xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <optional>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2),
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (Type *InnerTy : STy->elements()) {
145           if (isa<PointerType>(InnerTy)) return true;
146           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
147               isa<VectorType>(InnerTy))
148             Types.push_back(InnerTy);
149         }
150         break;
151       }
152     }
153     if (--Limit == 0) return true;
154   } while (!Types.empty());
155   return false;
156 }
157 
158 /// Given a value that is stored to a global but never read, determine whether
159 /// it's safe to remove the store and the chain of computation that feeds the
160 /// store.
161 static bool IsSafeComputationToRemove(
162     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
163   do {
164     if (isa<Constant>(V))
165       return true;
166     if (!V->hasOneUse())
167       return false;
168     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
169         isa<GlobalValue>(V))
170       return false;
171     if (isAllocationFn(V, GetTLI))
172       return true;
173 
174     Instruction *I = cast<Instruction>(V);
175     if (I->mayHaveSideEffects())
176       return false;
177     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
178       if (!GEP->hasAllConstantIndices())
179         return false;
180     } else if (I->getNumOperands() != 1) {
181       return false;
182     }
183 
184     V = I->getOperand(0);
185   } while (true);
186 }
187 
188 /// This GV is a pointer root.  Loop over all users of the global and clean up
189 /// any that obviously don't assign the global a value that isn't dynamically
190 /// allocated.
191 static bool
192 CleanupPointerRootUsers(GlobalVariable *GV,
193                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
194   // A brief explanation of leak checkers.  The goal is to find bugs where
195   // pointers are forgotten, causing an accumulating growth in memory
196   // usage over time.  The common strategy for leak checkers is to explicitly
197   // allow the memory pointed to by globals at exit.  This is popular because it
198   // also solves another problem where the main thread of a C++ program may shut
199   // down before other threads that are still expecting to use those globals. To
200   // handle that case, we expect the program may create a singleton and never
201   // destroy it.
202 
203   bool Changed = false;
204 
205   // If Dead[n].first is the only use of a malloc result, we can delete its
206   // chain of computation and the store to the global in Dead[n].second.
207   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
208 
209   // Constants can't be pointers to dynamically allocated memory.
210   for (User *U : llvm::make_early_inc_range(GV->users())) {
211     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212       Value *V = SI->getValueOperand();
213       if (isa<Constant>(V)) {
214         Changed = true;
215         SI->eraseFromParent();
216       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217         if (I->hasOneUse())
218           Dead.push_back(std::make_pair(I, SI));
219       }
220     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221       if (isa<Constant>(MSI->getValue())) {
222         Changed = true;
223         MSI->eraseFromParent();
224       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225         if (I->hasOneUse())
226           Dead.push_back(std::make_pair(I, MSI));
227       }
228     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230       if (MemSrc && MemSrc->isConstant()) {
231         Changed = true;
232         MTI->eraseFromParent();
233       } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) {
234         if (I->hasOneUse())
235           Dead.push_back(std::make_pair(I, MTI));
236       }
237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238       if (CE->use_empty()) {
239         CE->destroyConstant();
240         Changed = true;
241       }
242     } else if (Constant *C = dyn_cast<Constant>(U)) {
243       if (isSafeToDestroyConstant(C)) {
244         C->destroyConstant();
245         // This could have invalidated UI, start over from scratch.
246         Dead.clear();
247         CleanupPointerRootUsers(GV, GetTLI);
248         return true;
249       }
250     }
251   }
252 
253   for (int i = 0, e = Dead.size(); i != e; ++i) {
254     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255       Dead[i].second->eraseFromParent();
256       Instruction *I = Dead[i].first;
257       do {
258         if (isAllocationFn(I, GetTLI))
259           break;
260         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261         if (!J)
262           break;
263         I->eraseFromParent();
264         I = J;
265       } while (true);
266       I->eraseFromParent();
267       Changed = true;
268     }
269   }
270 
271   return Changed;
272 }
273 
274 /// We just marked GV constant.  Loop over all users of the global, cleaning up
275 /// the obvious ones.  This is largely just a quick scan over the use list to
276 /// clean up the easy and obvious cruft.  This returns true if it made a change.
277 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
278                                        const DataLayout &DL) {
279   Constant *Init = GV->getInitializer();
280   SmallVector<User *, 8> WorkList(GV->users());
281   SmallPtrSet<User *, 8> Visited;
282   bool Changed = false;
283 
284   SmallVector<WeakTrackingVH> MaybeDeadInsts;
285   auto EraseFromParent = [&](Instruction *I) {
286     for (Value *Op : I->operands())
287       if (auto *OpI = dyn_cast<Instruction>(Op))
288         MaybeDeadInsts.push_back(OpI);
289     I->eraseFromParent();
290     Changed = true;
291   };
292   while (!WorkList.empty()) {
293     User *U = WorkList.pop_back_val();
294     if (!Visited.insert(U).second)
295       continue;
296 
297     if (auto *BO = dyn_cast<BitCastOperator>(U))
298       append_range(WorkList, BO->users());
299     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
300       append_range(WorkList, ASC->users());
301     else if (auto *GEP = dyn_cast<GEPOperator>(U))
302       append_range(WorkList, GEP->users());
303     else if (auto *LI = dyn_cast<LoadInst>(U)) {
304       // A load from a uniform value is always the same, regardless of any
305       // applied offset.
306       Type *Ty = LI->getType();
307       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
308         LI->replaceAllUsesWith(Res);
309         EraseFromParent(LI);
310         continue;
311       }
312 
313       Value *PtrOp = LI->getPointerOperand();
314       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
315       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
316           DL, Offset, /* AllowNonInbounds */ true);
317       if (PtrOp == GV) {
318         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
319           LI->replaceAllUsesWith(Value);
320           EraseFromParent(LI);
321         }
322       }
323     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
324       // Store must be unreachable or storing Init into the global.
325       EraseFromParent(SI);
326     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
327       if (getUnderlyingObject(MI->getRawDest()) == GV)
328         EraseFromParent(MI);
329     }
330   }
331 
332   Changed |=
333       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
334   GV->removeDeadConstantUsers();
335   return Changed;
336 }
337 
338 /// Look at all uses of the global and determine which (offset, type) pairs it
339 /// can be split into.
340 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
341                             const DataLayout &DL) {
342   SmallVector<Use *, 16> Worklist;
343   SmallPtrSet<Use *, 16> Visited;
344   auto AppendUses = [&](Value *V) {
345     for (Use &U : V->uses())
346       if (Visited.insert(&U).second)
347         Worklist.push_back(&U);
348   };
349   AppendUses(GV);
350   while (!Worklist.empty()) {
351     Use *U = Worklist.pop_back_val();
352     User *V = U->getUser();
353 
354     auto *GEP = dyn_cast<GEPOperator>(V);
355     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
356         (GEP && GEP->hasAllConstantIndices())) {
357       AppendUses(V);
358       continue;
359     }
360 
361     if (Value *Ptr = getLoadStorePointerOperand(V)) {
362       // This is storing the global address into somewhere, not storing into
363       // the global.
364       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
365         return false;
366 
367       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
368       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
369                                                    /* AllowNonInbounds */ true);
370       if (Ptr != GV || Offset.getActiveBits() >= 64)
371         return false;
372 
373       // TODO: We currently require that all accesses at a given offset must
374       // use the same type. This could be relaxed.
375       Type *Ty = getLoadStoreType(V);
376       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
377       if (Ty != It->second)
378         return false;
379 
380       // Scalable types not currently supported.
381       if (isa<ScalableVectorType>(Ty))
382         return false;
383 
384       continue;
385     }
386 
387     // Ignore dead constant users.
388     if (auto *C = dyn_cast<Constant>(V)) {
389       if (!isSafeToDestroyConstant(C))
390         return false;
391       continue;
392     }
393 
394     // Unknown user.
395     return false;
396   }
397 
398   return true;
399 }
400 
401 /// Copy over the debug info for a variable to its SRA replacements.
402 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
403                                  uint64_t FragmentOffsetInBits,
404                                  uint64_t FragmentSizeInBits,
405                                  uint64_t VarSize) {
406   SmallVector<DIGlobalVariableExpression *, 1> GVs;
407   GV->getDebugInfo(GVs);
408   for (auto *GVE : GVs) {
409     DIVariable *Var = GVE->getVariable();
410     DIExpression *Expr = GVE->getExpression();
411     int64_t CurVarOffsetInBytes = 0;
412     uint64_t CurVarOffsetInBits = 0;
413 
414     // Calculate the offset (Bytes), Continue if unknown.
415     if (!Expr->extractIfOffset(CurVarOffsetInBytes))
416       continue;
417 
418     // Ignore negative offset.
419     if (CurVarOffsetInBytes < 0)
420       continue;
421 
422     // Convert offset to bits.
423     CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes;
424 
425     // Current var starts after the fragment, ignore.
426     if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits))
427       continue;
428 
429     uint64_t CurVarSize = Var->getType()->getSizeInBits();
430     // Current variable ends before start of fragment, ignore.
431     if (CurVarSize != 0 &&
432         (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits)
433       continue;
434 
435     // Current variable fits in the fragment.
436     if (CurVarOffsetInBits == FragmentOffsetInBits &&
437         CurVarSize == FragmentSizeInBits)
438       Expr = DIExpression::get(Expr->getContext(), {});
439     // If the FragmentSize is smaller than the variable,
440     // emit a fragment expression.
441     else if (FragmentSizeInBits < VarSize) {
442       if (auto E = DIExpression::createFragmentExpression(
443               Expr, FragmentOffsetInBits, FragmentSizeInBits))
444         Expr = *E;
445       else
446         return;
447     }
448     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
449     NGV->addDebugInfo(NGVE);
450   }
451 }
452 
453 /// Perform scalar replacement of aggregates on the specified global variable.
454 /// This opens the door for other optimizations by exposing the behavior of the
455 /// program in a more fine-grained way.  We have determined that this
456 /// transformation is safe already.  We return the first global variable we
457 /// insert so that the caller can reprocess it.
