1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/Dwarf.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/AtomicOrdering.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/CtorUtils.h" 63 #include "llvm/Transforms/Utils/Evaluator.h" 64 #include "llvm/Transforms/Utils/GlobalStatus.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <cassert> 67 #include <cstdint> 68 #include <optional> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "globalopt" 75 76 STATISTIC(NumMarked , "Number of globals marked constant"); 77 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 78 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 79 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 80 STATISTIC(NumDeleted , "Number of globals deleted"); 81 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 82 STATISTIC(NumLocalized , "Number of globals localized"); 83 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 84 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 85 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 86 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 87 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 88 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 89 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 90 STATISTIC(NumInternalFunc, "Number of internal functions"); 91 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 92 93 static cl::opt<bool> 94 EnableColdCCStressTest("enable-coldcc-stress-test", 95 cl::desc("Enable stress test of coldcc by adding " 96 "calling conv to all internal functions."), 97 cl::init(false), cl::Hidden); 98 99 static cl::opt<int> ColdCCRelFreq( 100 "coldcc-rel-freq", cl::Hidden, cl::init(2), 101 cl::desc( 102 "Maximum block frequency, expressed as a percentage of caller's " 103 "entry frequency, for a call site to be considered cold for enabling" 104 "coldcc")); 105 106 /// Is this global variable possibly used by a leak checker as a root? If so, 107 /// we might not really want to eliminate the stores to it. 108 static bool isLeakCheckerRoot(GlobalVariable *GV) { 109 // A global variable is a root if it is a pointer, or could plausibly contain 110 // a pointer. There are two challenges; one is that we could have a struct 111 // the has an inner member which is a pointer. We recurse through the type to 112 // detect these (up to a point). The other is that we may actually be a union 113 // of a pointer and another type, and so our LLVM type is an integer which 114 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 115 // potentially contained here. 116 117 if (GV->hasPrivateLinkage()) 118 return false; 119 120 SmallVector<Type *, 4> Types; 121 Types.push_back(GV->getValueType()); 122 123 unsigned Limit = 20; 124 do { 125 Type *Ty = Types.pop_back_val(); 126 switch (Ty->getTypeID()) { 127 default: break; 128 case Type::PointerTyID: 129 return true; 130 case Type::FixedVectorTyID: 131 case Type::ScalableVectorTyID: 132 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 133 return true; 134 break; 135 case Type::ArrayTyID: 136 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 137 break; 138 case Type::StructTyID: { 139 StructType *STy = cast<StructType>(Ty); 140 if (STy->isOpaque()) return true; 141 for (Type *InnerTy : STy->elements()) { 142 if (isa<PointerType>(InnerTy)) return true; 143 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 144 isa<VectorType>(InnerTy)) 145 Types.push_back(InnerTy); 146 } 147 break; 148 } 149 } 150 if (--Limit == 0) return true; 151 } while (!Types.empty()); 152 return false; 153 } 154 155 /// Given a value that is stored to a global but never read, determine whether 156 /// it's safe to remove the store and the chain of computation that feeds the 157 /// store. 158 static bool IsSafeComputationToRemove( 159 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 160 do { 161 if (isa<Constant>(V)) 162 return true; 163 if (!V->hasOneUse()) 164 return false; 165 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 166 isa<GlobalValue>(V)) 167 return false; 168 if (isAllocationFn(V, GetTLI)) 169 return true; 170 171 Instruction *I = cast<Instruction>(V); 172 if (I->mayHaveSideEffects()) 173 return false; 174 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 175 if (!GEP->hasAllConstantIndices()) 176 return false; 177 } else if (I->getNumOperands() != 1) { 178 return false; 179 } 180 181 V = I->getOperand(0); 182 } while (true); 183 } 184 185 /// This GV is a pointer root. Loop over all users of the global and clean up 186 /// any that obviously don't assign the global a value that isn't dynamically 187 /// allocated. 188 static bool 189 CleanupPointerRootUsers(GlobalVariable *GV, 190 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 191 // A brief explanation of leak checkers. The goal is to find bugs where 192 // pointers are forgotten, causing an accumulating growth in memory 193 // usage over time. The common strategy for leak checkers is to explicitly 194 // allow the memory pointed to by globals at exit. This is popular because it 195 // also solves another problem where the main thread of a C++ program may shut 196 // down before other threads that are still expecting to use those globals. To 197 // handle that case, we expect the program may create a singleton and never 198 // destroy it. 199 200 bool Changed = false; 201 202 // If Dead[n].first is the only use of a malloc result, we can delete its 203 // chain of computation and the store to the global in Dead[n].second. 204 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 205 206 SmallVector<User *> Worklist(GV->users()); 207 // Constants can't be pointers to dynamically allocated memory. 208 while (!Worklist.empty()) { 209 User *U = Worklist.pop_back_val(); 210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 211 Value *V = SI->getValueOperand(); 212 if (isa<Constant>(V)) { 213 Changed = true; 214 SI->eraseFromParent(); 215 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 216 if (I->hasOneUse()) 217 Dead.push_back(std::make_pair(I, SI)); 218 } 219 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 220 if (isa<Constant>(MSI->getValue())) { 221 Changed = true; 222 MSI->eraseFromParent(); 223 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 224 if (I->hasOneUse()) 225 Dead.push_back(std::make_pair(I, MSI)); 226 } 227 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 228 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 229 if (MemSrc && MemSrc->isConstant()) { 230 Changed = true; 231 MTI->eraseFromParent(); 232 } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) { 233 if (I->hasOneUse()) 234 Dead.push_back(std::make_pair(I, MTI)); 235 } 236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 237 if (isa<GEPOperator>(CE)) 238 append_range(Worklist, CE->users()); 239 } 240 } 241 242 for (int i = 0, e = Dead.size(); i != e; ++i) { 243 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 244 Dead[i].second->eraseFromParent(); 245 Instruction *I = Dead[i].first; 246 do { 247 if (isAllocationFn(I, GetTLI)) 248 break; 249 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 250 if (!J) 251 break; 252 I->eraseFromParent(); 253 I = J; 254 } while (true); 255 I->eraseFromParent(); 256 Changed = true; 257 } 258 } 259 260 GV->removeDeadConstantUsers(); 261 return Changed; 262 } 263 264 /// We just marked GV constant. Loop over all users of the global, cleaning up 265 /// the obvious ones. This is largely just a quick scan over the use list to 266 /// clean up the easy and obvious cruft. This returns true if it made a change. 267 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 268 const DataLayout &DL) { 269 Constant *Init = GV->getInitializer(); 270 SmallVector<User *, 8> WorkList(GV->users()); 271 SmallPtrSet<User *, 8> Visited; 272 bool Changed = false; 273 274 SmallVector<WeakTrackingVH> MaybeDeadInsts; 275 auto EraseFromParent = [&](Instruction *I) { 276 for (Value *Op : I->operands()) 277 if (auto *OpI = dyn_cast<Instruction>(Op)) 278 MaybeDeadInsts.push_back(OpI); 279 I->eraseFromParent(); 280 Changed = true; 281 }; 282 while (!WorkList.empty()) { 283 User *U = WorkList.pop_back_val(); 284 if (!Visited.insert(U).second) 285 continue; 286 287 if (auto *BO = dyn_cast<BitCastOperator>(U)) 288 append_range(WorkList, BO->users()); 289 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 290 append_range(WorkList, ASC->users()); 291 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 292 append_range(WorkList, GEP->users()); 293 else if (auto *LI = dyn_cast<LoadInst>(U)) { 294 // A load from a uniform value is always the same, regardless of any 295 // applied offset. 296 Type *Ty = LI->getType(); 297 if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { 298 LI->replaceAllUsesWith(Res); 299 EraseFromParent(LI); 300 continue; 301 } 302 303 Value *PtrOp = LI->getPointerOperand(); 304 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 305 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 306 DL, Offset, /* AllowNonInbounds */ true); 307 if (PtrOp == GV) { 308 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 309 LI->replaceAllUsesWith(Value); 310 EraseFromParent(LI); 311 } 312 } 313 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 314 // Store must be unreachable or storing Init into the global. 315 EraseFromParent(SI); 316 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 317 if (getUnderlyingObject(MI->getRawDest()) == GV) 318 EraseFromParent(MI); 319 } 320 } 321 322 Changed |= 323 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 324 GV->removeDeadConstantUsers(); 325 return Changed; 326 } 327 328 /// Part of the global at a specific offset, which is only accessed through 329 /// loads and stores with the given type. 330 struct GlobalPart { 331 Type *Ty; 332 Constant *Initializer = nullptr; 333 bool IsLoaded = false; 334 bool IsStored = false; 335 }; 336 337 /// Look at all uses of the global and determine which (offset, type) pairs it 338 /// can be split into. 339 static bool collectSRATypes(DenseMap<uint64_t, GlobalPart> &Parts, 340 GlobalVariable *GV, const DataLayout &DL) { 341 SmallVector<Use *, 16> Worklist; 342 SmallPtrSet<Use *, 16> Visited; 343 auto AppendUses = [&](Value *V) { 344 for (Use &U : V->uses()) 345 if (Visited.insert(&U).second) 346 Worklist.push_back(&U); 347 }; 348 AppendUses(GV); 349 while (!Worklist.empty()) { 350 Use *U = Worklist.pop_back_val(); 351 User *V = U->getUser(); 352 353 auto *GEP = dyn_cast<GEPOperator>(V); 354 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 355 (GEP && GEP->hasAllConstantIndices())) { 356 AppendUses(V); 357 continue; 358 } 359 360 if (Value *Ptr = getLoadStorePointerOperand(V)) { 361 // This is storing the global address into somewhere, not storing into 362 // the global. 363 if (isa<StoreInst>(V) && U->getOperandNo() == 0) 364 return false; 365 366 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 367 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 368 /* AllowNonInbounds */ true); 369 if (Ptr != GV || Offset.getActiveBits() >= 64) 370 return false; 371 372 // TODO: We currently require that all accesses at a given offset must 373 // use the same type. This could be relaxed. 