xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include <cassert>
69 #include <cstdint>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "globalopt"
76 
77 STATISTIC(NumMarked    , "Number of globals marked constant");
78 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
79 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
80 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID: return true;
131       case Type::ArrayTyID:
132       case Type::VectorTyID: {
133         SequentialType *STy = cast<SequentialType>(Ty);
134         Types.push_back(STy->getElementType());
135         break;
136       }
137       case Type::StructTyID: {
138         StructType *STy = cast<StructType>(Ty);
139         if (STy->isOpaque()) return true;
140         for (StructType::element_iterator I = STy->element_begin(),
141                  E = STy->element_end(); I != E; ++I) {
142           Type *InnerTy = *I;
143           if (isa<PointerType>(InnerTy)) return true;
144           if (isa<CompositeType>(InnerTy))
145             Types.push_back(InnerTy);
146         }
147         break;
148       }
149     }
150     if (--Limit == 0) return true;
151   } while (!Types.empty());
152   return false;
153 }
154 
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
157 /// store.
158 static bool IsSafeComputationToRemove(
159     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
160   do {
161     if (isa<Constant>(V))
162       return true;
163     if (!V->hasOneUse())
164       return false;
165     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166         isa<GlobalValue>(V))
167       return false;
168     if (isAllocationFn(V, GetTLI))
169       return true;
170 
171     Instruction *I = cast<Instruction>(V);
172     if (I->mayHaveSideEffects())
173       return false;
174     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175       if (!GEP->hasAllConstantIndices())
176         return false;
177     } else if (I->getNumOperands() != 1) {
178       return false;
179     }
180 
181     V = I->getOperand(0);
182   } while (true);
183 }
184 
185 /// This GV is a pointer root.  Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
188 static bool
189 CleanupPointerRootUsers(GlobalVariable *GV,
190                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
191   // A brief explanation of leak checkers.  The goal is to find bugs where
192   // pointers are forgotten, causing an accumulating growth in memory
193   // usage over time.  The common strategy for leak checkers is to whitelist the
194   // memory pointed to by globals at exit.  This is popular because it also
195   // solves another problem where the main thread of a C++ program may shut down
196   // before other threads that are still expecting to use those globals.  To
197   // handle that case, we expect the program may create a singleton and never
198   // destroy it.
199 
200   bool Changed = false;
201 
202   // If Dead[n].first is the only use of a malloc result, we can delete its
203   // chain of computation and the store to the global in Dead[n].second.
204   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
205 
206   // Constants can't be pointers to dynamically allocated memory.
207   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
208        UI != E;) {
209     User *U = *UI++;
210     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
211       Value *V = SI->getValueOperand();
212       if (isa<Constant>(V)) {
213         Changed = true;
214         SI->eraseFromParent();
215       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
216         if (I->hasOneUse())
217           Dead.push_back(std::make_pair(I, SI));
218       }
219     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
220       if (isa<Constant>(MSI->getValue())) {
221         Changed = true;
222         MSI->eraseFromParent();
223       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
224         if (I->hasOneUse())
225           Dead.push_back(std::make_pair(I, MSI));
226       }
227     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
228       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
229       if (MemSrc && MemSrc->isConstant()) {
230         Changed = true;
231         MTI->eraseFromParent();
232       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
233         if (I->hasOneUse())
234           Dead.push_back(std::make_pair(I, MTI));
235       }
236     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
237       if (CE->use_empty()) {
238         CE->destroyConstant();
239         Changed = true;
240       }
241     } else if (Constant *C = dyn_cast<Constant>(U)) {
242       if (isSafeToDestroyConstant(C)) {
243         C->destroyConstant();
244         // This could have invalidated UI, start over from scratch.
245         Dead.clear();
246         CleanupPointerRootUsers(GV, GetTLI);
247         return true;
248       }
249     }
250   }
251 
252   for (int i = 0, e = Dead.size(); i != e; ++i) {
253     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
254       Dead[i].second->eraseFromParent();
255       Instruction *I = Dead[i].first;
256       do {
257         if (isAllocationFn(I, GetTLI))
258           break;
259         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
260         if (!J)
261           break;
262         I->eraseFromParent();
263         I = J;
264       } while (true);
265       I->eraseFromParent();
266     }
267   }
268 
269   return Changed;
270 }
271 
272 /// We just marked GV constant.  Loop over all users of the global, cleaning up
273 /// the obvious ones.  This is largely just a quick scan over the use list to
274 /// clean up the easy and obvious cruft.  This returns true if it made a change.
275 static bool CleanupConstantGlobalUsers(
276     Value *V, Constant *Init, const DataLayout &DL,
277     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
278   bool Changed = false;
279   // Note that we need to use a weak value handle for the worklist items. When
280   // we delete a constant array, we may also be holding pointer to one of its
281   // elements (or an element of one of its elements if we're dealing with an
282   // array of arrays) in the worklist.
283   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
284   while (!WorkList.empty()) {
285     Value *UV = WorkList.pop_back_val();
286     if (!UV)
287       continue;
288 
289     User *U = cast<User>(UV);
290 
291     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292       if (Init) {
293         // Replace the load with the initializer.
294         LI->replaceAllUsesWith(Init);
295         LI->eraseFromParent();
296         Changed = true;
297       }
298     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299       // Store must be unreachable or storing Init into the global.
300       SI->eraseFromParent();
301       Changed = true;
302     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303       if (CE->getOpcode() == Instruction::GetElementPtr) {
304         Constant *SubInit = nullptr;
305         if (Init)
306           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
307         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
308       } else if ((CE->getOpcode() == Instruction::BitCast &&
309                   CE->getType()->isPointerTy()) ||
310                  CE->getOpcode() == Instruction::AddrSpaceCast) {
311         // Pointer cast, delete any stores and memsets to the global.
312         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
313       }
314 
315       if (CE->use_empty()) {
316         CE->destroyConstant();
317         Changed = true;
318       }
319     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
320       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322       // and will invalidate our notion of what Init is.
323       Constant *SubInit = nullptr;
324       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
325         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
326             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
327         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
328           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329 
330         // If the initializer is an all-null value and we have an inbounds GEP,
331         // we already know what the result of any load from that GEP is.
332         // TODO: Handle splats.
333         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
334           SubInit = Constant::getNullValue(GEP->getResultElementType());
335       }
336       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
337 
338       if (GEP->use_empty()) {
339         GEP->eraseFromParent();
340         Changed = true;
341       }
342     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
343       if (MI->getRawDest() == V) {
344         MI->eraseFromParent();
345         Changed = true;
346       }
347 
348     } else if (Constant *C = dyn_cast<Constant>(U)) {
349       // If we have a chain of dead constantexprs or other things dangling from
350       // us, and if they are all dead, nuke them without remorse.
351       if (isSafeToDestroyConstant(C)) {
352         C->destroyConstant();
353         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
354         return true;
355       }
356     }
357   }
358   return Changed;
359 }
360 
361 static bool isSafeSROAElementUse(Value *V);
362 
363 /// Return true if the specified GEP is a safe user of a derived
364 /// expression from a global that we want to SROA.
365 static bool isSafeSROAGEP(User *U) {
366   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
367   // don't like < 3 operand CE's, and we don't like non-constant integer
368   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
369   // value of C.
370   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
371       !cast<Constant>(U->getOperand(1))->isNullValue())
372     return false;
373 
374   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
375   ++GEPI; // Skip over the pointer index.
376 
377   // For all other level we require that the indices are constant and inrange.
378   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
379   // invalid things like allowing i to index an out-of-range subscript that
380   // accesses A[1]. This can also happen between different members of a struct
381   // in llvm IR.
382   for (; GEPI != E; ++GEPI) {
383     if (GEPI.isStruct())
384       continue;
385 
386     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
387     if (!IdxVal || (GEPI.isBoundedSequential() &&
388                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
389       return false;
390   }
391 
392   return llvm::all_of(U->users(),
393                       [](User *UU) { return isSafeSROAElementUse(UU); });
394 }
395 
396 /// Return true if the specified instruction is a safe user of a derived
397 /// expression from a global that we want to SROA.
398 static bool isSafeSROAElementUse(Value *V) {
399   // We might have a dead and dangling constant hanging off of here.
400   if (Constant *C = dyn_cast<Constant>(V))
401     return isSafeToDestroyConstant(C);
402 
403   Instruction *I = dyn_cast<Instruction>(V);
404   if (!I) return false;
405 
406   // Loads are ok.
407   if (isa<LoadInst>(I)) return true;
408 
409   // Stores *to* the pointer are ok.
410   if (StoreInst *SI = dyn_cast<StoreInst>(I))
411     return SI->getOperand(0) != V;
412 
413   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
414   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
415 }
416 
417 /// Look at all uses of the global and decide whether it is safe for us to
418 /// perform this transformation.
419 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
420   for (User *U : GV->users()) {
421     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
422     if (!isa<GetElementPtrInst>(U) &&
423         (!isa<ConstantExpr>(U) ||
424         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
425       return false;
426 
427     // Check the gep and it's users are safe to SRA
428     if (!isSafeSROAGEP(U))
429       return false;
430   }
431 
432   return true;
433 }
434 
435 /// Copy over the debug info for a variable to its SRA replacements.
436 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
437                                  uint64_t FragmentOffsetInBits,
438                                  uint64_t FragmentSizeInBits,
439                                  unsigned NumElements) {
440   SmallVector<DIGlobalVariableExpression *, 1> GVs;
441   GV->getDebugInfo(GVs);
442   for (auto *GVE : GVs) {
443     DIVariable *Var = GVE->getVariable();
444     DIExpression *Expr = GVE->getExpression();
445     if (NumElements > 1) {
446       if (auto E = DIExpression::createFragmentExpression(
447               Expr, FragmentOffsetInBits, FragmentSizeInBits))
448         Expr = *E;
449       else
450         return;
451     }
452     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
453     NGV->addDebugInfo(NGVE);
454   }
455 }
456 
457 /// Perform scalar replacement of aggregates on the specified global variable.
458 /// This opens the door for other optimizations by exposing the behavior of the
459 /// program in a more fine-grained way.  We have determined that this
460 /// transformation is safe already.  We return the first global variable we
461 /// insert so that the caller can reprocess it.
462 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
463   // Make sure this global only has simple uses that we can SRA.
464   if (!GlobalUsersSafeToSRA(GV))
465     return nullptr;
466 
467   assert(GV->hasLocalLinkage());
468   Constant *Init = GV->getInitializer();
469   Type *Ty = Init->getType();
470 
471   std::vector<GlobalVariable *> NewGlobals;
472   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
473 
474   // Get the alignment of the global, either explicit or target-specific.