458 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
459   assert(GV->hasLocalLinkage());
460 
461   // Collect types to split into.
462   DenseMap<uint64_t, Type *> Types;
463   if (!collectSRATypes(Types, GV, DL) || Types.empty())
464     return nullptr;
465 
466   // Make sure we don't SRA back to the same type.
467   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
468     return nullptr;
469 
470   // Don't perform SRA if we would have to split into many globals.
471   if (Types.size() > 16)
472     return nullptr;
473 
474   // Sort by offset.
475   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
476   append_range(TypesVector, Types);
477   sort(TypesVector, llvm::less_first());
478 
479   // Check that the types are non-overlapping.
480   uint64_t Offset = 0;
481   for (const auto &Pair : TypesVector) {
482     // Overlaps with previous type.
483     if (Pair.first < Offset)
484       return nullptr;
485 
486     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
487   }
488 
489   // Some accesses go beyond the end of the global, don't bother.
490   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
491     return nullptr;
492 
493   // Collect initializers for new globals.
494   Constant *OrigInit = GV->getInitializer();
495   DenseMap<uint64_t, Constant *> Initializers;
496   for (const auto &Pair : Types) {
497     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
498                                                   APInt(64, Pair.first), DL);
499     if (!NewInit) {
500       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
501                         << *GV << " with type " << *Pair.second << " at offset "
502                         << Pair.first << "\n");
503       return nullptr;
504     }
505     Initializers.insert({Pair.first, NewInit});
506   }
507 
508   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
509 
510   // Get the alignment of the global, either explicit or target-specific.
511   Align StartAlignment =
512       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
513   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
514 
515   // Create replacement globals.
516   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
517   unsigned NameSuffix = 0;
518   for (auto &Pair : TypesVector) {
519     uint64_t Offset = Pair.first;
520     Type *Ty = Pair.second;
521     GlobalVariable *NGV = new GlobalVariable(
522         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
523         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
524         GV->getThreadLocalMode(), GV->getAddressSpace());
525     NGV->copyAttributesFrom(GV);
526     NewGlobals.insert({Offset, NGV});
527 
528     // Calculate the known alignment of the field.  If the original aggregate
529     // had 256 byte alignment for example, something might depend on that:
530     // propagate info to each field.
531     Align NewAlign = commonAlignment(StartAlignment, Offset);
532     if (NewAlign > DL.getABITypeAlign(Ty))
533       NGV->setAlignment(NewAlign);
534 
535     // Copy over the debug info for the variable.
536     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
537                          VarSize);
538   }
539 
540   // Replace uses of the original global with uses of the new global.
541   SmallVector<Value *, 16> Worklist;
542   SmallPtrSet<Value *, 16> Visited;
543   SmallVector<WeakTrackingVH, 16> DeadInsts;
544   auto AppendUsers = [&](Value *V) {
545     for (User *U : V->users())
546       if (Visited.insert(U).second)
547         Worklist.push_back(U);
548   };
549   AppendUsers(GV);
550   while (!Worklist.empty()) {
551     Value *V = Worklist.pop_back_val();
552     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
553         isa<GEPOperator>(V)) {
554       AppendUsers(V);
555       if (isa<Instruction>(V))
556         DeadInsts.push_back(V);
557       continue;
558     }
559 
560     if (Value *Ptr = getLoadStorePointerOperand(V)) {
561       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
562       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
563                                                    /* AllowNonInbounds */ true);
564       assert(Ptr == GV && "Load/store must be from/to global");
565       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
566       assert(NGV && "Must have replacement global for this offset");
567 
568       // Update the pointer operand and recalculate alignment.
569       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
570       Align NewAlign =
571           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
572 
573       if (auto *LI = dyn_cast<LoadInst>(V)) {
574         LI->setOperand(0, NGV);
575         LI->setAlignment(NewAlign);
576       } else {
577         auto *SI = cast<StoreInst>(V);
578         SI->setOperand(1, NGV);
579         SI->setAlignment(NewAlign);
580       }
581       continue;
582     }
583 
584     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
585            "Other users can only be dead constants");
586   }
587 
588   // Delete old instructions and global.
589   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
590   GV->removeDeadConstantUsers();
591   GV->eraseFromParent();
592   ++NumSRA;
593 
594   assert(NewGlobals.size() > 0);
595   return NewGlobals.begin()->second;
596 }
597 
598 /// Return true if all users of the specified value will trap if the value is
599 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
600 /// reprocessing them.
601 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
602                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
603   for (const User *U : V->users()) {
604     if (const Instruction *I = dyn_cast<Instruction>(U)) {
605       // If null pointer is considered valid, then all uses are non-trapping.
606       // Non address-space 0 globals have already been pruned by the caller.
607       if (NullPointerIsDefined(I->getFunction()))
608         return false;
609     }
610     if (isa<LoadInst>(U)) {
611       // Will trap.
612     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
613       if (SI->getOperand(0) == V) {
614         return false;  // Storing the value.
615       }
616     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
617       if (CI->getCalledOperand() != V) {
618         return false;  // Not calling the ptr
619       }
620     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
621       if (II->getCalledOperand() != V) {
622         return false;  // Not calling the ptr
623       }
624     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
625       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
626     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
627       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
628     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
629       // If we've already seen this phi node, ignore it, it has already been
630       // checked.
631       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
632         return false;
633     } else if (isa<ICmpInst>(U) &&
634                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
635                isa<LoadInst>(U->getOperand(0)) &&
636                isa<ConstantPointerNull>(U->getOperand(1))) {
637       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
638                                   ->getPointerOperand()
639                                   ->stripPointerCasts()) &&
640              "Should be GlobalVariable");
641       // This and only this kind of non-signed ICmpInst is to be replaced with
642       // the comparing of the value of the created global init bool later in
643       // optimizeGlobalAddressOfAllocation for the global variable.
644     } else {
645       return false;
646     }
647   }
648   return true;
649 }
650 
651 /// Return true if all uses of any loads from GV will trap if the loaded value
652 /// is null.  Note that this also permits comparisons of the loaded value
653 /// against null, as a special case.
654 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
655   SmallVector<const Value *, 4> Worklist;
656   Worklist.push_back(GV);
657   while (!Worklist.empty()) {
658     const Value *P = Worklist.pop_back_val();
659     for (const auto *U : P->users()) {
660       if (auto *LI = dyn_cast<LoadInst>(U)) {
661         SmallPtrSet<const PHINode *, 8> PHIs;
662         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
663           return false;
664       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
665         // Ignore stores to the global.
666         if (SI->getPointerOperand() != P)
667           return false;
668       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
669         if (CE->stripPointerCasts() != GV)
670           return false;
671         // Check further the ConstantExpr.
672         Worklist.push_back(CE);
673       } else {
674         // We don't know or understand this user, bail out.
675         return false;
676       }
677     }
678   }
679 
680   return true;
681 }
682 
683 /// Get all the loads/store uses for global variable \p GV.
684 static void allUsesOfLoadAndStores(GlobalVariable *GV,
685                                    SmallVector<Value *, 4> &Uses) {
686   SmallVector<Value *, 4> Worklist;
687   Worklist.push_back(GV);
688   while (!Worklist.empty()) {
689     auto *P = Worklist.pop_back_val();
690     for (auto *U : P->users()) {
691       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
692         Worklist.push_back(CE);
693         continue;
694       }
695 
696       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
697              "Expect only load or store instructions");
698       Uses.push_back(U);
699     }
700   }
701 }
702 
703 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
704   bool Changed = false;
705   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
706     Instruction *I = cast<Instruction>(*UI++);
707     // Uses are non-trapping if null pointer is considered valid.
708     // Non address-space 0 globals are already pruned by the caller.
709     if (NullPointerIsDefined(I->getFunction()))
710       return false;
711     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
712       LI->setOperand(0, NewV);
713       Changed = true;
714     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
715       if (SI->getOperand(1) == V) {
716         SI->setOperand(1, NewV);
717         Changed = true;
718       }
719     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
720       CallBase *CB = cast<CallBase>(I);
721       if (CB->getCalledOperand() == V) {
722         // Calling through the pointer!  Turn into a direct call, but be careful
723         // that the pointer is not also being passed as an argument.
724         CB->setCalledOperand(NewV);
725         Changed = true;
726         bool PassedAsArg = false;
727         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
728           if (CB->getArgOperand(i) == V) {
729             PassedAsArg = true;
730             CB->setArgOperand(i, NewV);
731           }
732 
733         if (PassedAsArg) {
734           // Being passed as an argument also.  Be careful to not invalidate UI!
735           UI = V->user_begin();
736         }
737       }
738     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
739       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
740                                 ConstantExpr::getCast(CI->getOpcode(),
741                                                       NewV, CI->getType()));
742       if (CI->use_empty()) {
743         Changed = true;
744         CI->eraseFromParent();
745       }
746     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
747       // Should handle GEP here.
748       SmallVector<Constant*, 8> Idxs;
749       Idxs.reserve(GEPI->getNumOperands()-1);
750       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
751            i != e; ++i)
752         if (Constant *C = dyn_cast<Constant>(*i))
753           Idxs.push_back(C);
754         else
755           break;
756       if (Idxs.size() == GEPI->getNumOperands()-1)
757         Changed |= OptimizeAwayTrappingUsesOfValue(
758             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
759                                                  NewV, Idxs));
760       if (GEPI->use_empty()) {
761         Changed = true;
762         GEPI->eraseFromParent();
763       }
764     }
765   }
766 
767   return Changed;
768 }
769 
770 /// The specified global has only one non-null value stored into it.  If there
771 /// are uses of the loaded value that would trap if the loaded value is
772 /// dynamically null, then we know that they cannot be reachable with a null
773 /// optimize away the load.
774 static bool OptimizeAwayTrappingUsesOfLoads(
775     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
776     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
777   bool Changed = false;
778 
779   // Keep track of whether we are able to remove all the uses of the global
780   // other than the store that defines it.
781   bool AllNonStoreUsesGone = true;
782 
783   // Replace all uses of loads with uses of uses of the stored value.