374 Type *Ty = getLoadStoreType(V); 375 const auto &[It, Inserted] = 376 Parts.try_emplace(Offset.getZExtValue(), GlobalPart{Ty}); 377 if (Ty != It->second.Ty) 378 return false; 379 380 if (Inserted) { 381 It->second.Initializer = 382 ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL); 383 if (!It->second.Initializer) { 384 LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " 385 << *GV << " with type " << *Ty << " at offset " 386 << Offset.getZExtValue()); 387 return false; 388 } 389 } 390 391 // Scalable types not currently supported. 392 if (Ty->isScalableTy()) 393 return false; 394 395 auto IsStored = [](Value *V, Constant *Initializer) { 396 auto *SI = dyn_cast<StoreInst>(V); 397 if (!SI) 398 return false; 399 400 Constant *StoredConst = dyn_cast<Constant>(SI->getOperand(0)); 401 if (!StoredConst) 402 return true; 403 404 // Don't consider stores that only write the initializer value. 405 return Initializer != StoredConst; 406 }; 407 408 It->second.IsLoaded |= isa<LoadInst>(V); 409 It->second.IsStored |= IsStored(V, It->second.Initializer); 410 continue; 411 } 412 413 // Ignore dead constant users. 414 if (auto *C = dyn_cast<Constant>(V)) { 415 if (!isSafeToDestroyConstant(C)) 416 return false; 417 continue; 418 } 419 420 // Unknown user. 421 return false; 422 } 423 424 return true; 425 } 426 427 /// Copy over the debug info for a variable to its SRA replacements. 428 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 429 uint64_t FragmentOffsetInBits, 430 uint64_t FragmentSizeInBits, 431 uint64_t VarSize) { 432 SmallVector<DIGlobalVariableExpression *, 1> GVs; 433 GV->getDebugInfo(GVs); 434 for (auto *GVE : GVs) { 435 DIVariable *Var = GVE->getVariable(); 436 DIExpression *Expr = GVE->getExpression(); 437 int64_t CurVarOffsetInBytes = 0; 438 uint64_t CurVarOffsetInBits = 0; 439 uint64_t FragmentEndInBits = FragmentOffsetInBits + FragmentSizeInBits; 440 441 // Calculate the offset (Bytes), Continue if unknown. 442 if (!Expr->extractIfOffset(CurVarOffsetInBytes)) 443 continue; 444 445 // Ignore negative offset. 446 if (CurVarOffsetInBytes < 0) 447 continue; 448 449 // Convert offset to bits. 450 CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes; 451 452 // Current var starts after the fragment, ignore. 453 if (CurVarOffsetInBits >= FragmentEndInBits) 454 continue; 455 456 uint64_t CurVarSize = Var->getType()->getSizeInBits(); 457 uint64_t CurVarEndInBits = CurVarOffsetInBits + CurVarSize; 458 // Current variable ends before start of fragment, ignore. 459 if (CurVarSize != 0 && /* CurVarSize is known */ 460 CurVarEndInBits <= FragmentOffsetInBits) 461 continue; 462 463 // Current variable fits in (not greater than) the fragment, 464 // does not need fragment expression. 465 if (CurVarSize != 0 && /* CurVarSize is known */ 466 CurVarOffsetInBits >= FragmentOffsetInBits && 467 CurVarEndInBits <= FragmentEndInBits) { 468 uint64_t CurVarOffsetInFragment = 469 (CurVarOffsetInBits - FragmentOffsetInBits) / 8; 470 if (CurVarOffsetInFragment != 0) 471 Expr = DIExpression::get(Expr->getContext(), {dwarf::DW_OP_plus_uconst, 472 CurVarOffsetInFragment}); 473 else 474 Expr = DIExpression::get(Expr->getContext(), {}); 475 auto *NGVE = 476 DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 477 NGV->addDebugInfo(NGVE); 478 continue; 479 } 480 // Current variable does not fit in single fragment, 481 // emit a fragment expression. 482 if (FragmentSizeInBits < VarSize) { 483 if (CurVarOffsetInBits > FragmentOffsetInBits) 484 continue; 485 uint64_t CurVarFragmentOffsetInBits = 486 FragmentOffsetInBits - CurVarOffsetInBits; 487 uint64_t CurVarFragmentSizeInBits = FragmentSizeInBits; 488 if (CurVarSize != 0 && CurVarEndInBits < FragmentEndInBits) 489 CurVarFragmentSizeInBits -= (FragmentEndInBits - CurVarEndInBits); 490 if (CurVarOffsetInBits) 491 Expr = DIExpression::get(Expr->getContext(), {}); 492 if (auto E = DIExpression::createFragmentExpression( 493 Expr, CurVarFragmentOffsetInBits, CurVarFragmentSizeInBits)) 494 Expr = *E; 495 else 496 continue; 497 } 498 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 499 NGV->addDebugInfo(NGVE); 500 } 501 } 502 503 /// Perform scalar replacement of aggregates on the specified global variable. 504 /// This opens the door for other optimizations by exposing the behavior of the 505 /// program in a more fine-grained way. We have determined that this 506 /// transformation is safe already. We return the first global variable we 507 /// insert so that the caller can reprocess it. 508 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 509 assert(GV->hasLocalLinkage()); 510 511 // Collect types to split into. 512 DenseMap<uint64_t, GlobalPart> Parts; 513 if (!collectSRATypes(Parts, GV, DL) || Parts.empty()) 514 return nullptr; 515 516 // Make sure we don't SRA back to the same type. 517 if (Parts.size() == 1 && Parts.begin()->second.Ty == GV->getValueType()) 518 return nullptr; 519 520 // Don't perform SRA if we would have to split into many globals. Ignore 521 // parts that are either only loaded or only stored, because we expect them 522 // to be optimized away. 523 unsigned NumParts = count_if(Parts, [](const auto &Pair) { 524 return Pair.second.IsLoaded && Pair.second.IsStored; 525 }); 526 if (NumParts > 16) 527 return nullptr; 528 529 // Sort by offset. 530 SmallVector<std::tuple<uint64_t, Type *, Constant *>, 16> TypesVector; 531 for (const auto &Pair : Parts) { 532 TypesVector.push_back( 533 {Pair.first, Pair.second.Ty, Pair.second.Initializer}); 534 } 535 sort(TypesVector, llvm::less_first()); 536 537 // Check that the types are non-overlapping. 538 uint64_t Offset = 0; 539 for (const auto &[OffsetForTy, Ty, _] : TypesVector) { 540 // Overlaps with previous type. 541 if (OffsetForTy < Offset) 542 return nullptr; 543 544 Offset = OffsetForTy + DL.getTypeAllocSize(Ty); 545 } 546 547 // Some accesses go beyond the end of the global, don't bother. 548 if (Offset > DL.getTypeAllocSize(GV->getValueType())) 549 return nullptr; 550 551 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 552 553 // Get the alignment of the global, either explicit or target-specific. 554 Align StartAlignment = 555 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 556 uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType()); 557 558 // Create replacement globals. 559 DenseMap<uint64_t, GlobalVariable *> NewGlobals; 560 unsigned NameSuffix = 0; 561 for (auto &[OffsetForTy, Ty, Initializer] : TypesVector) { 562 GlobalVariable *NGV = new GlobalVariable( 563 *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, 564 Initializer, GV->getName() + "." + Twine(NameSuffix++), GV, 565 GV->getThreadLocalMode(), GV->getAddressSpace()); 566 NGV->copyAttributesFrom(GV); 567 NewGlobals.insert({OffsetForTy, NGV}); 568 569 // Calculate the known alignment of the field. If the original aggregate 570 // had 256 byte alignment for example, something might depend on that: 571 // propagate info to each field. 572 Align NewAlign = commonAlignment(StartAlignment, OffsetForTy); 573 if (NewAlign > DL.getABITypeAlign(Ty)) 574 NGV->setAlignment(NewAlign); 575 576 // Copy over the debug info for the variable. 577 transferSRADebugInfo(GV, NGV, OffsetForTy * 8, 578 DL.getTypeAllocSizeInBits(Ty), VarSize); 579 } 580 581 // Replace uses of the original global with uses of the new global. 582 SmallVector<Value *, 16> Worklist; 583 SmallPtrSet<Value *, 16> Visited; 584 SmallVector<WeakTrackingVH, 16> DeadInsts; 585 auto AppendUsers = [&](Value *V) { 586 for (User *U : V->users()) 587 if (Visited.insert(U).second) 588 Worklist.push_back(U); 589 }; 590 AppendUsers(GV); 591 while (!Worklist.empty()) { 592 Value *V = Worklist.pop_back_val(); 593 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 594 isa<GEPOperator>(V)) { 595 AppendUsers(V); 596 if (isa<Instruction>(V)) 597 DeadInsts.push_back(V); 598 continue; 599 } 600 601 if (Value *Ptr = getLoadStorePointerOperand(V)) { 602 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 603 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 604 /* AllowNonInbounds */ true); 605 assert(Ptr == GV && "Load/store must be from/to global"); 606 GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; 607 assert(NGV && "Must have replacement global for this offset"); 608 609 // Update the pointer operand and recalculate alignment. 610 Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V)); 611 Align NewAlign = 612 getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V)); 613 614 if (auto *LI = dyn_cast<LoadInst>(V)) { 615 LI->setOperand(0, NGV); 616 LI->setAlignment(NewAlign); 617 } else { 618 auto *SI = cast<StoreInst>(V); 619 SI->setOperand(1, NGV); 620 SI->setAlignment(NewAlign); 621 } 622 continue; 623 } 624 625 assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) && 626 "Other users can only be dead constants"); 627 } 628 629 // Delete old instructions and global. 630 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 631 GV->removeDeadConstantUsers(); 632 GV->eraseFromParent(); 633 ++NumSRA; 634 635 assert(NewGlobals.size() > 0); 636 return NewGlobals.begin()->second; 637 } 638 639 /// Return true if all users of the specified value will trap if the value is 640 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 641 /// reprocessing them. 642 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 643 SmallPtrSetImpl<const PHINode*> &PHIs) { 644 for (const User *U : V->users()) { 645 if (const Instruction *I = dyn_cast<Instruction>(U)) { 646 // If null pointer is considered valid, then all uses are non-trapping. 647 // Non address-space 0 globals have already been pruned by the caller. 648 if (NullPointerIsDefined(I->getFunction())) 649 return false; 650 } 651 if (isa<LoadInst>(U)) { 652 // Will trap. 653 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 654 if (SI->getOperand(0) == V) { 655 return false; // Storing the value. 656 } 657 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 658 if (CI->getCalledOperand() != V) { 659 return false; // Not calling the ptr 660 } 661 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 662 if (II->getCalledOperand() != V) { 663 return false; // Not calling the ptr 664 } 665 } else if (const AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(U)) { 666 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) 667 return false; 668 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 669 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 670 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 671 // If we've already seen this phi node, ignore it, it has already been 672 // checked. 