConv::ID CC = F->getCallingConv();
1684 
1685   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1686   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1687     return false;
1688 
1689   if (F->isVarArg())
1690     return false;
1691 
1692   // FIXME: Change CC for the whole chain of musttail calls when possible.
1693   //
1694   // Can't change CC of the function that either has musttail calls, or is a
1695   // musttail callee itself
1696   for (User *U : F->users()) {
1697     if (isa<BlockAddress>(U))
1698       continue;
1699     CallInst* CI = dyn_cast<CallInst>(U);
1700     if (!CI)
1701       continue;
1702 
1703     if (CI->isMustTailCall())
1704       return false;
1705   }
1706 
1707   for (BasicBlock &BB : *F)
1708     if (BB.getTerminatingMustTailCall())
1709       return false;
1710 
1711   return !F->hasAddressTaken();
1712 }
1713 
1714 using ChangeableCCCacheTy = SmallDenseMap<Function *, bool, 8>;
1715 static bool hasChangeableCC(Function *F,
1716                             ChangeableCCCacheTy &ChangeableCCCache) {
1717   auto Res = ChangeableCCCache.try_emplace(F, false);
1718   if (Res.second)
1719     Res.first->second = hasChangeableCCImpl(F);
1720   return Res.first->second;
1721 }
1722 
1723 /// Return true if the block containing the call site has a BlockFrequency of
1724 /// less than ColdCCRelFreq% of the entry block.
1725 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1726   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1727   auto *CallSiteBB = CB.getParent();
1728   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1729   auto CallerEntryFreq =
1730       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1731   return CallSiteFreq < CallerEntryFreq * ColdProb;
1732 }
1733 
1734 // This function checks if the input function F is cold at all call sites. It
1735 // also looks each call site's containing function, returning false if the
1736 // caller function contains other non cold calls. The input vector AllCallsCold
1737 // contains a list of functions that only have call sites in cold blocks.
1738 static bool
1739 isValidCandidateForColdCC(Function &F,
1740                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1741                           const std::vector<Function *> &AllCallsCold) {
1742 
1743   if (F.user_empty())
1744     return false;
1745 
1746   for (User *U : F.users()) {
1747     if (isa<BlockAddress>(U))
1748       continue;
1749 
1750     CallBase &CB = cast<CallBase>(*U);
1751     Function *CallerFunc = CB.getParent()->getParent();
1752     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1753     if (!isColdCallSite(CB, CallerBFI))
1754       return false;
1755     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1756       return false;
1757   }
1758   return true;
1759 }
1760 
1761 static void changeCallSitesToColdCC(Function *F) {
1762   for (User *U : F->users()) {
1763     if (isa<BlockAddress>(U))
1764       continue;
1765     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1766   }
1767 }
1768 
1769 // This function iterates over all the call instructions in the input Function
1770 // and checks that all call sites are in cold blocks and are allowed to use the
1771 // coldcc calling convention.
1772 static bool
1773 hasOnlyColdCalls(Function &F,
1774                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1775                  ChangeableCCCacheTy &ChangeableCCCache) {
1776   for (BasicBlock &BB : F) {
1777     for (Instruction &I : BB) {
1778       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1779         // Skip over isline asm instructions since they aren't function calls.
1780         if (CI->isInlineAsm())
1781           continue;
1782         Function *CalledFn = CI->getCalledFunction();
1783         if (!CalledFn)
1784           return false;
1785         // Skip over intrinsics since they won't remain as function calls.
1786         // Important to do this check before the linkage check below so we
1787         // won't bail out on debug intrinsics, possibly making the generated
1788         // code dependent on the presence of debug info.
1789         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1790           continue;
1791         if (!CalledFn->hasLocalLinkage())
1792           return false;
1793         // Check if it's valid to use coldcc calling convention.