475   unsigned StartAlignment = GV->getAlignment();
476   if (StartAlignment == 0)
477     StartAlignment = DL.getABITypeAlignment(GV->getType());
478 
479   if (StructType *STy = dyn_cast<StructType>(Ty)) {
480     unsigned NumElements = STy->getNumElements();
481     NewGlobals.reserve(NumElements);
482     const StructLayout &Layout = *DL.getStructLayout(STy);
483     for (unsigned i = 0, e = NumElements; i != e; ++i) {
484       Constant *In = Init->getAggregateElement(i);
485       assert(In && "Couldn't get element of initializer?");
486       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
487                                                GlobalVariable::InternalLinkage,
488                                                In, GV->getName()+"."+Twine(i),
489                                                GV->getThreadLocalMode(),
490                                               GV->getType()->getAddressSpace());
491       NGV->setExternallyInitialized(GV->isExternallyInitialized());
492       NGV->copyAttributesFrom(GV);
493       Globals.push_back(NGV);
494       NewGlobals.push_back(NGV);
495 
496       // Calculate the known alignment of the field.  If the original aggregate
497       // had 256 byte alignment for example, something might depend on that:
498       // propagate info to each field.
499       uint64_t FieldOffset = Layout.getElementOffset(i);
500       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
501       if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i))))
502         NGV->setAlignment(NewAlign);
503 
504       // Copy over the debug info for the variable.
505       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
506       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
507       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
508     }
509   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
510     unsigned NumElements = STy->getNumElements();
511     if (NumElements > 16 && GV->hasNUsesOrMore(16))
512       return nullptr; // It's not worth it.
513     NewGlobals.reserve(NumElements);
514     auto ElTy = STy->getElementType();
515     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
516     Align EltAlign(DL.getABITypeAlignment(ElTy));
517     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
518     for (unsigned i = 0, e = NumElements; i != e; ++i) {
519       Constant *In = Init->getAggregateElement(i);
520       assert(In && "Couldn't get element of initializer?");
521 
522       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
523                                                GlobalVariable::InternalLinkage,
524                                                In, GV->getName()+"."+Twine(i),
525                                                GV->getThreadLocalMode(),
526                                               GV->getType()->getAddressSpace());
527       NGV->setExternallyInitialized(GV->isExternallyInitialized());
528       NGV->copyAttributesFrom(GV);
529       Globals.push_back(NGV);
530       NewGlobals.push_back(NGV);
531 
532       // Calculate the known alignment of the field.  If the original aggregate
533       // had 256 byte alignment for example, something might depend on that:
534       // propagate info to each field.
535       Align NewAlign(MinAlign(StartAlignment, EltSize * i));
536       if (NewAlign > EltAlign)
537         NGV->setAlignment(NewAlign);
538       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
539                            NumElements);
540     }
541   }
542 
543   if (NewGlobals.empty())
544     return nullptr;
545 
546   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
547 
548   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
549 
550   // Loop over all of the uses of the global, replacing the constantexpr geps,
551   // with smaller constantexpr geps or direct references.
552   while (!GV->use_empty()) {
553     User *GEP = GV->user_back();
554     assert(((isa<ConstantExpr>(GEP) &&
555              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
556             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
557 
558     // Ignore the 1th operand, which has to be zero or else the program is quite
559     // broken (undefined).  Get the 2nd operand, which is the structure or array
560     // index.
561     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
562     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
563 
564     Value *NewPtr = NewGlobals[Val];
565     Type *NewTy = NewGlobals[Val]->getValueType();
566 
567     // Form a shorter GEP if needed.
568     if (GEP->getNumOperands() > 3) {
569       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
570         SmallVector<Constant*, 8> Idxs;
571         Idxs.push_back(NullInt);
572         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
573           Idxs.push_back(CE->getOperand(i));
574         NewPtr =
575             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
576       } else {
577         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
578         SmallVector<Value*, 8> Idxs;
579         Idxs.push_back(NullInt);
580         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
581           Idxs.push_back(GEPI->getOperand(i));
582         NewPtr = GetElementPtrInst::Create(
583             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
584       }
585     }
586     GEP->replaceAllUsesWith(NewPtr);
587 
588     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
589       GEPI->eraseFromParent();
590     else
591       cast<ConstantExpr>(GEP)->destroyConstant();
592   }
593 
594   // Delete the old global, now that it is dead.
595   Globals.erase(GV);
596   ++NumSRA;
597 
598   // Loop over the new globals array deleting any globals that are obviously
599   // dead.  This can arise due to scalarization of a structure or an array that
600   // has elements that are dead.
601   unsigned FirstGlobal = 0;
602   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
603     if (NewGlobals[i]->use_empty()) {
604       Globals.erase(NewGlobals[i]);
605       if (FirstGlobal == i) ++FirstGlobal;
606     }
607 
608   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
609 }
610 
611 /// Return true if all users of the specified value will trap if the value is
612 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
613 /// reprocessing them.
614 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
615                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
616   for (const User *U : V->users()) {
617     if (const Instruction *I = dyn_cast<Instruction>(U)) {
618       // If null pointer is considered valid, then all uses are non-trapping.
619       // Non address-space 0 globals have already been pruned by the caller.
620       if (NullPointerIsDefined(I->getFunction()))
621         return false;
622     }
623     if (isa<LoadInst>(U)) {
624       // Will trap.
625     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
626       if (SI->getOperand(0) == V) {
627         //cerr << "NONTRAPPING USE: " << *U;
628         return false;  // Storing the value.
629       }
630     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
631       if (CI->getCalledValue() != V) {
632         //cerr << "NONTRAPPING USE: " << *U;
633         return false;  // Not calling the ptr
634       }
635     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
636       if (II->getCalledValue() != V) {
637         //cerr << "NONTRAPPING USE: " << *U;
638         return false;  // Not calling the ptr
639       }
640     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
641       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
642     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
643       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
644     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
645       // If we've already seen this phi node, ignore it, it has already been
646       // checked.
647       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
648         return false;
649     } else if (isa<ICmpInst>(U) &&
650                isa<ConstantPointerNull>(U->getOperand(1))) {
651       // Ignore icmp X, null
652     } else {
653       //cerr << "NONTRAPPING USE: " << *U;
654       return false;
655     }
656   }
657   return true;
658 }
659 
660 /// Return true if all uses of any loads from GV will trap if the loaded value
661 /// is null.  Note that this also permits comparisons of the loaded value
662 /// against null, as a special case.
663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
664   for (const User *U : GV->users())
665     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
666       SmallPtrSet<const PHINode*, 8> PHIs;
667       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
668         return false;
669     } else if (isa<StoreInst>(U)) {
670       // Ignore stores to the global.
671     } else {
672       // We don't know or understand this user, bail out.
673       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
674       return false;
675     }
676   return true;
677 }
678 
679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
680   bool Changed = false;
681   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
682     Instruction *I = cast<Instruction>(*UI++);
683     // Uses are non-trapping if null pointer is considered valid.
684     // Non address-space 0 globals are already pruned by the caller.
685     if (NullPointerIsDefined(I->getFunction()))
686       return false;
687     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
688       LI->setOperand(0, NewV);
689       Changed = true;
690     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
691       if (SI->getOperand(1) == V) {
692         SI->setOperand(1, NewV);
693         Changed = true;
694       }
695     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
696       CallSite CS(I);
697       if (CS.getCalledValue() == V) {
698         // Calling through the pointer!  Turn into a direct call, but be careful
699         // that the pointer is not also being passed as an argument.
700         CS.setCalledFunction(NewV);
701         Changed = true;
702         bool PassedAsArg = false;
703         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
704           if (CS.getArgument(i) == V) {
705             PassedAsArg = true;
706             CS.setArgument(i, NewV);
707           }
708 
709         if (PassedAsArg) {
710           // Being passed as an argument also.  Be careful to not invalidate UI!
711           UI = V->user_begin();
712         }
713       }
714     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
715       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
716                                 ConstantExpr::getCast(CI->getOpcode(),
717                                                       NewV, CI->getType()));
718       if (CI->use_empty()) {
719         Changed = true;
720         CI->eraseFromParent();
721       }
722     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
723       // Should handle GEP here.
724       SmallVector<Constant*, 8> Idxs;
725       Idxs.reserve(GEPI->getNumOperands()-1);
726       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
727            i != e; ++i)
728         if (Constant *C = dyn_cast<Constant>(*i))
729           Idxs.push_back(C);
730         else
731           break;
732       if (Idxs.size() == GEPI->getNumOperands()-1)
733         Changed |= OptimizeAwayTrappingUsesOfValue(
734             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
735                                                  NewV, Idxs));
736       if (GEPI->use_empty()) {
737         Changed = true;
738         GEPI->eraseFromParent();
739       }
740     }
741   }
742 
743   return Changed;
744 }
745 
746 /// The specified global has only one non-null value stored into it.  If there
747 /// are uses of the loaded value that would trap if the loaded value is
748 /// dynamically null, then we know that they cannot be reachable with a null
749 /// optimize away the load.
750 static bool OptimizeAwayTrappingUsesOfLoads(
751     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
752     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
753   bool Changed = false;
754 
755   // Keep track of whether we are able to remove all the uses of the global
756   // other than the store that defines it.
757   bool AllNonStoreUsesGone = true;
758 
759   // Replace all uses of loads with uses of uses of the stored value.
760   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
761     User *GlobalUser = *GUI++;
762     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
763       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
764       // If we were able to delete all uses of the loads
765       if (LI->use_empty()) {
766         LI->eraseFromParent();
767         Changed = true;
768       } else {
769         AllNonStoreUsesGone = false;
770       }
771     } else if (isa<StoreInst>(GlobalUser)) {
772       // Ignore the store that stores "LV" to the global.
773       assert(GlobalUser->getOperand(1) == GV &&
774              "Must be storing *to* the global");
775     } else {
776       AllNonStoreUsesGone = false;
777 
778       // If we get here we could have other crazy uses that are transitively
779       // loaded.
780       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
781               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
782               isa<BitCastInst>(GlobalUser) ||
783               isa<GetElementPtrInst>(GlobalUser)) &&
784              "Only expect load and stores!");
785     }
786   }
787 
788   if (Changed) {
789     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
790                       << "\n");
791     ++NumGlobUses;
792   }
793 
794   // If we nuked all of the loads, then none of the stores are needed either,
795   // nor is the global.