784   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
785     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
786       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
787       // If we were able to delete all uses of the loads
788       if (LI->use_empty()) {
789         LI->eraseFromParent();
790         Changed = true;
791       } else {
792         AllNonStoreUsesGone = false;
793       }
794     } else if (isa<StoreInst>(GlobalUser)) {
795       // Ignore the store that stores "LV" to the global.
796       assert(GlobalUser->getOperand(1) == GV &&
797              "Must be storing *to* the global");
798     } else {
799       AllNonStoreUsesGone = false;
800 
801       // If we get here we could have other crazy uses that are transitively
802       // loaded.
803       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
804               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
805               isa<BitCastInst>(GlobalUser) ||
806               isa<GetElementPtrInst>(GlobalUser)) &&
807              "Only expect load and stores!");
808     }
809   }
810 
811   if (Changed) {
812     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
813                       << "\n");
814     ++NumGlobUses;
815   }
816 
817   // If we nuked all of the loads, then none of the stores are needed either,
818   // nor is the global.
819   if (AllNonStoreUsesGone) {
820     if (isLeakCheckerRoot(GV)) {
821       Changed |= CleanupPointerRootUsers(GV, GetTLI);
822     } else {
823       Changed = true;
824       CleanupConstantGlobalUsers(GV, DL);
825     }
826     if (GV->use_empty()) {
827       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
828       Changed = true;
829       GV->eraseFromParent();
830       ++NumDeleted;
831     }
832   }
833   return Changed;
834 }
835 
836 /// Walk the use list of V, constant folding all of the instructions that are
837 /// foldable.
838 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
839                                 TargetLibraryInfo *TLI) {
840   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
841     if (Instruction *I = dyn_cast<Instruction>(*UI++))
842       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
843         I->replaceAllUsesWith(NewC);
844 
845         // Advance UI to the next non-I use to avoid invalidating it!
846         // Instructions could multiply use V.
847         while (UI != E && *UI == I)
848           ++UI;
849         if (isInstructionTriviallyDead(I, TLI))
850           I->eraseFromParent();
851       }
852 }
853 
854 /// This function takes the specified global variable, and transforms the
855 /// program as if it always contained the result of the specified malloc.
856 /// Because it is always the result of the specified malloc, there is no reason
857 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
858 /// loads of GV as uses of the new global.
859 static GlobalVariable *
860 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
861                                   uint64_t AllocSize, Constant *InitVal,
862                                   const DataLayout &DL,
863                                   TargetLibraryInfo *TLI) {
864   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
865                     << '\n');
866 
867   // Create global of type [AllocSize x i8].
868   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
869                                     AllocSize);
870 
871   // Create the new global variable.  The contents of the allocated memory is
872   // undefined initially, so initialize with an undef value.
873   GlobalVariable *NewGV = new GlobalVariable(
874       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
875       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
876       GV->getThreadLocalMode());
877 
878   // Initialize the global at the point of the original call.  Note that this
879   // is a different point from the initialization referred to below for the
880   // nullability handling.  Sublety: We have not proven the original global was
881   // only initialized once.  As such, we can not fold this into the initializer
882   // of the new global as may need to re-init the storage multiple times.
883   if (!isa<UndefValue>(InitVal)) {
884     IRBuilder<> Builder(CI->getNextNode());
885     // TODO: Use alignment above if align!=1
886     Builder.CreateMemSet(NewGV, InitVal, AllocSize, std::nullopt);
887   }
888 
889   // Update users of the allocation to use the new global instead.
890   BitCastInst *TheBC = nullptr;
891   while (!CI->use_empty()) {
892     Instruction *User = cast<Instruction>(CI->user_back());
893     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
894       if (BCI->getType() == NewGV->getType()) {
895         BCI->replaceAllUsesWith(NewGV);
896         BCI->eraseFromParent();
897       } else {
898         BCI->setOperand(0, NewGV);
899       }
900     } else {
901       if (!TheBC)
902         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
903       User->replaceUsesOfWith(CI, TheBC);
904     }
905   }
906 
907   SmallSetVector<Constant *, 1> RepValues;
908   RepValues.insert(NewGV);
909 
910   // If there is a comparison against null, we will insert a global bool to
911   // keep track of whether the global was initialized yet or not.
912   GlobalVariable *InitBool =
913     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
914                        GlobalValue::InternalLinkage,
915                        ConstantInt::getFalse(GV->getContext()),
916                        GV->getName()+".init", GV->getThreadLocalMode());
917   bool InitBoolUsed = false;
918 
919   // Loop over all instruction uses of GV, processing them in turn.
920   SmallVector<Value *, 4> Guses;
921   allUsesOfLoadAndStores(GV, Guses);
922   for (auto *U : Guses) {
923     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
924       // The global is initialized when the store to it occurs. If the stored
925       // value is null value, the global bool is set to false, otherwise true.
926       new StoreInst(ConstantInt::getBool(
927                         GV->getContext(),
928                         !isa<ConstantPointerNull>(SI->getValueOperand())),
929                     InitBool, false, Align(1), SI->getOrdering(),
930                     SI->getSyncScopeID(), SI);
931       SI->eraseFromParent();
932       continue;
933     }
934 
935     LoadInst *LI = cast<LoadInst>(U);
936     while (!LI->use_empty()) {
937       Use &LoadUse = *LI->use_begin();
938       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
939       if (!ICI) {
940         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
941         RepValues.insert(CE);
942         LoadUse.set(CE);
943         continue;
944       }
945 
946       // Replace the cmp X, 0 with a use of the bool value.
947       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
948                                InitBool->getName() + ".val", false, Align(1),
949                                LI->getOrdering(), LI->getSyncScopeID(), LI);
950       InitBoolUsed = true;
951       switch (ICI->getPredicate()) {
952       default: llvm_unreachable("Unknown ICmp Predicate!");
953       case ICmpInst::ICMP_ULT: // X < null -> always false
954         LV = ConstantInt::getFalse(GV->getContext());
955         break;
956       case ICmpInst::ICMP_UGE: // X >= null -> always true
957         LV = ConstantInt::getTrue(GV->getContext());
958         break;
959       case ICmpInst::ICMP_ULE:
960       case ICmpInst::ICMP_EQ:
961         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
962         break;
963       case ICmpInst::ICMP_NE:
964       case ICmpInst::ICMP_UGT:
965         break;  // no change.
966       }
967       ICI->replaceAllUsesWith(LV);
968       ICI->eraseFromParent();
969     }
970     LI->eraseFromParent();
971   }
972 
973   // If the initialization boolean was used, insert it, otherwise delete it.
974   if (!InitBoolUsed) {
975     while (!InitBool->use_empty())  // Delete initializations
976       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
977     delete InitBool;
978   } else
979     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
980 
981   // Now the GV is dead, nuke it and the allocation..
982   GV->eraseFromParent();
983   CI->eraseFromParent();
984 
985   // To further other optimizations, loop over all users of NewGV and try to
986   // constant prop them.  This will promote GEP instructions with constant
987   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
988   for (auto *CE : RepValues)
989     ConstantPropUsersOf(CE, DL, TLI);
990 
991   return NewGV;
992 }
993 
994 /// Scan the use-list of GV checking to make sure that there are no complex uses
995 /// of GV.  We permit simple things like dereferencing the pointer, but not
996 /// storing through the address, unless it is to the specified global.
997 static bool
998 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
999                                           const GlobalVariable *GV) {
1000   SmallPtrSet<const Value *, 4> Visited;
1001   SmallVector<const Value *, 4> Worklist;
1002   Worklist.push_back(CI);
1003 
1004   while (!Worklist.empty()) {
1005     const Value *V = Worklist.pop_back_val();
1006     if (!Visited.insert(V).second)
1007       continue;
1008 
1009     for (const Use &VUse : V->uses()) {
1010       const User *U = VUse.getUser();
1011       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1012         continue; // Fine, ignore.
1013 
1014       if (auto *SI = dyn_cast<StoreInst>(U)) {
1015         if (SI->getValueOperand() == V &&
1016             SI->getPointerOperand()->stripPointerCasts() != GV)
1017           return false; // Storing the pointer not into GV... bad.
1018         continue; // Otherwise, storing through it, or storing into GV... fine.
1019       }
1020 
1021       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1022         Worklist.push_back(BCI);
1023         continue;
1024       }
1025 
1026       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1027         Worklist.push_back(GEPI);
1028         continue;
1029       }
1030 
1031       return false;
1032     }
1033   }
1034 
1035   return true;
1036 }
1037 
1038 /// If we have a global that is only initialized with a fixed size allocation
1039 /// try to transform the program to use global memory instead of heap
1040 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1041 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1042 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1043                                                    CallInst *CI,
1044                                                    const DataLayout &DL,
1045                                                    TargetLibraryInfo *TLI) {
1046   if (!isRemovableAlloc(CI, TLI))
1047     // Must be able to remove the call when we get done..
1048     return false;
1049 
1050   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1051   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1052   if (!InitVal)
1053     // Must be able to emit a memset for initialization
1054     return false;
1055 
1056   uint64_t AllocSize;
1057   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1058     return false;
1059 
1060   // Restrict this transformation to only working on small allocations
1061   // (2048 bytes currently), as we don't want to introduce a 16M global or
1062   // something.
1063   if (AllocSize >= 2048)
1064     return false;
1065 
1066   // We can't optimize this global unless all uses of it are *known* to be
1067   // of the malloc value, not of the null initializer value (consider a use
1068   // that compares the global's value against zero to see if the malloc has
1069   // been reached).  To do this, we check to see if all uses of the global
1070   // would trap if the global were null: this proves that they must all
1071   // happen after the malloc.
1072   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1073     return false;
1074 
1075   // We can't optimize this if the malloc itself is used in a complex way,
1076   // for example, being stored into multiple globals.  This allows the
1077   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1078   // These are all things we could transform to using the global for.
1079   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1080     return false;
1081 
1082   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1083   return true;
1084 }
1085 
1086 // Try to optimize globals based on the knowledge that only one value (besides
1087 // its initializer) is ever stored to the global.
1088 static bool
1089 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1090                          const DataLayout &DL,
1091                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1092   // Ignore no-op GEPs and bitcasts.
