1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/BinaryFormat/Dwarf.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include <cassert> 69 #include <cstdint> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "globalopt" 76 77 STATISTIC(NumMarked , "Number of globals marked constant"); 78 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 79 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 80 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: return true; 131 case Type::ArrayTyID: 132 case Type::VectorTyID: { 133 SequentialType *STy = cast<SequentialType>(Ty); 134 Types.push_back(STy->getElementType()); 135 break; 136 } 137 case Type::StructTyID: { 138 StructType *STy = cast<StructType>(Ty); 139 if (STy->isOpaque()) return true; 140 for (StructType::element_iterator I = STy->element_begin(), 141 E = STy->element_end(); I != E; ++I) { 142 Type *InnerTy = *I; 143 if (isa<PointerType>(InnerTy)) return true; 144 if (isa<CompositeType>(InnerTy)) 145 Types.push_back(InnerTy); 146 } 147 break; 148 } 149 } 150 if (--Limit == 0) return true; 151 } while (!Types.empty()); 152 return false; 153 } 154 155 /// Given a value that is stored to a global but never read, determine whether 156 /// it's safe to remove the store and the chain of computation that feeds the 157 /// store. 158 static bool IsSafeComputationToRemove( 159 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 160 do { 161 if (isa<Constant>(V)) 162 return true; 163 if (!V->hasOneUse()) 164 return false; 165 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 166 isa<GlobalValue>(V)) 167 return false; 168 if (isAllocationFn(V, GetTLI)) 169 return true; 170 171 Instruction *I = cast<Instruction>(V); 172 if (I->mayHaveSideEffects()) 173 return false; 174 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 175 if (!GEP->hasAllConstantIndices()) 176 return false; 177 } else if (I->getNumOperands() != 1) { 178 return false; 179 } 180 181 V = I->getOperand(0); 182 } while (true); 183 } 184 185 /// This GV is a pointer root. Loop over all users of the global and clean up 186 /// any that obviously don't assign the global a value that isn't dynamically 187 /// allocated. 188 static bool 189 CleanupPointerRootUsers(GlobalVariable *GV, 190 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 191 // A brief explanation of leak checkers. The goal is to find bugs where 192 // pointers are forgotten, causing an accumulating growth in memory 193 // usage over time. The common strategy for leak checkers is to whitelist the 194 // memory pointed to by globals at exit. This is popular because it also 195 // solves another problem where the main thread of a C++ program may shut down 196 // before other threads that are still expecting to use those globals. To 197 // handle that case, we expect the program may create a singleton and never 198 // destroy it. 199 200 bool Changed = false; 201 202 // If Dead[n].first is the only use of a malloc result, we can delete its 203 // chain of computation and the store to the global in Dead[n].second. 204 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 205 206 // Constants can't be pointers to dynamically allocated memory. 207 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 208 UI != E;) { 209 User *U = *UI++; 210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 211 Value *V = SI->getValueOperand(); 212 if (isa<Constant>(V)) { 213 Changed = true; 214 SI->eraseFromParent(); 215 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 216 if (I->hasOneUse()) 217 Dead.push_back(std::make_pair(I, SI)); 218 } 219 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 220 if (isa<Constant>(MSI->getValue())) { 221 Changed = true; 222 MSI->eraseFromParent(); 223 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 224 if (I->hasOneUse()) 225 Dead.push_back(std::make_pair(I, MSI)); 226 } 227 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 228 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 229 if (MemSrc && MemSrc->isConstant()) { 230 Changed = true; 231 MTI->eraseFromParent(); 232 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 233 if (I->hasOneUse()) 234 Dead.push_back(std::make_pair(I, MTI)); 235 } 236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 237 if (CE->use_empty()) { 238 CE->destroyConstant(); 239 Changed = true; 240 } 241 } else if (Constant *C = dyn_cast<Constant>(U)) { 242 if (isSafeToDestroyConstant(C)) { 243 C->destroyConstant(); 244 // This could have invalidated UI, start over from scratch. 245 Dead.clear(); 246 CleanupPointerRootUsers(GV, GetTLI); 247 return true; 248 } 249 } 250 } 251 252 for (int i = 0, e = Dead.size(); i != e; ++i) { 253 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 254 Dead[i].second->eraseFromParent(); 255 Instruction *I = Dead[i].first; 256 do { 257 if (isAllocationFn(I, GetTLI)) 258 break; 259 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 260 if (!J) 261 break; 262 I->eraseFromParent(); 263 I = J; 264 } while (true); 265 I->eraseFromParent(); 266 } 267 } 268 269 return Changed; 270 } 271 272 /// We just marked GV constant. Loop over all users of the global, cleaning up 273 /// the obvious ones. This is largely just a quick scan over the use list to 274 /// clean up the easy and obvious cruft. This returns true if it made a change. 275 static bool CleanupConstantGlobalUsers( 276 Value *V, Constant *Init, const DataLayout &DL, 277 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 278 bool Changed = false; 279 // Note that we need to use a weak value handle for the worklist items. When 280 // we delete a constant array, we may also be holding pointer to one of its 281 // elements (or an element of one of its elements if we're dealing with an 282 // array of arrays) in the worklist. 283 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 284 while (!WorkList.empty()) { 285 Value *UV = WorkList.pop_back_val(); 286 if (!UV) 287 continue; 288 289 User *U = cast<User>(UV); 290 291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 292 if (Init) { 293 // Replace the load with the initializer. 294 LI->replaceAllUsesWith(Init); 295 LI->eraseFromParent(); 296 Changed = true; 297 } 298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 299 // Store must be unreachable or storing Init into the global. 300 SI->eraseFromParent(); 301 Changed = true; 302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 303 if (CE->getOpcode() == Instruction::GetElementPtr) { 304 Constant *SubInit = nullptr; 305 if (Init) 306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 308 } else if ((CE->getOpcode() == Instruction::BitCast && 309 CE->getType()->isPointerTy()) || 310 CE->getOpcode() == Instruction::AddrSpaceCast) { 311 // Pointer cast, delete any stores and memsets to the global. 312 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 313 } 314 315 if (CE->use_empty()) { 316 CE->destroyConstant(); 317 Changed = true; 318 } 319 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 320 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 321 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 322 // and will invalidate our notion of what Init is. 323 Constant *SubInit = nullptr; 324 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 325 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 326 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 327 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 328 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 329 330 // If the initializer is an all-null value and we have an inbounds GEP, 331 // we already know what the result of any load from that GEP is. 332 // TODO: Handle splats. 333 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 334 SubInit = Constant::getNullValue(GEP->getResultElementType()); 335 } 336 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 337 338 if (GEP->use_empty()) { 339 GEP->eraseFromParent(); 340 Changed = true; 341 } 342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 343 if (MI->getRawDest() == V) { 344 MI->eraseFromParent(); 345 Changed = true; 346 } 347 348 } else if (Constant *C = dyn_cast<Constant>(U)) { 349 // If we have a chain of dead constantexprs or other things dangling from 350 // us, and if they are all dead, nuke them without remorse. 351 if (isSafeToDestroyConstant(C)) { 352 C->destroyConstant(); 353 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 354 return true; 355 } 356 } 357 } 358 return Changed; 359 } 360 361 static bool isSafeSROAElementUse(Value *V); 362 363 /// Return true if the specified GEP is a safe user of a derived 364 /// expression from a global that we want to SROA. 365 static bool isSafeSROAGEP(User *U) { 366 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 367 // don't like < 3 operand CE's, and we don't like non-constant integer 368 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 369 // value of C. 370 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 371 !cast<Constant>(U->getOperand(1))->isNullValue()) 372 return false; 373 374 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 375 ++GEPI; // Skip over the pointer index. 376 377 // For all other level we require that the indices are constant and inrange. 378 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 379 // invalid things like allowing i to index an out-of-range subscript that 380 // accesses A[1]. This can also happen between different members of a struct 381 // in llvm IR. 382 for (; GEPI != E; ++GEPI) { 383 if (GEPI.isStruct()) 384 continue; 385 386 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 387 if (!IdxVal || (GEPI.isBoundedSequential() && 388 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 389 return false; 390 } 391 392 return llvm::all_of(U->users(), 393 [](User *UU) { return isSafeSROAElementUse(UU); }); 394 } 395 396 /// Return true if the specified instruction is a safe user of a derived 397 /// expression from a global that we want to SROA. 398 static bool isSafeSROAElementUse(Value *V) { 399 // We might have a dead and dangling constant hanging off of here. 400 if (Constant *C = dyn_cast<Constant>(V)) 401 return isSafeToDestroyConstant(C); 402 403 Instruction *I = dyn_cast<Instruction>(V); 404 if (!I) return false; 405 406 // Loads are ok. 407 if (isa<LoadInst>(I)) return true; 408 409 // Stores *to* the pointer are ok. 410 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 411 return SI->getOperand(0) != V; 412 413 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 414 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 415 } 416 417 /// Look at all uses of the global and decide whether it is safe for us to 418 /// perform this transformation. 419 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 420 for (User *U : GV->users()) { 421 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 422 if (!isa<GetElementPtrInst>(U) && 423 (!isa<ConstantExpr>(U) || 424 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 425 return false; 426 427 // Check the gep and it's users are safe to SRA 428 if (!isSafeSROAGEP(U)) 429 return false; 430 } 431 432 return true; 433 } 434 435 /// Copy over the debug info for a variable to its SRA replacements. 436 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 437 uint64_t FragmentOffsetInBits, 438 uint64_t FragmentSizeInBits, 439 unsigned NumElements) { 440 SmallVector<DIGlobalVariableExpression *, 1> GVs; 441 GV->getDebugInfo(GVs); 442 for (auto *GVE : GVs) { 443 DIVariable *Var = GVE->getVariable(); 444 DIExpression *Expr = GVE->getExpression(); 445 if (NumElements > 1) { 446 if (auto E = DIExpression::createFragmentExpression( 447 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 448 Expr = *E; 449 else 450 return; 451 } 452 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 453 NGV->addDebugInfo(NGVE); 454 } 455 } 456 457 /// Perform scalar replacement of aggregates on the specified global variable. 458 /// This opens the door for other optimizations by exposing the behavior of the 459 /// program in a more fine-grained way. We have determined that this 460 /// transformation is safe already. We return the first global variable we 461 /// insert so that the caller can reprocess it. 462 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 463 // Make sure this global only has simple uses that we can SRA. 464 if (!GlobalUsersSafeToSRA(GV)) 465 return nullptr; 466 467 assert(GV->hasLocalLinkage()); 468 Constant *Init = GV->getInitializer(); 469 Type *Ty = Init->getType(); 470 471 std::vector<GlobalVariable *> NewGlobals; 472 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 473 474 // Get the alignment of the global, either explicit or target-specific. 475 unsigned StartAlignment = GV->getAlignment(); 476 if (StartAlignment == 0) 477 StartAlignment = DL.getABITypeAlignment(GV->getType()); 478 479 if (StructType *STy = dyn_cast<StructType>(Ty)) { 480 unsigned NumElements = STy->getNumElements(); 481 NewGlobals.reserve(NumElements); 482 const StructLayout &Layout = *DL.getStructLayout(STy); 483 for (unsigned i = 0, e = NumElements; i != e; ++i) { 484 Constant *In = Init->getAggregateElement(i); 485 assert(In && "Couldn't get element of initializer?"); 486 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 487 GlobalVariable::InternalLinkage, 488 In, GV->getName()+"."