796   if (AllNonStoreUsesGone) {
797     if (isLeakCheckerRoot(GV)) {
798       Changed |= CleanupPointerRootUsers(GV, GetTLI);
799     } else {
800       Changed = true;
801       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
802     }
803     if (GV->use_empty()) {
804       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
805       Changed = true;
806       GV->eraseFromParent();
807       ++NumDeleted;
808     }
809   }
810   return Changed;
811 }
812 
813 /// Walk the use list of V, constant folding all of the instructions that are
814 /// foldable.
815 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
816                                 TargetLibraryInfo *TLI) {
817   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
818     if (Instruction *I = dyn_cast<Instruction>(*UI++))
819       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
820         I->replaceAllUsesWith(NewC);
821 
822         // Advance UI to the next non-I use to avoid invalidating it!
823         // Instructions could multiply use V.
824         while (UI != E && *UI == I)
825           ++UI;
826         if (isInstructionTriviallyDead(I, TLI))
827           I->eraseFromParent();
828       }
829 }
830 
831 /// This function takes the specified global variable, and transforms the
832 /// program as if it always contained the result of the specified malloc.
833 /// Because it is always the result of the specified malloc, there is no reason
834 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
835 /// loads of GV as uses of the new global.
836 static GlobalVariable *
837 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
838                               ConstantInt *NElements, const DataLayout &DL,
839                               TargetLibraryInfo *TLI) {
840   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
841                     << '\n');
842 
843   Type *GlobalType;
844   if (NElements->getZExtValue() == 1)
845     GlobalType = AllocTy;
846   else
847     // If we have an array allocation, the global variable is of an array.
848     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
849 
850   // Create the new global variable.  The contents of the malloc'd memory is
851   // undefined, so initialize with an undef value.
852   GlobalVariable *NewGV = new GlobalVariable(
853       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
854       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
855       GV->getThreadLocalMode());
856 
857   // If there are bitcast users of the malloc (which is typical, usually we have
858   // a malloc + bitcast) then replace them with uses of the new global.  Update
859   // other users to use the global as well.
860   BitCastInst *TheBC = nullptr;
861   while (!CI->use_empty()) {
862     Instruction *User = cast<Instruction>(CI->user_back());
863     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
864       if (BCI->getType() == NewGV->getType()) {
865         BCI->replaceAllUsesWith(NewGV);
866         BCI->eraseFromParent();
867       } else {
868         BCI->setOperand(0, NewGV);
869       }
870     } else {
871       if (!TheBC)
872         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
873       User->replaceUsesOfWith(CI, TheBC);
874     }
875   }
876 
877   Constant *RepValue = NewGV;
878   if (NewGV->getType() != GV->getValueType())
879     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
880 
881   // If there is a comparison against null, we will insert a global bool to
882   // keep track of whether the global was initialized yet or not.
883   GlobalVariable *InitBool =
884     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
885                        GlobalValue::InternalLinkage,
886                        ConstantInt::getFalse(GV->getContext()),
887                        GV->getName()+".init", GV->getThreadLocalMode());
888   bool InitBoolUsed = false;
889 
890   // Loop over all uses of GV, processing them in turn.
891   while (!GV->use_empty()) {
892     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
893       // The global is initialized when the store to it occurs.
894       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
895                     None, SI->getOrdering(), SI->getSyncScopeID(), SI);
896       SI->eraseFromParent();
897       continue;
898     }
899 
900     LoadInst *LI = cast<LoadInst>(GV->user_back());
901     while (!LI->use_empty()) {
902       Use &LoadUse = *LI->use_begin();
903       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
904       if (!ICI) {
905         LoadUse = RepValue;
906         continue;
907       }
908 
909       // Replace the cmp X, 0 with a use of the bool value.
910       // Sink the load to where the compare was, if atomic rules allow us to.
911       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
912                                InitBool->getName() + ".val", false, None,
913                                LI->getOrdering(), LI->getSyncScopeID(),
914                                LI->isUnordered() ? (Instruction *)ICI : LI);
915       InitBoolUsed = true;
916       switch (ICI->getPredicate()) {
917       default: llvm_unreachable("Unknown ICmp Predicate!");
918       case ICmpInst::ICMP_ULT:
919       case ICmpInst::ICMP_SLT:   // X < null -> always false
920         LV = ConstantInt::getFalse(GV->getContext());
921         break;
922       case ICmpInst::ICMP_ULE:
923       case ICmpInst::ICMP_SLE:
924       case ICmpInst::ICMP_EQ:
925         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
926         break;
927       case ICmpInst::ICMP_NE:
928       case ICmpInst::ICMP_UGE:
929       case ICmpInst::ICMP_SGE:
930       case ICmpInst::ICMP_UGT:
931       case ICmpInst::ICMP_SGT:
932         break;  // no change.
933       }
934       ICI->replaceAllUsesWith(LV);
935       ICI->eraseFromParent();
936     }
937     LI->eraseFromParent();
938   }
939 
940   // If the initialization boolean was used, insert it, otherwise delete it.
941   if (!InitBoolUsed) {
942     while (!InitBool->use_empty())  // Delete initializations
943       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
944     delete InitBool;
945   } else
946     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
947 
948   // Now the GV is dead, nuke it and the malloc..
949   GV->eraseFromParent();
950   CI->eraseFromParent();
951 
952   // To further other optimizations, loop over all users of NewGV and try to
953   // constant prop them.  This will promote GEP instructions with constant
954   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
955   ConstantPropUsersOf(NewGV, DL, TLI);
956   if (RepValue != NewGV)
957     ConstantPropUsersOf(RepValue, DL, TLI);
958 
959   return NewGV;
960 }
961 
962 /// Scan the use-list of V checking to make sure that there are no complex uses
963 /// of V.  We permit simple things like dereferencing the pointer, but not
964 /// storing through the address, unless it is to the specified global.
965 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
966                                                       const GlobalVariable *GV,
967                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
968   for (const User *U : V->users()) {
969     const Instruction *Inst = cast<Instruction>(U);
970 
971     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
972       continue; // Fine, ignore.
973     }
974 
975     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
976       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
977         return false;  // Storing the pointer itself... bad.
978       continue; // Otherwise, storing through it, or storing into GV... fine.
979     }
980 
981     // Must index into the array and into the struct.
982     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
983       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
984         return false;
985       continue;
986     }
987 
988     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
989       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
990       // cycles.
991       if (PHIs.insert(PN).second)
992         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
993           return false;
994       continue;
995     }
996 
997     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
998       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
999         return false;
1000       continue;
1001     }
1002 
1003     return false;
1004   }
1005   return true;
1006 }
1007 
1008 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1009 /// allocation into loads from the global and uses of the resultant pointer.
1010 /// Further, delete the store into GV.  This assumes that these value pass the
1011 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1012 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1013                                           GlobalVariable *GV) {
1014   while (!Alloc->use_empty()) {
1015     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1016     Instruction *InsertPt = U;
1017     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1018       // If this is the store of the allocation into the global, remove it.
1019       if (SI->getOperand(1) == GV) {
1020         SI->eraseFromParent();
1021         continue;
1022       }
1023     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1024       // Insert the load in the corresponding predecessor, not right before the
1025       // PHI.
1026       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1027     } else if (isa<BitCastInst>(U)) {
1028       // Must be bitcast between the malloc and store to initialize the global.
1029       ReplaceUsesOfMallocWithGlobal(U, GV);
1030       U->eraseFromParent();
1031       continue;
1032     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1033       // If this is a "GEP bitcast" and the user is a store to the global, then
1034       // just process it as a bitcast.
1035       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1036         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1037           if (SI->getOperand(1) == GV) {
1038             // Must be bitcast GEP between the malloc and store to initialize
1039             // the global.
1040             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1041             GEPI->eraseFromParent();
1042             continue;
1043           }
1044     }
1045 
1046     // Insert a load from the global, and use it instead of the malloc.
1047     Value *NL =
1048         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1049     U->replaceUsesOfWith(Alloc, NL);
1050   }
1051 }
1052 
1053 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1054 /// perform heap SRA on.  This permits GEP's that index through the array and
1055 /// struct field, icmps of null, and PHIs.
1056 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1057                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1058                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1059   // We permit two users of the load: setcc comparing against the null
1060   // pointer, and a getelementptr of a specific form.
1061   for (const User *U : V->users()) {
1062     const Instruction *UI = cast<Instruction>(U);
1063 
1064     // Comparison against null is ok.
1065     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1066       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1067         return false;
1068       continue;
1069     }
1070 
1071     // getelementptr is also ok, but only a simple form.
1072     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1073       // Must index into the array and into the struct.
1074       if (GEPI->getNumOperands() < 3)
1075         return false;
1076 
1077       // Otherwise the GEP is ok.
1078       continue;
1079     }
1080 
1081     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1082       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1083         // This means some phi nodes are dependent on each other.
1084         // Avoid infinite looping!
1085         return false;
1086       if (!LoadUsingPHIs.insert(PN).second)
1087         // If we have already analyzed this PHI, then it is safe.
1088         continue;
1089 
1090       // Make sure all uses of the PHI are simple enough to transform.
1091       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1092                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1093         return false;
1094 
1095       continue;
1096     }
1097 
1098     // Otherwise we don't know what this is, not ok.
1099     return false;
1100   }
1101 
1102   return true;
1103 }
1104 
1105 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1106 /// return true.
1107 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1108                                                     Instruction *StoredVal) {
1109   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1110   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1111   for (const User *U : GV->users())
1112     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1113       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1114                                           LoadUsingPHIsPerLoad))
1115         return false;
1116       LoadUsingPHIsPerLoad.clear();
1117     }
1118 
1119   // If we reach here, we know that all uses of the loads and transitive uses
1120   // (through PHI nodes) are simple enough to transform.  However, we don't know
1121   // that all inputs the to the PHI nodes are in the same equivalence sets.
1122   // Check to verify that all operands of the PHIs are either PHIS that can be
1123   // transformed, loads from GV, or MI itself.
1124   for (const PHINode *PN : LoadUsingPHIs) {
1125     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1126       Value *InVal = PN->getIncomingValue(op);
1127 
1128       // PHI of the stored value itself is ok.
1129       if (InVal == StoredVal) continue;
1130 
1131       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1132         // One of the PHIs in our set is (optimistically) ok.
1133         if (LoadUsingPHIs.count(InPN))
1134           continue;
1135         return false;
1136       }
1137 
1138       // Load from GV is ok.
1139       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1140         if (LI->getOperand(0) == GV)
1141           continue;
1142 
1143       // UNDEF? NULL?
1144 
1145       // Anything else is rejected.