1093   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1094 
1095   // If we are dealing with a pointer global that is initialized to null and
1096   // only has one (non-null) value stored into it, then we can optimize any
1097   // users of the loaded value (often calls and loads) that would trap if the
1098   // value was null.
1099   if (GV->getInitializer()->getType()->isPointerTy() &&
1100       GV->getInitializer()->isNullValue() &&
1101       StoredOnceVal->getType()->isPointerTy() &&
1102       !NullPointerIsDefined(
1103           nullptr /* F */,
1104           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1105     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1106       if (GV->getInitializer()->getType() != SOVC->getType())
1107         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1108 
1109       // Optimize away any trapping uses of the loaded value.
1110       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1111         return true;
1112     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1113       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1114         auto *TLI = &GetTLI(*CI->getFunction());
1115         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI))
1116           return true;
1117       }
1118     }
1119   }
1120 
1121   return false;
1122 }
1123 
1124 /// At this point, we have learned that the only two values ever stored into GV
1125 /// are its initializer and OtherVal.  See if we can shrink the global into a
1126 /// boolean and select between the two values whenever it is used.  This exposes
1127 /// the values to other scalar optimizations.
1128 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1129   Type *GVElType = GV->getValueType();
1130 
1131   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1132   // an FP value, pointer or vector, don't do this optimization because a select
1133   // between them is very expensive and unlikely to lead to later
1134   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1135   // where v1 and v2 both require constant pool loads, a big loss.
1136   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1137       GVElType->isFloatingPointTy() ||
1138       GVElType->isPointerTy() || GVElType->isVectorTy())
1139     return false;
1140 
1141   // Walk the use list of the global seeing if all the uses are load or store.
1142   // If there is anything else, bail out.
1143   for (User *U : GV->users()) {
1144     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1145       return false;
1146     if (getLoadStoreType(U) != GVElType)
1147       return false;
1148   }
1149 
1150   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1151 
1152   // Create the new global, initializing it to false.
1153   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1154                                              false,
1155                                              GlobalValue::InternalLinkage,
1156                                         ConstantInt::getFalse(GV->getContext()),
1157                                              GV->getName()+".b",
1158                                              GV->getThreadLocalMode(),
1159                                              GV->getType()->getAddressSpace());
1160   NewGV->copyAttributesFrom(GV);
1161   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1162 
1163   Constant *InitVal = GV->getInitializer();
1164   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1165          "No reason to shrink to bool!");
1166 
1167   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1168   GV->getDebugInfo(GVs);
1169 
1170   // If initialized to zero and storing one into the global, we can use a cast
1171   // instead of a select to synthesize the desired value.
1172   bool IsOneZero = false;
1173   bool EmitOneOrZero = true;
1174   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1175   if (CI && CI->getValue().getActiveBits() <= 64) {
1176     IsOneZero = InitVal->isNullValue() && CI->isOne();
1177 
1178     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1179     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1180       uint64_t ValInit = CIInit->getZExtValue();
1181       uint64_t ValOther = CI->getZExtValue();
1182       uint64_t ValMinus = ValOther - ValInit;
1183 
1184       for(auto *GVe : GVs){
1185         DIGlobalVariable *DGV = GVe->getVariable();
1186         DIExpression *E = GVe->getExpression();
1187         const DataLayout &DL = GV->getParent()->getDataLayout();
1188         unsigned SizeInOctets =
1189             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1190 
1191         // It is expected that the address of global optimized variable is on
1192         // top of the stack. After optimization, value of that variable will
1193         // be ether 0 for initial value or 1 for other value. The following
1194         // expression should return constant integer value depending on the
1195         // value at global object address:
1196         // val * (ValOther - ValInit) + ValInit:
1197         // DW_OP_deref DW_OP_constu <ValMinus>
1198         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1199         SmallVector<uint64_t, 12> Ops = {
1200             dwarf::DW_OP_deref_size, SizeInOctets,
1201             dwarf::DW_OP_constu, ValMinus,
1202             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1203             dwarf::DW_OP_plus};
1204         bool WithStackValue = true;
1205         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1206         DIGlobalVariableExpression *DGVE =
1207           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1208         NewGV->addDebugInfo(DGVE);
1209      }
1210      EmitOneOrZero = false;
1211     }
1212   }
1213 
1214   if (EmitOneOrZero) {
1215      // FIXME: This will only emit address for debugger on which will
1216      // be written only 0 or 1.
1217      for(auto *GV : GVs)
1218        NewGV->addDebugInfo(GV);
1219    }
1220 
1221   while (!GV->use_empty()) {
1222     Instruction *UI = cast<Instruction>(GV->user_back());
1223     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1224       // Change the store into a boolean store.
1225       bool StoringOther = SI->getOperand(0) == OtherVal;
1226       // Only do this if we weren't storing a loaded value.
1227       Value *StoreVal;
1228       if (StoringOther || SI->getOperand(0) == InitVal) {
1229         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1230                                     StoringOther);
1231       } else {
1232         // Otherwise, we are storing a previously loaded copy.  To do this,
1233         // change the copy from copying the original value to just copying the
1234         // bool.
1235         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1236 
1237         // If we've already replaced the input, StoredVal will be a cast or
1238         // select instruction.  If not, it will be a load of the original
1239         // global.
1240         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1241           assert(LI->getOperand(0) == GV && "Not a copy!");
1242           // Insert a new load, to preserve the saved value.
1243           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1244                                   LI->getName() + ".b", false, Align(1),
1245                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1246         } else {
1247           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1248                  "This is not a form that we understand!");
1249           StoreVal = StoredVal->getOperand(0);
1250           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1251         }
1252       }
1253       StoreInst *NSI =
1254           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1255                         SI->getSyncScopeID(), SI);
1256       NSI->setDebugLoc(SI->getDebugLoc());
1257     } else {
1258       // Change the load into a load of bool then a select.
1259       LoadInst *LI = cast<LoadInst>(UI);
1260       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1261                                    LI->getName() + ".b", false, Align(1),
1262                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1263       Instruction *NSI;
1264       if (IsOneZero)
1265         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1266       else
1267         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1268       NSI->takeName(LI);
1269       // Since LI is split into two instructions, NLI and NSI both inherit the
1270       // same DebugLoc
1271       NLI->setDebugLoc(LI->getDebugLoc());
1272       NSI->setDebugLoc(LI->getDebugLoc());
1273       LI->replaceAllUsesWith(NSI);
1274     }
1275     UI->eraseFromParent();
1276   }
1277 
1278   // Retain the name of the old global variable. People who are debugging their
1279   // programs may expect these variables to be named the same.
1280   NewGV->takeName(GV);
1281   GV->eraseFromParent();
1282   return true;
1283 }
1284 
1285 static bool
1286 deleteIfDead(GlobalValue &GV,
1287              SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1288              function_ref<void(Function &)> DeleteFnCallback = nullptr) {
1289   GV.removeDeadConstantUsers();
1290 
1291   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1292     return false;
1293 
1294   if (const Comdat *C = GV.getComdat())
1295     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1296       return false;
1297 
1298   bool Dead;
1299   if (auto *F = dyn_cast<Function>(&GV))
1300     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1301   else
1302     Dead = GV.use_empty();
1303   if (!Dead)
1304     return false;
1305 
1306   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1307   if (auto *F = dyn_cast<Function>(&GV)) {
1308     if (DeleteFnCallback)
1309       DeleteFnCallback(*F);
1310   }
1311   GV.eraseFromParent();
1312   ++NumDeleted;
1313   return true;
1314 }
1315 
1316 static bool isPointerValueDeadOnEntryToFunction(
1317     const Function *F, GlobalValue *GV,
1318     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1319   // Find all uses of GV. We expect them all to be in F, and if we can't
1320   // identify any of the uses we bail out.
1321   //
1322   // On each of these uses, identify if the memory that GV points to is
1323   // used/required/live at the start of the function. If it is not, for example
1324   // if the first thing the function does is store to the GV, the GV can
1325   // possibly be demoted.
1326   //
1327   // We don't do an exhaustive search for memory operations - simply look
1328   // through bitcasts as they're quite common and benign.
1329   const DataLayout &DL = GV->getParent()->getDataLayout();
1330   SmallVector<LoadInst *, 4> Loads;
1331   SmallVector<StoreInst *, 4> Stores;
1332   for (auto *U : GV->users()) {
1333     if (Operator::getOpcode(U) == Instruction::BitCast) {
1334       for (auto *UU : U->users()) {
1335         if (auto *LI = dyn_cast<LoadInst>(UU))
1336           Loads.push_back(LI);
1337         else if (auto *SI = dyn_cast<StoreInst>(UU))
1338           Stores.push_back(SI);
1339         else
1340           return false;
1341       }
1342       continue;
1343     }
1344 
1345     Instruction *I = dyn_cast<Instruction>(U);
1346     if (!I)
1347       return false;
1348     assert(I->getParent()->getParent() == F);
1349 
1350     if (auto *LI = dyn_cast<LoadInst>(I))
1351       Loads.push_back(LI);
1352     else if (auto *SI = dyn_cast<StoreInst>(I))
1353       Stores.push_back(SI);
1354     else
1355       return false;
1356   }
1357 
1358   // We have identified all uses of GV into loads and stores. Now check if all
1359   // of them are known not to depend on the value of the global at the function
1360   // entry point. We do this by ensuring that every load is dominated by at
1361   // least one store.
1362   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1363 
1364   // The below check is quadratic. Check we're not going to do too many tests.
1365   // FIXME: Even though this will always have worst-case quadratic time, we
1366   // could put effort into minimizing the average time by putting stores that
1367   // have been shown to dominate at least one load at the beginning of the
1368   // Stores array, making subsequent dominance checks more likely to succeed
1369   // early.
1370   //
1371   // The threshold here is fairly large because global->local demotion is a
1372   // very powerful optimization should it fire.