+Twine(i), 489 GV->getThreadLocalMode(), 490 GV->getType()->getAddressSpace()); 491 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 492 NGV->copyAttributesFrom(GV); 493 Globals.push_back(NGV); 494 NewGlobals.push_back(NGV); 495 496 // Calculate the known alignment of the field. If the original aggregate 497 // had 256 byte alignment for example, something might depend on that: 498 // propagate info to each field. 499 uint64_t FieldOffset = Layout.getElementOffset(i); 500 Align NewAlign(MinAlign(StartAlignment, FieldOffset)); 501 if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i)))) 502 NGV->setAlignment(NewAlign); 503 504 // Copy over the debug info for the variable. 505 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 506 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); 507 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); 508 } 509 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 510 unsigned NumElements = STy->getNumElements(); 511 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 512 return nullptr; // It's not worth it. 513 NewGlobals.reserve(NumElements); 514 auto ElTy = STy->getElementType(); 515 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 516 Align EltAlign(DL.getABITypeAlignment(ElTy)); 517 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 518 for (unsigned i = 0, e = NumElements; i != e; ++i) { 519 Constant *In = Init->getAggregateElement(i); 520 assert(In && "Couldn't get element of initializer?"); 521 522 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 523 GlobalVariable::InternalLinkage, 524 In, GV->getName()+"."+Twine(i), 525 GV->getThreadLocalMode(), 526 GV->getType()->getAddressSpace()); 527 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 528 NGV->copyAttributesFrom(GV); 529 Globals.push_back(NGV); 530 NewGlobals.push_back(NGV); 531 532 // Calculate the known alignment of the field. If the original aggregate 533 // had 256 byte alignment for example, something might depend on that: 534 // propagate info to each field. 535 Align NewAlign(MinAlign(StartAlignment, EltSize * i)); 536 if (NewAlign > EltAlign) 537 NGV->setAlignment(NewAlign); 538 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 539 NumElements); 540 } 541 } 542 543 if (NewGlobals.empty()) 544 return nullptr; 545 546 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 547 548 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 549 550 // Loop over all of the uses of the global, replacing the constantexpr geps, 551 // with smaller constantexpr geps or direct references. 552 while (!GV->use_empty()) { 553 User *GEP = GV->user_back(); 554 assert(((isa<ConstantExpr>(GEP) && 555 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 556 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 557 558 // Ignore the 1th operand, which has to be zero or else the program is quite 559 // broken (undefined). Get the 2nd operand, which is the structure or array 560 // index. 561 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 562 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 563 564 Value *NewPtr = NewGlobals[Val]; 565 Type *NewTy = NewGlobals[Val]->getValueType(); 566 567 // Form a shorter GEP if needed. 568 if (GEP->getNumOperands() > 3) { 569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 570 SmallVector<Constant*, 8> Idxs; 571 Idxs.push_back(NullInt); 572 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 573 Idxs.push_back(CE->getOperand(i)); 574 NewPtr = 575 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 576 } else { 577 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 578 SmallVector<Value*, 8> Idxs; 579 Idxs.push_back(NullInt); 580 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 581 Idxs.push_back(GEPI->getOperand(i)); 582 NewPtr = GetElementPtrInst::Create( 583 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 584 } 585 } 586 GEP->replaceAllUsesWith(NewPtr); 587 588 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 589 GEPI->eraseFromParent(); 590 else 591 cast<ConstantExpr>(GEP)->destroyConstant(); 592 } 593 594 // Delete the old global, now that it is dead. 595 Globals.erase(GV); 596 ++NumSRA; 597 598 // Loop over the new globals array deleting any globals that are obviously 599 // dead. This can arise due to scalarization of a structure or an array that 600 // has elements that are dead. 601 unsigned FirstGlobal = 0; 602 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 603 if (NewGlobals[i]->use_empty()) { 604 Globals.erase(NewGlobals[i]); 605 if (FirstGlobal == i) ++FirstGlobal; 606 } 607 608 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 609 } 610 611 /// Return true if all users of the specified value will trap if the value is 612 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 613 /// reprocessing them. 614 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 615 SmallPtrSetImpl<const PHINode*> &PHIs) { 616 for (const User *U : V->users()) { 617 if (const Instruction *I = dyn_cast<Instruction>(U)) { 618 // If null pointer is considered valid, then all uses are non-trapping. 619 // Non address-space 0 globals have already been pruned by the caller. 620 if (NullPointerIsDefined(I->getFunction())) 621 return false; 622 } 623 if (isa<LoadInst>(U)) { 624 // Will trap. 625 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 626 if (SI->getOperand(0) == V) { 627 //cerr << "NONTRAPPING USE: " << *U; 628 return false; // Storing the value. 629 } 630 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 631 if (CI->getCalledValue() != V) { 632 //cerr << "NONTRAPPING USE: " << *U; 633 return false; // Not calling the ptr 634 } 635 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 636 if (II->getCalledValue() != V) { 637 //cerr << "NONTRAPPING USE: " << *U; 638 return false; // Not calling the ptr 639 } 640 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 641 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 642 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 643 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 644 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 645 // If we've already seen this phi node, ignore it, it has already been 646 // checked. 647 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 648 return false; 649 } else if (isa<ICmpInst>(U) && 650 isa<ConstantPointerNull>(U->getOperand(1))) { 651 // Ignore icmp X, null 652 } else { 653 //cerr << "NONTRAPPING USE: " << *U; 654 return false; 655 } 656 } 657 return true; 658 } 659 660 /// Return true if all uses of any loads from GV will trap if the loaded value 661 /// is null. Note that this also permits comparisons of the loaded value 662 /// against null, as a special case. 663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 664 for (const User *U : GV->users()) 665 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 666 SmallPtrSet<const PHINode*, 8> PHIs; 667 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 668 return false; 669 } else if (isa<StoreInst>(U)) { 670 // Ignore stores to the global. 671 } else { 672 // We don't know or understand this user, bail out. 673 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 674 return false; 675 } 676 return true; 677 } 678 679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 680 bool Changed = false; 681 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 682 Instruction *I = cast<Instruction>(*UI++); 683 // Uses are non-trapping if null pointer is considered valid. 684 // Non address-space 0 globals are already pruned by the caller. 685 if (NullPointerIsDefined(I->getFunction())) 686 return false; 687 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 688 LI->setOperand(0, NewV); 689 Changed = true; 690 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 691 if (SI->getOperand(1) == V) { 692 SI->setOperand(1, NewV); 693 Changed = true; 694 } 695 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 696 CallSite CS(I); 697 if (CS.getCalledValue() == V) { 698 // Calling through the pointer! Turn into a direct call, but be careful 699 // that the pointer is not also being passed as an argument. 700 CS.setCalledFunction(NewV); 701 Changed = true; 702 bool PassedAsArg = false; 703 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 704 if (CS.getArgument(i) == V) { 705 PassedAsArg = true; 706 CS.setArgument(i, NewV); 707 } 708 709 if (PassedAsArg) { 710 // Being passed as an argument also. Be careful to not invalidate UI! 711 UI = V->user_begin(); 712 } 713 } 714 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 715 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 716 ConstantExpr::getCast(CI->getOpcode(), 717 NewV, CI->getType())); 718 if (CI->use_empty()) { 719 Changed = true; 720 CI->eraseFromParent(); 721 } 722 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 723 // Should handle GEP here. 724 SmallVector<Constant*, 8> Idxs; 725 Idxs.reserve(GEPI->getNumOperands()-1); 726 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 727 i != e; ++i) 728 if (Constant *C = dyn_cast<Constant>(*i)) 729 Idxs.push_back(C); 730 else 731 break; 732 if (Idxs.size() == GEPI->getNumOperands()-1) 733 Changed |= OptimizeAwayTrappingUsesOfValue( 734 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 735 NewV, Idxs)); 736 if (GEPI->use_empty()) { 737 Changed = true; 738 GEPI->eraseFromParent(); 739 } 740 } 741 } 742 743 return Changed; 744 } 745 746 /// The specified global has only one non-null value stored into it. If there 747 /// are uses of the loaded value that would trap if the loaded value is 748 /// dynamically null, then we know that they cannot be reachable with a null 749 /// optimize away the load. 750 static bool OptimizeAwayTrappingUsesOfLoads( 751 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 752 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 753 bool Changed = false; 754 755 // Keep track of whether we are able to remove all the uses of the global 756 // other than the store that defines it. 757 bool AllNonStoreUsesGone = true; 758 759 // Replace all uses of loads with uses of uses of the stored value. 760 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 761 User *GlobalUser = *GUI++; 762 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 763 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 764 // If we were able to delete all uses of the loads 765 if (LI->use_empty()) { 766 LI->eraseFromParent(); 767 Changed = true; 768 } else { 769 AllNonStoreUsesGone = false; 770 } 771 } else if (isa<StoreInst>(GlobalUser)) { 772 // Ignore the store that stores "LV" to the global. 773 assert(GlobalUser->getOperand(1) == GV && 774 "Must be storing *to* the global"); 775 } else { 776 AllNonStoreUsesGone = false; 777 778 // If we get here we could have other crazy uses that are transitively 779 // loaded. 780 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 781 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 782 isa<BitCastInst>(GlobalUser) || 783 isa<GetElementPtrInst>(GlobalUser)) && 784 "Only expect load and stores!"); 785 } 786 } 787 788 if (Changed) { 789 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 790 << "\n"); 791 ++NumGlobUses; 792 } 793 794 // If we nuked all of the loads, then none of the stores are needed either, 795 // nor is the global. 796 if (AllNonStoreUsesGone) { 797 if (isLeakCheckerRoot(GV)) { 798 Changed |= CleanupPointerRootUsers(GV, GetTLI); 799 } else { 800 Changed = true; 801 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 802 } 803 if (GV->use_empty()) { 804 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 805 Changed = true; 806 GV->eraseFromParent(); 807 ++NumDeleted; 808 } 809 } 810 return Changed; 811 } 812 813 /// Walk the use list of V, constant folding all of the instructions that are 814 /// foldable. 815 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 816 TargetLibraryInfo *TLI) { 817 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 818 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 819 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 820 I->replaceAllUsesWith(NewC); 821 822 // Advance UI to the next non-I use to avoid invalidating it! 823 // Instructions could multiply use V. 824 while (UI != E && *UI == I) 825 ++UI; 826 if (isInstructionTriviallyDead(I, TLI)) 827 I->eraseFromParent(); 828 } 829 } 830 831 /// This function takes the specified global variable, and transforms the 832 /// program as if it always contained the result of the specified malloc. 833 /// Because it is always the result of the specified malloc, there is no reason 834 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 835 /// loads of GV as uses of the new global. 836 static GlobalVariable * 837 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 838 ConstantInt *NElements, const DataLayout &DL, 839 TargetLibraryInfo *TLI) { 840 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 841 << '\n'); 842 843 Type *GlobalType; 844 if (NElements->getZExtValue() == 1) 845 GlobalType = AllocTy; 846 else 847 // If we have an array allocation, the global variable is of an array. 848 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 849 850 // Create the new global variable. The contents of the malloc'd memory is 851 // undefined, so initialize with an undef value. 