1146       return false;
1147     }
1148   }
1149 
1150   return true;
1151 }
1152 
1153 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1154               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1155                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1156   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1157 
1158   if (FieldNo >= FieldVals.size())
1159     FieldVals.resize(FieldNo+1);
1160 
1161   // If we already have this value, just reuse the previously scalarized
1162   // version.
1163   if (Value *FieldVal = FieldVals[FieldNo])
1164     return FieldVal;
1165 
1166   // Depending on what instruction this is, we have several cases.
1167   Value *Result;
1168   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1169     // This is a scalarized version of the load from the global.  Just create
1170     // a new Load of the scalarized global.
1171     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1172                                 InsertedScalarizedValues, PHIsToRewrite);
1173     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1174                           LI->getName() + ".f" + Twine(FieldNo), LI);
1175   } else {
1176     PHINode *PN = cast<PHINode>(V);
1177     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1178     // field.
1179 
1180     PointerType *PTy = cast<PointerType>(PN->getType());
1181     StructType *ST = cast<StructType>(PTy->getElementType());
1182 
1183     unsigned AS = PTy->getAddressSpace();
1184     PHINode *NewPN =
1185       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1186                      PN->getNumIncomingValues(),
1187                      PN->getName()+".f"+Twine(FieldNo), PN);
1188     Result = NewPN;
1189     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1190   }
1191 
1192   return FieldVals[FieldNo] = Result;
1193 }
1194 
1195 /// Given a load instruction and a value derived from the load, rewrite the
1196 /// derived value to use the HeapSRoA'd load.
1197 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1198               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1199                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1200   // If this is a comparison against null, handle it.
1201   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1202     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1203     // If we have a setcc of the loaded pointer, we can use a setcc of any
1204     // field.
1205     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1206                                    InsertedScalarizedValues, PHIsToRewrite);
1207 
1208     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1209                               Constant::getNullValue(NPtr->getType()),
1210                               SCI->getName());
1211     SCI->replaceAllUsesWith(New);
1212     SCI->eraseFromParent();
1213     return;
1214   }
1215 
1216   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1217   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1218     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1219            && "Unexpected GEPI!");
1220 
1221     // Load the pointer for this field.
1222     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1223     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1224                                      InsertedScalarizedValues, PHIsToRewrite);
1225 
1226     // Create the new GEP idx vector.
1227     SmallVector<Value*, 8> GEPIdx;
1228     GEPIdx.push_back(GEPI->getOperand(1));
1229     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1230 
1231     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1232                                              GEPI->getName(), GEPI);
1233     GEPI->replaceAllUsesWith(NGEPI);
1234     GEPI->eraseFromParent();
1235     return;
1236   }
1237 
1238   // Recursively transform the users of PHI nodes.  This will lazily create the
1239   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1240   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1241   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1242   // already been seen first by another load, so its uses have already been
1243   // processed.
1244   PHINode *PN = cast<PHINode>(LoadUser);
1245   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1246                                               std::vector<Value *>())).second)
1247     return;
1248 
1249   // If this is the first time we've seen this PHI, recursively process all
1250   // users.
1251   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1252     Instruction *User = cast<Instruction>(*UI++);
1253     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1254   }
1255 }
1256 
1257 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1258 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1259 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1260 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1261               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1262                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1263   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1264     Instruction *User = cast<Instruction>(*UI++);
1265     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1266   }
1267 
1268   if (Load->use_empty()) {
1269     Load->eraseFromParent();
1270     InsertedScalarizedValues.erase(Load);
1271   }
1272 }
1273 
1274 /// CI is an allocation of an array of structures.  Break it up into multiple
1275 /// allocations of arrays of the fields.
1276 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1277                                             Value *NElems, const DataLayout &DL,
1278                                             const TargetLibraryInfo *TLI) {
1279   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1280                     << '\n');
1281   Type *MAT = getMallocAllocatedType(CI, TLI);
1282   StructType *STy = cast<StructType>(MAT);
1283 
1284   // There is guaranteed to be at least one use of the malloc (storing
1285   // it into GV).  If there are other uses, change them to be uses of
1286   // the global to simplify later code.  This also deletes the store
1287   // into GV.
1288   ReplaceUsesOfMallocWithGlobal(CI, GV);
1289 
1290   // Okay, at this point, there are no users of the malloc.  Insert N
1291   // new mallocs at the same place as CI, and N globals.
1292   std::vector<Value *> FieldGlobals;
1293   std::vector<Value *> FieldMallocs;
1294 
1295   SmallVector<OperandBundleDef, 1> OpBundles;
1296   CI->getOperandBundlesAsDefs(OpBundles);
1297 
1298   unsigned AS = GV->getType()->getPointerAddressSpace();
1299   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1300     Type *FieldTy = STy->getElementType(FieldNo);
1301     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1302 
1303     GlobalVariable *NGV = new GlobalVariable(
1304         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1305         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1306         nullptr, GV->getThreadLocalMode());
1307     NGV->copyAttributesFrom(GV);
1308     FieldGlobals.push_back(NGV);
1309 
1310     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1311     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1312       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1313     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1314     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1315                                         ConstantInt::get(IntPtrTy, TypeSize),
1316                                         NElems, OpBundles, nullptr,
1317                                         CI->getName() + ".f" + Twine(FieldNo));
1318     FieldMallocs.push_back(NMI);
1319     new StoreInst(NMI, NGV, CI);
1320   }
1321 
1322   // The tricky aspect of this transformation is handling the case when malloc
1323   // fails.  In the original code, malloc failing would set the result pointer
1324   // of malloc to null.  In this case, some mallocs could succeed and others
1325   // could fail.  As such, we emit code that looks like this:
1326   //    F0 = malloc(field0)
1327   //    F1 = malloc(field1)
1328   //    F2 = malloc(field2)
1329   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1330   //      if (F0) { free(F0); F0 = 0; }
1331   //      if (F1) { free(F1); F1 = 0; }
1332   //      if (F2) { free(F2); F2 = 0; }
1333   //    }
1334   // The malloc can also fail if its argument is too large.
1335   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1336   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1337                                   ConstantZero, "isneg");
1338   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1339     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1340                              Constant::getNullValue(FieldMallocs[i]->getType()),
1341                                "isnull");
1342     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1343   }
1344 
1345   // Split the basic block at the old malloc.
1346   BasicBlock *OrigBB = CI->getParent();
1347   BasicBlock *ContBB =
1348       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1349 
1350   // Create the block to check the first condition.  Put all these blocks at the
1351   // end of the function as they are unlikely to be executed.
1352   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1353                                                 "malloc_ret_null",
1354                                                 OrigBB->getParent());
1355 
1356   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1357   // branch on RunningOr.
1358   OrigBB->getTerminator()->eraseFromParent();
1359   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1360 
1361   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1362   // pointer, because some may be null while others are not.
1363   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1364     Value *GVVal =
1365         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1366                      FieldGlobals[i], "tmp", NullPtrBlock);
1367     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1368                               Constant::getNullValue(GVVal->getType()));
1369     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1370                                                OrigBB->getParent());
1371     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1372                                                OrigBB->getParent());
1373     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1374                                          Cmp, NullPtrBlock);
1375 
1376     // Fill in FreeBlock.
1377     CallInst::CreateFree(GVVal, OpBundles, BI);
1378     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1379                   FreeBlock);
1380     BranchInst::Create(NextBlock, FreeBlock);
1381 
1382     NullPtrBlock = NextBlock;
1383   }
1384 
1385   BranchInst::Create(ContBB, NullPtrBlock);
1386 
1387   // CI is no longer needed, remove it.
1388   CI->eraseFromParent();
1389 
1390   /// As we process loads, if we can't immediately update all uses of the load,
1391   /// keep track of what scalarized loads are inserted for a given load.
1392   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1393   InsertedScalarizedValues[GV] = FieldGlobals;
1394 
1395   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1396 
1397   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1398   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1399   // of the per-field globals instead.
1400   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1401     Instruction *User = cast<Instruction>(*UI++);
1402 
1403     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1404       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1405       continue;
1406     }
1407 
1408     // Must be a store of null.
1409     StoreInst *SI = cast<StoreInst>(User);
1410     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1411            "Unexpected heap-sra user!");
1412 
1413     // Insert a store of null into each global.
1414     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1415       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1416       Constant *Null = Constant::getNullValue(ValTy);
1417       new StoreInst(Null, FieldGlobals[i], SI);
1418     }
1419     // Erase the original store.
1420     SI->eraseFromParent();
1421   }
1422 
1423   // While we have PHIs that are interesting to rewrite, do it.
1424   while (!PHIsToRewrite.empty()) {
1425     PHINode *PN = PHIsToRewrite.back().first;
1426     unsigned FieldNo = PHIsToRewrite.back().second;
1427     PHIsToRewrite.pop_back();
1428     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1429     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1430 
1431     // Add all the incoming values.  This can materialize more phis.
1432     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1433       Value *InVal = PN->getIncomingValue(i);
1434       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1435                                PHIsToRewrite);
1436       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1437     }
1438   }
1439 
1440   // Drop all inter-phi links and any loads that made it this far.
1441   for (DenseMap<Value *, std::vector<Value *>>::iterator
1442        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1443        I != E; ++I) {
1444     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1445       PN->dropAllReferences();
1446     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1447       LI->dropAllReferences();
1448   }
1449 
1450   // Delete all the phis and loads now that inter-references are dead.
1451   for (DenseMap<Value *, std::vector<Value *>>::iterator
1452        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1453        I != E; ++I) {
1454     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1455       PN->eraseFromParent();
1456     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1457       LI->eraseFromParent();
1458   }
1459 
1460   // The old global is now dead, remove it.
1461   GV->eraseFromParent();
1462 
1463   ++NumHeapSRA;
1464   return cast<GlobalVariable>(FieldGlobals[0]);
1465 }
1466 
1467 /// This function is called when we see a pointer global variable with a single
1468 /// value stored it that is a malloc or cast of malloc.
1469 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1470                                                Type *AllocTy,
1471                                                AtomicOrdering Ordering,
1472                                                const DataLayout &DL,
1473                                                TargetLibraryInfo *TLI) {
1474   // If this is a malloc of an abstract type, don't touch it.
1475   if (!AllocTy->isSized())
1476     return false;
1477 
1478   // We can't optimize this global unless all uses of it are *known* to be
1479   // of the malloc value, not of the null initializer value (consider a use
1480   // that compares the global's value against zero to see if the malloc has
1481   // been reached).  To do this, we check to see if all uses of the global
1482   // would trap if the global were null: this proves that they must all
1483   // happen after the malloc.