1794         if (!hasChangeableCC(CalledFn, ChangeableCCCache))
1795           return false;
1796         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1797         if (!isColdCallSite(*CI, CallerBFI))
1798           return false;
1799       }
1800     }
1801   }
1802   return true;
1803 }
1804 
1805 static bool hasMustTailCallers(Function *F) {
1806   for (User *U : F->users()) {
1807     CallBase *CB = dyn_cast<CallBase>(U);
1808     if (!CB) {
1809       assert(isa<BlockAddress>(U) &&
1810              "Expected either CallBase or BlockAddress");
1811       continue;
1812     }
1813     if (CB->isMustTailCall())
1814       return true;
1815   }
1816   return false;
1817 }
1818 
1819 static bool hasInvokeCallers(Function *F) {
1820   for (User *U : F->users())
1821     if (isa<InvokeInst>(U))
1822       return true;
1823   return false;
1824 }
1825 
1826 static void RemovePreallocated(Function *F) {
1827   RemoveAttribute(F, Attribute::Preallocated);
1828 
1829   auto *M = F->getParent();
1830 
1831   IRBuilder<> Builder(M->getContext());
1832 
1833   // Cannot modify users() while iterating over it, so make a copy.
1834   SmallVector<User *, 4> PreallocatedCalls(F->users());
1835   for (User *U : PreallocatedCalls) {
1836     CallBase *CB = dyn_cast<CallBase>(U);
1837     if (!CB)
1838       continue;
1839 
1840     assert(
1841         !CB->isMustTailCall() &&
1842         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1843     // Create copy of call without "preallocated" operand bundle.
1844     SmallVector<OperandBundleDef, 1> OpBundles;
1845     CB->getOperandBundlesAsDefs(OpBundles);
1846     CallBase *PreallocatedSetup = nullptr;
1847     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1848       if (It->getTag() == "preallocated") {
1849         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1850         OpBundles.erase(It);
1851         break;
1852       }
1853     }
1854     assert(PreallocatedSetup && "Did not find preallocated bundle");
1855     uint64_t ArgCount =
1856         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1857 
1858     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1859            "Unknown indirect call type");
1860     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1861     CB->replaceAllUsesWith(NewCB);
1862     NewCB->takeName(CB);
1863     CB->eraseFromParent();
1864 
1865     Builder.SetInsertPoint(PreallocatedSetup);
1866     auto *StackSave = Builder.CreateStackSave();
1867     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1868     Builder.CreateStackRestore(StackSave);
1869 
1870     // Replace @llvm.call.preallocated.arg() with alloca.
1871     // Cannot modify users() while iterating over it, so make a copy.
1872     // @llvm.call.preallocated.arg() can be called with the same index multiple
1873     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1874     // already created a Value* for the index, and if not, create an alloca and
1875     // bitcast right after the @llvm.call.preallocated.setup() so that it
1876     // dominates all uses.
1877     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1878     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1879     for (auto *User : PreallocatedArgs) {
1880       auto *UseCall = cast<CallBase>(User);
1881       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1882                  Intrinsic::call_preallocated_arg &&
1883              "preallocated token use was not a llvm.call.preallocated.arg");
1884       uint64_t AllocArgIndex =
1885           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1886       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1887       if (!AllocaReplacement) {
1888         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1889         auto *ArgType =
1890             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1891         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1892         Builder.SetInsertPoint(InsertBefore);
1893         auto *Alloca =
1894             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1895         ArgAllocas[AllocArgIndex] = Alloca;
1896         AllocaReplacement = Alloca;
1897       }
1898 
1899       UseCall->replaceAllUsesWith(AllocaReplacement);
1900       UseCall->eraseFromParent();
1901     }
1902     // Remove @llvm.call.preallocated.setup().
1903     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1904   }
1905 }
1906 
1907 static bool
1908 OptimizeFunctions(Module &M,
1909                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1910                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1911                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1912                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1913                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1914                   function_ref<void(Function &F)> ChangedCFGCallback,
1915                   function_ref<void(Function &F)> DeleteFnCallback) {
1916 
1917   bool Changed = false;
1918 
1919   ChangeableCCCacheTy ChangeableCCCache;
1920   std::vector<Function *> AllCallsCold;
1921   for (Function &F : llvm::make_early_inc_range(M))
1922     if (hasOnlyColdCalls(F, GetBFI, ChangeableCCCache))
1923       AllCallsCold.push_back(&F);
1924 
1925   // Optimize functions.