852 GlobalVariable *NewGV = new GlobalVariable( 853 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 854 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 855 GV->getThreadLocalMode()); 856 857 // If there are bitcast users of the malloc (which is typical, usually we have 858 // a malloc + bitcast) then replace them with uses of the new global. Update 859 // other users to use the global as well. 860 BitCastInst *TheBC = nullptr; 861 while (!CI->use_empty()) { 862 Instruction *User = cast<Instruction>(CI->user_back()); 863 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 864 if (BCI->getType() == NewGV->getType()) { 865 BCI->replaceAllUsesWith(NewGV); 866 BCI->eraseFromParent(); 867 } else { 868 BCI->setOperand(0, NewGV); 869 } 870 } else { 871 if (!TheBC) 872 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 873 User->replaceUsesOfWith(CI, TheBC); 874 } 875 } 876 877 Constant *RepValue = NewGV; 878 if (NewGV->getType() != GV->getValueType()) 879 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 880 881 // If there is a comparison against null, we will insert a global bool to 882 // keep track of whether the global was initialized yet or not. 883 GlobalVariable *InitBool = 884 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 885 GlobalValue::InternalLinkage, 886 ConstantInt::getFalse(GV->getContext()), 887 GV->getName()+".init", GV->getThreadLocalMode()); 888 bool InitBoolUsed = false; 889 890 // Loop over all uses of GV, processing them in turn. 891 while (!GV->use_empty()) { 892 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 893 // The global is initialized when the store to it occurs. 894 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 895 None, SI->getOrdering(), SI->getSyncScopeID(), SI); 896 SI->eraseFromParent(); 897 continue; 898 } 899 900 LoadInst *LI = cast<LoadInst>(GV->user_back()); 901 while (!LI->use_empty()) { 902 Use &LoadUse = *LI->use_begin(); 903 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 904 if (!ICI) { 905 LoadUse = RepValue; 906 continue; 907 } 908 909 // Replace the cmp X, 0 with a use of the bool value. 910 // Sink the load to where the compare was, if atomic rules allow us to. 911 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 912 InitBool->getName() + ".val", false, None, 913 LI->getOrdering(), LI->getSyncScopeID(), 914 LI->isUnordered() ? (Instruction *)ICI : LI); 915 InitBoolUsed = true; 916 switch (ICI->getPredicate()) { 917 default: llvm_unreachable("Unknown ICmp Predicate!"); 918 case ICmpInst::ICMP_ULT: 919 case ICmpInst::ICMP_SLT: // X < null -> always false 920 LV = ConstantInt::getFalse(GV->getContext()); 921 break; 922 case ICmpInst::ICMP_ULE: 923 case ICmpInst::ICMP_SLE: 924 case ICmpInst::ICMP_EQ: 925 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 926 break; 927 case ICmpInst::ICMP_NE: 928 case ICmpInst::ICMP_UGE: 929 case ICmpInst::ICMP_SGE: 930 case ICmpInst::ICMP_UGT: 931 case ICmpInst::ICMP_SGT: 932 break; // no change. 933 } 934 ICI->replaceAllUsesWith(LV); 935 ICI->eraseFromParent(); 936 } 937 LI->eraseFromParent(); 938 } 939 940 // If the initialization boolean was used, insert it, otherwise delete it. 941 if (!InitBoolUsed) { 942 while (!InitBool->use_empty()) // Delete initializations 943 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 944 delete InitBool; 945 } else 946 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 947 948 // Now the GV is dead, nuke it and the malloc.. 949 GV->eraseFromParent(); 950 CI->eraseFromParent(); 951 952 // To further other optimizations, loop over all users of NewGV and try to 953 // constant prop them. This will promote GEP instructions with constant 954 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 955 ConstantPropUsersOf(NewGV, DL, TLI); 956 if (RepValue != NewGV) 957 ConstantPropUsersOf(RepValue, DL, TLI); 958 959 return NewGV; 960 } 961 962 /// Scan the use-list of V checking to make sure that there are no complex uses 963 /// of V. We permit simple things like dereferencing the pointer, but not 964 /// storing through the address, unless it is to the specified global. 965 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 966 const GlobalVariable *GV, 967 SmallPtrSetImpl<const PHINode*> &PHIs) { 968 for (const User *U : V->users()) { 969 const Instruction *Inst = cast<Instruction>(U); 970 971 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 972 continue; // Fine, ignore. 973 } 974 975 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 976 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 977 return false; // Storing the pointer itself... bad. 978 continue; // Otherwise, storing through it, or storing into GV... fine. 979 } 980 981 // Must index into the array and into the struct. 982 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 983 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 984 return false; 985 continue; 986 } 987 988 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 989 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 990 // cycles. 991 if (PHIs.insert(PN).second) 992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 993 return false; 994 continue; 995 } 996 997 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 998 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 999 return false; 1000 continue; 1001 } 1002 1003 return false; 1004 } 1005 return true; 1006 } 1007 1008 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1009 /// allocation into loads from the global and uses of the resultant pointer. 1010 /// Further, delete the store into GV. This assumes that these value pass the 1011 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1012 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1013 GlobalVariable *GV) { 1014 while (!Alloc->use_empty()) { 1015 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1016 Instruction *InsertPt = U; 1017 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1018 // If this is the store of the allocation into the global, remove it. 1019 if (SI->getOperand(1) == GV) { 1020 SI->eraseFromParent(); 1021 continue; 1022 } 1023 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1024 // Insert the load in the corresponding predecessor, not right before the 1025 // PHI. 1026 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1027 } else if (isa<BitCastInst>(U)) { 1028 // Must be bitcast between the malloc and store to initialize the global. 1029 ReplaceUsesOfMallocWithGlobal(U, GV); 1030 U->eraseFromParent(); 1031 continue; 1032 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1033 // If this is a "GEP bitcast" and the user is a store to the global, then 1034 // just process it as a bitcast. 1035 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1036 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1037 if (SI->getOperand(1) == GV) { 1038 // Must be bitcast GEP between the malloc and store to initialize 1039 // the global. 1040 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1041 GEPI->eraseFromParent(); 1042 continue; 1043 } 1044 } 1045 1046 // Insert a load from the global, and use it instead of the malloc. 1047 Value *NL = 1048 new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt); 1049 U->replaceUsesOfWith(Alloc, NL); 1050 } 1051 } 1052 1053 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1054 /// perform heap SRA on. This permits GEP's that index through the array and 1055 /// struct field, icmps of null, and PHIs. 1056 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1057 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1058 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1059 // We permit two users of the load: setcc comparing against the null 1060 // pointer, and a getelementptr of a specific form. 1061 for (const User *U : V->users()) { 1062 const Instruction *UI = cast<Instruction>(U); 1063 1064 // Comparison against null is ok. 1065 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1066 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1067 return false; 1068 continue; 1069 } 1070 1071 // getelementptr is also ok, but only a simple form. 1072 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1073 // Must index into the array and into the struct. 1074 if (GEPI->getNumOperands() < 3) 1075 return false; 1076 1077 // Otherwise the GEP is ok. 1078 continue; 1079 } 1080 1081 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1082 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1083 // This means some phi nodes are dependent on each other. 1084 // Avoid infinite looping! 1085 return false; 1086 if (!LoadUsingPHIs.insert(PN).second) 1087 // If we have already analyzed this PHI, then it is safe. 1088 continue; 1089 1090 // Make sure all uses of the PHI are simple enough to transform. 1091 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1092 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1093 return false; 1094 1095 continue; 1096 } 1097 1098 // Otherwise we don't know what this is, not ok. 1099 return false; 1100 } 1101 1102 return true; 1103 } 1104 1105 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1106 /// return true. 1107 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1108 Instruction *StoredVal) { 1109 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1110 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1111 for (const User *U : GV->users()) 1112 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1113 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1114 LoadUsingPHIsPerLoad)) 1115 return false; 1116 LoadUsingPHIsPerLoad.clear(); 1117 } 1118 1119 // If we reach here, we know that all uses of the loads and transitive uses 1120 // (through PHI nodes) are simple enough to transform. However, we don't know 1121 // that all inputs the to the PHI nodes are in the same equivalence sets. 1122 // Check to verify that all operands of the PHIs are either PHIS that can be 1123 // transformed, loads from GV, or MI itself. 1124 for (const PHINode *PN : LoadUsingPHIs) { 1125 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1126 Value *InVal = PN->getIncomingValue(op); 1127 1128 // PHI of the stored value itself is ok. 1129 if (InVal == StoredVal) continue; 1130 1131 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1132 // One of the PHIs in our set is (optimistically) ok. 1133 if (LoadUsingPHIs.count(InPN)) 1134 continue; 1135 return false; 1136 } 1137 1138 // Load from GV is ok. 1139 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1140 if (LI->getOperand(0) == GV) 1141 continue; 1142 1143 // UNDEF? NULL? 1144 1145 // Anything else is rejected. 1146 return false; 1147 } 1148 } 1149 1150 return true; 1151 } 1152 1153 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1154 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1155 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1156 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1157 1158 if (FieldNo >= FieldVals.size()) 1159 FieldVals.resize(FieldNo+1); 1160 1161 // If we already have this value, just reuse the previously scalarized 1162 // version. 1163 if (Value *FieldVal = FieldVals[FieldNo]) 1164 return FieldVal; 1165 1166 // Depending on what instruction this is, we have several cases. 1167 Value *Result; 1168 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1169 // This is a scalarized version of the load from the global. Just create 1170 // a new Load of the scalarized global. 1171 Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo, 1172 InsertedScalarizedValues, PHIsToRewrite); 1173 Result = new LoadInst(V->getType()->getPointerElementType(), V, 1174 LI->getName() + ".f" + Twine(FieldNo), LI); 1175 } else { 1176 PHINode *PN = cast<PHINode>(V); 1177 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1178 // field. 1179 1180 PointerType *PTy = cast<PointerType>(PN->getType()); 1181 StructType *ST = cast<StructType>(PTy->getElementType()); 1182 1183 unsigned AS = PTy->getAddressSpace(); 1184 PHINode *NewPN = 1185 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1186 PN->getNumIncomingValues(), 1187 PN->getName()+".f"+Twine(FieldNo), PN); 1188 Result = NewPN; 1189 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1190 } 1191 1192 return FieldVals[FieldNo] = Result; 1193 } 1194 1195 /// Given a load instruction and a value derived from the load, rewrite the 1196 /// derived value to use the HeapSRoA'd load. 1197 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1198 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1199 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1200 // If this is a comparison against null, handle it. 1201 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1202 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1203 // If we have a setcc of the loaded pointer, we can use a setcc of any 1204 // field. 1205 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1206 InsertedScalarizedValues, PHIsToRewrite); 1207 1208 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1209 Constant::getNullValue(NPtr->getType()), 1210 SCI->getName()); 1211 SCI->replaceAllUsesWith(New); 1212 SCI->eraseFromParent(); 1213 return; 1214 } 1215 1216 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1217 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1218 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1219 && "Unexpected GEPI!"); 1220 1221 // Load the pointer for this field. 