1484   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1485     return false;
1486 
1487   // We can't optimize this if the malloc itself is used in a complex way,
1488   // for example, being stored into multiple globals.  This allows the
1489   // malloc to be stored into the specified global, loaded icmp'd, and
1490   // GEP'd.  These are all things we could transform to using the global
1491   // for.
1492   SmallPtrSet<const PHINode*, 8> PHIs;
1493   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1494     return false;
1495 
1496   // If we have a global that is only initialized with a fixed size malloc,
1497   // transform the program to use global memory instead of malloc'd memory.
1498   // This eliminates dynamic allocation, avoids an indirection accessing the
1499   // data, and exposes the resultant global to further GlobalOpt.
1500   // We cannot optimize the malloc if we cannot determine malloc array size.
1501   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1502   if (!NElems)
1503     return false;
1504 
1505   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1506     // Restrict this transformation to only working on small allocations
1507     // (2048 bytes currently), as we don't want to introduce a 16M global or
1508     // something.
1509     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1510       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1511       return true;
1512     }
1513 
1514   // If the allocation is an array of structures, consider transforming this
1515   // into multiple malloc'd arrays, one for each field.  This is basically
1516   // SRoA for malloc'd memory.
1517 
1518   if (Ordering != AtomicOrdering::NotAtomic)
1519     return false;
1520 
1521   // If this is an allocation of a fixed size array of structs, analyze as a
1522   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1523   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1524     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1525       AllocTy = AT->getElementType();
1526 
1527   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1528   if (!AllocSTy)
1529     return false;
1530 
1531   // This the structure has an unreasonable number of fields, leave it
1532   // alone.
1533   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1534       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1535 
1536     // If this is a fixed size array, transform the Malloc to be an alloc of
1537     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1538     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1539       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1540       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1541       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1542       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1543       SmallVector<OperandBundleDef, 1> OpBundles;
1544       CI->getOperandBundlesAsDefs(OpBundles);
1545       Instruction *Malloc =
1546           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1547                                  OpBundles, nullptr, CI->getName());
1548       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1549       CI->replaceAllUsesWith(Cast);
1550       CI->eraseFromParent();
1551       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1552         CI = cast<CallInst>(BCI->getOperand(0));
1553       else
1554         CI = cast<CallInst>(Malloc);
1555     }
1556 
1557     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1558                          TLI);
1559     return true;
1560   }
1561 
1562   return false;
1563 }
1564 
1565 // Try to optimize globals based on the knowledge that only one value (besides
1566 // its initializer) is ever stored to the global.
1567 static bool
1568 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1569                          AtomicOrdering Ordering, const DataLayout &DL,
1570                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1571   // Ignore no-op GEPs and bitcasts.
1572   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1573 
1574   // If we are dealing with a pointer global that is initialized to null and
1575   // only has one (non-null) value stored into it, then we can optimize any
1576   // users of the loaded value (often calls and loads) that would trap if the
1577   // value was null.
1578   if (GV->getInitializer()->getType()->isPointerTy() &&
1579       GV->getInitializer()->isNullValue() &&
1580       !NullPointerIsDefined(
1581           nullptr /* F */,
1582           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1583     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1584       if (GV->getInitializer()->getType() != SOVC->getType())
1585         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1586 
1587       // Optimize away any trapping uses of the loaded value.
1588       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1589         return true;
1590     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1591       auto *TLI = &GetTLI(*CI->getFunction());
1592       Type *MallocType = getMallocAllocatedType(CI, TLI);
1593       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1594                                                            Ordering, DL, TLI))
1595         return true;
1596     }
1597   }
1598 
1599   return false;
1600 }
1601 
1602 /// At this point, we have learned that the only two values ever stored into GV
1603 /// are its initializer and OtherVal.  See if we can shrink the global into a
1604 /// boolean and select between the two values whenever it is used.  This exposes
1605 /// the values to other scalar optimizations.
1606 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1607   Type *GVElType = GV->getValueType();
1608 
1609   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1610   // an FP value, pointer or vector, don't do this optimization because a select
1611   // between them is very expensive and unlikely to lead to later
1612   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1613   // where v1 and v2 both require constant pool loads, a big loss.
1614   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1615       GVElType->isFloatingPointTy() ||
1616       GVElType->isPointerTy() || GVElType->isVectorTy())
1617     return false;
1618 
1619   // Walk the use list of the global seeing if all the uses are load or store.
1620   // If there is anything else, bail out.
1621   for (User *U : GV->users())
1622     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1623       return false;
1624 
1625   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1626 
1627   // Create the new global, initializing it to false.
1628   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1629                                              false,
1630                                              GlobalValue::InternalLinkage,
1631                                         ConstantInt::getFalse(GV->getContext()),
1632                                              GV->getName()+".b",
1633                                              GV->getThreadLocalMode(),
1634                                              GV->getType()->getAddressSpace());
1635   NewGV->copyAttributesFrom(GV);
1636   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1637 
1638   Constant *InitVal = GV->getInitializer();
1639   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1640          "No reason to shrink to bool!");
1641 
1642   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1643   GV->getDebugInfo(GVs);
1644 
1645   // If initialized to zero and storing one into the global, we can use a cast
1646   // instead of a select to synthesize the desired value.
1647   bool IsOneZero = false;
1648   bool EmitOneOrZero = true;
1649   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1650   if (CI && CI->getValue().getActiveBits() <= 64) {
1651     IsOneZero = InitVal->isNullValue() && CI->isOne();
1652 
1653     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1654     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1655       uint64_t ValInit = CIInit->getZExtValue();
1656       uint64_t ValOther = CI->getZExtValue();
1657       uint64_t ValMinus = ValOther - ValInit;
1658 
1659       for(auto *GVe : GVs){
1660         DIGlobalVariable *DGV = GVe->getVariable();
1661         DIExpression *E = GVe->getExpression();
1662         const DataLayout &DL = GV->getParent()->getDataLayout();
1663         unsigned SizeInOctets =
1664           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1665 
1666         // It is expected that the address of global optimized variable is on
1667         // top of the stack. After optimization, value of that variable will
1668         // be ether 0 for initial value or 1 for other value. The following
1669         // expression should return constant integer value depending on the
1670         // value at global object address:
1671         // val * (ValOther - ValInit) + ValInit:
1672         // DW_OP_deref DW_OP_constu <ValMinus>
1673         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1674         SmallVector<uint64_t, 12> Ops = {
1675             dwarf::DW_OP_deref_size, SizeInOctets,
1676             dwarf::DW_OP_constu, ValMinus,
1677             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1678             dwarf::DW_OP_plus};
1679         bool WithStackValue = true;
1680         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1681         DIGlobalVariableExpression *DGVE =
1682           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1683         NewGV->addDebugInfo(DGVE);
1684      }
1685      EmitOneOrZero = false;
1686     }
1687   }
1688 
1689   if (EmitOneOrZero) {
1690      // FIXME: This will only emit address for debugger on which will
1691      // be written only 0 or 1.
1692      for(auto *GV : GVs)
1693        NewGV->addDebugInfo(GV);
1694    }
1695 
1696   while (!GV->use_empty()) {
1697     Instruction *UI = cast<Instruction>(GV->user_back());
1698     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1699       // Change the store into a boolean store.
1700       bool StoringOther = SI->getOperand(0) == OtherVal;
1701       // Only do this if we weren't storing a loaded value.
1702       Value *StoreVal;
1703       if (StoringOther || SI->getOperand(0) == InitVal) {
1704         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1705                                     StoringOther);
1706       } else {
1707         // Otherwise, we are storing a previously loaded copy.  To do this,
1708         // change the copy from copying the original value to just copying the
1709         // bool.
1710         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1711 
1712         // If we've already replaced the input, StoredVal will be a cast or
1713         // select instruction.  If not, it will be a load of the original
1714         // global.
1715         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1716           assert(LI->getOperand(0) == GV && "Not a copy!");
1717           // Insert a new load, to preserve the saved value.
1718           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1719                                   LI->getName() + ".b", false, None,
1720                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1721         } else {
1722           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1723                  "This is not a form that we understand!");
1724           StoreVal = StoredVal->getOperand(0);
1725           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1726         }
1727       }
1728       StoreInst *NSI =
1729           new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1730                         SI->getSyncScopeID(), SI);
1731       NSI->setDebugLoc(SI->getDebugLoc());
1732     } else {
1733       // Change the load into a load of bool then a select.
1734       LoadInst *LI = cast<LoadInst>(UI);
1735       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1736                                    LI->getName() + ".b", false, None,
1737                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1738       Instruction *NSI;
1739       if (IsOneZero)
1740         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1741       else
1742         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1743       NSI->takeName(LI);
1744       // Since LI is split into two instructions, NLI and NSI both inherit the
1745       // same DebugLoc
1746       NLI->setDebugLoc(LI->getDebugLoc());
1747       NSI->setDebugLoc(LI->getDebugLoc());
1748       LI->replaceAllUsesWith(NSI);
1749     }
1750     UI->eraseFromParent();
1751   }
1752 
1753   // Retain the name of the old global variable. People who are debugging their
1754   // programs may expect these variables to be named the same.
1755   NewGV->takeName(GV);
1756   GV->eraseFromParent();
1757   return true;
1758 }
1759 
1760 static bool deleteIfDead(
1761     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1762   GV.removeDeadConstantUsers();
1763 
1764   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1765     return false;
1766 
1767   if (const Comdat *C = GV.getComdat())
1768     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1769       return false;
1770 
1771   bool Dead;
1772   if (auto *F = dyn_cast<Function>(&GV))
1773     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1774   else
1775     Dead = GV.use_empty();
1776   if (!Dead)
1777     return false;
1778 
1779   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1780   GV.eraseFromParent();
1781   ++NumDeleted;
1782   return true;
1783 }
1784 
1785 static bool isPointerValueDeadOnEntryToFunction(
1786     const Function *F, GlobalValue *GV,
1787     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1788   // Find all uses of GV. We expect them all to be in F, and if we can't
1789   // identify any of the uses we bail out.
1790   //
1791   // On each of these uses, identify if the memory that GV points to is
1792   // used/required/live at the start of the function. If it is not, for example
1793   // if the first thing the function does is store to the GV, the GV can
1794   // possibly be demoted.
1795   //
1796   // We don't do an exhaustive search for memory operations - simply look
1797   // through bitcasts as they're quite common and benign.