1926   for (Function &F : llvm::make_early_inc_range(M)) {
1927     // Don't perform global opt pass on naked functions; we don't want fast
1928     // calling conventions for naked functions.
1929     if (F.hasFnAttribute(Attribute::Naked))
1930       continue;
1931 
1932     // Functions without names cannot be referenced outside this module.
1933     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1934       F.setLinkage(GlobalValue::InternalLinkage);
1935 
1936     if (deleteIfDead(F, NotDiscardableComdats, DeleteFnCallback)) {
1937       Changed = true;
1938       continue;
1939     }
1940 
1941     // LLVM's definition of dominance allows instructions that are cyclic
1942     // in unreachable blocks, e.g.:
1943     // %pat = select i1 %condition, @global, i16* %pat
1944     // because any instruction dominates an instruction in a block that's
1945     // not reachable from entry.
1946     // So, remove unreachable blocks from the function, because a) there's
1947     // no point in analyzing them and b) GlobalOpt should otherwise grow
1948     // some more complicated logic to break these cycles.
1949     // Notify the analysis manager that we've modified the function's CFG.
1950     if (!F.isDeclaration()) {
1951       if (removeUnreachableBlocks(F)) {
1952         Changed = true;
1953         ChangedCFGCallback(F);
1954       }
1955     }
1956 
1957     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1958 
1959     if (!F.hasLocalLinkage())
1960       continue;
1961 
1962     // If we have an inalloca parameter that we can safely remove the
1963     // inalloca attribute from, do so. This unlocks optimizations that
1964     // wouldn't be safe in the presence of inalloca.
1965     // FIXME: We should also hoist alloca affected by this to the entry
1966     // block if possible.
1967     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1968         !F.hasAddressTaken() && !hasMustTailCallers(&F) && !F.isVarArg()) {
1969       RemoveAttribute(&F, Attribute::InAlloca);
1970       Changed = true;
1971     }
1972 
1973     // FIXME: handle invokes
1974     // FIXME: handle musttail
1975     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1976       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1977           !hasInvokeCallers(&F)) {
1978         RemovePreallocated(&F);
1979         Changed = true;
1980       }
1981       continue;
1982     }
1983 
1984     if (hasChangeableCC(&F, ChangeableCCCache)) {
1985       NumInternalFunc++;
1986       TargetTransformInfo &TTI = GetTTI(F);
1987       // Change the calling convention to coldcc if either stress testing is
1988       // enabled or the target would like to use coldcc on functions which are
1989       // cold at all call sites and the callers contain no other non coldcc
1990       // calls.
1991       if (EnableColdCCStressTest ||
1992           (TTI.useColdCCForColdCall(F) &&
1993            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
1994         ChangeableCCCache.erase(&F);
1995         F.setCallingConv(CallingConv::Cold);
1996         changeCallSitesToColdCC(&F);
1997         Changed = true;
1998         NumColdCC++;
1999       }
2000     }
2001 
2002     if (hasChangeableCC(&F, ChangeableCCCache)) {
2003       // If this function has a calling convention worth changing, is not a
2004       // varargs function, and is only called directly, promote it to use the
2005       // Fast calling convention.
2006       F.setCallingConv(CallingConv::Fast);
2007       ChangeCalleesToFastCall(&F);
2008       ++NumFastCallFns;
2009       Changed = true;
2010     }
2011 
2012     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2013         !F.hasAddressTaken()) {
2014       // The function is not used by a trampoline intrinsic, so it is safe
2015       // to remove the 'nest' attribute.
2016       RemoveAttribute(&F, Attribute::Nest);
2017       ++NumNestRemoved;
2018       Changed = true;
2019     }
2020   }
2021   return Changed;
2022 }
2023 
2024 static bool
2025 OptimizeGlobalVars(Module &M,
2026                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2027                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2028                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2029                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2030   bool Changed = false;
2031 
2032   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2033     // Global variables without names cannot be referenced outside this module.