1222 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1223 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1224 InsertedScalarizedValues, PHIsToRewrite); 1225 1226 // Create the new GEP idx vector. 1227 SmallVector<Value*, 8> GEPIdx; 1228 GEPIdx.push_back(GEPI->getOperand(1)); 1229 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1230 1231 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1232 GEPI->getName(), GEPI); 1233 GEPI->replaceAllUsesWith(NGEPI); 1234 GEPI->eraseFromParent(); 1235 return; 1236 } 1237 1238 // Recursively transform the users of PHI nodes. This will lazily create the 1239 // PHIs that are needed for individual elements. Keep track of what PHIs we 1240 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1241 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1242 // already been seen first by another load, so its uses have already been 1243 // processed. 1244 PHINode *PN = cast<PHINode>(LoadUser); 1245 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1246 std::vector<Value *>())).second) 1247 return; 1248 1249 // If this is the first time we've seen this PHI, recursively process all 1250 // users. 1251 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1252 Instruction *User = cast<Instruction>(*UI++); 1253 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1254 } 1255 } 1256 1257 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1258 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1259 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1260 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1261 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1262 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1263 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1264 Instruction *User = cast<Instruction>(*UI++); 1265 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1266 } 1267 1268 if (Load->use_empty()) { 1269 Load->eraseFromParent(); 1270 InsertedScalarizedValues.erase(Load); 1271 } 1272 } 1273 1274 /// CI is an allocation of an array of structures. Break it up into multiple 1275 /// allocations of arrays of the fields. 1276 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1277 Value *NElems, const DataLayout &DL, 1278 const TargetLibraryInfo *TLI) { 1279 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI 1280 << '\n'); 1281 Type *MAT = getMallocAllocatedType(CI, TLI); 1282 StructType *STy = cast<StructType>(MAT); 1283 1284 // There is guaranteed to be at least one use of the malloc (storing 1285 // it into GV). If there are other uses, change them to be uses of 1286 // the global to simplify later code. This also deletes the store 1287 // into GV. 1288 ReplaceUsesOfMallocWithGlobal(CI, GV); 1289 1290 // Okay, at this point, there are no users of the malloc. Insert N 1291 // new mallocs at the same place as CI, and N globals. 1292 std::vector<Value *> FieldGlobals; 1293 std::vector<Value *> FieldMallocs; 1294 1295 SmallVector<OperandBundleDef, 1> OpBundles; 1296 CI->getOperandBundlesAsDefs(OpBundles); 1297 1298 unsigned AS = GV->getType()->getPointerAddressSpace(); 1299 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1300 Type *FieldTy = STy->getElementType(FieldNo); 1301 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1302 1303 GlobalVariable *NGV = new GlobalVariable( 1304 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1305 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1306 nullptr, GV->getThreadLocalMode()); 1307 NGV->copyAttributesFrom(GV); 1308 FieldGlobals.push_back(NGV); 1309 1310 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1311 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1312 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1313 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1314 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1315 ConstantInt::get(IntPtrTy, TypeSize), 1316 NElems, OpBundles, nullptr, 1317 CI->getName() + ".f" + Twine(FieldNo)); 1318 FieldMallocs.push_back(NMI); 1319 new StoreInst(NMI, NGV, CI); 1320 } 1321 1322 // The tricky aspect of this transformation is handling the case when malloc 1323 // fails. In the original code, malloc failing would set the result pointer 1324 // of malloc to null. In this case, some mallocs could succeed and others 1325 // could fail. As such, we emit code that looks like this: 1326 // F0 = malloc(field0) 1327 // F1 = malloc(field1) 1328 // F2 = malloc(field2) 1329 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1330 // if (F0) { free(F0); F0 = 0; } 1331 // if (F1) { free(F1); F1 = 0; } 1332 // if (F2) { free(F2); F2 = 0; } 1333 // } 1334 // The malloc can also fail if its argument is too large. 1335 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1336 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1337 ConstantZero, "isneg"); 1338 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1339 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1340 Constant::getNullValue(FieldMallocs[i]->getType()), 1341 "isnull"); 1342 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1343 } 1344 1345 // Split the basic block at the old malloc. 1346 BasicBlock *OrigBB = CI->getParent(); 1347 BasicBlock *ContBB = 1348 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1349 1350 // Create the block to check the first condition. Put all these blocks at the 1351 // end of the function as they are unlikely to be executed. 1352 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1353 "malloc_ret_null", 1354 OrigBB->getParent()); 1355 1356 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1357 // branch on RunningOr. 1358 OrigBB->getTerminator()->eraseFromParent(); 1359 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1360 1361 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1362 // pointer, because some may be null while others are not. 1363 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1364 Value *GVVal = 1365 new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(), 1366 FieldGlobals[i], "tmp", NullPtrBlock); 1367 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1368 Constant::getNullValue(GVVal->getType())); 1369 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1370 OrigBB->getParent()); 1371 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1372 OrigBB->getParent()); 1373 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1374 Cmp, NullPtrBlock); 1375 1376 // Fill in FreeBlock. 1377 CallInst::CreateFree(GVVal, OpBundles, BI); 1378 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1379 FreeBlock); 1380 BranchInst::Create(NextBlock, FreeBlock); 1381 1382 NullPtrBlock = NextBlock; 1383 } 1384 1385 BranchInst::Create(ContBB, NullPtrBlock); 1386 1387 // CI is no longer needed, remove it. 1388 CI->eraseFromParent(); 1389 1390 /// As we process loads, if we can't immediately update all uses of the load, 1391 /// keep track of what scalarized loads are inserted for a given load. 1392 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1393 InsertedScalarizedValues[GV] = FieldGlobals; 1394 1395 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1396 1397 // Okay, the malloc site is completely handled. All of the uses of GV are now 1398 // loads, and all uses of those loads are simple. Rewrite them to use loads 1399 // of the per-field globals instead. 1400 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1401 Instruction *User = cast<Instruction>(*UI++); 1402 1403 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1404 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1405 continue; 1406 } 1407 1408 // Must be a store of null. 1409 StoreInst *SI = cast<StoreInst>(User); 1410 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1411 "Unexpected heap-sra user!"); 1412 1413 // Insert a store of null into each global. 1414 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1415 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1416 Constant *Null = Constant::getNullValue(ValTy); 1417 new StoreInst(Null, FieldGlobals[i], SI); 1418 } 1419 // Erase the original store. 1420 SI->eraseFromParent(); 1421 } 1422 1423 // While we have PHIs that are interesting to rewrite, do it. 1424 while (!PHIsToRewrite.empty()) { 1425 PHINode *PN = PHIsToRewrite.back().first; 1426 unsigned FieldNo = PHIsToRewrite.back().second; 1427 PHIsToRewrite.pop_back(); 1428 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1429 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1430 1431 // Add all the incoming values. This can materialize more phis. 1432 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1433 Value *InVal = PN->getIncomingValue(i); 1434 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1435 PHIsToRewrite); 1436 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1437 } 1438 } 1439 1440 // Drop all inter-phi links and any loads that made it this far. 1441 for (DenseMap<Value *, std::vector<Value *>>::iterator 1442 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1443 I != E; ++I) { 1444 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1445 PN->dropAllReferences(); 1446 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1447 LI->dropAllReferences(); 1448 } 1449 1450 // Delete all the phis and loads now that inter-references are dead. 1451 for (DenseMap<Value *, std::vector<Value *>>::iterator 1452 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1453 I != E; ++I) { 1454 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1455 PN->eraseFromParent(); 1456 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1457 LI->eraseFromParent(); 1458 } 1459 1460 // The old global is now dead, remove it. 1461 GV->eraseFromParent(); 1462 1463 ++NumHeapSRA; 1464 return cast<GlobalVariable>(FieldGlobals[0]); 1465 } 1466 1467 /// This function is called when we see a pointer global variable with a single 1468 /// value stored it that is a malloc or cast of malloc. 1469 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1470 Type *AllocTy, 1471 AtomicOrdering Ordering, 1472 const DataLayout &DL, 1473 TargetLibraryInfo *TLI) { 1474 // If this is a malloc of an abstract type, don't touch it. 1475 if (!AllocTy->isSized()) 1476 return false; 1477 1478 // We can't optimize this global unless all uses of it are *known* to be 1479 // of the malloc value, not of the null initializer value (consider a use 1480 // that compares the global's value against zero to see if the malloc has 1481 // been reached). To do this, we check to see if all uses of the global 1482 // would trap if the global were null: this proves that they must all 1483 // happen after the malloc. 1484 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1485 return false; 1486 1487 // We can't optimize this if the malloc itself is used in a complex way, 1488 // for example, being stored into multiple globals. This allows the 1489 // malloc to be stored into the specified global, loaded icmp'd, and 1490 // GEP'd. These are all things we could transform to using the global 1491 // for. 1492 SmallPtrSet<const PHINode*, 8> PHIs; 1493 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1494 return false; 1495 1496 // If we have a global that is only initialized with a fixed size malloc, 1497 // transform the program to use global memory instead of malloc'd memory. 1498 // This eliminates dynamic allocation, avoids an indirection accessing the 1499 // data, and exposes the resultant global to further GlobalOpt. 1500 // We cannot optimize the malloc if we cannot determine malloc array size. 1501 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1502 if (!NElems) 1503 return false; 1504 1505 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1506 // Restrict this transformation to only working on small allocations 1507 // (2048 bytes currently), as we don't want to introduce a 16M global or 1508 // something. 1509 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1510 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1511 return true; 1512 } 1513 1514 // If the allocation is an array of structures, consider transforming this 1515 // into multiple malloc'd arrays, one for each field. This is basically 1516 // SRoA for malloc'd memory. 1517 1518 if (Ordering != AtomicOrdering::NotAtomic) 1519 return false; 1520 1521 // If this is an allocation of a fixed size array of structs, analyze as a 1522 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1523 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1524 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1525 AllocTy = AT->getElementType(); 1526 1527 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1528 if (!AllocSTy) 1529 return false; 1530 1531 // This the structure has an unreasonable number of fields, leave it 1532 // alone. 1533 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1534 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1535 1536 // If this is a fixed size array, transform the Malloc to be an alloc of 1537 // structs. malloc [100 x struct],1 -> malloc struct, 100 1538 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1539 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1540 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1541 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1542 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1543 SmallVector<OperandBundleDef, 1> OpBundles; 1544 CI->getOperandBundlesAsDefs(OpBundles); 1545 Instruction *Malloc = 1546 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1547 OpBundles, nullptr, CI->getName()); 1548 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1549 CI->replaceAllUsesWith(Cast); 1550 CI->eraseFromParent(); 1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1552 CI = cast<CallInst>(BCI->getOperand(0)); 1553 else 1554 CI = cast<CallInst>(Malloc); 1555 } 1556 1557 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1558 TLI); 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 // Try to optimize globals based on the knowledge that only one value (besides 1566 // its initializer) is ever stored to the global. 