673 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 674 return false; 675 } else if (isa<ICmpInst>(U) && 676 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 677 isa<LoadInst>(U->getOperand(0)) && 678 isa<ConstantPointerNull>(U->getOperand(1))) { 679 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 680 ->getPointerOperand() 681 ->stripPointerCasts()) && 682 "Should be GlobalVariable"); 683 // This and only this kind of non-signed ICmpInst is to be replaced with 684 // the comparing of the value of the created global init bool later in 685 // optimizeGlobalAddressOfAllocation for the global variable. 686 } else { 687 return false; 688 } 689 } 690 return true; 691 } 692 693 /// Return true if all uses of any loads from GV will trap if the loaded value 694 /// is null. Note that this also permits comparisons of the loaded value 695 /// against null, as a special case. 696 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 697 SmallVector<const Value *, 4> Worklist; 698 Worklist.push_back(GV); 699 while (!Worklist.empty()) { 700 const Value *P = Worklist.pop_back_val(); 701 for (const auto *U : P->users()) { 702 if (auto *LI = dyn_cast<LoadInst>(U)) { 703 SmallPtrSet<const PHINode *, 8> PHIs; 704 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 705 return false; 706 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 707 // Ignore stores to the global. 708 if (SI->getPointerOperand() != P) 709 return false; 710 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 711 if (CE->stripPointerCasts() != GV) 712 return false; 713 // Check further the ConstantExpr. 714 Worklist.push_back(CE); 715 } else { 716 // We don't know or understand this user, bail out. 717 return false; 718 } 719 } 720 } 721 722 return true; 723 } 724 725 /// Get all the loads/store uses for global variable \p GV. 726 static void allUsesOfLoadAndStores(GlobalVariable *GV, 727 SmallVector<Value *, 4> &Uses) { 728 SmallVector<Value *, 4> Worklist; 729 Worklist.push_back(GV); 730 while (!Worklist.empty()) { 731 auto *P = Worklist.pop_back_val(); 732 for (auto *U : P->users()) { 733 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 734 Worklist.push_back(CE); 735 continue; 736 } 737 738 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 739 "Expect only load or store instructions"); 740 Uses.push_back(U); 741 } 742 } 743 } 744 745 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 746 bool Changed = false; 747 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 748 Instruction *I = cast<Instruction>(*UI++); 749 // Uses are non-trapping if null pointer is considered valid. 750 // Non address-space 0 globals are already pruned by the caller. 751 if (NullPointerIsDefined(I->getFunction())) 752 return false; 753 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 754 LI->setOperand(0, NewV); 755 Changed = true; 756 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 757 if (SI->getOperand(1) == V) { 758 SI->setOperand(1, NewV); 759 Changed = true; 760 } 761 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 762 CallBase *CB = cast<CallBase>(I); 763 if (CB->getCalledOperand() == V) { 764 // Calling through the pointer! Turn into a direct call, but be careful 765 // that the pointer is not also being passed as an argument. 766 CB->setCalledOperand(NewV); 767 Changed = true; 768 bool PassedAsArg = false; 769 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 770 if (CB->getArgOperand(i) == V) { 771 PassedAsArg = true; 772 CB->setArgOperand(i, NewV); 773 } 774 775 if (PassedAsArg) { 776 // Being passed as an argument also. Be careful to not invalidate UI! 777 UI = V->user_begin(); 778 } 779 } 780 } else if (AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(I)) { 781 Changed |= OptimizeAwayTrappingUsesOfValue( 782 CI, ConstantExpr::getAddrSpaceCast(NewV, CI->getType())); 783 if (CI->use_empty()) { 784 Changed = true; 785 CI->eraseFromParent(); 786 } 787 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 788 // Should handle GEP here. 789 SmallVector<Constant*, 8> Idxs; 790 Idxs.reserve(GEPI->getNumOperands()-1); 791 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 792 i != e; ++i) 793 if (Constant *C = dyn_cast<Constant>(*i)) 794 Idxs.push_back(C); 795 else 796 break; 797 if (Idxs.size() == GEPI->getNumOperands()-1) 798 Changed |= OptimizeAwayTrappingUsesOfValue( 799 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 800 NewV, Idxs)); 801 if (GEPI->use_empty()) { 802 Changed = true; 803 GEPI->eraseFromParent(); 804 } 805 } 806 } 807 808 return Changed; 809 } 810 811 /// The specified global has only one non-null value stored into it. If there 812 /// are uses of the loaded value that would trap if the loaded value is 813 /// dynamically null, then we know that they cannot be reachable with a null 814 /// optimize away the load. 815 static bool OptimizeAwayTrappingUsesOfLoads( 816 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 817 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 818 bool Changed = false; 819 820 // Keep track of whether we are able to remove all the uses of the global 821 // other than the store that defines it. 822 bool AllNonStoreUsesGone = true; 823 824 // Replace all uses of loads with uses of uses of the stored value. 825 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 826 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 827 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 828 // If we were able to delete all uses of the loads 829 if (LI->use_empty()) { 830 LI->eraseFromParent(); 831 Changed = true; 832 } else { 833 AllNonStoreUsesGone = false; 834 } 835 } else if (isa<StoreInst>(GlobalUser)) { 836 // Ignore the store that stores "LV" to the global. 837 assert(GlobalUser->getOperand(1) == GV && 838 "Must be storing *to* the global"); 839 } else { 840 AllNonStoreUsesGone = false; 841 842 // If we get here we could have other crazy uses that are transitively 843 // loaded. 844 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 845 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 846 isa<BitCastInst>(GlobalUser) || 847 isa<GetElementPtrInst>(GlobalUser) || 848 isa<AddrSpaceCastInst>(GlobalUser)) && 849 "Only expect load and stores!"); 850 } 851 } 852 853 if (Changed) { 854 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 855 << "\n"); 856 ++NumGlobUses; 857 } 858 859 // If we nuked all of the loads, then none of the stores are needed either, 860 // nor is the global. 861 if (AllNonStoreUsesGone) { 862 if (isLeakCheckerRoot(GV)) { 863 Changed |= CleanupPointerRootUsers(GV, GetTLI); 864 } else { 865 Changed = true; 866 CleanupConstantGlobalUsers(GV, DL); 867 } 868 if (GV->use_empty()) { 869 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 870 Changed = true; 871 GV->eraseFromParent(); 872 ++NumDeleted; 873 } 874 } 875 return Changed; 876 } 877 878 /// Walk the use list of V, constant folding all of the instructions that are 879 /// foldable. 880 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 881 TargetLibraryInfo *TLI) { 882 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 883 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 884 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 885 I->replaceAllUsesWith(NewC); 886 887 // Advance UI to the next non-I use to avoid invalidating it! 888 // Instructions could multiply use V. 889 while (UI != E && *UI == I) 890 ++UI; 891 if (isInstructionTriviallyDead(I, TLI)) 892 I->eraseFromParent(); 893 } 894 } 895 896 /// This function takes the specified global variable, and transforms the 897 /// program as if it always contained the result of the specified malloc. 898 /// Because it is always the result of the specified malloc, there is no reason 899 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 900 /// loads of GV as uses of the new global. 901 static GlobalVariable * 902 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, 903 uint64_t AllocSize, Constant *InitVal, 904 const DataLayout &DL, 905 TargetLibraryInfo *TLI) { 906 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 907 << '\n'); 908 909 // Create global of type [AllocSize x i8]. 910 Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()), 911 AllocSize); 912 913 // Create the new global variable. The contents of the allocated memory is 914 // undefined initially, so initialize with an undef value. 915 GlobalVariable *NewGV = new GlobalVariable( 916 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 917 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 918 GV->getThreadLocalMode()); 919 920 // Initialize the global at the point of the original call. Note that this 921 // is a different point from the initialization referred to below for the 922 // nullability handling. Sublety: We have not proven the original global was 923 // only initialized once. As such, we can not fold this into the initializer 924 // of the new global as may need to re-init the storage multiple times. 925 if (!isa<UndefValue>(InitVal)) { 926 IRBuilder<> Builder(CI->getNextNode()); 927 // TODO: Use alignment above if align!=1 928 Builder.CreateMemSet(NewGV, InitVal, AllocSize, std::nullopt); 929 } 930 931 // Update users of the allocation to use the new global instead. 932 CI->replaceAllUsesWith(NewGV); 933 934 // If there is a comparison against null, we will insert a global bool to 935 // keep track of whether the global was initialized yet or not. 936 GlobalVariable *InitBool = 937 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 938 GlobalValue::InternalLinkage, 939 ConstantInt::getFalse(GV->getContext()), 940 GV->getName()+".init", GV->getThreadLocalMode()); 941 bool InitBoolUsed = false; 942 943 // Loop over all instruction uses of GV, processing them in turn. 944 SmallVector<Value *, 4> Guses; 945 allUsesOfLoadAndStores(GV, Guses); 946 for (auto *U : Guses) { 947 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 948 // The global is initialized when the store to it occurs. If the stored 949 // value is null value, the global bool is set to false, otherwise true. 950 new StoreInst(ConstantInt::getBool( 951 GV->getContext(), 952 !isa<ConstantPointerNull>(SI->getValueOperand())), 953 InitBool, false, Align(1), SI->getOrdering(), 954 SI->getSyncScopeID(), SI); 955 SI->eraseFromParent(); 956 continue; 957 } 958 959 LoadInst *LI = cast<LoadInst>(U); 960 while (!LI->use_empty()) { 961 Use &LoadUse = *LI->use_begin(); 962 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 963 if (!ICI) { 964 LoadUse.set(NewGV); 965 continue; 966 } 967 968 // Replace the cmp X, 0 with a use of the bool value. 969 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 970 InitBool->getName() + ".val", false, Align(1), 971 LI->getOrdering(), LI->getSyncScopeID(), LI); 972 InitBoolUsed = true; 973 switch (ICI->getPredicate()) { 974 default: llvm_unreachable("Unknown ICmp Predicate!"); 975 case ICmpInst::ICMP_ULT: // X < null -> always false 976 LV = ConstantInt::getFalse(GV->getContext()); 977 break; 978 case ICmpInst::ICMP_UGE: // X >= null -> always true 979 LV = ConstantInt::getTrue(GV->getContext()); 980 break; 981 case ICmpInst::ICMP_ULE: 982 case ICmpInst::ICMP_EQ: 983 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 984 break; 985 case ICmpInst::ICMP_NE: 986 case ICmpInst::ICMP_UGT: 987 break; // no change. 