2034     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2035       GV.setLinkage(GlobalValue::InternalLinkage);
2036     // Simplify the initializer.
2037     if (GV.hasInitializer())
2038       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2039         auto &DL = M.getDataLayout();
2040         // TLI is not used in the case of a Constant, so use default nullptr
2041         // for that optional parameter, since we don't have a Function to
2042         // provide GetTLI anyway.
2043         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2044         if (New != C)
2045           GV.setInitializer(New);
2046       }
2047 
2048     if (deleteIfDead(GV, NotDiscardableComdats)) {
2049       Changed = true;
2050       continue;
2051     }
2052 
2053     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2054   }
2055   return Changed;
2056 }
2057 
2058 /// Evaluate static constructors in the function, if we can.  Return true if we
2059 /// can, false otherwise.
2060 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2061                                       TargetLibraryInfo *TLI) {
2062   // Skip external functions.
2063   if (F->isDeclaration())
2064     return false;
2065   // Call the function.
2066   Evaluator Eval(DL, TLI);
2067   Constant *RetValDummy;
2068   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2069                                            SmallVector<Constant*, 0>());
2070 
2071   if (EvalSuccess) {
2072     ++NumCtorsEvaluated;
2073 
2074     // We succeeded at evaluation: commit the result.
2075     auto NewInitializers = Eval.getMutatedInitializers();
2076     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2077                       << F->getName() << "' to " << NewInitializers.size()
2078                       << " stores.\n");
2079     for (const auto &Pair : NewInitializers)
2080       Pair.first->setInitializer(Pair.second);
2081     for (GlobalVariable *GV : Eval.getInvariants())
2082       GV->setConstant(true);
2083   }
2084 
2085   return EvalSuccess;
2086 }
2087 
2088 static int compareNames(Constant *const *A, Constant *const *B) {
2089   Value *AStripped = (*A)->stripPointerCasts();
2090   Value *BStripped = (*B)->stripPointerCasts();
2091   return AStripped->getName().compare(BStripped->getName());
2092 }
2093 
2094 static void setUsedInitializer(GlobalVariable &V,
2095                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2096   if (Init.empty()) {
2097     V.eraseFromParent();
2098     return;
2099   }
2100 
2101   // Get address space of pointers in the array of pointers.
2102   const Type *UsedArrayType = V.getValueType();
2103   const auto *VAT = cast<ArrayType>(UsedArrayType);
2104   const auto *VEPT = cast<PointerType>(VAT->getArrayElementType());
2105 
2106   // Type of pointer to the array of pointers.
2107   PointerType *PtrTy =
2108       PointerType::get(V.getContext(), VEPT->getAddressSpace());
2109 
2110   SmallVector<Constant *, 8> UsedArray;
2111   for (GlobalValue *GV : Init) {
2112     Constant *Cast = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, PtrTy);
2113     UsedArray.push_back(Cast);
2114   }
2115 
2116   // Sort to get deterministic order.
2117   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2118   ArrayType *ATy = ArrayType::get(PtrTy, UsedArray.size());
2119 
2120   Module *M = V.getParent();
2121   V.removeFromParent();
2122   GlobalVariable *NV =
2123       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2124                          ConstantArray::get(ATy, UsedArray), "");
2125   NV->takeName(&V);
2126   NV->setSection("llvm.metadata");
2127   delete &V;
2128 }
2129 
2130 namespace {
2131 
2132 /// An easy to access representation of llvm.used and llvm.compiler.used.