1567 static bool 1568 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1569 AtomicOrdering Ordering, const DataLayout &DL, 1570 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1571 // Ignore no-op GEPs and bitcasts. 1572 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1573 1574 // If we are dealing with a pointer global that is initialized to null and 1575 // only has one (non-null) value stored into it, then we can optimize any 1576 // users of the loaded value (often calls and loads) that would trap if the 1577 // value was null. 1578 if (GV->getInitializer()->getType()->isPointerTy() && 1579 GV->getInitializer()->isNullValue() && 1580 !NullPointerIsDefined( 1581 nullptr /* F */, 1582 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1583 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1584 if (GV->getInitializer()->getType() != SOVC->getType()) 1585 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1586 1587 // Optimize away any trapping uses of the loaded value. 1588 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1589 return true; 1590 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1591 auto *TLI = &GetTLI(*CI->getFunction()); 1592 Type *MallocType = getMallocAllocatedType(CI, TLI); 1593 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1594 Ordering, DL, TLI)) 1595 return true; 1596 } 1597 } 1598 1599 return false; 1600 } 1601 1602 /// At this point, we have learned that the only two values ever stored into GV 1603 /// are its initializer and OtherVal. See if we can shrink the global into a 1604 /// boolean and select between the two values whenever it is used. This exposes 1605 /// the values to other scalar optimizations. 1606 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1607 Type *GVElType = GV->getValueType(); 1608 1609 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1610 // an FP value, pointer or vector, don't do this optimization because a select 1611 // between them is very expensive and unlikely to lead to later 1612 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1613 // where v1 and v2 both require constant pool loads, a big loss. 1614 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1615 GVElType->isFloatingPointTy() || 1616 GVElType->isPointerTy() || GVElType->isVectorTy()) 1617 return false; 1618 1619 // Walk the use list of the global seeing if all the uses are load or store. 1620 // If there is anything else, bail out. 1621 for (User *U : GV->users()) 1622 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1623 return false; 1624 1625 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1626 1627 // Create the new global, initializing it to false. 1628 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1629 false, 1630 GlobalValue::InternalLinkage, 1631 ConstantInt::getFalse(GV->getContext()), 1632 GV->getName()+".b", 1633 GV->getThreadLocalMode(), 1634 GV->getType()->getAddressSpace()); 1635 NewGV->copyAttributesFrom(GV); 1636 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1637 1638 Constant *InitVal = GV->getInitializer(); 1639 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1640 "No reason to shrink to bool!"); 1641 1642 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1643 GV->getDebugInfo(GVs); 1644 1645 // If initialized to zero and storing one into the global, we can use a cast 1646 // instead of a select to synthesize the desired value. 1647 bool IsOneZero = false; 1648 bool EmitOneOrZero = true; 1649 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1650 if (CI && CI->getValue().getActiveBits() <= 64) { 1651 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1652 1653 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1654 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1655 uint64_t ValInit = CIInit->getZExtValue(); 1656 uint64_t ValOther = CI->getZExtValue(); 1657 uint64_t ValMinus = ValOther - ValInit; 1658 1659 for(auto *GVe : GVs){ 1660 DIGlobalVariable *DGV = GVe->getVariable(); 1661 DIExpression *E = GVe->getExpression(); 1662 const DataLayout &DL = GV->getParent()->getDataLayout(); 1663 unsigned SizeInOctets = 1664 DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8; 1665 1666 // It is expected that the address of global optimized variable is on 1667 // top of the stack. After optimization, value of that variable will 1668 // be ether 0 for initial value or 1 for other value. The following 1669 // expression should return constant integer value depending on the 1670 // value at global object address: 1671 // val * (ValOther - ValInit) + ValInit: 1672 // DW_OP_deref DW_OP_constu <ValMinus> 1673 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1674 SmallVector<uint64_t, 12> Ops = { 1675 dwarf::DW_OP_deref_size, SizeInOctets, 1676 dwarf::DW_OP_constu, ValMinus, 1677 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1678 dwarf::DW_OP_plus}; 1679 bool WithStackValue = true; 1680 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1681 DIGlobalVariableExpression *DGVE = 1682 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1683 NewGV->addDebugInfo(DGVE); 1684 } 1685 EmitOneOrZero = false; 1686 } 1687 } 1688 1689 if (EmitOneOrZero) { 1690 // FIXME: This will only emit address for debugger on which will 1691 // be written only 0 or 1. 1692 for(auto *GV : GVs) 1693 NewGV->addDebugInfo(GV); 1694 } 1695 1696 while (!GV->use_empty()) { 1697 Instruction *UI = cast<Instruction>(GV->user_back()); 1698 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1699 // Change the store into a boolean store. 1700 bool StoringOther = SI->getOperand(0) == OtherVal; 1701 // Only do this if we weren't storing a loaded value. 1702 Value *StoreVal; 1703 if (StoringOther || SI->getOperand(0) == InitVal) { 1704 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1705 StoringOther); 1706 } else { 1707 // Otherwise, we are storing a previously loaded copy. To do this, 1708 // change the copy from copying the original value to just copying the 1709 // bool. 1710 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1711 1712 // If we've already replaced the input, StoredVal will be a cast or 1713 // select instruction. If not, it will be a load of the original 1714 // global. 1715 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1716 assert(LI->getOperand(0) == GV && "Not a copy!"); 1717 // Insert a new load, to preserve the saved value. 1718 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1719 LI->getName() + ".b", false, None, 1720 LI->getOrdering(), LI->getSyncScopeID(), LI); 1721 } else { 1722 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1723 "This is not a form that we understand!"); 1724 StoreVal = StoredVal->getOperand(0); 1725 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1726 } 1727 } 1728 StoreInst *NSI = 1729 new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(), 1730 SI->getSyncScopeID(), SI); 1731 NSI->setDebugLoc(SI->getDebugLoc()); 1732 } else { 1733 // Change the load into a load of bool then a select. 1734 LoadInst *LI = cast<LoadInst>(UI); 1735 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1736 LI->getName() + ".b", false, None, 1737 LI->getOrdering(), LI->getSyncScopeID(), LI); 1738 Instruction *NSI; 1739 if (IsOneZero) 1740 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1741 else 1742 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1743 NSI->takeName(LI); 1744 // Since LI is split into two instructions, NLI and NSI both inherit the 1745 // same DebugLoc 1746 NLI->setDebugLoc(LI->getDebugLoc()); 1747 NSI->setDebugLoc(LI->getDebugLoc()); 1748 LI->replaceAllUsesWith(NSI); 1749 } 1750 UI->eraseFromParent(); 1751 } 1752 1753 // Retain the name of the old global variable. People who are debugging their 1754 // programs may expect these variables to be named the same. 1755 NewGV->takeName(GV); 1756 GV->eraseFromParent(); 1757 return true; 1758 } 1759 1760 static bool deleteIfDead( 1761 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1762 GV.removeDeadConstantUsers(); 1763 1764 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1765 return false; 1766 1767 if (const Comdat *C = GV.getComdat()) 1768 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1769 return false; 1770 1771 bool Dead; 1772 if (auto *F = dyn_cast<Function>(&GV)) 1773 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1774 else 1775 Dead = GV.use_empty(); 1776 if (!Dead) 1777 return false; 1778 1779 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1780 GV.eraseFromParent(); 1781 ++NumDeleted; 1782 return true; 1783 } 1784 1785 static bool isPointerValueDeadOnEntryToFunction( 1786 const Function *F, GlobalValue *GV, 1787 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1788 // Find all uses of GV. We expect them all to be in F, and if we can't 1789 // identify any of the uses we bail out. 1790 // 1791 // On each of these uses, identify if the memory that GV points to is 1792 // used/required/live at the start of the function. If it is not, for example 1793 // if the first thing the function does is store to the GV, the GV can 1794 // possibly be demoted. 1795 // 1796 // We don't do an exhaustive search for memory operations - simply look 1797 // through bitcasts as they're quite common and benign. 1798 const DataLayout &DL = GV->getParent()->getDataLayout(); 1799 SmallVector<LoadInst *, 4> Loads; 1800 SmallVector<StoreInst *, 4> Stores; 1801 for (auto *U : GV->users()) { 1802 if (Operator::getOpcode(U) == Instruction::BitCast) { 1803 for (auto *UU : U->users()) { 1804 if (auto *LI = dyn_cast<LoadInst>(UU)) 1805 Loads.push_back(LI); 1806 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1807 Stores.push_back(SI); 1808 else 1809 return false; 1810 } 1811 continue; 1812 } 1813 1814 Instruction *I = dyn_cast<Instruction>(U); 1815 if (!I) 1816 return false; 1817 assert(I->getParent()->getParent() == F); 1818 1819 if (auto *LI = dyn_cast<LoadInst>(I)) 1820 Loads.push_back(LI); 1821 else if (auto *SI = dyn_cast<StoreInst>(I)) 1822 Stores.push_back(SI); 1823 else 1824 return false; 1825 } 1826 1827 // We have identified all uses of GV into loads and stores. Now check if all 1828 // of them are known not to depend on the value of the global at the function 1829 // entry point. We do this by ensuring that every load is dominated by at 1830 // least one store. 1831 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1832 1833 // The below check is quadratic. Check we're not going to do too many tests. 1834 // FIXME: Even though this will always have worst-case quadratic time, we 1835 // could put effort into minimizing the average time by putting stores that 1836 // have been shown to dominate at least one load at the beginning of the 1837 // Stores array, making subsequent dominance checks more likely to succeed 1838 // early. 1839 // 1840 // The threshold here is fairly large because global->local demotion is a 1841 // very powerful optimization should it fire. 1842 const unsigned Threshold = 100; 1843 if (Loads.size() * Stores.size() > Threshold) 1844 return false; 1845 1846 for (auto *L : Loads) { 1847 auto *LTy = L->getType(); 1848 if (none_of(Stores, [&](const StoreInst *S) { 1849 auto *STy = S->getValueOperand()->getType(); 1850 // The load is only dominated by the store if DomTree says so 1851 // and the number of bits loaded in L is less than or equal to 1852 // the number of bits stored in S. 1853 return DT.dominates(S, L) && 1854 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1855 })) 1856 return false; 1857 } 1858 // All loads have known dependences inside F, so the global can be localized. 1859 return true; 1860 } 1861 1862 /// C may have non-instruction users. Can all of those users be turned into 1863 /// instructions? 1864 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1865 // We don't do this exhaustively. The most common pattern that we really need 1866 // to care about is a constant GEP or constant bitcast - so just looking 1867 // through one single ConstantExpr. 1868 // 1869 // The set of constants that this function returns true for must be able to be 1870 // handled by makeAllConstantUsesInstructions. 1871 for (auto *U : C->users()) { 1872 if (isa<Instruction>(U)) 1873 continue; 1874 if (!isa<ConstantExpr>(U)) 1875 // Non instruction, non-constantexpr user; cannot convert this. 1876 return false; 1877 for (auto *UU : U->users()) 1878 if (!isa<Instruction>(UU)) 1879 // A constantexpr used by another constant. We don't try and recurse any 1880 // further but just bail out at this point. 1881 return false; 1882 } 1883 1884 return true; 1885 } 1886 1887 /// C may have non-instruction users, and 1888 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1889 /// non-instruction users to instructions. 