1373   const unsigned Threshold = 100;
1374   if (Loads.size() * Stores.size() > Threshold)
1375     return false;
1376 
1377   for (auto *L : Loads) {
1378     auto *LTy = L->getType();
1379     if (none_of(Stores, [&](const StoreInst *S) {
1380           auto *STy = S->getValueOperand()->getType();
1381           // The load is only dominated by the store if DomTree says so
1382           // and the number of bits loaded in L is less than or equal to
1383           // the number of bits stored in S.
1384           return DT.dominates(S, L) &&
1385                  DL.getTypeStoreSize(LTy).getFixedValue() <=
1386                      DL.getTypeStoreSize(STy).getFixedValue();
1387         }))
1388       return false;
1389   }
1390   // All loads have known dependences inside F, so the global can be localized.
1391   return true;
1392 }
1393 
1394 /// C may have non-instruction users. Can all of those users be turned into
1395 /// instructions?
1396 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1397   // We don't do this exhaustively. The most common pattern that we really need
1398   // to care about is a constant GEP or constant bitcast - so just looking
1399   // through one single ConstantExpr.
1400   //
1401   // The set of constants that this function returns true for must be able to be
1402   // handled by makeAllConstantUsesInstructions.
1403   for (auto *U : C->users()) {
1404     if (isa<Instruction>(U))
1405       continue;
1406     if (!isa<ConstantExpr>(U))
1407       // Non instruction, non-constantexpr user; cannot convert this.
1408       return false;
1409     for (auto *UU : U->users())
1410       if (!isa<Instruction>(UU))
1411         // A constantexpr used by another constant. We don't try and recurse any
1412         // further but just bail out at this point.
1413         return false;
1414   }
1415 
1416   return true;
1417 }
1418 
1419 /// C may have non-instruction users, and
1420 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1421 /// non-instruction users to instructions.
1422 static void makeAllConstantUsesInstructions(Constant *C) {
1423   SmallVector<ConstantExpr*,4> Users;
1424   for (auto *U : C->users()) {
1425     if (isa<ConstantExpr>(U))
1426       Users.push_back(cast<ConstantExpr>(U));
1427     else
1428       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1429       // should not have returned true for C.
1430       assert(
1431           isa<Instruction>(U) &&
1432           "Can't transform non-constantexpr non-instruction to instruction!");
1433   }
1434 
1435   SmallVector<Value*,4> UUsers;
1436   for (auto *U : Users) {
1437     UUsers.clear();
1438     append_range(UUsers, U->users());
1439     for (auto *UU : UUsers) {
1440       Instruction *UI = cast<Instruction>(UU);
1441       Instruction *NewU = U->getAsInstruction(UI);
1442       UI->replaceUsesOfWith(U, NewU);
1443     }
1444     // We've replaced all the uses, so destroy the constant. (destroyConstant
1445     // will update value handles and metadata.)
1446     U->destroyConstant();
1447   }
1448 }
1449 
1450 // For a global variable with one store, if the store dominates any loads,
1451 // those loads will always load the stored value (as opposed to the
1452 // initializer), even in the presence of recursion.
1453 static bool forwardStoredOnceStore(
1454     GlobalVariable *GV, const StoreInst *StoredOnceStore,
1455     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1456   const Value *StoredOnceValue = StoredOnceStore->getValueOperand();
1457   // We can do this optimization for non-constants in nosync + norecurse
1458   // functions, but globals used in exactly one norecurse functions are already
1459   // promoted to an alloca.
1460   if (!isa<Constant>(StoredOnceValue))
1461     return false;
1462   const Function *F = StoredOnceStore->getFunction();
1463   SmallVector<LoadInst *> Loads;
1464   for (User *U : GV->users()) {
1465     if (auto *LI = dyn_cast<LoadInst>(U)) {
1466       if (LI->getFunction() == F &&
1467           LI->getType() == StoredOnceValue->getType() && LI->isSimple())
1468         Loads.push_back(LI);
1469     }
1470   }
1471   // Only compute DT if we have any loads to examine.
1472   bool MadeChange = false;
1473   if (!Loads.empty()) {
1474     auto &DT = LookupDomTree(*const_cast<Function *>(F));
1475     for (auto *LI : Loads) {
1476       if (DT.dominates(StoredOnceStore, LI)) {
1477         LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue));
1478         LI->eraseFromParent();
1479         MadeChange = true;
1480       }
1481     }
1482   }
1483   return MadeChange;
1484 }
1485 
1486 /// Analyze the specified global variable and optimize
1487 /// it if possible.  If we make a change, return true.
1488 static bool
1489 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1490                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1491                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1492                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1493   auto &DL = GV->getParent()->getDataLayout();
1494   // If this is a first class global and has only one accessing function and
1495   // this function is non-recursive, we replace the global with a local alloca
1496   // in this function.
1497   //
1498   // NOTE: It doesn't make sense to promote non-single-value types since we
1499   // are just replacing static memory to stack memory.
1500   //
1501   // If the global is in different address space, don't bring it to stack.
1502   if (!GS.HasMultipleAccessingFunctions &&
1503       GS.AccessingFunction &&
1504       GV->getValueType()->isSingleValueType() &&
1505       GV->getType()->getAddressSpace() == 0 &&
1506       !GV->isExternallyInitialized() &&
1507       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1508       GS.AccessingFunction->doesNotRecurse() &&
1509       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1510                                           LookupDomTree)) {
1511     const DataLayout &DL = GV->getParent()->getDataLayout();
1512 
1513     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1514     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1515                                                    ->getEntryBlock().begin());
1516     Type *ElemTy = GV->getValueType();
1517     // FIXME: Pass Global's alignment when globals have alignment
1518     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1519                                         GV->getName(), &FirstI);
1520     if (!isa<UndefValue>(GV->getInitializer()))
1521       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1522 
1523     makeAllConstantUsesInstructions(GV);
1524 
1525     GV->replaceAllUsesWith(Alloca);
1526     GV->eraseFromParent();
1527     ++NumLocalized;
1528     return true;
1529   }
1530 
1531   bool Changed = false;
1532 
1533   // If the global is never loaded (but may be stored to), it is dead.
1534   // Delete it now.
1535   if (!GS.IsLoaded) {
1536     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1537 
1538     if (isLeakCheckerRoot(GV)) {
1539       // Delete any constant stores to the global.
1540       Changed = CleanupPointerRootUsers(GV, GetTLI);
1541     } else {
1542       // Delete any stores we can find to the global.  We may not be able to
1543       // make it completely dead though.
1544       Changed = CleanupConstantGlobalUsers(GV, DL);
1545     }
1546 
1547     // If the global is dead now, delete it.
1548     if (GV->use_empty()) {
1549       GV->eraseFromParent();
1550       ++NumDeleted;
1551       Changed = true;
1552     }
1553     return Changed;
1554 
1555   }
1556   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1557     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1558 
1559     // Don't actually mark a global constant if it's atomic because atomic loads
1560     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1561     // requires write access to the variable even if it's not actually changed.
1562     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1563       assert(!GV->isConstant() && "Expected a non-constant global");
1564       GV->setConstant(true);
1565       Changed = true;
1566     }
1567 
1568     // Clean up any obviously simplifiable users now.
1569     Changed |= CleanupConstantGlobalUsers(GV, DL);
1570 
1571     // If the global is dead now, just nuke it.
1572     if (GV->use_empty()) {
1573       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1574                         << "all users and delete global!\n");
1575       GV->eraseFromParent();
1576       ++NumDeleted;
1577       return true;
1578     }
1579 
1580     // Fall through to the next check; see if we can optimize further.
1581     ++NumMarked;
1582   }
1583   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1584     const DataLayout &DL = GV->getParent()->getDataLayout();
1585     if (SRAGlobal(GV, DL))
1586       return true;
1587   }
1588   Value *StoredOnceValue = GS.getStoredOnceValue();
1589   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1590     Function &StoreFn =
1591         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1592     bool CanHaveNonUndefGlobalInitializer =
1593         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1594             GV->getType()->getAddressSpace());
1595     // If the initial value for the global was an undef value, and if only
1596     // one other value was stored into it, we can just change the
1597     // initializer to be the stored value, then delete all stores to the
1598     // global.  This allows us to mark it constant.
1599     // This is restricted to address spaces that allow globals to have
1600     // initializers. NVPTX, for example, does not support initializers for
1601     // shared memory (AS 3).
1602     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1603     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1604         DL.getTypeAllocSize(SOVConstant->getType()) ==
1605             DL.getTypeAllocSize(GV->getValueType()) &&
1606         CanHaveNonUndefGlobalInitializer) {
1607       if (SOVConstant->getType() == GV->getValueType()) {
1608         // Change the initializer in place.
1609         GV->setInitializer(SOVConstant);
1610       } else {
1611         // Create a new global with adjusted type.
1612         auto *NGV = new GlobalVariable(
1613             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1614             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1615             GV->getAddressSpace());
1616         NGV->takeName(GV);
1617         NGV->copyAttributesFrom(GV);
1618         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1619         GV->eraseFromParent();
1620         GV = NGV;
1621       }
1622 
1623       // Clean up any obviously simplifiable users now.
1624       CleanupConstantGlobalUsers(GV, DL);
1625 
1626       if (GV->use_empty()) {
1627         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1628                           << "simplify all users and delete global!\n");
1629         GV->eraseFromParent();
1630         ++NumDeleted;
1631       }
1632       ++NumSubstitute;
1633       return true;
1634     }
1635 
1636     // Try to optimize globals based on the knowledge that only one value
1637     // (besides its initializer) is ever stored to the global.
1638     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI))
1639       return true;
1640 
1641     // Try to forward the store to any loads. If we have more than one store, we
1642     // may have a store of the initializer between StoredOnceStore and a load.
1643     if (GS.NumStores == 1)
1644       if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree))
1645         return true;
1646 
1647     // Otherwise, if the global was not a boolean, we can shrink it to be a
1648     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1649     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1650         (!isa<UndefValue>(GV->getInitializer()) ||
1651          CanHaveNonUndefGlobalInitializer)) {
1652       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1653         ++NumShrunkToBool;
1654         return true;
1655       }
1656     }
1657   }
1658 
1659   return Changed;
1660 }
1661 
1662 /// Analyze the specified global variable and optimize it if possible.  If we
1663 /// make a change, return true.