2133 class LLVMUsed {
2134   SmallPtrSet<GlobalValue *, 4> Used;
2135   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2136   GlobalVariable *UsedV;
2137   GlobalVariable *CompilerUsedV;
2138 
2139 public:
2140   LLVMUsed(Module &M) {
2141     SmallVector<GlobalValue *, 4> Vec;
2142     UsedV = collectUsedGlobalVariables(M, Vec, false);
2143     Used = {Vec.begin(), Vec.end()};
2144     Vec.clear();
2145     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2146     CompilerUsed = {Vec.begin(), Vec.end()};
2147   }
2148 
2149   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2150   using used_iterator_range = iterator_range<iterator>;
2151 
2152   iterator usedBegin() { return Used.begin(); }
2153   iterator usedEnd() { return Used.end(); }
2154 
2155   used_iterator_range used() {
2156     return used_iterator_range(usedBegin(), usedEnd());
2157   }
2158 
2159   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2160   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2161 
2162   used_iterator_range compilerUsed() {
2163     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2164   }
2165 
2166   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2167 
2168   bool compilerUsedCount(GlobalValue *GV) const {
2169     return CompilerUsed.count(GV);
2170   }
2171 
2172   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2173   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2174   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2175 
2176   bool compilerUsedInsert(GlobalValue *GV) {
2177     return CompilerUsed.insert(GV).second;
2178   }
2179 
2180   void syncVariablesAndSets() {
2181     if (UsedV)
2182       setUsedInitializer(*UsedV, Used);
2183     if (CompilerUsedV)
2184       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2185   }
2186 };
2187 
2188 } // end anonymous namespace
2189 
2190 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2191   if (GA.use_empty()) // No use at all.
2192     return false;
2193 
2194   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2195          "We should have removed the duplicated "
2196          "element from llvm.compiler.used");
2197   if (!GA.hasOneUse())
2198     // Strictly more than one use. So at least one is not in llvm.used and
2199     // llvm.compiler.used.
2200     return true;
2201 
2202   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2203   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2204 }
2205 
2206 static bool mayHaveOtherReferences(GlobalValue &GV, const LLVMUsed &U) {
2207   if (!GV.hasLocalLinkage())
2208     return true;
2209 
2210   return U.usedCount(&GV) || U.compilerUsedCount(&GV);
2211 }
2212 
2213 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2214                              bool &RenameTarget) {
2215   RenameTarget = false;
2216   bool Ret = false;
2217   if (hasUseOtherThanLLVMUsed(GA, U))
2218     Ret = true;
2219 
2220   // If the alias is externally visible, we may still be able to simplify it.
2221   if (!mayHaveOtherReferences(GA, U))
2222     return Ret;
2223 
2224   // If the aliasee has internal linkage and no other references (e.g.,
2225   // @llvm.used, @llvm.compiler.used), give it the name and linkage of the
2226   // alias, and delete the alias. This turns:
2227   //   define internal ... @f(...)
2228   //   @a = alias ... @f
2229   // into:
2230   //   define ... @a(...)
2231   Constant *Aliasee = GA.getAliasee();
2232   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2233   if (mayHaveOtherReferences(*Target, U))
2234     return Ret;
2235 
2236   RenameTarget = true;
2237   return true;
2238 }
2239 
2240 static bool
2241 OptimizeGlobalAliases(Module &M,
2242                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2243   bool Changed = false;
2244   LLVMUsed Used(M);
2245 
2246   for (GlobalValue *GV : Used.used())
2247     Used.compilerUsedErase(GV);
2248 
2249   // Return whether GV is explicitly or implicitly dso_local and not replaceable
2250   // by another definition in the current linkage unit.
2251   auto IsModuleLocal = [](GlobalValue &GV) {
2252     return !GlobalValue::isInterposableLinkage(GV.getLinkage()) &&
2253            (GV.isDSOLocal() || GV.isImplicitDSOLocal());
2254   };
2255 
2256   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2257     // Aliases without names cannot be referenced outside this module.
2258     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2259       J.setLinkage(GlobalValue::InternalLinkage);
2260 
2261     if (deleteIfDead(J, NotDiscardableComdats)) {
2262       Changed = true;
2263       continue;
2264     }
2265 
2266     // If the alias can change at link time, nothing can be done - bail out.