988 } 989 ICI->replaceAllUsesWith(LV); 990 ICI->eraseFromParent(); 991 } 992 LI->eraseFromParent(); 993 } 994 995 // If the initialization boolean was used, insert it, otherwise delete it. 996 if (!InitBoolUsed) { 997 while (!InitBool->use_empty()) // Delete initializations 998 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 999 delete InitBool; 1000 } else 1001 GV->getParent()->insertGlobalVariable(GV->getIterator(), InitBool); 1002 1003 // Now the GV is dead, nuke it and the allocation.. 1004 GV->eraseFromParent(); 1005 CI->eraseFromParent(); 1006 1007 // To further other optimizations, loop over all users of NewGV and try to 1008 // constant prop them. This will promote GEP instructions with constant 1009 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1010 ConstantPropUsersOf(NewGV, DL, TLI); 1011 1012 return NewGV; 1013 } 1014 1015 /// Scan the use-list of GV checking to make sure that there are no complex uses 1016 /// of GV. We permit simple things like dereferencing the pointer, but not 1017 /// storing through the address, unless it is to the specified global. 1018 static bool 1019 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1020 const GlobalVariable *GV) { 1021 SmallPtrSet<const Value *, 4> Visited; 1022 SmallVector<const Value *, 4> Worklist; 1023 Worklist.push_back(CI); 1024 1025 while (!Worklist.empty()) { 1026 const Value *V = Worklist.pop_back_val(); 1027 if (!Visited.insert(V).second) 1028 continue; 1029 1030 for (const Use &VUse : V->uses()) { 1031 const User *U = VUse.getUser(); 1032 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1033 continue; // Fine, ignore. 1034 1035 if (auto *SI = dyn_cast<StoreInst>(U)) { 1036 if (SI->getValueOperand() == V && 1037 SI->getPointerOperand()->stripPointerCasts() != GV) 1038 return false; // Storing the pointer not into GV... bad. 1039 continue; // Otherwise, storing through it, or storing into GV... fine. 1040 } 1041 1042 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1043 Worklist.push_back(BCI); 1044 continue; 1045 } 1046 1047 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1048 Worklist.push_back(GEPI); 1049 continue; 1050 } 1051 1052 return false; 1053 } 1054 } 1055 1056 return true; 1057 } 1058 1059 /// If we have a global that is only initialized with a fixed size allocation 1060 /// try to transform the program to use global memory instead of heap 1061 /// allocated memory. This eliminates dynamic allocation, avoids an indirection 1062 /// accessing the data, and exposes the resultant global to further GlobalOpt. 1063 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, 1064 CallInst *CI, 1065 const DataLayout &DL, 1066 TargetLibraryInfo *TLI) { 1067 if (!isRemovableAlloc(CI, TLI)) 1068 // Must be able to remove the call when we get done.. 1069 return false; 1070 1071 Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext()); 1072 Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty); 1073 if (!InitVal) 1074 // Must be able to emit a memset for initialization 1075 return false; 1076 1077 uint64_t AllocSize; 1078 if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts())) 1079 return false; 1080 1081 // Restrict this transformation to only working on small allocations 1082 // (2048 bytes currently), as we don't want to introduce a 16M global or 1083 // something. 1084 if (AllocSize >= 2048) 1085 return false; 1086 1087 // We can't optimize this global unless all uses of it are *known* to be 1088 // of the malloc value, not of the null initializer value (consider a use 1089 // that compares the global's value against zero to see if the malloc has 1090 // been reached). To do this, we check to see if all uses of the global 1091 // would trap if the global were null: this proves that they must all 1092 // happen after the malloc. 1093 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1094 return false; 1095 1096 // We can't optimize this if the malloc itself is used in a complex way, 1097 // for example, being stored into multiple globals. This allows the 1098 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1099 // These are all things we could transform to using the global for. 1100 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1101 return false; 1102 1103 OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); 1104 return true; 1105 } 1106 1107 // Try to optimize globals based on the knowledge that only one value (besides 1108 // its initializer) is ever stored to the global. 1109 static bool 1110 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1111 const DataLayout &DL, 1112 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1113 // Ignore no-op GEPs and bitcasts. 1114 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1115 1116 // If we are dealing with a pointer global that is initialized to null and 1117 // only has one (non-null) value stored into it, then we can optimize any 1118 // users of the loaded value (often calls and loads) that would trap if the 1119 // value was null. 1120 if (GV->getInitializer()->getType()->isPointerTy() && 1121 GV->getInitializer()->isNullValue() && 1122 StoredOnceVal->getType()->isPointerTy() && 1123 !NullPointerIsDefined( 1124 nullptr /* F */, 1125 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1126 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1127 // Optimize away any trapping uses of the loaded value. 1128 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1129 return true; 1130 } else if (isAllocationFn(StoredOnceVal, GetTLI)) { 1131 if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) { 1132 auto *TLI = &GetTLI(*CI->getFunction()); 1133 if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI)) 1134 return true; 1135 } 1136 } 1137 } 1138 1139 return false; 1140 } 1141 1142 /// At this point, we have learned that the only two values ever stored into GV 1143 /// are its initializer and OtherVal. See if we can shrink the global into a 1144 /// boolean and select between the two values whenever it is used. This exposes 1145 /// the values to other scalar optimizations. 1146 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1147 Type *GVElType = GV->getValueType(); 1148 1149 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1150 // an FP value, pointer or vector, don't do this optimization because a select 1151 // between them is very expensive and unlikely to lead to later 1152 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1153 // where v1 and v2 both require constant pool loads, a big loss. 1154 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1155 GVElType->isFloatingPointTy() || 1156 GVElType->isPointerTy() || GVElType->isVectorTy()) 1157 return false; 1158 1159 // Walk the use list of the global seeing if all the uses are load or store. 1160 // If there is anything else, bail out. 1161 for (User *U : GV->users()) { 1162 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1163 return false; 1164 if (getLoadStoreType(U) != GVElType) 1165 return false; 1166 } 1167 1168 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1169 1170 // Create the new global, initializing it to false. 1171 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1172 false, 1173 GlobalValue::InternalLinkage, 1174 ConstantInt::getFalse(GV->getContext()), 1175 GV->getName()+".b", 1176 GV->getThreadLocalMode(), 1177 GV->getType()->getAddressSpace()); 1178 NewGV->copyAttributesFrom(GV); 1179 GV->getParent()->insertGlobalVariable(GV->getIterator(), NewGV); 1180 1181 Constant *InitVal = GV->getInitializer(); 1182 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1183 "No reason to shrink to bool!"); 1184 1185 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1186 GV->getDebugInfo(GVs); 1187 1188 // If initialized to zero and storing one into the global, we can use a cast 1189 // instead of a select to synthesize the desired value. 1190 bool IsOneZero = false; 1191 bool EmitOneOrZero = true; 1192 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1193 if (CI && CI->getValue().getActiveBits() <= 64) { 1194 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1195 1196 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1197 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1198 uint64_t ValInit = CIInit->getZExtValue(); 1199 uint64_t ValOther = CI->getZExtValue(); 1200 uint64_t ValMinus = ValOther - ValInit; 1201 1202 for(auto *GVe : GVs){ 1203 DIGlobalVariable *DGV = GVe->getVariable(); 1204 DIExpression *E = GVe->getExpression(); 1205 const DataLayout &DL = GV->getParent()->getDataLayout(); 1206 unsigned SizeInOctets = 1207 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1208 1209 // It is expected that the address of global optimized variable is on 1210 // top of the stack. After optimization, value of that variable will 1211 // be ether 0 for initial value or 1 for other value. The following 1212 // expression should return constant integer value depending on the 1213 // value at global object address: 1214 // val * (ValOther - ValInit) + ValInit: 1215 // DW_OP_deref DW_OP_constu <ValMinus> 1216 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1217 SmallVector<uint64_t, 12> Ops = { 1218 dwarf::DW_OP_deref_size, SizeInOctets, 1219 dwarf::DW_OP_constu, ValMinus, 1220 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1221 dwarf::DW_OP_plus}; 1222 bool WithStackValue = true; 1223 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1224 DIGlobalVariableExpression *DGVE = 1225 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1226 NewGV->addDebugInfo(DGVE); 1227 } 1228 EmitOneOrZero = false; 1229 } 1230 } 1231 1232 if (EmitOneOrZero) { 1233 // FIXME: This will only emit address for debugger on which will 1234 // be written only 0 or 1. 1235 for(auto *GV : GVs) 1236 NewGV->addDebugInfo(GV); 1237 } 1238 1239 while (!GV->use_empty()) { 1240 Instruction *UI = cast<Instruction>(GV->user_back()); 1241 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1242 // Change the store into a boolean store. 1243 bool StoringOther = SI->getOperand(0) == OtherVal; 1244 // Only do this if we weren't storing a loaded value. 1245 Value *StoreVal; 1246 if (StoringOther || SI->getOperand(0) == InitVal) { 1247 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1248 StoringOther); 1249 } else { 1250 // Otherwise, we are storing a previously loaded copy. To do this, 1251 // change the copy from copying the original value to just copying the 1252 // bool. 1253 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1254 1255 // If we've already replaced the input, StoredVal will be a cast or 1256 // select instruction. If not, it will be a load of the original 1257 // global. 1258 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1259 assert(LI->getOperand(0) == GV && "Not a copy!"); 1260 // Insert a new load, to preserve the saved value. 