1664 static bool
1665 processGlobal(GlobalValue &GV,
1666               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1667               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1668               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1669   if (GV.getName().startswith("llvm."))
1670     return false;
1671 
1672   GlobalStatus GS;
1673 
1674   if (GlobalStatus::analyzeGlobal(&GV, GS))
1675     return false;
1676 
1677   bool Changed = false;
1678   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1679     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1680                                                : GlobalValue::UnnamedAddr::Local;
1681     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1682       GV.setUnnamedAddr(NewUnnamedAddr);
1683       NumUnnamed++;
1684       Changed = true;
1685     }
1686   }
1687 
1688   // Do more involved optimizations if the global is internal.
1689   if (!GV.hasLocalLinkage())
1690     return Changed;
1691 
1692   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1693   if (!GVar)
1694     return Changed;
1695 
1696   if (GVar->isConstant() || !GVar->hasInitializer())
1697     return Changed;
1698 
1699   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1700          Changed;
1701 }
1702 
1703 /// Walk all of the direct calls of the specified function, changing them to
1704 /// FastCC.
1705 static void ChangeCalleesToFastCall(Function *F) {
1706   for (User *U : F->users()) {
1707     if (isa<BlockAddress>(U))
1708       continue;
1709     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1710   }
1711 }
1712 
1713 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1714                                Attribute::AttrKind A) {
1715   unsigned AttrIndex;
1716   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1717     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1718   return Attrs;
1719 }
1720 
1721 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1722   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1723   for (User *U : F->users()) {
1724     if (isa<BlockAddress>(U))
1725       continue;
1726     CallBase *CB = cast<CallBase>(U);
1727     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1728   }
1729 }
1730 
1731 /// Return true if this is a calling convention that we'd like to change.  The
1732 /// idea here is that we don't want to mess with the convention if the user
1733 /// explicitly requested something with performance implications like coldcc,
1734 /// GHC, or anyregcc.
1735 static bool hasChangeableCC(Function *F) {
1736   CallingConv::ID CC = F->getCallingConv();
1737 
1738   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1739   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1740     return false;
1741 
1742   // FIXME: Change CC for the whole chain of musttail calls when possible.
1743   //
1744   // Can't change CC of the function that either has musttail calls, or is a
1745   // musttail callee itself
1746   for (User *U : F->users()) {
1747     if (isa<BlockAddress>(U))
1748       continue;
1749     CallInst* CI = dyn_cast<CallInst>(U);
1750     if (!CI)
1751       continue;
1752 
1753     if (CI->isMustTailCall())
1754       return false;
1755   }
1756 
1757   for (BasicBlock &BB : *F)
1758     if (BB.getTerminatingMustTailCall())
1759       return false;
1760 
1761   return true;
1762 }
1763 
1764 /// Return true if the block containing the call site has a BlockFrequency of
1765 /// less than ColdCCRelFreq% of the entry block.
1766 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1767   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1768   auto *CallSiteBB = CB.getParent();
1769   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1770   auto CallerEntryFreq =
1771       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1772   return CallSiteFreq < CallerEntryFreq * ColdProb;
1773 }
1774 
1775 // This function checks if the input function F is cold at all call sites. It
1776 // also looks each call site's containing function, returning false if the
1777 // caller function contains other non cold calls. The input vector AllCallsCold
1778 // contains a list of functions that only have call sites in cold blocks.
1779 static bool
1780 isValidCandidateForColdCC(Function &F,
1781                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1782                           const std::vector<Function *> &AllCallsCold) {
1783 
1784   if (F.user_empty())
1785     return false;
1786 
1787   for (User *U : F.users()) {
1788     if (isa<BlockAddress>(U))
1789       continue;
1790 
1791     CallBase &CB = cast<CallBase>(*U);
1792     Function *CallerFunc = CB.getParent()->getParent();
1793     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1794     if (!isColdCallSite(CB, CallerBFI))
1795       return false;
1796     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1797       return false;
1798   }
1799   return true;
1800 }
1801 
1802 static void changeCallSitesToColdCC(Function *F) {
1803   for (User *U : F->users()) {
1804     if (isa<BlockAddress>(U))
1805       continue;
1806     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1807   }
1808 }
1809 
1810 // This function iterates over all the call instructions in the input Function
1811 // and checks that all call sites are in cold blocks and are allowed to use the
1812 // coldcc calling convention.
1813 static bool
1814 hasOnlyColdCalls(Function &F,
1815                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1816   for (BasicBlock &BB : F) {
1817     for (Instruction &I : BB) {
1818       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1819         // Skip over isline asm instructions since they aren't function calls.
1820         if (CI->isInlineAsm())
1821           continue;
1822         Function *CalledFn = CI->getCalledFunction();
1823         if (!CalledFn)
1824           return false;
1825         // Skip over intrinsics since they won't remain as function calls.
1826         // Important to do this check before the linkage check below so we
1827         // won't bail out on debug intrinsics, possibly making the generated
1828         // code dependent on the presence of debug info.
1829         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1830           continue;
1831         if (!CalledFn->hasLocalLinkage())
1832           return false;
1833         // Check if it's valid to use coldcc calling convention.
1834         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1835             CalledFn->hasAddressTaken())
1836           return false;
1837         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1838         if (!isColdCallSite(*CI, CallerBFI))
1839           return false;
1840       }
1841     }
1842   }
1843   return true;
1844 }
1845 
1846 static bool hasMustTailCallers(Function *F) {
1847   for (User *U : F->users()) {
1848     CallBase *CB = dyn_cast<CallBase>(U);
1849     if (!CB) {
1850       assert(isa<BlockAddress>(U) &&
1851              "Expected either CallBase or BlockAddress");
1852       continue;
1853     }
1854     if (CB->isMustTailCall())
1855       return true;
1856   }
1857   return false;
1858 }
1859 
1860 static bool hasInvokeCallers(Function *F) {
1861   for (User *U : F->users())
1862     if (isa<InvokeInst>(U))
1863       return true;
1864   return false;
1865 }
1866 
1867 static void RemovePreallocated(Function *F) {
1868   RemoveAttribute(F, Attribute::Preallocated);
1869 
1870   auto *M = F->getParent();
1871 
1872   IRBuilder<> Builder(M->getContext());
1873 
1874   // Cannot modify users() while iterating over it, so make a copy.
1875   SmallVector<User *, 4> PreallocatedCalls(F->users());
1876   for (User *U : PreallocatedCalls) {
1877     CallBase *CB = dyn_cast<CallBase>(U);
1878     if (!CB)
1879       continue;
1880 
1881     assert(
1882         !CB->isMustTailCall() &&
1883         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1884     // Create copy of call without "preallocated" operand bundle.
1885     SmallVector<OperandBundleDef, 1> OpBundles;
1886     CB->getOperandBundlesAsDefs(OpBundles);
1887     CallBase *PreallocatedSetup = nullptr;
1888     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1889       if (It->getTag() == "preallocated") {
1890         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1891         OpBundles.erase(It);
1892         break;
1893       }
1894     }
1895     assert(PreallocatedSetup && "Did not find preallocated bundle");
1896     uint64_t ArgCount =
1897         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1898 
1899     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1900            "Unknown indirect call type");
1901     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1902     CB->replaceAllUsesWith(NewCB);
1903     NewCB->takeName(CB);
1904     CB->eraseFromParent();
1905 
1906     Builder.SetInsertPoint(PreallocatedSetup);
1907     auto *StackSave =
1908         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1909 
1910     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1911     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1912                        StackSave);
1913 
1914     // Replace @llvm.call.preallocated.arg() with alloca.
1915     // Cannot modify users() while iterating over it, so make a copy.
1916     // @llvm.call.preallocated.arg() can be called with the same index multiple
1917     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1918     // already created a Value* for the index, and if not, create an alloca and
1919     // bitcast right after the @llvm.call.preallocated.setup() so that it
1920     // dominates all uses.
1921     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1922     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1923     for (auto *User : PreallocatedArgs) {
1924       auto *UseCall = cast<CallBase>(User);
1925       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1926                  Intrinsic::call_preallocated_arg &&
1927              "preallocated token use was not a llvm.call.preallocated.arg");
1928       uint64_t AllocArgIndex =
1929           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1930       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1931       if (!AllocaReplacement) {
1932         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1933         auto *ArgType =
1934             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1935         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1936         Builder.SetInsertPoint(InsertBefore);
1937         auto *Alloca =
1938             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1939         auto *BitCast = Builder.CreateBitCast(
1940             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1941         ArgAllocas[AllocArgIndex] = BitCast;
1942         AllocaReplacement = BitCast;
1943       }
1944 
1945       UseCall->replaceAllUsesWith(AllocaReplacement);
1946       UseCall->eraseFromParent();
1947     }
1948     // Remove @llvm.call.preallocated.setup().
1949     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1950   }
1951 }
1952 
1953 static bool
1954 OptimizeFunctions(Module &M,
1955                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1956                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1957                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1958                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1959                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1960                   function_ref<void(Function &F)> ChangedCFGCallback,
1961                   function_ref<void(Function &F)> DeleteFnCallback) {
1962 
1963   bool Changed = false;
1964 
1965   std::vector<Function *> AllCallsCold;
1966   for (Function &F : llvm::make_early_inc_range(M))
1967     if (hasOnlyColdCalls(F, GetBFI))
1968       AllCallsCold.push_back(&F);
1969 
1970   // Optimize functions.
1971   for (Function &F : llvm::make_early_inc_range(M)) {
1972     // Don't perform global opt pass on naked functions; we don't want fast
1973     // calling conventions for naked functions.
1974     if (F.hasFnAttribute(Attribute::Naked))
1975       continue;
1976 
1977     // Functions without names cannot be referenced outside this module.