2267     if (!IsModuleLocal(J))
2268       continue;
2269 
2270     Constant *Aliasee = J.getAliasee();
2271     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2272     // We can't trivially replace the alias with the aliasee if the aliasee is
2273     // non-trivial in some way. We also can't replace the alias with the aliasee
2274     // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible
2275     // alias can be used to access the definition as if preemption did not
2276     // happen.
2277     // TODO: Try to handle non-zero GEPs of local aliasees.
2278     if (!Target || !IsModuleLocal(*Target))
2279       continue;
2280 
2281     Target->removeDeadConstantUsers();
2282 
2283     // Make all users of the alias use the aliasee instead.
2284     bool RenameTarget;
2285     if (!hasUsesToReplace(J, Used, RenameTarget))
2286       continue;
2287 
2288     J.replaceAllUsesWith(Aliasee);
2289     ++NumAliasesResolved;
2290     Changed = true;
2291 
2292     if (RenameTarget) {
2293       // Give the aliasee the name, linkage and other attributes of the alias.
2294       Target->takeName(&J);
2295       Target->setLinkage(J.getLinkage());
2296       Target->setDSOLocal(J.isDSOLocal());
2297       Target->setVisibility(J.getVisibility());
2298       Target->setDLLStorageClass(J.getDLLStorageClass());
2299 
2300       if (Used.usedErase(&J))
2301         Used.usedInsert(Target);
2302 
2303       if (Used.compilerUsedErase(&J))
2304         Used.compilerUsedInsert(Target);
2305     } else if (mayHaveOtherReferences(J, Used))
2306       continue;
2307 
2308     // Delete the alias.
2309     M.eraseAlias(&J);
2310     ++NumAliasesRemoved;
2311     Changed = true;
2312   }
2313 
2314   Used.syncVariablesAndSets();
2315 
2316   return Changed;
2317 }
2318 
2319 static Function *
2320 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2321   // Hack to get a default TLI before we have actual Function.
2322   auto FuncIter = M.begin();
2323   if (FuncIter == M.end())
2324     return nullptr;
2325   auto *TLI = &GetTLI(*FuncIter);
2326 
2327   LibFunc F = LibFunc_cxa_atexit;
2328   if (!TLI->has(F))
2329     return nullptr;
2330 
2331   Function *Fn = M.getFunction(TLI->getName(F));
2332   if (!Fn)
2333     return nullptr;
2334 
2335   // Now get the actual TLI for Fn.
2336   TLI = &GetTLI(*Fn);
2337 
2338   // Make sure that the function has the correct prototype.
2339   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2340     return nullptr;
2341 
2342   return Fn;
2343 }
2344 
2345 /// Returns whether the given function is an empty C++ destructor and can
2346 /// therefore be eliminated.
2347 /// Note that we assume that other optimization passes have already simplified
2348 /// the code so we simply check for 'ret'.
2349 static bool cxxDtorIsEmpty(const Function &Fn) {
2350   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2351   // nounwind, but that doesn't seem worth doing.
2352   if (Fn.isDeclaration())
2353     return false;
2354 
2355   for (const auto &I : Fn.getEntryBlock()) {
2356     if (I.isDebugOrPseudoInst())
2357       continue;
2358     if (isa<ReturnInst>(I))
2359       return true;
2360     break;
2361   }
2362   return false;
2363 }
2364 
2365 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2366   /// Itanium C++ ABI p3.3.5:
2367   ///
2368   ///   After constructing a global (or local static) object, that will require
2369   ///   destruction on exit, a termination function is registered as follows:
2370   ///
2371   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2372   ///
2373   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2374   ///   call f(p) when DSO d is unloaded, before all such termination calls
2375   ///   registered before this one. It returns zero if registration is
2376   ///   successful, nonzero on failure.
2377 
2378   // This pass will look for calls to __cxa_atexit where the function is trivial
2379   // and remove them.
2380   bool Changed = false;
2381 
2382   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2383     // We're only interested in calls. Theoretically, we could handle invoke
2384     // instructions as well, but neither llvm-gcc nor clang generate invokes
2385     // to __cxa_atexit.