1261 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1262 LI->getName() + ".b", false, Align(1), 1263 LI->getOrdering(), LI->getSyncScopeID(), LI); 1264 } else { 1265 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1266 "This is not a form that we understand!"); 1267 StoreVal = StoredVal->getOperand(0); 1268 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1269 } 1270 } 1271 StoreInst *NSI = 1272 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1273 SI->getSyncScopeID(), SI); 1274 NSI->setDebugLoc(SI->getDebugLoc()); 1275 } else { 1276 // Change the load into a load of bool then a select. 1277 LoadInst *LI = cast<LoadInst>(UI); 1278 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1279 LI->getName() + ".b", false, Align(1), 1280 LI->getOrdering(), LI->getSyncScopeID(), LI); 1281 Instruction *NSI; 1282 if (IsOneZero) 1283 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1284 else 1285 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1286 NSI->takeName(LI); 1287 // Since LI is split into two instructions, NLI and NSI both inherit the 1288 // same DebugLoc 1289 NLI->setDebugLoc(LI->getDebugLoc()); 1290 NSI->setDebugLoc(LI->getDebugLoc()); 1291 LI->replaceAllUsesWith(NSI); 1292 } 1293 UI->eraseFromParent(); 1294 } 1295 1296 // Retain the name of the old global variable. People who are debugging their 1297 // programs may expect these variables to be named the same. 1298 NewGV->takeName(GV); 1299 GV->eraseFromParent(); 1300 return true; 1301 } 1302 1303 static bool 1304 deleteIfDead(GlobalValue &GV, 1305 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, 1306 function_ref<void(Function &)> DeleteFnCallback = nullptr) { 1307 GV.removeDeadConstantUsers(); 1308 1309 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1310 return false; 1311 1312 if (const Comdat *C = GV.getComdat()) 1313 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1314 return false; 1315 1316 bool Dead; 1317 if (auto *F = dyn_cast<Function>(&GV)) 1318 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1319 else 1320 Dead = GV.use_empty(); 1321 if (!Dead) 1322 return false; 1323 1324 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1325 if (auto *F = dyn_cast<Function>(&GV)) { 1326 if (DeleteFnCallback) 1327 DeleteFnCallback(*F); 1328 } 1329 GV.eraseFromParent(); 1330 ++NumDeleted; 1331 return true; 1332 } 1333 1334 static bool isPointerValueDeadOnEntryToFunction( 1335 const Function *F, GlobalValue *GV, 1336 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1337 // Find all uses of GV. We expect them all to be in F, and if we can't 1338 // identify any of the uses we bail out. 1339 // 1340 // On each of these uses, identify if the memory that GV points to is 1341 // used/required/live at the start of the function. If it is not, for example 1342 // if the first thing the function does is store to the GV, the GV can 1343 // possibly be demoted. 1344 // 1345 // We don't do an exhaustive search for memory operations - simply look 1346 // through bitcasts as they're quite common and benign. 1347 const DataLayout &DL = GV->getParent()->getDataLayout(); 1348 SmallVector<LoadInst *, 4> Loads; 1349 SmallVector<StoreInst *, 4> Stores; 1350 for (auto *U : GV->users()) { 1351 Instruction *I = dyn_cast<Instruction>(U); 1352 if (!I) 1353 return false; 1354 assert(I->getParent()->getParent() == F); 1355 1356 if (auto *LI = dyn_cast<LoadInst>(I)) 1357 Loads.push_back(LI); 1358 else if (auto *SI = dyn_cast<StoreInst>(I)) 1359 Stores.push_back(SI); 1360 else 1361 return false; 1362 } 1363 1364 // We have identified all uses of GV into loads and stores. Now check if all 1365 // of them are known not to depend on the value of the global at the function 1366 // entry point. We do this by ensuring that every load is dominated by at 1367 // least one store. 1368 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1369 1370 // The below check is quadratic. Check we're not going to do too many tests. 1371 // FIXME: Even though this will always have worst-case quadratic time, we 1372 // could put effort into minimizing the average time by putting stores that 1373 // have been shown to dominate at least one load at the beginning of the 1374 // Stores array, making subsequent dominance checks more likely to succeed 1375 // early. 1376 // 1377 // The threshold here is fairly large because global->local demotion is a 1378 // very powerful optimization should it fire. 1379 const unsigned Threshold = 100; 1380 if (Loads.size() * Stores.size() > Threshold) 1381 return false; 1382 1383 for (auto *L : Loads) { 1384 auto *LTy = L->getType(); 1385 if (none_of(Stores, [&](const StoreInst *S) { 1386 auto *STy = S->getValueOperand()->getType(); 1387 // The load is only dominated by the store if DomTree says so 1388 // and the number of bits loaded in L is less than or equal to 1389 // the number of bits stored in S. 1390 return DT.dominates(S, L) && 1391 DL.getTypeStoreSize(LTy).getFixedValue() <= 1392 DL.getTypeStoreSize(STy).getFixedValue(); 1393 })) 1394 return false; 1395 } 1396 // All loads have known dependences inside F, so the global can be localized. 1397 return true; 1398 } 1399 1400 // For a global variable with one store, if the store dominates any loads, 1401 // those loads will always load the stored value (as opposed to the 1402 // initializer), even in the presence of recursion. 1403 static bool forwardStoredOnceStore( 1404 GlobalVariable *GV, const StoreInst *StoredOnceStore, 1405 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1406 const Value *StoredOnceValue = StoredOnceStore->getValueOperand(); 1407 // We can do this optimization for non-constants in nosync + norecurse 1408 // functions, but globals used in exactly one norecurse functions are already 1409 // promoted to an alloca. 1410 if (!isa<Constant>(StoredOnceValue)) 1411 return false; 1412 const Function *F = StoredOnceStore->getFunction(); 1413 SmallVector<LoadInst *> Loads; 1414 for (User *U : GV->users()) { 1415 if (auto *LI = dyn_cast<LoadInst>(U)) { 1416 if (LI->getFunction() == F && 1417 LI->getType() == StoredOnceValue->getType() && LI->isSimple()) 1418 Loads.push_back(LI); 1419 } 1420 } 1421 // Only compute DT if we have any loads to examine. 1422 bool MadeChange = false; 1423 if (!Loads.empty()) { 1424 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1425 for (auto *LI : Loads) { 1426 if (DT.dominates(StoredOnceStore, LI)) { 1427 LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue)); 1428 LI->eraseFromParent(); 1429 MadeChange = true; 1430 } 1431 } 1432 } 1433 return MadeChange; 1434 } 1435 1436 /// Analyze the specified global variable and optimize 1437 /// it if possible. If we make a change, return true. 1438 static bool 1439 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1440 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1441 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1442 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1443 auto &DL = GV->getParent()->getDataLayout(); 1444 // If this is a first class global and has only one accessing function and 1445 // this function is non-recursive, we replace the global with a local alloca 1446 // in this function. 1447 // 1448 // NOTE: It doesn't make sense to promote non-single-value types since we 1449 // are just replacing static memory to stack memory. 1450 // 1451 // If the global is in different address space, don't bring it to stack. 1452 if (!GS.HasMultipleAccessingFunctions && 1453 GS.AccessingFunction && 1454 GV->getValueType()->isSingleValueType() && 1455 GV->getType()->getAddressSpace() == DL.getAllocaAddrSpace() && 1456 !GV->isExternallyInitialized() && 1457 GS.AccessingFunction->doesNotRecurse() && 1458 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1459 LookupDomTree)) { 1460 const DataLayout &DL = GV->getParent()->getDataLayout(); 1461 1462 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1463 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1464 ->getEntryBlock().begin()); 1465 Type *ElemTy = GV->getValueType(); 1466 // FIXME: Pass Global's alignment when globals have alignment 1467 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1468 GV->getName(), &FirstI); 1469 if (!isa<UndefValue>(GV->getInitializer())) 1470 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1471 1472 GV->replaceAllUsesWith(Alloca); 1473 GV->eraseFromParent(); 1474 ++NumLocalized; 1475 return true; 1476 } 1477 1478 bool Changed = false; 1479 1480 // If the global is never loaded (but may be stored to), it is dead. 1481 // Delete it now. 1482 if (!GS.IsLoaded) { 1483 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1484 1485 if (isLeakCheckerRoot(GV)) { 1486 // Delete any constant stores to the global. 1487 Changed = CleanupPointerRootUsers(GV, GetTLI); 1488 } else { 1489 // Delete any stores we can find to the global. We may not be able to 1490 // make it completely dead though. 1491 Changed = CleanupConstantGlobalUsers(GV, DL); 1492 } 1493 1494 // If the global is dead now, delete it. 1495 if (GV->use_empty()) { 1496 GV->eraseFromParent(); 1497 ++NumDeleted; 1498 Changed = true; 1499 } 1500 return Changed; 1501 1502 } 1503 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1504 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1505 1506 // Don't actually mark a global constant if it's atomic because atomic loads 1507 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1508 // requires write access to the variable even if it's not actually changed. 1509 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1510 assert(!GV->isConstant() && "Expected a non-constant global"); 1511 GV->setConstant(true); 1512 Changed = true; 1513 } 1514 1515 // Clean up any obviously simplifiable users now. 1516 Changed |= CleanupConstantGlobalUsers(GV, DL); 1517 1518 // If the global is dead now, just nuke it. 1519 if (GV->use_empty()) { 1520 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1521 << "all users and delete global!\n"); 1522 GV->eraseFromParent(); 1523 ++NumDeleted; 1524 return true; 1525 } 1526 1527 // Fall through to the next check; see if we can optimize further. 1528 ++NumMarked; 1529 } 1530 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1531 const DataLayout &DL = GV->getParent()->getDataLayout(); 1532 if (SRAGlobal(GV, DL)) 1533 return true; 1534 } 1535 Value *StoredOnceValue = GS.getStoredOnceValue(); 1536 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1537 Function &StoreFn = 1538 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1539 bool CanHaveNonUndefGlobalInitializer = 1540 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1541 GV->getType()->getAddressSpace()); 1542 // If the initial value for the global was an undef value, and if only 1543 // one other value was stored into it, we can just change the 1544 // initializer to be the stored value, then delete all stores to the 1545 // global. This allows us to mark it constant. 1546 // This is restricted to address spaces that allow globals to have 1547 // initializers. NVPTX, for example, does not support initializers for 1548 // shared memory (AS 3). 