1798   const DataLayout &DL = GV->getParent()->getDataLayout();
1799   SmallVector<LoadInst *, 4> Loads;
1800   SmallVector<StoreInst *, 4> Stores;
1801   for (auto *U : GV->users()) {
1802     if (Operator::getOpcode(U) == Instruction::BitCast) {
1803       for (auto *UU : U->users()) {
1804         if (auto *LI = dyn_cast<LoadInst>(UU))
1805           Loads.push_back(LI);
1806         else if (auto *SI = dyn_cast<StoreInst>(UU))
1807           Stores.push_back(SI);
1808         else
1809           return false;
1810       }
1811       continue;
1812     }
1813 
1814     Instruction *I = dyn_cast<Instruction>(U);
1815     if (!I)
1816       return false;
1817     assert(I->getParent()->getParent() == F);
1818 
1819     if (auto *LI = dyn_cast<LoadInst>(I))
1820       Loads.push_back(LI);
1821     else if (auto *SI = dyn_cast<StoreInst>(I))
1822       Stores.push_back(SI);
1823     else
1824       return false;
1825   }
1826 
1827   // We have identified all uses of GV into loads and stores. Now check if all
1828   // of them are known not to depend on the value of the global at the function
1829   // entry point. We do this by ensuring that every load is dominated by at
1830   // least one store.
1831   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1832 
1833   // The below check is quadratic. Check we're not going to do too many tests.
1834   // FIXME: Even though this will always have worst-case quadratic time, we
1835   // could put effort into minimizing the average time by putting stores that
1836   // have been shown to dominate at least one load at the beginning of the
1837   // Stores array, making subsequent dominance checks more likely to succeed
1838   // early.
1839   //
1840   // The threshold here is fairly large because global->local demotion is a
1841   // very powerful optimization should it fire.
1842   const unsigned Threshold = 100;
1843   if (Loads.size() * Stores.size() > Threshold)
1844     return false;
1845 
1846   for (auto *L : Loads) {
1847     auto *LTy = L->getType();
1848     if (none_of(Stores, [&](const StoreInst *S) {
1849           auto *STy = S->getValueOperand()->getType();
1850           // The load is only dominated by the store if DomTree says so
1851           // and the number of bits loaded in L is less than or equal to
1852           // the number of bits stored in S.
1853           return DT.dominates(S, L) &&
1854                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1855         }))
1856       return false;
1857   }
1858   // All loads have known dependences inside F, so the global can be localized.
1859   return true;
1860 }
1861 
1862 /// C may have non-instruction users. Can all of those users be turned into
1863 /// instructions?
1864 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1865   // We don't do this exhaustively. The most common pattern that we really need
1866   // to care about is a constant GEP or constant bitcast - so just looking
1867   // through one single ConstantExpr.
1868   //
1869   // The set of constants that this function returns true for must be able to be
1870   // handled by makeAllConstantUsesInstructions.
1871   for (auto *U : C->users()) {
1872     if (isa<Instruction>(U))
1873       continue;
1874     if (!isa<ConstantExpr>(U))
1875       // Non instruction, non-constantexpr user; cannot convert this.
1876       return false;
1877     for (auto *UU : U->users())
1878       if (!isa<Instruction>(UU))
1879         // A constantexpr used by another constant. We don't try and recurse any
1880         // further but just bail out at this point.
1881         return false;
1882   }
1883 
1884   return true;
1885 }
1886 
1887 /// C may have non-instruction users, and
1888 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1889 /// non-instruction users to instructions.
1890 static void makeAllConstantUsesInstructions(Constant *C) {
1891   SmallVector<ConstantExpr*,4> Users;
1892   for (auto *U : C->users()) {
1893     if (isa<ConstantExpr>(U))
1894       Users.push_back(cast<ConstantExpr>(U));
1895     else
1896       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1897       // should not have returned true for C.
1898       assert(
1899           isa<Instruction>(U) &&
1900           "Can't transform non-constantexpr non-instruction to instruction!");
1901   }
1902 
1903   SmallVector<Value*,4> UUsers;
1904   for (auto *U : Users) {
1905     UUsers.clear();
1906     for (auto *UU : U->users())
1907       UUsers.push_back(UU);
1908     for (auto *UU : UUsers) {
1909       Instruction *UI = cast<Instruction>(UU);
1910       Instruction *NewU = U->getAsInstruction();
1911       NewU->insertBefore(UI);
1912       UI->replaceUsesOfWith(U, NewU);
1913     }
1914     // We've replaced all the uses, so destroy the constant. (destroyConstant
1915     // will update value handles and metadata.)
1916     U->destroyConstant();
1917   }
1918 }
1919 
1920 /// Analyze the specified global variable and optimize
1921 /// it if possible.  If we make a change, return true.
1922 static bool
1923 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1924                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1925                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1926   auto &DL = GV->getParent()->getDataLayout();
1927   // If this is a first class global and has only one accessing function and
1928   // this function is non-recursive, we replace the global with a local alloca
1929   // in this function.
1930   //
1931   // NOTE: It doesn't make sense to promote non-single-value types since we
1932   // are just replacing static memory to stack memory.
1933   //
1934   // If the global is in different address space, don't bring it to stack.
1935   if (!GS.HasMultipleAccessingFunctions &&
1936       GS.AccessingFunction &&
1937       GV->getValueType()->isSingleValueType() &&
1938       GV->getType()->getAddressSpace() == 0 &&
1939       !GV->isExternallyInitialized() &&
1940       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1941       GS.AccessingFunction->doesNotRecurse() &&
1942       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1943                                           LookupDomTree)) {
1944     const DataLayout &DL = GV->getParent()->getDataLayout();
1945 
1946     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1947     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1948                                                    ->getEntryBlock().begin());
1949     Type *ElemTy = GV->getValueType();
1950     // FIXME: Pass Global's alignment when globals have alignment
1951     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1952                                         GV->getName(), &FirstI);
1953     if (!isa<UndefValue>(GV->getInitializer()))
1954       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1955 
1956     makeAllConstantUsesInstructions(GV);
1957 
1958     GV->replaceAllUsesWith(Alloca);
1959     GV->eraseFromParent();
1960     ++NumLocalized;
1961     return true;
1962   }
1963 
1964   // If the global is never loaded (but may be stored to), it is dead.
1965   // Delete it now.
1966   if (!GS.IsLoaded) {
1967     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1968 
1969     bool Changed;
1970     if (isLeakCheckerRoot(GV)) {
1971       // Delete any constant stores to the global.
1972       Changed = CleanupPointerRootUsers(GV, GetTLI);
1973     } else {
1974       // Delete any stores we can find to the global.  We may not be able to
1975       // make it completely dead though.
1976       Changed =
1977           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1978     }
1979 
1980     // If the global is dead now, delete it.
1981     if (GV->use_empty()) {
1982       GV->eraseFromParent();
1983       ++NumDeleted;
1984       Changed = true;
1985     }
1986     return Changed;
1987 
1988   }
1989   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1990     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1991 
1992     // Don't actually mark a global constant if it's atomic because atomic loads
1993     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1994     // requires write access to the variable even if it's not actually changed.
1995     if (GS.Ordering == AtomicOrdering::NotAtomic)
1996       GV->setConstant(true);
1997 
1998     // Clean up any obviously simplifiable users now.
1999     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2000 
2001     // If the global is dead now, just nuke it.
2002     if (GV->use_empty()) {
2003       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2004                         << "all users and delete global!\n");
2005       GV->eraseFromParent();
2006       ++NumDeleted;
2007       return true;
2008     }
2009 
2010     // Fall through to the next check; see if we can optimize further.
2011     ++NumMarked;
2012   }
2013   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2014     const DataLayout &DL = GV->getParent()->getDataLayout();
2015     if (SRAGlobal(GV, DL))
2016       return true;
2017   }
2018   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2019     // If the initial value for the global was an undef value, and if only
2020     // one other value was stored into it, we can just change the
2021     // initializer to be the stored value, then delete all stores to the
2022     // global.  This allows us to mark it constant.
2023     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2024       if (isa<UndefValue>(GV->getInitializer())) {
2025         // Change the initial value here.
2026         GV->setInitializer(SOVConstant);
2027 
2028         // Clean up any obviously simplifiable users now.
2029         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2030 
2031         if (GV->use_empty()) {
2032           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2033                             << "simplify all users and delete global!\n");
2034           GV->eraseFromParent();
2035           ++NumDeleted;
2036         }
2037         ++NumSubstitute;
2038         return true;
2039       }
2040 
2041     // Try to optimize globals based on the knowledge that only one value
2042     // (besides its initializer) is ever stored to the global.
2043     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2044                                  GetTLI))
2045       return true;
2046 
2047     // Otherwise, if the global was not a boolean, we can shrink it to be a
2048     // boolean.
2049     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2050       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2051         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2052           ++NumShrunkToBool;
2053           return true;
2054         }
2055       }
2056     }
2057   }
2058 
2059   return false;
2060 }
2061 
2062 /// Analyze the specified global variable and optimize it if possible.  If we
2063 /// make a change, return true.
2064 static bool
2065 processGlobal(GlobalValue &GV,
2066               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2067               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2068   if (GV.getName().startswith("llvm."))
2069     return false;
2070 
2071   GlobalStatus GS;
2072 
2073   if (GlobalStatus::analyzeGlobal(&GV, GS))
2074     return false;
2075 
2076   bool Changed = false;
2077   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2078     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2079                                                : GlobalValue::UnnamedAddr::Local;
2080     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2081       GV.setUnnamedAddr(NewUnnamedAddr);
2082       NumUnnamed++;
2083       Changed = true;
2084     }
2085   }
2086 
2087   // Do more involved optimizations if the global is internal.
2088   if (!GV.hasLocalLinkage())
2089     return Changed;
2090 
2091   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2092   if (!GVar)
2093     return Changed;
2094 
2095   if (GVar->isConstant() || !GVar->hasInitializer())
2096     return Changed;
2097 
2098   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2099 }
2100 
2101 /// Walk all of the direct calls of the specified function, changing them to
2102 /// FastCC.
2103 static void ChangeCalleesToFastCall(Function *F) {
2104   for (User *U : F->users()) {
2105     if (isa<BlockAddress>(U))
2106       continue;
2107     CallSite CS(cast<Instruction>(U));
2108     CS.setCallingConv(CallingConv::Fast);
2109   }
2110 }
2111 
2112 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2113                                Attribute::AttrKind A) {
2114   unsigned AttrIndex;
2115   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2116     return Attrs.removeAttribute(C, AttrIndex, A);
2117   return Attrs;
2118 }
2119 
2120 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2121   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2122   for (User *U : F->users()) {
2123     if (isa<BlockAddress>(U))
2124       continue;
2125     CallSite CS(cast<Instruction>(U));
2126     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2127   }
2128 }
2129 
2130 /// Return true if this is a calling convention that we'd like to change.  The
2131 /// idea here is that we don't want to mess with the convention if the user
2132 /// explicitly requested something with performance implications like coldcc,
2133 /// GHC, or anyregcc.