1978     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1979       F.setLinkage(GlobalValue::InternalLinkage);
1980 
1981     if (deleteIfDead(F, NotDiscardableComdats, DeleteFnCallback)) {
1982       Changed = true;
1983       continue;
1984     }
1985 
1986     // LLVM's definition of dominance allows instructions that are cyclic
1987     // in unreachable blocks, e.g.:
1988     // %pat = select i1 %condition, @global, i16* %pat
1989     // because any instruction dominates an instruction in a block that's
1990     // not reachable from entry.
1991     // So, remove unreachable blocks from the function, because a) there's
1992     // no point in analyzing them and b) GlobalOpt should otherwise grow
1993     // some more complicated logic to break these cycles.
1994     // Notify the analysis manager that we've modified the function's CFG.
1995     if (!F.isDeclaration()) {
1996       if (removeUnreachableBlocks(F)) {
1997         Changed = true;
1998         ChangedCFGCallback(F);
1999       }
2000     }
2001 
2002     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
2003 
2004     if (!F.hasLocalLinkage())
2005       continue;
2006 
2007     // If we have an inalloca parameter that we can safely remove the
2008     // inalloca attribute from, do so. This unlocks optimizations that
2009     // wouldn't be safe in the presence of inalloca.
2010     // FIXME: We should also hoist alloca affected by this to the entry
2011     // block if possible.
2012     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2013         !F.hasAddressTaken() && !hasMustTailCallers(&F) && !F.isVarArg()) {
2014       RemoveAttribute(&F, Attribute::InAlloca);
2015       Changed = true;
2016     }
2017 
2018     // FIXME: handle invokes
2019     // FIXME: handle musttail
2020     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2021       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
2022           !hasInvokeCallers(&F)) {
2023         RemovePreallocated(&F);
2024         Changed = true;
2025       }
2026       continue;
2027     }
2028 
2029     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2030       NumInternalFunc++;
2031       TargetTransformInfo &TTI = GetTTI(F);
2032       // Change the calling convention to coldcc if either stress testing is
2033       // enabled or the target would like to use coldcc on functions which are
2034       // cold at all call sites and the callers contain no other non coldcc
2035       // calls.
2036       if (EnableColdCCStressTest ||
2037           (TTI.useColdCCForColdCall(F) &&
2038            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2039         F.setCallingConv(CallingConv::Cold);
2040         changeCallSitesToColdCC(&F);
2041         Changed = true;
2042         NumColdCC++;
2043       }
2044     }
2045 
2046     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2047       // If this function has a calling convention worth changing, is not a
2048       // varargs function, and is only called directly, promote it to use the
2049       // Fast calling convention.
2050       F.setCallingConv(CallingConv::Fast);
2051       ChangeCalleesToFastCall(&F);
2052       ++NumFastCallFns;
2053       Changed = true;
2054     }
2055 
2056     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2057         !F.hasAddressTaken()) {
2058       // The function is not used by a trampoline intrinsic, so it is safe
2059       // to remove the 'nest' attribute.
2060       RemoveAttribute(&F, Attribute::Nest);
2061       ++NumNestRemoved;
2062       Changed = true;
2063     }
2064   }
2065   return Changed;
2066 }
2067 
2068 static bool
2069 OptimizeGlobalVars(Module &M,
2070                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2071                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2072                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2073                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2074   bool Changed = false;
2075 
2076   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2077     // Global variables without names cannot be referenced outside this module.
2078     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2079       GV.setLinkage(GlobalValue::InternalLinkage);
2080     // Simplify the initializer.
2081     if (GV.hasInitializer())
2082       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2083         auto &DL = M.getDataLayout();
2084         // TLI is not used in the case of a Constant, so use default nullptr
2085         // for that optional parameter, since we don't have a Function to
2086         // provide GetTLI anyway.
2087         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2088         if (New != C)
2089           GV.setInitializer(New);
2090       }
2091 
2092     if (deleteIfDead(GV, NotDiscardableComdats)) {
2093       Changed = true;
2094       continue;
2095     }
2096 
2097     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2098   }
2099   return Changed;
2100 }
2101 
2102 /// Evaluate static constructors in the function, if we can.  Return true if we
2103 /// can, false otherwise.
2104 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2105                                       TargetLibraryInfo *TLI) {
2106   // Skip external functions.
2107   if (F->isDeclaration())
2108     return false;
2109   // Call the function.
2110   Evaluator Eval(DL, TLI);
2111   Constant *RetValDummy;
2112   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2113                                            SmallVector<Constant*, 0>());
2114 
2115   if (EvalSuccess) {
2116     ++NumCtorsEvaluated;
2117 
2118     // We succeeded at evaluation: commit the result.
2119     auto NewInitializers = Eval.getMutatedInitializers();
2120     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2121                       << F->getName() << "' to " << NewInitializers.size()
2122                       << " stores.\n");
2123     for (const auto &Pair : NewInitializers)
2124       Pair.first->setInitializer(Pair.second);
2125     for (GlobalVariable *GV : Eval.getInvariants())
2126       GV->setConstant(true);
2127   }
2128 
2129   return EvalSuccess;
2130 }
2131 
2132 static int compareNames(Constant *const *A, Constant *const *B) {
2133   Value *AStripped = (*A)->stripPointerCasts();
2134   Value *BStripped = (*B)->stripPointerCasts();
2135   return AStripped->getName().compare(BStripped->getName());
2136 }
2137 
2138 static void setUsedInitializer(GlobalVariable &V,
2139                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2140   if (Init.empty()) {
2141     V.eraseFromParent();
2142     return;
2143   }
2144 
2145   // Type of pointer to the array of pointers.
2146   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2147 
2148   SmallVector<Constant *, 8> UsedArray;
2149   for (GlobalValue *GV : Init) {
2150     Constant *Cast
2151       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2152     UsedArray.push_back(Cast);
2153   }
2154   // Sort to get deterministic order.
2155   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2156   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2157 
2158   Module *M = V.getParent();
2159   V.removeFromParent();
2160   GlobalVariable *NV =
2161       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2162                          ConstantArray::get(ATy, UsedArray), "");
2163   NV->takeName(&V);
2164   NV->setSection("llvm.metadata");
2165   delete &V;
2166 }
2167 
2168 namespace {
2169 
2170 /// An easy to access representation of llvm.used and llvm.compiler.used.
2171 class LLVMUsed {
2172   SmallPtrSet<GlobalValue *, 4> Used;
2173   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2174   GlobalVariable *UsedV;
2175   GlobalVariable *CompilerUsedV;
2176 
2177 public:
2178   LLVMUsed(Module &M) {
2179     SmallVector<GlobalValue *, 4> Vec;
2180     UsedV = collectUsedGlobalVariables(M, Vec, false);
2181     Used = {Vec.begin(), Vec.end()};
2182     Vec.clear();
2183     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2184     CompilerUsed = {Vec.begin(), Vec.end()};
2185   }
2186 
2187   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2188   using used_iterator_range = iterator_range<iterator>;
2189 
2190   iterator usedBegin() { return Used.begin(); }
2191   iterator usedEnd() { return Used.end(); }
2192 
2193   used_iterator_range used() {
2194     return used_iterator_range(usedBegin(), usedEnd());
2195   }
2196 
2197   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2198   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2199 
2200   used_iterator_range compilerUsed() {
2201     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2202   }
2203 
2204   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2205 
2206   bool compilerUsedCount(GlobalValue *GV) const {
2207     return CompilerUsed.count(GV);
2208   }
2209 
2210   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2211   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2212   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2213 
2214   bool compilerUsedInsert(GlobalValue *GV) {
2215     return CompilerUsed.insert(GV).second;
2216   }
2217 
2218   void syncVariablesAndSets() {
2219     if (UsedV)
2220       setUsedInitializer(*UsedV, Used);
2221     if (CompilerUsedV)
2222       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2223   }
2224 };
2225 
2226 } // end anonymous namespace
2227 
2228 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2229   if (GA.use_empty()) // No use at all.
2230     return false;
2231 
2232   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2233          "We should have removed the duplicated "
2234          "element from llvm.compiler.used");
2235   if (!GA.hasOneUse())
2236     // Strictly more than one use. So at least one is not in llvm.used and
2237     // llvm.compiler.used.
2238     return true;
2239 
2240   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2241   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2242 }
2243 
2244 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2245                                                const LLVMUsed &U) {
2246   unsigned N = 2;
2247   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2248          "We should have removed the duplicated "
2249          "element from llvm.compiler.used");
2250   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2251     ++N;
2252   return V.hasNUsesOrMore(N);
2253 }
2254 
2255 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2256   if (!GA.hasLocalLinkage())
2257     return true;
2258 
2259   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2260 }
2261 
2262 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2263                              bool &RenameTarget) {
2264   RenameTarget = false;
2265   bool Ret = false;
2266   if (hasUseOtherThanLLVMUsed(GA, U))
2267     Ret = true;
2268 
2269   // If the alias is externally visible, we may still be able to simplify it.
2270   if (!mayHaveOtherReferences(GA, U))
2271     return Ret;
2272 
2273   // If the aliasee has internal linkage, give it the name and linkage
2274   // of the alias, and delete the alias.  This turns:
2275   //   define internal ... @f(...)
2276   //   @a = alias ... @f
2277   // into:
2278   //   define ... @a(...)
2279   Constant *Aliasee = GA.getAliasee();
2280   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2281   if (!Target->hasLocalLinkage())
2282     return Ret;
2283 
2284   // Do not perform the transform if multiple aliases potentially target the
2285   // aliasee. This check also ensures that it is safe to replace the section
2286   // and other attributes of the aliasee with those of the alias.
2287   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2288     return Ret;
2289 
2290   RenameTarget = true;
2291   return true;
2292 }
2293 
2294 static bool
2295 OptimizeGlobalAliases(Module &M,
2296                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2297   bool Changed = false;
2298   LLVMUsed Used(M);
2299 
2300   for (GlobalValue *GV : Used.used())
2301     Used.compilerUsedErase(GV);
2302 
2303   // Return whether GV is explicitly or implicitly dso_local and not replaceable
2304   // by another definition in the current linkage unit.
2305   auto IsModuleLocal = [](GlobalValue &GV) {
2306     return !GlobalValue::isInterposableLinkage(GV.getLinkage()) &&
2307            (GV.isDSOLocal() || GV.isImplicitDSOLocal());
2308   };
2309 
2310   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2311     // Aliases without names cannot be referenced outside this module.