1549 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1550 if (SOVConstant && isa<UndefValue>(GV->getInitializer()) && 1551 DL.getTypeAllocSize(SOVConstant->getType()) == 1552 DL.getTypeAllocSize(GV->getValueType()) && 1553 CanHaveNonUndefGlobalInitializer) { 1554 if (SOVConstant->getType() == GV->getValueType()) { 1555 // Change the initializer in place. 1556 GV->setInitializer(SOVConstant); 1557 } else { 1558 // Create a new global with adjusted type. 1559 auto *NGV = new GlobalVariable( 1560 *GV->getParent(), SOVConstant->getType(), GV->isConstant(), 1561 GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), 1562 GV->getAddressSpace()); 1563 NGV->takeName(GV); 1564 NGV->copyAttributesFrom(GV); 1565 GV->replaceAllUsesWith(NGV); 1566 GV->eraseFromParent(); 1567 GV = NGV; 1568 } 1569 1570 // Clean up any obviously simplifiable users now. 1571 CleanupConstantGlobalUsers(GV, DL); 1572 1573 if (GV->use_empty()) { 1574 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1575 << "simplify all users and delete global!\n"); 1576 GV->eraseFromParent(); 1577 ++NumDeleted; 1578 } 1579 ++NumSubstitute; 1580 return true; 1581 } 1582 1583 // Try to optimize globals based on the knowledge that only one value 1584 // (besides its initializer) is ever stored to the global. 1585 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI)) 1586 return true; 1587 1588 // Try to forward the store to any loads. If we have more than one store, we 1589 // may have a store of the initializer between StoredOnceStore and a load. 1590 if (GS.NumStores == 1) 1591 if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree)) 1592 return true; 1593 1594 // Otherwise, if the global was not a boolean, we can shrink it to be a 1595 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1596 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1597 (!isa<UndefValue>(GV->getInitializer()) || 1598 CanHaveNonUndefGlobalInitializer)) { 1599 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1600 ++NumShrunkToBool; 1601 return true; 1602 } 1603 } 1604 } 1605 1606 return Changed; 1607 } 1608 1609 /// Analyze the specified global variable and optimize it if possible. If we 1610 /// make a change, return true. 1611 static bool 1612 processGlobal(GlobalValue &GV, 1613 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1614 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1615 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1616 if (GV.getName().starts_with("llvm.")) 1617 return false; 1618 1619 GlobalStatus GS; 1620 1621 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1622 return false; 1623 1624 bool Changed = false; 1625 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1626 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1627 : GlobalValue::UnnamedAddr::Local; 1628 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1629 GV.setUnnamedAddr(NewUnnamedAddr); 1630 NumUnnamed++; 1631 Changed = true; 1632 } 1633 } 1634 1635 // Do more involved optimizations if the global is internal. 1636 if (!GV.hasLocalLinkage()) 1637 return Changed; 1638 1639 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1640 if (!GVar) 1641 return Changed; 1642 1643 if (GVar->isConstant() || !GVar->hasInitializer()) 1644 return Changed; 1645 1646 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1647 Changed; 1648 } 1649 1650 /// Walk all of the direct calls of the specified function, changing them to 1651 /// FastCC. 1652 static void ChangeCalleesToFastCall(Function *F) { 1653 for (User *U : F->users()) { 1654 if (isa<BlockAddress>(U)) 1655 continue; 1656 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1657 } 1658 } 1659 1660 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1661 Attribute::AttrKind A) { 1662 unsigned AttrIndex; 1663 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1664 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1665 return Attrs; 1666 } 1667 1668 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1669 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1670 for (User *U : F->users()) { 1671 if (isa<BlockAddress>(U)) 1672 continue; 1673 CallBase *CB = cast<CallBase>(U); 1674 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1675 } 1676 } 1677 1678 /// Return true if this is a calling convention that we'd like to change. The 1679 /// idea here is that we don't want to mess with the convention if the user 1680 /// explicitly requested something with performance implications like coldcc, 1681 /// GHC, or anyregcc. 1682 static bool hasChangeableCCImpl(Function *F) { 1683 CallingConv::ID CC = F->getCallingConv(); 1684 1685 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1686 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1687 return false; 1688 1689 if (F->isVarArg()) 1690 return false; 1691 1692 // FIXME: Change CC for the whole chain of musttail calls when possible. 1693 // 1694 // Can't change CC of the function that either has musttail calls, or is a 1695 // musttail callee itself 1696 for (User *U : F->users()) { 1697 if (isa<BlockAddress>(U)) 1698 continue; 1699 CallInst* CI = dyn_cast<CallInst>(U); 1700 if (!CI) 1701 continue; 1702 1703 if (CI->isMustTailCall()) 1704 return false; 1705 } 1706 1707 for (BasicBlock &BB : *F) 1708 if (BB.getTerminatingMustTailCall()) 1709 return false; 1710 1711 return !F->hasAddressTaken(); 1712 } 1713 1714 using ChangeableCCCacheTy = SmallDenseMap<Function *, bool, 8>; 1715 static bool hasChangeableCC(Function *F, 1716 ChangeableCCCacheTy &ChangeableCCCache) { 1717 auto Res = ChangeableCCCache.try_emplace(F, false); 1718 if (Res.second) 1719 Res.first->second = hasChangeableCCImpl(F); 1720 return Res.first->second; 1721 } 1722 1723 /// Return true if the block containing the call site has a BlockFrequency of 1724 /// less than ColdCCRelFreq% of the entry block. 1725 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1726 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1727 auto *CallSiteBB = CB.getParent(); 1728 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1729 auto CallerEntryFreq = 1730 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1731 return CallSiteFreq < CallerEntryFreq * ColdProb; 1732 } 1733 1734 // This function checks if the input function F is cold at all call sites. It 1735 // also looks each call site's containing function, returning false if the 1736 // caller function contains other non cold calls. The input vector AllCallsCold 1737 // contains a list of functions that only have call sites in cold blocks. 1738 static bool 1739 isValidCandidateForColdCC(Function &F, 1740 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1741 const std::vector<Function *> &AllCallsCold) { 1742 1743 if (F.user_empty()) 1744 return false; 1745 1746 for (User *U : F.users()) { 1747 if (isa<BlockAddress>(U)) 1748 continue; 1749 1750 CallBase &CB = cast<CallBase>(*U); 1751 Function *CallerFunc = CB.getParent()->getParent(); 1752 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1753 if (!isColdCallSite(CB, CallerBFI)) 1754 return false; 1755 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 static void changeCallSitesToColdCC(Function *F) { 1762 for (User *U : F->users()) { 1763 if (isa<BlockAddress>(U)) 1764 continue; 1765 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1766 } 1767 } 1768 1769 // This function iterates over all the call instructions in the input Function 1770 // and checks that all call sites are in cold blocks and are allowed to use the 1771 // coldcc calling convention. 1772 static bool 1773 hasOnlyColdCalls(Function &F, 1774 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1775 ChangeableCCCacheTy &ChangeableCCCache) { 1776 for (BasicBlock &BB : F) { 1777 for (Instruction &I : BB) { 1778 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1779 // Skip over isline asm instructions since they aren't function calls. 1780 if (CI->isInlineAsm()) 1781 continue; 1782 Function *CalledFn = CI->getCalledFunction(); 1783 if (!CalledFn) 1784 return false; 1785 // Skip over intrinsics since they won't remain as function calls. 1786 // Important to do this check before the linkage check below so we 1787 // won't bail out on debug intrinsics, possibly making the generated 1788 // code dependent on the presence of debug info. 1789 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1790 continue; 1791 if (!CalledFn->hasLocalLinkage()) 1792 return false; 1793 // Check if it's valid to use coldcc calling convention. 1794 if (!hasChangeableCC(CalledFn, ChangeableCCCache)) 1795 return false; 1796 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1797 if (!isColdCallSite(*CI, CallerBFI)) 1798 return false; 1799 } 1800 } 1801 } 1802 return true; 1803 } 1804 1805 static bool hasMustTailCallers(Function *F) { 1806 for (User *U : F->users()) { 1807 CallBase *CB = dyn_cast<CallBase>(U); 1808 if (!CB) { 1809 assert(isa<BlockAddress>(U) && 1810 "Expected either CallBase or BlockAddress"); 1811 continue; 1812 } 1813 if (CB->isMustTailCall()) 1814 return true; 1815 } 1816 return false; 1817 } 1818 1819 static bool hasInvokeCallers(Function *F) { 1820 for (User *U : F->users()) 1821 if (isa<InvokeInst>(U)) 1822 return true; 1823 return false; 1824 } 1825 1826 static void RemovePreallocated(Function *F) { 1827 RemoveAttribute(F, Attribute::Preallocated); 1828 1829 auto *M = F->getParent(); 1830 1831 IRBuilder<> Builder(M->getContext()); 1832 1833 // Cannot modify users() while iterating over it, so make a copy. 1834 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1835 for (User *U : PreallocatedCalls) { 1836 CallBase *CB = dyn_cast<CallBase>(U); 1837 if (!CB) 1838 continue; 1839 1840 assert( 1841 !CB->isMustTailCall() && 1842 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1843 // Create copy of call without "preallocated" operand bundle. 1844 SmallVector<OperandBundleDef, 1> OpBundles; 1845 CB->getOperandBundlesAsDefs(OpBundles); 1846 CallBase *PreallocatedSetup = nullptr; 1847 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1848 if (It->getTag() == "preallocated") { 1849 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1850 OpBundles.erase(It); 1851 break; 1852 } 1853 } 1854 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1855 uint64_t ArgCount = 1856 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1857 1858 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1859 "Unknown indirect call type"); 1860 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1861 CB->replaceAllUsesWith(NewCB); 1862 NewCB->takeName(CB); 1863 CB->eraseFromParent(); 1864 1865 Builder.SetInsertPoint(PreallocatedSetup); 1866 auto *StackSave = Builder.CreateStackSave(); 1867 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1868 Builder.CreateStackRestore(StackSave); 1869 1870 // Replace @llvm.call.preallocated.arg() with alloca. 