2134 static bool hasChangeableCC(Function *F) {
2135   CallingConv::ID CC = F->getCallingConv();
2136 
2137   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2138   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2139     return false;
2140 
2141   // FIXME: Change CC for the whole chain of musttail calls when possible.
2142   //
2143   // Can't change CC of the function that either has musttail calls, or is a
2144   // musttail callee itself
2145   for (User *U : F->users()) {
2146     if (isa<BlockAddress>(U))
2147       continue;
2148     CallInst* CI = dyn_cast<CallInst>(U);
2149     if (!CI)
2150       continue;
2151 
2152     if (CI->isMustTailCall())
2153       return false;
2154   }
2155 
2156   for (BasicBlock &BB : *F)
2157     if (BB.getTerminatingMustTailCall())
2158       return false;
2159 
2160   return true;
2161 }
2162 
2163 /// Return true if the block containing the call site has a BlockFrequency of
2164 /// less than ColdCCRelFreq% of the entry block.
2165 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2166   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2167   auto CallSiteBB = CS.getInstruction()->getParent();
2168   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2169   auto CallerEntryFreq =
2170       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2171   return CallSiteFreq < CallerEntryFreq * ColdProb;
2172 }
2173 
2174 // This function checks if the input function F is cold at all call sites. It
2175 // also looks each call site's containing function, returning false if the
2176 // caller function contains other non cold calls. The input vector AllCallsCold
2177 // contains a list of functions that only have call sites in cold blocks.
2178 static bool
2179 isValidCandidateForColdCC(Function &F,
2180                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2181                           const std::vector<Function *> &AllCallsCold) {
2182 
2183   if (F.user_empty())
2184     return false;
2185 
2186   for (User *U : F.users()) {
2187     if (isa<BlockAddress>(U))
2188       continue;
2189 
2190     CallSite CS(cast<Instruction>(U));
2191     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2192     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2193     if (!isColdCallSite(CS, CallerBFI))
2194       return false;
2195     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2196     if (It == AllCallsCold.end())
2197       return false;
2198   }
2199   return true;
2200 }
2201 
2202 static void changeCallSitesToColdCC(Function *F) {
2203   for (User *U : F->users()) {
2204     if (isa<BlockAddress>(U))
2205       continue;
2206     CallSite CS(cast<Instruction>(U));
2207     CS.setCallingConv(CallingConv::Cold);
2208   }
2209 }
2210 
2211 // This function iterates over all the call instructions in the input Function
2212 // and checks that all call sites are in cold blocks and are allowed to use the
2213 // coldcc calling convention.
2214 static bool
2215 hasOnlyColdCalls(Function &F,
2216                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2217   for (BasicBlock &BB : F) {
2218     for (Instruction &I : BB) {
2219       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2220         CallSite CS(cast<Instruction>(CI));
2221         // Skip over isline asm instructions since they aren't function calls.
2222         if (CI->isInlineAsm())
2223           continue;
2224         Function *CalledFn = CI->getCalledFunction();
2225         if (!CalledFn)
2226           return false;
2227         if (!CalledFn->hasLocalLinkage())
2228           return false;
2229         // Skip over instrinsics since they won't remain as function calls.
2230         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2231           continue;
2232         // Check if it's valid to use coldcc calling convention.
2233         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2234             CalledFn->hasAddressTaken())
2235           return false;
2236         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2237         if (!isColdCallSite(CS, CallerBFI))
2238           return false;
2239       }
2240     }
2241   }
2242   return true;
2243 }
2244 
2245 static bool
2246 OptimizeFunctions(Module &M,
2247                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2248                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2249                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2250                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2251                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2252 
2253   bool Changed = false;
2254 
2255   std::vector<Function *> AllCallsCold;
2256   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2257     Function *F = &*FI++;
2258     if (hasOnlyColdCalls(*F, GetBFI))
2259       AllCallsCold.push_back(F);
2260   }
2261 
2262   // Optimize functions.
2263   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2264     Function *F = &*FI++;
2265 
2266     // Don't perform global opt pass on naked functions; we don't want fast
2267     // calling conventions for naked functions.
2268     if (F->hasFnAttribute(Attribute::Naked))
2269       continue;
2270 
2271     // Functions without names cannot be referenced outside this module.
2272     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2273       F->setLinkage(GlobalValue::InternalLinkage);
2274 
2275     if (deleteIfDead(*F, NotDiscardableComdats)) {
2276       Changed = true;
2277       continue;
2278     }
2279 
2280     // LLVM's definition of dominance allows instructions that are cyclic
2281     // in unreachable blocks, e.g.:
2282     // %pat = select i1 %condition, @global, i16* %pat
2283     // because any instruction dominates an instruction in a block that's
2284     // not reachable from entry.
2285     // So, remove unreachable blocks from the function, because a) there's
2286     // no point in analyzing them and b) GlobalOpt should otherwise grow
2287     // some more complicated logic to break these cycles.
2288     if (!F->isDeclaration()) {
2289       auto &DT = LookupDomTree(*F);
2290       DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2291       Changed |= removeUnreachableBlocks(*F, &DTU);
2292     }
2293 
2294     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2295 
2296     if (!F->hasLocalLinkage())
2297       continue;
2298 
2299     // If we have an inalloca parameter that we can safely remove the
2300     // inalloca attribute from, do so. This unlocks optimizations that
2301     // wouldn't be safe in the presence of inalloca.
2302     // FIXME: We should also hoist alloca affected by this to the entry
2303     // block if possible.
2304     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2305         !F->hasAddressTaken()) {
2306       RemoveAttribute(F, Attribute::InAlloca);
2307       Changed = true;
2308     }
2309 
2310     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2311       NumInternalFunc++;
2312       TargetTransformInfo &TTI = GetTTI(*F);
2313       // Change the calling convention to coldcc if either stress testing is
2314       // enabled or the target would like to use coldcc on functions which are
2315       // cold at all call sites and the callers contain no other non coldcc
2316       // calls.
2317       if (EnableColdCCStressTest ||
2318           (TTI.useColdCCForColdCall(*F) &&
2319            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2320         F->setCallingConv(CallingConv::Cold);
2321         changeCallSitesToColdCC(F);
2322         Changed = true;
2323         NumColdCC++;
2324       }
2325     }
2326 
2327     if (hasChangeableCC(F) && !F->isVarArg() &&
2328         !F->hasAddressTaken()) {
2329       // If this function has a calling convention worth changing, is not a
2330       // varargs function, and is only called directly, promote it to use the
2331       // Fast calling convention.
2332       F->setCallingConv(CallingConv::Fast);
2333       ChangeCalleesToFastCall(F);
2334       ++NumFastCallFns;
2335       Changed = true;
2336     }
2337 
2338     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2339         !F->hasAddressTaken()) {
2340       // The function is not used by a trampoline intrinsic, so it is safe
2341       // to remove the 'nest' attribute.
2342       RemoveAttribute(F, Attribute::Nest);
2343       ++NumNestRemoved;
2344       Changed = true;
2345     }
2346   }
2347   return Changed;
2348 }
2349 
2350 static bool
2351 OptimizeGlobalVars(Module &M,
2352                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2353                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2354                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2355   bool Changed = false;
2356 
2357   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2358        GVI != E; ) {
2359     GlobalVariable *GV = &*GVI++;
2360     // Global variables without names cannot be referenced outside this module.
2361     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2362       GV->setLinkage(GlobalValue::InternalLinkage);
2363     // Simplify the initializer.
2364     if (GV->hasInitializer())
2365       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2366         auto &DL = M.getDataLayout();
2367         // TLI is not used in the case of a Constant, so use default nullptr
2368         // for that optional parameter, since we don't have a Function to
2369         // provide GetTLI anyway.
2370         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2371         if (New && New != C)
2372           GV->setInitializer(New);
2373       }
2374 
2375     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2376       Changed = true;
2377       continue;
2378     }
2379 
2380     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2381   }
2382   return Changed;
2383 }
2384 
2385 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2386 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2387 /// GEP operands of Addr [0, OpNo) have been stepped into.
2388 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2389                                    ConstantExpr *Addr, unsigned OpNo) {
2390   // Base case of the recursion.
2391   if (OpNo == Addr->getNumOperands()) {
2392     assert(Val->getType() == Init->getType() && "Type mismatch!");
2393     return Val;
2394   }
2395 
2396   SmallVector<Constant*, 32> Elts;
2397   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2398     // Break up the constant into its elements.
2399     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2400       Elts.push_back(Init->getAggregateElement(i));
2401 
2402     // Replace the element that we are supposed to.
2403     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2404     unsigned Idx = CU->getZExtValue();
2405     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2406     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2407 
2408     // Return the modified struct.
2409     return ConstantStruct::get(STy, Elts);
2410   }
2411 
2412   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2413   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2414   uint64_t NumElts = InitTy->getNumElements();
2415 
2416   // Break up the array into elements.
2417   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2418     Elts.push_back(Init->getAggregateElement(i));
2419 
2420   assert(CI->getZExtValue() < NumElts);
2421   Elts[CI->getZExtValue()] =
2422     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2423 
2424   if (Init->getType()->isArrayTy())
2425     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2426   return ConstantVector::get(Elts);
2427 }
2428 
2429 /// We have decided that Addr (which satisfies the predicate
2430 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2431 static void CommitValueTo(Constant *Val, Constant *Addr) {
2432   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2433     assert(GV->hasInitializer());
2434     GV->setInitializer(Val);
2435     return;
2436   }
2437 
2438   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2439   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2440   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2441 }
2442 
2443 /// Given a map of address -> value, where addresses are expected to be some form
2444 /// of either a global or a constant GEP, set the initializer for the address to
2445 /// be the value. This performs mostly the same function as CommitValueTo()
2446 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2447 /// case where the set of addresses are GEPs sharing the same underlying global,
2448 /// processing the GEPs in batches rather than individually.
2449 ///
2450 /// To give an example, consider the following C++ code adapted from the clang
2451 /// regression tests:
2452 /// struct S {
2453 ///  int n = 10;
2454 ///  int m = 2 * n;
2455 ///  S(int a) : n(a) {}
2456 /// };
2457 ///
2458 /// template<typename T>
2459 /// struct U {
2460 ///  T *r = &q;
2461 ///  T q = 42;
2462 ///  U *p = this;
2463 /// };
2464 ///
2465 /// U<S> e;
2466 ///
2467 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2468 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2469 /// members. This batch algorithm will simply use general CommitValueTo() method
2470 /// to handle the complex nested S struct initialization of 'q', before
2471 /// processing the outermost members in a single batch. Using CommitValueTo() to
2472 /// handle member in the outer struct is inefficient when the struct/array is
2473 /// very large as we end up creating and destroy constant arrays for each
2474 /// initialization.