1890 static void makeAllConstantUsesInstructions(Constant *C) { 1891 SmallVector<ConstantExpr*,4> Users; 1892 for (auto *U : C->users()) { 1893 if (isa<ConstantExpr>(U)) 1894 Users.push_back(cast<ConstantExpr>(U)); 1895 else 1896 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1897 // should not have returned true for C. 1898 assert( 1899 isa<Instruction>(U) && 1900 "Can't transform non-constantexpr non-instruction to instruction!"); 1901 } 1902 1903 SmallVector<Value*,4> UUsers; 1904 for (auto *U : Users) { 1905 UUsers.clear(); 1906 for (auto *UU : U->users()) 1907 UUsers.push_back(UU); 1908 for (auto *UU : UUsers) { 1909 Instruction *UI = cast<Instruction>(UU); 1910 Instruction *NewU = U->getAsInstruction(); 1911 NewU->insertBefore(UI); 1912 UI->replaceUsesOfWith(U, NewU); 1913 } 1914 // We've replaced all the uses, so destroy the constant. (destroyConstant 1915 // will update value handles and metadata.) 1916 U->destroyConstant(); 1917 } 1918 } 1919 1920 /// Analyze the specified global variable and optimize 1921 /// it if possible. If we make a change, return true. 1922 static bool 1923 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1924 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1925 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1926 auto &DL = GV->getParent()->getDataLayout(); 1927 // If this is a first class global and has only one accessing function and 1928 // this function is non-recursive, we replace the global with a local alloca 1929 // in this function. 1930 // 1931 // NOTE: It doesn't make sense to promote non-single-value types since we 1932 // are just replacing static memory to stack memory. 1933 // 1934 // If the global is in different address space, don't bring it to stack. 1935 if (!GS.HasMultipleAccessingFunctions && 1936 GS.AccessingFunction && 1937 GV->getValueType()->isSingleValueType() && 1938 GV->getType()->getAddressSpace() == 0 && 1939 !GV->isExternallyInitialized() && 1940 allNonInstructionUsersCanBeMadeInstructions(GV) && 1941 GS.AccessingFunction->doesNotRecurse() && 1942 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1943 LookupDomTree)) { 1944 const DataLayout &DL = GV->getParent()->getDataLayout(); 1945 1946 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1947 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1948 ->getEntryBlock().begin()); 1949 Type *ElemTy = GV->getValueType(); 1950 // FIXME: Pass Global's alignment when globals have alignment 1951 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1952 GV->getName(), &FirstI); 1953 if (!isa<UndefValue>(GV->getInitializer())) 1954 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1955 1956 makeAllConstantUsesInstructions(GV); 1957 1958 GV->replaceAllUsesWith(Alloca); 1959 GV->eraseFromParent(); 1960 ++NumLocalized; 1961 return true; 1962 } 1963 1964 // If the global is never loaded (but may be stored to), it is dead. 1965 // Delete it now. 1966 if (!GS.IsLoaded) { 1967 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1968 1969 bool Changed; 1970 if (isLeakCheckerRoot(GV)) { 1971 // Delete any constant stores to the global. 1972 Changed = CleanupPointerRootUsers(GV, GetTLI); 1973 } else { 1974 // Delete any stores we can find to the global. We may not be able to 1975 // make it completely dead though. 1976 Changed = 1977 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1978 } 1979 1980 // If the global is dead now, delete it. 1981 if (GV->use_empty()) { 1982 GV->eraseFromParent(); 1983 ++NumDeleted; 1984 Changed = true; 1985 } 1986 return Changed; 1987 1988 } 1989 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1990 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1991 1992 // Don't actually mark a global constant if it's atomic because atomic loads 1993 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1994 // requires write access to the variable even if it's not actually changed. 1995 if (GS.Ordering == AtomicOrdering::NotAtomic) 1996 GV->setConstant(true); 1997 1998 // Clean up any obviously simplifiable users now. 1999 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2000 2001 // If the global is dead now, just nuke it. 2002 if (GV->use_empty()) { 2003 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 2004 << "all users and delete global!\n"); 2005 GV->eraseFromParent(); 2006 ++NumDeleted; 2007 return true; 2008 } 2009 2010 // Fall through to the next check; see if we can optimize further. 2011 ++NumMarked; 2012 } 2013 if (!GV->getInitializer()->getType()->isSingleValueType()) { 2014 const DataLayout &DL = GV->getParent()->getDataLayout(); 2015 if (SRAGlobal(GV, DL)) 2016 return true; 2017 } 2018 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 2019 // If the initial value for the global was an undef value, and if only 2020 // one other value was stored into it, we can just change the 2021 // initializer to be the stored value, then delete all stores to the 2022 // global. This allows us to mark it constant. 2023 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2024 if (isa<UndefValue>(GV->getInitializer())) { 2025 // Change the initial value here. 2026 GV->setInitializer(SOVConstant); 2027 2028 // Clean up any obviously simplifiable users now. 2029 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2030 2031 if (GV->use_empty()) { 2032 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2033 << "simplify all users and delete global!\n"); 2034 GV->eraseFromParent(); 2035 ++NumDeleted; 2036 } 2037 ++NumSubstitute; 2038 return true; 2039 } 2040 2041 // Try to optimize globals based on the knowledge that only one value 2042 // (besides its initializer) is ever stored to the global. 2043 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 2044 GetTLI)) 2045 return true; 2046 2047 // Otherwise, if the global was not a boolean, we can shrink it to be a 2048 // boolean. 2049 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2050 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2051 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2052 ++NumShrunkToBool; 2053 return true; 2054 } 2055 } 2056 } 2057 } 2058 2059 return false; 2060 } 2061 2062 /// Analyze the specified global variable and optimize it if possible. If we 2063 /// make a change, return true. 2064 static bool 2065 processGlobal(GlobalValue &GV, 2066 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2067 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2068 if (GV.getName().startswith("llvm.")) 2069 return false; 2070 2071 GlobalStatus GS; 2072 2073 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2074 return false; 2075 2076 bool Changed = false; 2077 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2078 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2079 : GlobalValue::UnnamedAddr::Local; 2080 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2081 GV.setUnnamedAddr(NewUnnamedAddr); 2082 NumUnnamed++; 2083 Changed = true; 2084 } 2085 } 2086 2087 // Do more involved optimizations if the global is internal. 2088 if (!GV.hasLocalLinkage()) 2089 return Changed; 2090 2091 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2092 if (!GVar) 2093 return Changed; 2094 2095 if (GVar->isConstant() || !GVar->hasInitializer()) 2096 return Changed; 2097 2098 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 2099 } 2100 2101 /// Walk all of the direct calls of the specified function, changing them to 2102 /// FastCC. 2103 static void ChangeCalleesToFastCall(Function *F) { 2104 for (User *U : F->users()) { 2105 if (isa<BlockAddress>(U)) 2106 continue; 2107 CallSite CS(cast<Instruction>(U)); 2108 CS.setCallingConv(CallingConv::Fast); 2109 } 2110 } 2111 2112 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 2113 Attribute::AttrKind A) { 2114 unsigned AttrIndex; 2115 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 2116 return Attrs.removeAttribute(C, AttrIndex, A); 2117 return Attrs; 2118 } 2119 2120 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 2121 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 2122 for (User *U : F->users()) { 2123 if (isa<BlockAddress>(U)) 2124 continue; 2125 CallSite CS(cast<Instruction>(U)); 2126 CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A)); 2127 } 2128 } 2129 2130 /// Return true if this is a calling convention that we'd like to change. The 2131 /// idea here is that we don't want to mess with the convention if the user 2132 /// explicitly requested something with performance implications like coldcc, 2133 /// GHC, or anyregcc. 2134 static bool hasChangeableCC(Function *F) { 2135 CallingConv::ID CC = F->getCallingConv(); 2136 2137 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2138 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2139 return false; 2140 2141 // FIXME: Change CC for the whole chain of musttail calls when possible. 2142 // 2143 // Can't change CC of the function that either has musttail calls, or is a 2144 // musttail callee itself 2145 for (User *U : F->users()) { 2146 if (isa<BlockAddress>(U)) 2147 continue; 2148 CallInst* CI = dyn_cast<CallInst>(U); 2149 if (!CI) 2150 continue; 2151 2152 if (CI->isMustTailCall()) 2153 return false; 2154 } 2155 2156 for (BasicBlock &BB : *F) 2157 if (BB.getTerminatingMustTailCall()) 2158 return false; 2159 2160 return true; 2161 } 2162 2163 /// Return true if the block containing the call site has a BlockFrequency of 2164 /// less than ColdCCRelFreq% of the entry block. 2165 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { 2166 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2167 auto CallSiteBB = CS.getInstruction()->getParent(); 2168 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2169 auto CallerEntryFreq = 2170 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); 2171 return CallSiteFreq < CallerEntryFreq * ColdProb; 2172 } 2173 2174 // This function checks if the input function F is cold at all call sites. It 2175 // also looks each call site's containing function, returning false if the 2176 // caller function contains other non cold calls. The input vector AllCallsCold 2177 // contains a list of functions that only have call sites in cold blocks. 2178 static bool 2179 isValidCandidateForColdCC(Function &F, 2180 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2181 const std::vector<Function *> &AllCallsCold) { 2182 2183 if (F.user_empty()) 2184 return false; 2185 2186 for (User *U : F.users()) { 2187 if (isa<BlockAddress>(U)) 2188 continue; 2189 2190 CallSite CS(cast<Instruction>(U)); 2191 Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); 2192 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2193 if (!isColdCallSite(CS, CallerBFI)) 2194 return false; 2195 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2196 if (It == AllCallsCold.end()) 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 static void changeCallSitesToColdCC(Function *F) { 2203 for (User *U : F->users()) { 2204 if (isa<BlockAddress>(U)) 2205 continue; 2206 CallSite CS(cast<Instruction>(U)); 2207 CS.setCallingConv(CallingConv::Cold); 2208 } 2209 } 2210 2211 // This function iterates over all the call instructions in the input Function 2212 // and checks that all call sites are in cold blocks and are allowed to use the 2213 // coldcc calling convention. 2214 static bool 2215 hasOnlyColdCalls(Function &F, 2216 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2217 for (BasicBlock &BB : F) { 2218 for (Instruction &I : BB) { 2219 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2220 CallSite CS(cast<Instruction>(CI)); 2221 // Skip over isline asm instructions since they aren't function calls. 2222 if (CI->isInlineAsm()) 2223 continue; 2224 Function *CalledFn = CI->getCalledFunction(); 2225 if (!CalledFn) 2226 return false; 2227 if (!CalledFn->hasLocalLinkage()) 2228 return false; 2229 // Skip over instrinsics since they won't remain as function calls. 2230 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2231 continue; 2232 // Check if it's valid to use coldcc calling convention. 2233 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2234 CalledFn->hasAddressTaken()) 2235 return false; 2236 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2237 if (!isColdCallSite(CS, CallerBFI)) 2238 return false; 2239 } 2240 } 2241 } 2242 return true; 2243 } 2244 2245 static bool 2246 OptimizeFunctions(Module &M, 2247 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2248 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2249 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2250 function_ref<DominatorTree &(Function &)> LookupDomTree, 2251 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2252 2253 bool Changed = false; 2254 2255 std::vector<Function *> AllCallsCold; 2256 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2257 Function *F = &*FI++; 2258 if (hasOnlyColdCalls(*F, GetBFI)) 2259 AllCallsCold.push_back(F); 2260 } 2261 2262 // Optimize functions. 2263 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2264 Function *F = &*FI++; 2265 2266 // Don't perform global opt pass on naked functions; we don't want fast 2267 // calling conventions for naked functions. 2268 if (F->hasFnAttribute(Attribute::Naked)) 2269 continue; 2270 2271 // Functions without names cannot be referenced outside this module. 