1871 // Cannot modify users() while iterating over it, so make a copy. 1872 // @llvm.call.preallocated.arg() can be called with the same index multiple 1873 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1874 // already created a Value* for the index, and if not, create an alloca and 1875 // bitcast right after the @llvm.call.preallocated.setup() so that it 1876 // dominates all uses. 1877 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1878 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1879 for (auto *User : PreallocatedArgs) { 1880 auto *UseCall = cast<CallBase>(User); 1881 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1882 Intrinsic::call_preallocated_arg && 1883 "preallocated token use was not a llvm.call.preallocated.arg"); 1884 uint64_t AllocArgIndex = 1885 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1886 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1887 if (!AllocaReplacement) { 1888 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1889 auto *ArgType = 1890 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1891 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1892 Builder.SetInsertPoint(InsertBefore); 1893 auto *Alloca = 1894 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1895 ArgAllocas[AllocArgIndex] = Alloca; 1896 AllocaReplacement = Alloca; 1897 } 1898 1899 UseCall->replaceAllUsesWith(AllocaReplacement); 1900 UseCall->eraseFromParent(); 1901 } 1902 // Remove @llvm.call.preallocated.setup(). 1903 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1904 } 1905 } 1906 1907 static bool 1908 OptimizeFunctions(Module &M, 1909 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1910 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1911 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1912 function_ref<DominatorTree &(Function &)> LookupDomTree, 1913 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, 1914 function_ref<void(Function &F)> ChangedCFGCallback, 1915 function_ref<void(Function &F)> DeleteFnCallback) { 1916 1917 bool Changed = false; 1918 1919 ChangeableCCCacheTy ChangeableCCCache; 1920 std::vector<Function *> AllCallsCold; 1921 for (Function &F : llvm::make_early_inc_range(M)) 1922 if (hasOnlyColdCalls(F, GetBFI, ChangeableCCCache)) 1923 AllCallsCold.push_back(&F); 1924 1925 // Optimize functions. 1926 for (Function &F : llvm::make_early_inc_range(M)) { 1927 // Don't perform global opt pass on naked functions; we don't want fast 1928 // calling conventions for naked functions. 1929 if (F.hasFnAttribute(Attribute::Naked)) 1930 continue; 1931 1932 // Functions without names cannot be referenced outside this module. 1933 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1934 F.setLinkage(GlobalValue::InternalLinkage); 1935 1936 if (deleteIfDead(F, NotDiscardableComdats, DeleteFnCallback)) { 1937 Changed = true; 1938 continue; 1939 } 1940 1941 // LLVM's definition of dominance allows instructions that are cyclic 1942 // in unreachable blocks, e.g.: 1943 // %pat = select i1 %condition, @global, i16* %pat 1944 // because any instruction dominates an instruction in a block that's 1945 // not reachable from entry. 1946 // So, remove unreachable blocks from the function, because a) there's 1947 // no point in analyzing them and b) GlobalOpt should otherwise grow 1948 // some more complicated logic to break these cycles. 1949 // Notify the analysis manager that we've modified the function's CFG. 1950 if (!F.isDeclaration()) { 1951 if (removeUnreachableBlocks(F)) { 1952 Changed = true; 1953 ChangedCFGCallback(F); 1954 } 1955 } 1956 1957 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1958 1959 if (!F.hasLocalLinkage()) 1960 continue; 1961 1962 // If we have an inalloca parameter that we can safely remove the 1963 // inalloca attribute from, do so. This unlocks optimizations that 1964 // wouldn't be safe in the presence of inalloca. 1965 // FIXME: We should also hoist alloca affected by this to the entry 1966 // block if possible. 1967 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1968 !F.hasAddressTaken() && !hasMustTailCallers(&F) && !F.isVarArg()) { 1969 RemoveAttribute(&F, Attribute::InAlloca); 1970 Changed = true; 1971 } 1972 1973 // FIXME: handle invokes 1974 // FIXME: handle musttail 1975 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1976 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 1977 !hasInvokeCallers(&F)) { 1978 RemovePreallocated(&F); 1979 Changed = true; 1980 } 1981 continue; 1982 } 1983 1984 if (hasChangeableCC(&F, ChangeableCCCache)) { 1985 NumInternalFunc++; 1986 TargetTransformInfo &TTI = GetTTI(F); 1987 // Change the calling convention to coldcc if either stress testing is 1988 // enabled or the target would like to use coldcc on functions which are 1989 // cold at all call sites and the callers contain no other non coldcc 1990 // calls. 1991 if (EnableColdCCStressTest || 1992 (TTI.useColdCCForColdCall(F) && 1993 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 1994 ChangeableCCCache.erase(&F); 1995 F.setCallingConv(CallingConv::Cold); 1996 changeCallSitesToColdCC(&F); 1997 Changed = true; 1998 NumColdCC++; 1999 } 2000 } 2001 2002 if (hasChangeableCC(&F, ChangeableCCCache)) { 2003 // If this function has a calling convention worth changing, is not a 2004 // varargs function, and is only called directly, promote it to use the 2005 // Fast calling convention. 2006 F.setCallingConv(CallingConv::Fast); 2007 ChangeCalleesToFastCall(&F); 2008 ++NumFastCallFns; 2009 Changed = true; 2010 } 2011 2012 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2013 !F.hasAddressTaken()) { 2014 // The function is not used by a trampoline intrinsic, so it is safe 2015 // to remove the 'nest' attribute. 2016 RemoveAttribute(&F, Attribute::Nest); 2017 ++NumNestRemoved; 2018 Changed = true; 2019 } 2020 } 2021 return Changed; 2022 } 2023 2024 static bool 2025 OptimizeGlobalVars(Module &M, 2026 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2027 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2028 function_ref<DominatorTree &(Function &)> LookupDomTree, 2029 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2030 bool Changed = false; 2031 2032 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2033 // Global variables without names cannot be referenced outside this module. 2034 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2035 GV.setLinkage(GlobalValue::InternalLinkage); 2036 // Simplify the initializer. 2037 if (GV.hasInitializer()) 2038 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2039 auto &DL = M.getDataLayout(); 2040 // TLI is not used in the case of a Constant, so use default nullptr 2041 // for that optional parameter, since we don't have a Function to 2042 // provide GetTLI anyway. 2043 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2044 if (New != C) 2045 GV.setInitializer(New); 2046 } 2047 2048 if (deleteIfDead(GV, NotDiscardableComdats)) { 2049 Changed = true; 2050 continue; 2051 } 2052 2053 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2054 } 2055 return Changed; 2056 } 2057 2058 /// Evaluate static constructors in the function, if we can. Return true if we 2059 /// can, false otherwise. 2060 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2061 TargetLibraryInfo *TLI) { 2062 // Skip external functions. 2063 if (F->isDeclaration()) 2064 return false; 2065 // Call the function. 2066 Evaluator Eval(DL, TLI); 2067 Constant *RetValDummy; 2068 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2069 SmallVector<Constant*, 0>()); 2070 2071 if (EvalSuccess) { 2072 ++NumCtorsEvaluated; 2073 2074 // We succeeded at evaluation: commit the result. 2075 auto NewInitializers = Eval.getMutatedInitializers(); 2076 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2077 << F->getName() << "' to " << NewInitializers.size() 2078 << " stores.\n"); 2079 for (const auto &Pair : NewInitializers) 2080 Pair.first->setInitializer(Pair.second); 2081 for (GlobalVariable *GV : Eval.getInvariants()) 2082 GV->setConstant(true); 2083 } 2084 2085 return EvalSuccess; 2086 } 2087 2088 static int compareNames(Constant *const *A, Constant *const *B) { 2089 Value *AStripped = (*A)->stripPointerCasts(); 2090 Value *BStripped = (*B)->stripPointerCasts(); 2091 return AStripped->getName().compare(BStripped->getName()); 2092 } 2093 2094 static void setUsedInitializer(GlobalVariable &V, 2095 const SmallPtrSetImpl<GlobalValue *> &Init) { 2096 if (Init.empty()) { 2097 V.eraseFromParent(); 2098 return; 2099 } 2100 2101 // Get address space of pointers in the array of pointers. 2102 const Type *UsedArrayType = V.getValueType(); 2103 const auto *VAT = cast<ArrayType>(UsedArrayType); 2104 const auto *VEPT = cast<PointerType>(VAT->getArrayElementType()); 2105 2106 // Type of pointer to the array of pointers. 2107 PointerType *PtrTy = 2108 PointerType::get(V.getContext(), VEPT->getAddressSpace()); 2109 2110 SmallVector<Constant *, 8> UsedArray; 2111 for (GlobalValue *GV : Init) { 2112 Constant *Cast = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, PtrTy); 2113 UsedArray.push_back(Cast); 2114 } 2115 2116 // Sort to get deterministic order. 2117 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2118 ArrayType *ATy = ArrayType::get(PtrTy, UsedArray.size()); 2119 2120 Module *M = V.getParent(); 2121 V.removeFromParent(); 2122 GlobalVariable *NV = 2123 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2124 ConstantArray::get(ATy, UsedArray), ""); 2125 NV->takeName(&V); 2126 NV->setSection("llvm.metadata"); 2127 delete &V; 2128 } 2129 2130 namespace { 2131 2132 /// An easy to access representation of llvm.used and llvm.compiler.used. 2133 class LLVMUsed { 2134 SmallPtrSet<GlobalValue *, 4> Used; 2135 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2136 GlobalVariable *UsedV; 2137 GlobalVariable *CompilerUsedV; 2138 2139 public: 2140 LLVMUsed(Module &M) { 2141 SmallVector<GlobalValue *, 4> Vec; 2142 UsedV = collectUsedGlobalVariables(M, Vec, false); 2143 Used = {Vec.begin(), Vec.end()}; 2144 Vec.clear(); 2145 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2146 CompilerUsed = {Vec.begin(), Vec.end()}; 2147 } 2148 2149 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2150 using used_iterator_range = iterator_range<iterator>; 2151 2152 iterator usedBegin() { return Used.begin(); } 2153 iterator usedEnd() { return Used.end(); } 2154 2155 used_iterator_range used() { 2156 return used_iterator_range(usedBegin(), usedEnd()); 2157 } 2158 2159 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2160 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2161 2162 used_iterator_range compilerUsed() { 2163 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2164 } 2165 2166 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2167 2168 bool compilerUsedCount(GlobalValue *GV) const { 2169 return CompilerUsed.count(GV); 2170 } 2171 2172 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2173 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2174 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2175 2176 bool compilerUsedInsert(GlobalValue *GV) { 2177 return CompilerUsed.insert(GV).second; 2178 } 2179 2180 void syncVariablesAndSets() { 2181 if (UsedV) 2182 setUsedInitializer(*UsedV, Used); 2183 if (CompilerUsedV) 2184 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2185 } 2186 }; 2187 2188 } // end anonymous namespace 2189 2190 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2191 if (GA.use_empty()) // No use at all. 2192 return false; 2193 2194 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2195 "We should have removed the duplicated " 2196 "element from llvm.compiler.used"); 2197 if (!GA.hasOneUse()) 2198 // Strictly more than one use. So at least one is not in llvm.used and 2199 // llvm.compiler.used. 2200 return true; 2201 2202 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2203 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2204 } 2205 2206 static bool mayHaveOtherReferences(GlobalValue &GV, const LLVMUsed &U) { 2207 if (!GV.hasLocalLinkage()) 2208 return true; 2209 2210 return U.usedCount(&GV) || U.compilerUsedCount(&GV); 2211 } 2212 2213 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2214 bool &RenameTarget) { 2215 RenameTarget = false; 2216 bool Ret = false; 2217 if (hasUseOtherThanLLVMUsed(GA, U)) 2218 Ret = true; 2219 2220 // If the alias is externally visible, we may still be able to simplify it. 2221 if (!mayHaveOtherReferences(GA, U)) 2222 return Ret; 2223 2224 // If the aliasee has internal linkage and no other references (e.g., 2225 // @llvm.used, @llvm.compiler.used), give it the name and linkage of the 2226 // alias, and delete the alias. This turns: 2227 // define internal ... @f(...) 