2312     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2313       J.setLinkage(GlobalValue::InternalLinkage);
2314 
2315     if (deleteIfDead(J, NotDiscardableComdats)) {
2316       Changed = true;
2317       continue;
2318     }
2319 
2320     // If the alias can change at link time, nothing can be done - bail out.
2321     if (!IsModuleLocal(J))
2322       continue;
2323 
2324     Constant *Aliasee = J.getAliasee();
2325     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2326     // We can't trivially replace the alias with the aliasee if the aliasee is
2327     // non-trivial in some way. We also can't replace the alias with the aliasee
2328     // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible
2329     // alias can be used to access the definition as if preemption did not
2330     // happen.
2331     // TODO: Try to handle non-zero GEPs of local aliasees.
2332     if (!Target || !IsModuleLocal(*Target))
2333       continue;
2334 
2335     Target->removeDeadConstantUsers();
2336 
2337     // Make all users of the alias use the aliasee instead.
2338     bool RenameTarget;
2339     if (!hasUsesToReplace(J, Used, RenameTarget))
2340       continue;
2341 
2342     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2343     ++NumAliasesResolved;
2344     Changed = true;
2345 
2346     if (RenameTarget) {
2347       // Give the aliasee the name, linkage and other attributes of the alias.
2348       Target->takeName(&J);
2349       Target->setLinkage(J.getLinkage());
2350       Target->setDSOLocal(J.isDSOLocal());
2351       Target->setVisibility(J.getVisibility());
2352       Target->setDLLStorageClass(J.getDLLStorageClass());
2353 
2354       if (Used.usedErase(&J))
2355         Used.usedInsert(Target);
2356 
2357       if (Used.compilerUsedErase(&J))
2358         Used.compilerUsedInsert(Target);
2359     } else if (mayHaveOtherReferences(J, Used))
2360       continue;
2361 
2362     // Delete the alias.
2363     M.getAliasList().erase(&J);
2364     ++NumAliasesRemoved;
2365     Changed = true;
2366   }
2367 
2368   Used.syncVariablesAndSets();
2369 
2370   return Changed;
2371 }
2372 
2373 static Function *
2374 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2375   // Hack to get a default TLI before we have actual Function.
2376   auto FuncIter = M.begin();
2377   if (FuncIter == M.end())
2378     return nullptr;
2379   auto *TLI = &GetTLI(*FuncIter);
2380 
2381   LibFunc F = LibFunc_cxa_atexit;
2382   if (!TLI->has(F))
2383     return nullptr;
2384 
2385   Function *Fn = M.getFunction(TLI->getName(F));
2386   if (!Fn)
2387     return nullptr;
2388 
2389   // Now get the actual TLI for Fn.
2390   TLI = &GetTLI(*Fn);
2391 
2392   // Make sure that the function has the correct prototype.
2393   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2394     return nullptr;
2395 
2396   return Fn;
2397 }
2398 
2399 /// Returns whether the given function is an empty C++ destructor and can
2400 /// therefore be eliminated.
2401 /// Note that we assume that other optimization passes have already simplified
2402 /// the code so we simply check for 'ret'.
2403 static bool cxxDtorIsEmpty(const Function &Fn) {
2404   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2405   // nounwind, but that doesn't seem worth doing.
2406   if (Fn.isDeclaration())
2407     return false;
2408 
2409   for (const auto &I : Fn.getEntryBlock()) {
2410     if (I.isDebugOrPseudoInst())
2411       continue;
2412     if (isa<ReturnInst>(I))
2413       return true;
2414     break;
2415   }
2416   return false;
2417 }
2418 
2419 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2420   /// Itanium C++ ABI p3.3.5:
2421   ///
2422   ///   After constructing a global (or local static) object, that will require
2423   ///   destruction on exit, a termination function is registered as follows:
2424   ///
2425   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2426   ///
2427   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2428   ///   call f(p) when DSO d is unloaded, before all such termination calls
2429   ///   registered before this one. It returns zero if registration is
2430   ///   successful, nonzero on failure.
2431 
2432   // This pass will look for calls to __cxa_atexit where the function is trivial
2433   // and remove them.
2434   bool Changed = false;
2435 
2436   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2437     // We're only interested in calls. Theoretically, we could handle invoke
2438     // instructions as well, but neither llvm-gcc nor clang generate invokes
2439     // to __cxa_atexit.
2440     CallInst *CI = dyn_cast<CallInst>(U);
2441     if (!CI)
2442       continue;
2443 
2444     Function *DtorFn =
2445       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2446     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2447       continue;
2448 
2449     // Just remove the call.
2450     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2451     CI->eraseFromParent();
2452 
2453     ++NumCXXDtorsRemoved;
2454 
2455     Changed |= true;
2456   }
2457 
2458   return Changed;
2459 }
2460 
2461 static bool
2462 optimizeGlobalsInModule(Module &M, const DataLayout &DL,
2463                         function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2464                         function_ref<TargetTransformInfo &(Function &)> GetTTI,
2465                         function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2466                         function_ref<DominatorTree &(Function &)> LookupDomTree,
2467                         function_ref<void(Function &F)> ChangedCFGCallback,
2468                         function_ref<void(Function &F)> DeleteFnCallback) {
2469   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2470   bool Changed = false;
2471   bool LocalChange = true;
2472   std::optional<uint32_t> FirstNotFullyEvaluatedPriority;
2473 
2474   while (LocalChange) {
2475     LocalChange = false;
2476 
2477     NotDiscardableComdats.clear();
2478     for (const GlobalVariable &GV : M.globals())
2479       if (const Comdat *C = GV.getComdat())
2480         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2481           NotDiscardableComdats.insert(C);
2482     for (Function &F : M)
2483       if (const Comdat *C = F.getComdat())
2484         if (!F.isDefTriviallyDead())
2485           NotDiscardableComdats.insert(C);
2486     for (GlobalAlias &GA : M.aliases())
2487       if (const Comdat *C = GA.getComdat())
2488         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2489           NotDiscardableComdats.insert(C);
2490 
2491     // Delete functions that are trivially dead, ccc -> fastcc
2492     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2493                                      NotDiscardableComdats, ChangedCFGCallback,
2494                                      DeleteFnCallback);
2495 
2496     // Optimize global_ctors list.
2497     LocalChange |=
2498         optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) {
2499           if (FirstNotFullyEvaluatedPriority &&
2500               *FirstNotFullyEvaluatedPriority != Priority)
2501             return false;
2502           bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2503           if (!Evaluated)
2504             FirstNotFullyEvaluatedPriority = Priority;
2505           return Evaluated;
2506         });
2507 
2508     // Optimize non-address-taken globals.
2509     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2510                                       NotDiscardableComdats);
2511 
2512     // Resolve aliases, when possible.
2513     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2514 
2515     // Try to remove trivial global destructors if they are not removed
2516     // already.
2517     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2518     if (CXAAtExitFn)
2519       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2520 
2521     Changed |= LocalChange;
2522   }
2523 
2524   // TODO: Move all global ctors functions to the end of the module for code
2525   // layout.
2526 
2527   return Changed;
2528 }
2529 
2530 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2531     auto &DL = M.getDataLayout();
2532     auto &FAM =
2533         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2534     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2535       return FAM.getResult<DominatorTreeAnalysis>(F);
2536     };
2537     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2538       return FAM.getResult<TargetLibraryAnalysis>(F);
2539     };
2540     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2541       return FAM.getResult<TargetIRAnalysis>(F);
2542     };
2543 
2544     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2545       return FAM.getResult<BlockFrequencyAnalysis>(F);
2546     };
2547     auto ChangedCFGCallback = [&FAM](Function &F) {
2548       FAM.invalidate(F, PreservedAnalyses::none());
2549     };
2550     auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(F, F.getName()); };
2551 
2552     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2553                                  ChangedCFGCallback, DeleteFnCallback))
2554       return PreservedAnalyses::all();
2555 
2556     PreservedAnalyses PA = PreservedAnalyses::none();
2557     // We made sure to clear analyses for deleted functions.
2558     PA.preserve<FunctionAnalysisManagerModuleProxy>();
2559     // The only place we modify the CFG is when calling
2560     // removeUnreachableBlocks(), but there we make sure to invalidate analyses
2561     // for modified functions.
2562     PA.preserveSet<CFGAnalyses>();
2563     return PA;
2564 }
2565 
2566 namespace {
2567 
2568 struct GlobalOptLegacyPass : public ModulePass {
2569   static char ID; // Pass identification, replacement for typeid
2570 
2571   GlobalOptLegacyPass() : ModulePass(ID) {
2572     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2573   }
2574 
2575   bool runOnModule(Module &M) override {
2576     if (skipModule(M))
2577       return false;
2578 
2579     auto &DL = M.getDataLayout();
2580     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2581       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2582     };
2583     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2584       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2585     };
2586     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2587       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2588     };
2589 
2590     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2591       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2592     };
2593 
2594     auto ChangedCFGCallback = [&LookupDomTree](Function &F) {
2595       auto &DT = LookupDomTree(F);
2596       DT.recalculate(F);
2597     };
2598 
2599     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2600                                    ChangedCFGCallback, nullptr);
2601   }
2602 
2603   void getAnalysisUsage(AnalysisUsage &AU) const override {
2604     AU.addRequired<TargetLibraryInfoWrapperPass>();
2605     AU.addRequired<TargetTransformInfoWrapperPass>();
2606     AU.addRequired<DominatorTreeWrapperPass>();
2607     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2608   }
2609 };
2610 
2611 } // end anonymous namespace
2612 
2613 char GlobalOptLegacyPass::ID = 0;
2614 
2615 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2616                       "Global Variable Optimizer", false, false)
2617 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2618 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2619 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2620 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2621 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2622                     "Global Variable Optimizer", false, false)
2623 
2624 ModulePass *llvm::createGlobalOptimizerPass() {
2625   return new GlobalOptLegacyPass();
2626 }
2627