2272 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2273 F->setLinkage(GlobalValue::InternalLinkage); 2274 2275 if (deleteIfDead(*F, NotDiscardableComdats)) { 2276 Changed = true; 2277 continue; 2278 } 2279 2280 // LLVM's definition of dominance allows instructions that are cyclic 2281 // in unreachable blocks, e.g.: 2282 // %pat = select i1 %condition, @global, i16* %pat 2283 // because any instruction dominates an instruction in a block that's 2284 // not reachable from entry. 2285 // So, remove unreachable blocks from the function, because a) there's 2286 // no point in analyzing them and b) GlobalOpt should otherwise grow 2287 // some more complicated logic to break these cycles. 2288 if (!F->isDeclaration()) { 2289 auto &DT = LookupDomTree(*F); 2290 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2291 Changed |= removeUnreachableBlocks(*F, &DTU); 2292 } 2293 2294 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 2295 2296 if (!F->hasLocalLinkage()) 2297 continue; 2298 2299 // If we have an inalloca parameter that we can safely remove the 2300 // inalloca attribute from, do so. This unlocks optimizations that 2301 // wouldn't be safe in the presence of inalloca. 2302 // FIXME: We should also hoist alloca affected by this to the entry 2303 // block if possible. 2304 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2305 !F->hasAddressTaken()) { 2306 RemoveAttribute(F, Attribute::InAlloca); 2307 Changed = true; 2308 } 2309 2310 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2311 NumInternalFunc++; 2312 TargetTransformInfo &TTI = GetTTI(*F); 2313 // Change the calling convention to coldcc if either stress testing is 2314 // enabled or the target would like to use coldcc on functions which are 2315 // cold at all call sites and the callers contain no other non coldcc 2316 // calls. 2317 if (EnableColdCCStressTest || 2318 (TTI.useColdCCForColdCall(*F) && 2319 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 2320 F->setCallingConv(CallingConv::Cold); 2321 changeCallSitesToColdCC(F); 2322 Changed = true; 2323 NumColdCC++; 2324 } 2325 } 2326 2327 if (hasChangeableCC(F) && !F->isVarArg() && 2328 !F->hasAddressTaken()) { 2329 // If this function has a calling convention worth changing, is not a 2330 // varargs function, and is only called directly, promote it to use the 2331 // Fast calling convention. 2332 F->setCallingConv(CallingConv::Fast); 2333 ChangeCalleesToFastCall(F); 2334 ++NumFastCallFns; 2335 Changed = true; 2336 } 2337 2338 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2339 !F->hasAddressTaken()) { 2340 // The function is not used by a trampoline intrinsic, so it is safe 2341 // to remove the 'nest' attribute. 2342 RemoveAttribute(F, Attribute::Nest); 2343 ++NumNestRemoved; 2344 Changed = true; 2345 } 2346 } 2347 return Changed; 2348 } 2349 2350 static bool 2351 OptimizeGlobalVars(Module &M, 2352 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2353 function_ref<DominatorTree &(Function &)> LookupDomTree, 2354 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2355 bool Changed = false; 2356 2357 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2358 GVI != E; ) { 2359 GlobalVariable *GV = &*GVI++; 2360 // Global variables without names cannot be referenced outside this module. 2361 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2362 GV->setLinkage(GlobalValue::InternalLinkage); 2363 // Simplify the initializer. 2364 if (GV->hasInitializer()) 2365 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2366 auto &DL = M.getDataLayout(); 2367 // TLI is not used in the case of a Constant, so use default nullptr 2368 // for that optional parameter, since we don't have a Function to 2369 // provide GetTLI anyway. 2370 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2371 if (New && New != C) 2372 GV->setInitializer(New); 2373 } 2374 2375 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2376 Changed = true; 2377 continue; 2378 } 2379 2380 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2381 } 2382 return Changed; 2383 } 2384 2385 /// Evaluate a piece of a constantexpr store into a global initializer. This 2386 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2387 /// GEP operands of Addr [0, OpNo) have been stepped into. 2388 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2389 ConstantExpr *Addr, unsigned OpNo) { 2390 // Base case of the recursion. 2391 if (OpNo == Addr->getNumOperands()) { 2392 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2393 return Val; 2394 } 2395 2396 SmallVector<Constant*, 32> Elts; 2397 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2398 // Break up the constant into its elements. 2399 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2400 Elts.push_back(Init->getAggregateElement(i)); 2401 2402 // Replace the element that we are supposed to. 2403 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2404 unsigned Idx = CU->getZExtValue(); 2405 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2406 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2407 2408 // Return the modified struct. 2409 return ConstantStruct::get(STy, Elts); 2410 } 2411 2412 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2413 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2414 uint64_t NumElts = InitTy->getNumElements(); 2415 2416 // Break up the array into elements. 2417 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2418 Elts.push_back(Init->getAggregateElement(i)); 2419 2420 assert(CI->getZExtValue() < NumElts); 2421 Elts[CI->getZExtValue()] = 2422 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2423 2424 if (Init->getType()->isArrayTy()) 2425 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2426 return ConstantVector::get(Elts); 2427 } 2428 2429 /// We have decided that Addr (which satisfies the predicate 2430 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2431 static void CommitValueTo(Constant *Val, Constant *Addr) { 2432 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2433 assert(GV->hasInitializer()); 2434 GV->setInitializer(Val); 2435 return; 2436 } 2437 2438 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2439 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2440 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2441 } 2442 2443 /// Given a map of address -> value, where addresses are expected to be some form 2444 /// of either a global or a constant GEP, set the initializer for the address to 2445 /// be the value. This performs mostly the same function as CommitValueTo() 2446 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2447 /// case where the set of addresses are GEPs sharing the same underlying global, 2448 /// processing the GEPs in batches rather than individually. 2449 /// 2450 /// To give an example, consider the following C++ code adapted from the clang 2451 /// regression tests: 2452 /// struct S { 2453 /// int n = 10; 2454 /// int m = 2 * n; 2455 /// S(int a) : n(a) {} 2456 /// }; 2457 /// 2458 /// template<typename T> 2459 /// struct U { 2460 /// T *r = &q; 2461 /// T q = 42; 2462 /// U *p = this; 2463 /// }; 2464 /// 2465 /// U<S> e; 2466 /// 2467 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2468 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2469 /// members. This batch algorithm will simply use general CommitValueTo() method 2470 /// to handle the complex nested S struct initialization of 'q', before 2471 /// processing the outermost members in a single batch. Using CommitValueTo() to 2472 /// handle member in the outer struct is inefficient when the struct/array is 2473 /// very large as we end up creating and destroy constant arrays for each 2474 /// initialization. 2475 /// For the above case, we expect the following IR to be generated: 2476 /// 2477 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2478 /// %struct.S = type { i32, i32 } 2479 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2480 /// i64 0, i32 1), 2481 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2482 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2483 /// constant expression, while the other two elements of @e are "simple". 2484 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2485 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2486 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2487 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2488 SimpleCEs.reserve(Mem.size()); 2489 2490 for (const auto &I : Mem) { 2491 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2492 GVs.push_back(std::make_pair(GV, I.second)); 2493 } else { 2494 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2495 // We don't handle the deeply recursive case using the batch method. 2496 if (GEP->getNumOperands() > 3) 2497 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2498 else 2499 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2500 } 2501 } 2502 2503 // The algorithm below doesn't handle cases like nested structs, so use the 2504 // slower fully general method if we have to. 2505 for (auto ComplexCE : ComplexCEs) 2506 CommitValueTo(ComplexCE.second, ComplexCE.first); 2507 2508 for (auto GVPair : GVs) { 2509 assert(GVPair.first->hasInitializer()); 2510 GVPair.first->setInitializer(GVPair.second); 2511 } 2512 2513 if (SimpleCEs.empty()) 2514 return; 2515 2516 // We cache a single global's initializer elements in the case where the 2517 // subsequent address/val pair uses the same one. This avoids throwing away and 2518 // rebuilding the constant struct/vector/array just because one element is 2519 // modified at a time. 2520 SmallVector<Constant *, 32> Elts; 2521 Elts.reserve(SimpleCEs.size()); 2522 GlobalVariable *CurrentGV = nullptr; 2523 2524 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2525 Constant *Init = GV->getInitializer(); 2526 Type *Ty = Init->getType(); 2527 if (Update) { 2528 if (CurrentGV) { 2529 assert(CurrentGV && "Expected a GV to commit to!"); 2530 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2531 // We have a valid cache that needs to be committed. 2532 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2533 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2534 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2535 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2536 else 2537 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2538 } 2539 if (CurrentGV == GV) 2540 return; 2541 // Need to clear and set up cache for new initializer. 2542 CurrentGV = GV; 2543 Elts.clear(); 2544 unsigned NumElts; 2545 if (auto *STy = dyn_cast<StructType>(Ty)) 2546 NumElts = STy->getNumElements(); 2547 else 2548 NumElts = cast<SequentialType>(Ty)->getNumElements(); 2549 for (unsigned i = 0, e = NumElts; i != e; ++i) 2550 Elts.push_back(Init->getAggregateElement(i)); 2551 } 2552 }; 2553 2554 for (auto CEPair : SimpleCEs) { 2555 ConstantExpr *GEP = CEPair.first; 2556 Constant *Val = CEPair.second; 2557 2558 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2559 commitAndSetupCache(GV, GV != CurrentGV); 2560 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2561 Elts[CI->getZExtValue()] = Val; 2562 } 2563 // The last initializer in the list needs to be committed, others 2564 // will be committed on a new initializer being processed. 2565 commitAndSetupCache(CurrentGV, true); 2566 } 2567 2568 /// Evaluate static constructors in the function, if we can. Return true if we 2569 /// can, false otherwise. 2570 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2571 TargetLibraryInfo *TLI) { 2572 // Call the function. 2573 Evaluator Eval(DL, TLI); 2574 Constant *RetValDummy; 2575 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2576 SmallVector<Constant*, 0>()); 2577 2578 if (EvalSuccess) { 2579 ++NumCtorsEvaluated; 2580 2581 // We succeeded at evaluation: commit the result. 2582 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2583 << F->getName() << "' to " 2584 << Eval.getMutatedMemory().size() << " stores.\n"); 2585 BatchCommitValueTo(Eval.getMutatedMemory()); 2586 for (GlobalVariable *GV : Eval.getInvariants()) 2587 GV->setConstant(true); 2588 } 2589 2590 return EvalSuccess; 2591 } 2592 2593 static int compareNames(Constant *const *A, Constant *const *B) { 2594 Value *AStripped = (*A)->stripPointerCasts(); 2595 Value *BStripped = (*B)->stripPointerCasts(); 2596 return AStripped->getName().compare(BStripped->getName()); 2597 } 2598 2599 static void setUsedInitializer(GlobalVariable &V, 2600 const SmallPtrSetImpl<GlobalValue *> &Init) { 2601 if (Init.empty()) { 2602 V.eraseFromParent(); 2603 return; 2604 } 2605 2606 // Type of pointer to the array of pointers. 2607 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2608 2609 SmallVector<Constant *, 8> UsedArray; 2610 for (GlobalValue *GV : Init) { 2611 Constant *Cast 2612 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2613 UsedArray.push_back(Cast); 2614 } 2615 // Sort to get deterministic order. 