2228 // @a = alias ... @f 2229 // into: 2230 // define ... @a(...) 2231 Constant *Aliasee = GA.getAliasee(); 2232 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2233 if (mayHaveOtherReferences(*Target, U)) 2234 return Ret; 2235 2236 RenameTarget = true; 2237 return true; 2238 } 2239 2240 static bool 2241 OptimizeGlobalAliases(Module &M, 2242 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2243 bool Changed = false; 2244 LLVMUsed Used(M); 2245 2246 for (GlobalValue *GV : Used.used()) 2247 Used.compilerUsedErase(GV); 2248 2249 // Return whether GV is explicitly or implicitly dso_local and not replaceable 2250 // by another definition in the current linkage unit. 2251 auto IsModuleLocal = [](GlobalValue &GV) { 2252 return !GlobalValue::isInterposableLinkage(GV.getLinkage()) && 2253 (GV.isDSOLocal() || GV.isImplicitDSOLocal()); 2254 }; 2255 2256 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2257 // Aliases without names cannot be referenced outside this module. 2258 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2259 J.setLinkage(GlobalValue::InternalLinkage); 2260 2261 if (deleteIfDead(J, NotDiscardableComdats)) { 2262 Changed = true; 2263 continue; 2264 } 2265 2266 // If the alias can change at link time, nothing can be done - bail out. 2267 if (!IsModuleLocal(J)) 2268 continue; 2269 2270 Constant *Aliasee = J.getAliasee(); 2271 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2272 // We can't trivially replace the alias with the aliasee if the aliasee is 2273 // non-trivial in some way. We also can't replace the alias with the aliasee 2274 // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible 2275 // alias can be used to access the definition as if preemption did not 2276 // happen. 2277 // TODO: Try to handle non-zero GEPs of local aliasees. 2278 if (!Target || !IsModuleLocal(*Target)) 2279 continue; 2280 2281 Target->removeDeadConstantUsers(); 2282 2283 // Make all users of the alias use the aliasee instead. 2284 bool RenameTarget; 2285 if (!hasUsesToReplace(J, Used, RenameTarget)) 2286 continue; 2287 2288 J.replaceAllUsesWith(Aliasee); 2289 ++NumAliasesResolved; 2290 Changed = true; 2291 2292 if (RenameTarget) { 2293 // Give the aliasee the name, linkage and other attributes of the alias. 2294 Target->takeName(&J); 2295 Target->setLinkage(J.getLinkage()); 2296 Target->setDSOLocal(J.isDSOLocal()); 2297 Target->setVisibility(J.getVisibility()); 2298 Target->setDLLStorageClass(J.getDLLStorageClass()); 2299 2300 if (Used.usedErase(&J)) 2301 Used.usedInsert(Target); 2302 2303 if (Used.compilerUsedErase(&J)) 2304 Used.compilerUsedInsert(Target); 2305 } else if (mayHaveOtherReferences(J, Used)) 2306 continue; 2307 2308 // Delete the alias. 2309 M.eraseAlias(&J); 2310 ++NumAliasesRemoved; 2311 Changed = true; 2312 } 2313 2314 Used.syncVariablesAndSets(); 2315 2316 return Changed; 2317 } 2318 2319 static Function * 2320 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2321 // Hack to get a default TLI before we have actual Function. 2322 auto FuncIter = M.begin(); 2323 if (FuncIter == M.end()) 2324 return nullptr; 2325 auto *TLI = &GetTLI(*FuncIter); 2326 2327 LibFunc F = LibFunc_cxa_atexit; 2328 if (!TLI->has(F)) 2329 return nullptr; 2330 2331 Function *Fn = M.getFunction(TLI->getName(F)); 2332 if (!Fn) 2333 return nullptr; 2334 2335 // Now get the actual TLI for Fn. 2336 TLI = &GetTLI(*Fn); 2337 2338 // Make sure that the function has the correct prototype. 2339 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2340 return nullptr; 2341 2342 return Fn; 2343 } 2344 2345 /// Returns whether the given function is an empty C++ destructor and can 2346 /// therefore be eliminated. 2347 /// Note that we assume that other optimization passes have already simplified 2348 /// the code so we simply check for 'ret'. 2349 static bool cxxDtorIsEmpty(const Function &Fn) { 2350 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2351 // nounwind, but that doesn't seem worth doing. 2352 if (Fn.isDeclaration()) 2353 return false; 2354 2355 for (const auto &I : Fn.getEntryBlock()) { 2356 if (I.isDebugOrPseudoInst()) 2357 continue; 2358 if (isa<ReturnInst>(I)) 2359 return true; 2360 break; 2361 } 2362 return false; 2363 } 2364 2365 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2366 /// Itanium C++ ABI p3.3.5: 2367 /// 2368 /// After constructing a global (or local static) object, that will require 2369 /// destruction on exit, a termination function is registered as follows: 2370 /// 2371 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2372 /// 2373 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2374 /// call f(p) when DSO d is unloaded, before all such termination calls 2375 /// registered before this one. It returns zero if registration is 2376 /// successful, nonzero on failure. 2377 2378 // This pass will look for calls to __cxa_atexit where the function is trivial 2379 // and remove them. 2380 bool Changed = false; 2381 2382 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2383 // We're only interested in calls. Theoretically, we could handle invoke 2384 // instructions as well, but neither llvm-gcc nor clang generate invokes 2385 // to __cxa_atexit. 2386 CallInst *CI = dyn_cast<CallInst>(U); 2387 if (!CI) 2388 continue; 2389 2390 Function *DtorFn = 2391 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2392 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2393 continue; 2394 2395 // Just remove the call. 2396 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2397 CI->eraseFromParent(); 2398 2399 ++NumCXXDtorsRemoved; 2400 2401 Changed |= true; 2402 } 2403 2404 return Changed; 2405 } 2406 2407 static bool 2408 optimizeGlobalsInModule(Module &M, const DataLayout &DL, 2409 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2410 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2411 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2412 function_ref<DominatorTree &(Function &)> LookupDomTree, 2413 function_ref<void(Function &F)> ChangedCFGCallback, 2414 function_ref<void(Function &F)> DeleteFnCallback) { 2415 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2416 bool Changed = false; 2417 bool LocalChange = true; 2418 std::optional<uint32_t> FirstNotFullyEvaluatedPriority; 2419 2420 while (LocalChange) { 2421 LocalChange = false; 2422 2423 NotDiscardableComdats.clear(); 2424 for (const GlobalVariable &GV : M.globals()) 2425 if (const Comdat *C = GV.getComdat()) 2426 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2427 NotDiscardableComdats.insert(C); 2428 for (Function &F : M) 2429 if (const Comdat *C = F.getComdat()) 2430 if (!F.isDefTriviallyDead()) 2431 NotDiscardableComdats.insert(C); 2432 for (GlobalAlias &GA : M.aliases()) 2433 if (const Comdat *C = GA.getComdat()) 2434 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2435 NotDiscardableComdats.insert(C); 2436 2437 // Delete functions that are trivially dead, ccc -> fastcc 2438 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2439 NotDiscardableComdats, ChangedCFGCallback, 2440 DeleteFnCallback); 2441 2442 // Optimize global_ctors list. 2443 LocalChange |= 2444 optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) { 2445 if (FirstNotFullyEvaluatedPriority && 2446 *FirstNotFullyEvaluatedPriority != Priority) 2447 return false; 2448 bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2449 if (!Evaluated) 2450 FirstNotFullyEvaluatedPriority = Priority; 2451 return Evaluated; 2452 }); 2453 2454 // Optimize non-address-taken globals. 2455 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2456 NotDiscardableComdats); 2457 2458 // Resolve aliases, when possible. 2459 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2460 2461 // Try to remove trivial global destructors if they are not removed 2462 // already. 2463 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2464 if (CXAAtExitFn) 2465 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2466 2467 Changed |= LocalChange; 2468 } 2469 2470 // TODO: Move all global ctors functions to the end of the module for code 2471 // layout. 2472 2473 return Changed; 2474 } 2475 2476 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2477 auto &DL = M.getDataLayout(); 2478 auto &FAM = 2479 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2480 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2481 return FAM.getResult<DominatorTreeAnalysis>(F); 2482 }; 2483 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2484 return FAM.getResult<TargetLibraryAnalysis>(F); 2485 }; 2486 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2487 return FAM.getResult<TargetIRAnalysis>(F); 2488 }; 2489 2490 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2491 return FAM.getResult<BlockFrequencyAnalysis>(F); 2492 }; 2493 auto ChangedCFGCallback = [&FAM](Function &F) { 2494 FAM.invalidate(F, PreservedAnalyses::none()); 2495 }; 2496 auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(F, F.getName()); }; 2497 2498 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree, 2499 ChangedCFGCallback, DeleteFnCallback)) 2500 return PreservedAnalyses::all(); 2501 2502 PreservedAnalyses PA = PreservedAnalyses::none(); 2503 // We made sure to clear analyses for deleted functions. 2504 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 2505 // The only place we modify the CFG is when calling 2506 // removeUnreachableBlocks(), but there we make sure to invalidate analyses 2507 // for modified functions. 2508 PA.preserveSet<CFGAnalyses>(); 2509 return PA; 2510 } 2511