2386     CallInst *CI = dyn_cast<CallInst>(U);
2387     if (!CI)
2388       continue;
2389 
2390     Function *DtorFn =
2391       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2392     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2393       continue;
2394 
2395     // Just remove the call.
2396     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2397     CI->eraseFromParent();
2398 
2399     ++NumCXXDtorsRemoved;
2400 
2401     Changed |= true;
2402   }
2403 
2404   return Changed;
2405 }
2406 
2407 static bool
2408 optimizeGlobalsInModule(Module &M, const DataLayout &DL,
2409                         function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2410                         function_ref<TargetTransformInfo &(Function &)> GetTTI,
2411                         function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2412                         function_ref<DominatorTree &(Function &)> LookupDomTree,
2413                         function_ref<void(Function &F)> ChangedCFGCallback,
2414                         function_ref<void(Function &F)> DeleteFnCallback) {
2415   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2416   bool Changed = false;
2417   bool LocalChange = true;
2418   std::optional<uint32_t> FirstNotFullyEvaluatedPriority;
2419 
2420   while (LocalChange) {
2421     LocalChange = false;
2422 
2423     NotDiscardableComdats.clear();
2424     for (const GlobalVariable &GV : M.globals())
2425       if (const Comdat *C = GV.getComdat())
2426         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2427           NotDiscardableComdats.insert(C);
2428     for (Function &F : M)
2429       if (const Comdat *C = F.getComdat())
2430         if (!F.isDefTriviallyDead())
2431           NotDiscardableComdats.insert(C);
2432     for (GlobalAlias &GA : M.aliases())
2433       if (const Comdat *C = GA.getComdat())
2434         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2435           NotDiscardableComdats.insert(C);
2436 
2437     // Delete functions that are trivially dead, ccc -> fastcc
2438     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2439                                      NotDiscardableComdats, ChangedCFGCallback,
2440                                      DeleteFnCallback);
2441 
2442     // Optimize global_ctors list.
2443     LocalChange |=
2444         optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) {
2445           if (FirstNotFullyEvaluatedPriority &&
2446               *FirstNotFullyEvaluatedPriority != Priority)
2447             return false;
2448           bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2449           if (!Evaluated)
2450             FirstNotFullyEvaluatedPriority = Priority;
2451           return Evaluated;
2452         });
2453 
2454     // Optimize non-address-taken globals.
2455     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2456                                       NotDiscardableComdats);
2457 
2458     // Resolve aliases, when possible.
2459     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2460 
2461     // Try to remove trivial global destructors if they are not removed
2462     // already.
2463     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2464     if (CXAAtExitFn)
2465       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2466 
2467     Changed |= LocalChange;
2468   }
2469 
2470   // TODO: Move all global ctors functions to the end of the module for code
2471   // layout.
2472 
2473   return Changed;
2474 }
2475 
2476 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2477     auto &DL = M.getDataLayout();
2478     auto &FAM =
2479         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2480     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2481       return FAM.getResult<DominatorTreeAnalysis>(F);
2482     };
2483     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2484       return FAM.getResult<TargetLibraryAnalysis>(F);
2485     };
2486     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2487       return FAM.getResult<TargetIRAnalysis>(F);
2488     };
2489 
2490     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2491       return FAM.getResult<BlockFrequencyAnalysis>(F);
2492     };
2493     auto ChangedCFGCallback = [&FAM](Function &F) {
2494       FAM.invalidate(F, PreservedAnalyses::none());
2495     };
2496     auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(F, F.getName()); };
2497 
2498     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2499                                  ChangedCFGCallback, DeleteFnCallback))
2500       return PreservedAnalyses::all();
2501 
2502     PreservedAnalyses PA = PreservedAnalyses::none();
2503     // We made sure to clear analyses for deleted functions.
2504     PA.preserve<FunctionAnalysisManagerModuleProxy>();
2505     // The only place we modify the CFG is when calling
2506     // removeUnreachableBlocks(), but there we make sure to invalidate analyses
2507     // for modified functions.
2508     PA.preserveSet<CFGAnalyses>();
2509     return PA;
2510 }
2511