2616 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2617 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2618 2619 Module *M = V.getParent(); 2620 V.removeFromParent(); 2621 GlobalVariable *NV = 2622 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2623 ConstantArray::get(ATy, UsedArray), ""); 2624 NV->takeName(&V); 2625 NV->setSection("llvm.metadata"); 2626 delete &V; 2627 } 2628 2629 namespace { 2630 2631 /// An easy to access representation of llvm.used and llvm.compiler.used. 2632 class LLVMUsed { 2633 SmallPtrSet<GlobalValue *, 8> Used; 2634 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2635 GlobalVariable *UsedV; 2636 GlobalVariable *CompilerUsedV; 2637 2638 public: 2639 LLVMUsed(Module &M) { 2640 UsedV = collectUsedGlobalVariables(M, Used, false); 2641 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2642 } 2643 2644 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2645 using used_iterator_range = iterator_range<iterator>; 2646 2647 iterator usedBegin() { return Used.begin(); } 2648 iterator usedEnd() { return Used.end(); } 2649 2650 used_iterator_range used() { 2651 return used_iterator_range(usedBegin(), usedEnd()); 2652 } 2653 2654 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2655 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2656 2657 used_iterator_range compilerUsed() { 2658 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2659 } 2660 2661 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2662 2663 bool compilerUsedCount(GlobalValue *GV) const { 2664 return CompilerUsed.count(GV); 2665 } 2666 2667 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2668 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2669 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2670 2671 bool compilerUsedInsert(GlobalValue *GV) { 2672 return CompilerUsed.insert(GV).second; 2673 } 2674 2675 void syncVariablesAndSets() { 2676 if (UsedV) 2677 setUsedInitializer(*UsedV, Used); 2678 if (CompilerUsedV) 2679 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2680 } 2681 }; 2682 2683 } // end anonymous namespace 2684 2685 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2686 if (GA.use_empty()) // No use at all. 2687 return false; 2688 2689 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2690 "We should have removed the duplicated " 2691 "element from llvm.compiler.used"); 2692 if (!GA.hasOneUse()) 2693 // Strictly more than one use. So at least one is not in llvm.used and 2694 // llvm.compiler.used. 2695 return true; 2696 2697 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2698 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2699 } 2700 2701 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2702 const LLVMUsed &U) { 2703 unsigned N = 2; 2704 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2705 "We should have removed the duplicated " 2706 "element from llvm.compiler.used"); 2707 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2708 ++N; 2709 return V.hasNUsesOrMore(N); 2710 } 2711 2712 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2713 if (!GA.hasLocalLinkage()) 2714 return true; 2715 2716 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2717 } 2718 2719 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2720 bool &RenameTarget) { 2721 RenameTarget = false; 2722 bool Ret = false; 2723 if (hasUseOtherThanLLVMUsed(GA, U)) 2724 Ret = true; 2725 2726 // If the alias is externally visible, we may still be able to simplify it. 2727 if (!mayHaveOtherReferences(GA, U)) 2728 return Ret; 2729 2730 // If the aliasee has internal linkage, give it the name and linkage 2731 // of the alias, and delete the alias. This turns: 2732 // define internal ... @f(...) 2733 // @a = alias ... @f 2734 // into: 2735 // define ... @a(...) 2736 Constant *Aliasee = GA.getAliasee(); 2737 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2738 if (!Target->hasLocalLinkage()) 2739 return Ret; 2740 2741 // Do not perform the transform if multiple aliases potentially target the 2742 // aliasee. This check also ensures that it is safe to replace the section 2743 // and other attributes of the aliasee with those of the alias. 2744 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2745 return Ret; 2746 2747 RenameTarget = true; 2748 return true; 2749 } 2750 2751 static bool 2752 OptimizeGlobalAliases(Module &M, 2753 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2754 bool Changed = false; 2755 LLVMUsed Used(M); 2756 2757 for (GlobalValue *GV : Used.used()) 2758 Used.compilerUsedErase(GV); 2759 2760 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2761 I != E;) { 2762 GlobalAlias *J = &*I++; 2763 2764 // Aliases without names cannot be referenced outside this module. 2765 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2766 J->setLinkage(GlobalValue::InternalLinkage); 2767 2768 if (deleteIfDead(*J, NotDiscardableComdats)) { 2769 Changed = true; 2770 continue; 2771 } 2772 2773 // If the alias can change at link time, nothing can be done - bail out. 2774 if (J->isInterposable()) 2775 continue; 2776 2777 Constant *Aliasee = J->getAliasee(); 2778 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2779 // We can't trivially replace the alias with the aliasee if the aliasee is 2780 // non-trivial in some way. 2781 // TODO: Try to handle non-zero GEPs of local aliasees. 2782 if (!Target) 2783 continue; 2784 Target->removeDeadConstantUsers(); 2785 2786 // Make all users of the alias use the aliasee instead. 2787 bool RenameTarget; 2788 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2789 continue; 2790 2791 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2792 ++NumAliasesResolved; 2793 Changed = true; 2794 2795 if (RenameTarget) { 2796 // Give the aliasee the name, linkage and other attributes of the alias. 2797 Target->takeName(&*J); 2798 Target->setLinkage(J->getLinkage()); 2799 Target->setDSOLocal(J->isDSOLocal()); 2800 Target->setVisibility(J->getVisibility()); 2801 Target->setDLLStorageClass(J->getDLLStorageClass()); 2802 2803 if (Used.usedErase(&*J)) 2804 Used.usedInsert(Target); 2805 2806 if (Used.compilerUsedErase(&*J)) 2807 Used.compilerUsedInsert(Target); 2808 } else if (mayHaveOtherReferences(*J, Used)) 2809 continue; 2810 2811 // Delete the alias. 2812 M.getAliasList().erase(J); 2813 ++NumAliasesRemoved; 2814 Changed = true; 2815 } 2816 2817 Used.syncVariablesAndSets(); 2818 2819 return Changed; 2820 } 2821 2822 static Function * 2823 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2824 // Hack to get a default TLI before we have actual Function. 2825 auto FuncIter = M.begin(); 2826 if (FuncIter == M.end()) 2827 return nullptr; 2828 auto *TLI = &GetTLI(*FuncIter); 2829 2830 LibFunc F = LibFunc_cxa_atexit; 2831 if (!TLI->has(F)) 2832 return nullptr; 2833 2834 Function *Fn = M.getFunction(TLI->getName(F)); 2835 if (!Fn) 2836 return nullptr; 2837 2838 // Now get the actual TLI for Fn. 2839 TLI = &GetTLI(*Fn); 2840 2841 // Make sure that the function has the correct prototype. 2842 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2843 return nullptr; 2844 2845 return Fn; 2846 } 2847 2848 /// Returns whether the given function is an empty C++ destructor and can 2849 /// therefore be eliminated. 2850 /// Note that we assume that other optimization passes have already simplified 2851 /// the code so we simply check for 'ret'. 2852 static bool cxxDtorIsEmpty(const Function &Fn) { 2853 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2854 // nounwind, but that doesn't seem worth doing. 2855 if (Fn.isDeclaration()) 2856 return false; 2857 2858 for (auto &I : Fn.getEntryBlock()) { 2859 if (isa<DbgInfoIntrinsic>(I)) 2860 continue; 2861 if (isa<ReturnInst>(I)) 2862 return true; 2863 break; 2864 } 2865 return false; 2866 } 2867 2868 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2869 /// Itanium C++ ABI p3.3.5: 2870 /// 2871 /// After constructing a global (or local static) object, that will require 2872 /// destruction on exit, a termination function is registered as follows: 2873 /// 2874 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2875 /// 2876 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2877 /// call f(p) when DSO d is unloaded, before all such termination calls 2878 /// registered before this one. It returns zero if registration is 2879 /// successful, nonzero on failure. 2880 2881 // This pass will look for calls to __cxa_atexit where the function is trivial 2882 // and remove them. 2883 bool Changed = false; 2884 2885 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2886 I != E;) { 2887 // We're only interested in calls. Theoretically, we could handle invoke 2888 // instructions as well, but neither llvm-gcc nor clang generate invokes 2889 // to __cxa_atexit. 2890 CallInst *CI = dyn_cast<CallInst>(*I++); 2891 if (!CI) 2892 continue; 2893 2894 Function *DtorFn = 2895 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2896 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2897 continue; 2898 2899 // Just remove the call. 2900 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2901 CI->eraseFromParent(); 2902 2903 ++NumCXXDtorsRemoved; 2904 2905 Changed |= true; 2906 } 2907 2908 return Changed; 2909 } 2910 2911 static bool optimizeGlobalsInModule( 2912 Module &M, const DataLayout &DL, 2913 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2914 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2915 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2916 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2917 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2918 bool Changed = false; 2919 bool LocalChange = true; 2920 while (LocalChange) { 2921 LocalChange = false; 2922 2923 NotDiscardableComdats.clear(); 2924 for (const GlobalVariable &GV : M.globals()) 2925 if (const Comdat *C = GV.getComdat()) 2926 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2927 NotDiscardableComdats.insert(C); 2928 for (Function &F : M) 2929 if (const Comdat *C = F.getComdat()) 2930 if (!F.isDefTriviallyDead()) 2931 NotDiscardableComdats.insert(C); 2932 for (GlobalAlias &GA : M.aliases()) 2933 if (const Comdat *C = GA.getComdat()) 2934 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2935 NotDiscardableComdats.insert(C); 2936 2937 // Delete functions that are trivially dead, ccc -> fastcc 2938 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2939 NotDiscardableComdats); 2940 2941 // Optimize global_ctors list. 2942 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2943 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2944 }); 2945 2946 // Optimize non-address-taken globals. 2947 LocalChange |= 2948 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 2949 2950 // Resolve aliases, when possible. 2951 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2952 2953 // Try to remove trivial global destructors if they are not removed 2954 // already. 2955 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2956 if (CXAAtExitFn) 2957 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2958 2959 Changed |= LocalChange; 2960 } 2961 2962 // TODO: Move all global ctors functions to the end of the module for code 2963 // layout. 2964 2965 return Changed; 2966 } 2967 2968 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2969 auto &DL = M.getDataLayout(); 2970 auto &FAM = 2971 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2972 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2973 return FAM.getResult<DominatorTreeAnalysis>(F); 2974 }; 2975 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2976 return FAM.getResult<TargetLibraryAnalysis>(F); 2977 }; 2978 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2979 return FAM.getResult<TargetIRAnalysis>(F); 2980 }; 2981 2982 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2983 return FAM.getResult<BlockFrequencyAnalysis>(F); 2984 }; 2985 2986 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2987 return PreservedAnalyses::all(); 2988 return PreservedAnalyses::none(); 2989 } 2990 2991 namespace { 2992 2993 struct GlobalOptLegacyPass : public ModulePass { 2994 static char ID; // Pass identification, replacement for typeid 2995 2996 GlobalOptLegacyPass() : ModulePass(ID) { 2997 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2998 } 2999 3000 bool runOnModule(Module &M) override { 3001 if (skipModule(M)) 3002 return false; 3003 3004 auto &DL = M.getDataLayout(); 3005 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 3006 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 3007 }; 3008 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 3009 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3010 }; 3011 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 3012 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3013 }; 3014 3015 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 3016 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 3017 }; 3018 3019 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 3020 LookupDomTree); 3021 } 3022 3023 void getAnalysisUsage(AnalysisUsage &AU) const override { 3024 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3025 AU.addRequired<TargetTransformInfoWrapperPass>(); 3026 AU.addRequired<DominatorTreeWrapperPass>(); 3027 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3028 } 3029 }; 3030 3031 } // end anonymous namespace 3032 3033 char GlobalOptLegacyPass::ID = 0; 3034 3035 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3036 "Global Variable Optimizer", false, false) 3037 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3039 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3041 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3042 "Global Variable Optimizer", false, false) 3043 3044 ModulePass *llvm::createGlobalOptimizerPass() { 3045 return new GlobalOptLegacyPass(); 3046 } 3047