2475 /// For the above case, we expect the following IR to be generated:
2476 ///
2477 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2478 /// %struct.S = type { i32, i32 }
2479 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2480 ///                                                  i64 0, i32 1),
2481 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2482 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2483 /// constant expression, while the other two elements of @e are "simple".
2484 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2485   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2486   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2487   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2488   SimpleCEs.reserve(Mem.size());
2489 
2490   for (const auto &I : Mem) {
2491     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2492       GVs.push_back(std::make_pair(GV, I.second));
2493     } else {
2494       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2495       // We don't handle the deeply recursive case using the batch method.
2496       if (GEP->getNumOperands() > 3)
2497         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2498       else
2499         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2500     }
2501   }
2502 
2503   // The algorithm below doesn't handle cases like nested structs, so use the
2504   // slower fully general method if we have to.
2505   for (auto ComplexCE : ComplexCEs)
2506     CommitValueTo(ComplexCE.second, ComplexCE.first);
2507 
2508   for (auto GVPair : GVs) {
2509     assert(GVPair.first->hasInitializer());
2510     GVPair.first->setInitializer(GVPair.second);
2511   }
2512 
2513   if (SimpleCEs.empty())
2514     return;
2515 
2516   // We cache a single global's initializer elements in the case where the
2517   // subsequent address/val pair uses the same one. This avoids throwing away and
2518   // rebuilding the constant struct/vector/array just because one element is
2519   // modified at a time.
2520   SmallVector<Constant *, 32> Elts;
2521   Elts.reserve(SimpleCEs.size());
2522   GlobalVariable *CurrentGV = nullptr;
2523 
2524   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2525     Constant *Init = GV->getInitializer();
2526     Type *Ty = Init->getType();
2527     if (Update) {
2528       if (CurrentGV) {
2529         assert(CurrentGV && "Expected a GV to commit to!");
2530         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2531         // We have a valid cache that needs to be committed.
2532         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2533           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2534         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2535           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2536         else
2537           CurrentGV->setInitializer(ConstantVector::get(Elts));
2538       }
2539       if (CurrentGV == GV)
2540         return;
2541       // Need to clear and set up cache for new initializer.
2542       CurrentGV = GV;
2543       Elts.clear();
2544       unsigned NumElts;
2545       if (auto *STy = dyn_cast<StructType>(Ty))
2546         NumElts = STy->getNumElements();
2547       else
2548         NumElts = cast<SequentialType>(Ty)->getNumElements();
2549       for (unsigned i = 0, e = NumElts; i != e; ++i)
2550         Elts.push_back(Init->getAggregateElement(i));
2551     }
2552   };
2553 
2554   for (auto CEPair : SimpleCEs) {
2555     ConstantExpr *GEP = CEPair.first;
2556     Constant *Val = CEPair.second;
2557 
2558     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2559     commitAndSetupCache(GV, GV != CurrentGV);
2560     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2561     Elts[CI->getZExtValue()] = Val;
2562   }
2563   // The last initializer in the list needs to be committed, others
2564   // will be committed on a new initializer being processed.
2565   commitAndSetupCache(CurrentGV, true);
2566 }
2567 
2568 /// Evaluate static constructors in the function, if we can.  Return true if we
2569 /// can, false otherwise.
2570 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2571                                       TargetLibraryInfo *TLI) {
2572   // Call the function.
2573   Evaluator Eval(DL, TLI);
2574   Constant *RetValDummy;
2575   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2576                                            SmallVector<Constant*, 0>());
2577 
2578   if (EvalSuccess) {
2579     ++NumCtorsEvaluated;
2580 
2581     // We succeeded at evaluation: commit the result.
2582     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2583                       << F->getName() << "' to "
2584                       << Eval.getMutatedMemory().size() << " stores.\n");
2585     BatchCommitValueTo(Eval.getMutatedMemory());
2586     for (GlobalVariable *GV : Eval.getInvariants())
2587       GV->setConstant(true);
2588   }
2589 
2590   return EvalSuccess;
2591 }
2592 
2593 static int compareNames(Constant *const *A, Constant *const *B) {
2594   Value *AStripped = (*A)->stripPointerCasts();
2595   Value *BStripped = (*B)->stripPointerCasts();
2596   return AStripped->getName().compare(BStripped->getName());
2597 }
2598 
2599 static void setUsedInitializer(GlobalVariable &V,
2600                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2601   if (Init.empty()) {
2602     V.eraseFromParent();
2603     return;
2604   }
2605 
2606   // Type of pointer to the array of pointers.
2607   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2608 
2609   SmallVector<Constant *, 8> UsedArray;
2610   for (GlobalValue *GV : Init) {
2611     Constant *Cast
2612       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2613     UsedArray.push_back(Cast);
2614   }
2615   // Sort to get deterministic order.
2616   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2617   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2618 
2619   Module *M = V.getParent();
2620   V.removeFromParent();
2621   GlobalVariable *NV =
2622       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2623                          ConstantArray::get(ATy, UsedArray), "");
2624   NV->takeName(&V);
2625   NV->setSection("llvm.metadata");
2626   delete &V;
2627 }
2628 
2629 namespace {
2630 
2631 /// An easy to access representation of llvm.used and llvm.compiler.used.
2632 class LLVMUsed {
2633   SmallPtrSet<GlobalValue *, 8> Used;
2634   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2635   GlobalVariable *UsedV;
2636   GlobalVariable *CompilerUsedV;
2637 
2638 public:
2639   LLVMUsed(Module &M) {
2640     UsedV = collectUsedGlobalVariables(M, Used, false);
2641     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2642   }
2643 
2644   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2645   using used_iterator_range = iterator_range<iterator>;
2646 
2647   iterator usedBegin() { return Used.begin(); }
2648   iterator usedEnd() { return Used.end(); }
2649 
2650   used_iterator_range used() {
2651     return used_iterator_range(usedBegin(), usedEnd());
2652   }
2653 
2654   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2655   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2656 
2657   used_iterator_range compilerUsed() {
2658     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2659   }
2660 
2661   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2662 
2663   bool compilerUsedCount(GlobalValue *GV) const {
2664     return CompilerUsed.count(GV);
2665   }
2666 
2667   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2668   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2669   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2670 
2671   bool compilerUsedInsert(GlobalValue *GV) {
2672     return CompilerUsed.insert(GV).second;
2673   }
2674 
2675   void syncVariablesAndSets() {
2676     if (UsedV)
2677       setUsedInitializer(*UsedV, Used);
2678     if (CompilerUsedV)
2679       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2680   }
2681 };
2682 
2683 } // end anonymous namespace
2684 
2685 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2686   if (GA.use_empty()) // No use at all.
2687     return false;
2688 
2689   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2690          "We should have removed the duplicated "
2691          "element from llvm.compiler.used");
2692   if (!GA.hasOneUse())
2693     // Strictly more than one use. So at least one is not in llvm.used and
2694     // llvm.compiler.used.
2695     return true;
2696 
2697   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2698   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2699 }
2700 
2701 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2702                                                const LLVMUsed &U) {
2703   unsigned N = 2;
2704   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2705          "We should have removed the duplicated "
2706          "element from llvm.compiler.used");
2707   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2708     ++N;
2709   return V.hasNUsesOrMore(N);
2710 }
2711 
2712 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2713   if (!GA.hasLocalLinkage())
2714     return true;
2715 
2716   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2717 }
2718 
2719 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2720                              bool &RenameTarget) {
2721   RenameTarget = false;
2722   bool Ret = false;
2723   if (hasUseOtherThanLLVMUsed(GA, U))
2724     Ret = true;
2725 
2726   // If the alias is externally visible, we may still be able to simplify it.
2727   if (!mayHaveOtherReferences(GA, U))
2728     return Ret;
2729 
2730   // If the aliasee has internal linkage, give it the name and linkage
2731   // of the alias, and delete the alias.  This turns:
2732   //   define internal ... @f(...)
2733   //   @a = alias ... @f
2734   // into:
2735   //   define ... @a(...)
2736   Constant *Aliasee = GA.getAliasee();
2737   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2738   if (!Target->hasLocalLinkage())
2739     return Ret;
2740 
2741   // Do not perform the transform if multiple aliases potentially target the
2742   // aliasee. This check also ensures that it is safe to replace the section
2743   // and other attributes of the aliasee with those of the alias.
2744   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2745     return Ret;
2746 
2747   RenameTarget = true;
2748   return true;
2749 }
2750 
2751 static bool
2752 OptimizeGlobalAliases(Module &M,
2753                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2754   bool Changed = false;
2755   LLVMUsed Used(M);
2756 
2757   for (GlobalValue *GV : Used.used())
2758     Used.compilerUsedErase(GV);
2759 
2760   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2761        I != E;) {
2762     GlobalAlias *J = &*I++;
2763 
2764     // Aliases without names cannot be referenced outside this module.
2765     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2766       J->setLinkage(GlobalValue::InternalLinkage);
2767 
2768     if (deleteIfDead(*J, NotDiscardableComdats)) {
2769       Changed = true;
2770       continue;
2771     }
2772 
2773     // If the alias can change at link time, nothing can be done - bail out.
2774     if (J->isInterposable())
2775       continue;
2776 
2777     Constant *Aliasee = J->getAliasee();
2778     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2779     // We can't trivially replace the alias with the aliasee if the aliasee is
2780     // non-trivial in some way.
2781     // TODO: Try to handle non-zero GEPs of local aliasees.
2782     if (!Target)
2783       continue;
2784     Target->removeDeadConstantUsers();
2785 
2786     // Make all users of the alias use the aliasee instead.
2787     bool RenameTarget;
2788     if (!hasUsesToReplace(*J, Used, RenameTarget))
2789       continue;
2790 
2791     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2792     ++NumAliasesResolved;
2793     Changed = true;
2794 
2795     if (RenameTarget) {
2796       // Give the aliasee the name, linkage and other attributes of the alias.
2797       Target->takeName(&*J);
2798       Target->setLinkage(J->getLinkage());
2799       Target->setDSOLocal(J->isDSOLocal());
2800       Target->setVisibility(J->getVisibility());
2801       Target->setDLLStorageClass(J->getDLLStorageClass());
2802 
2803       if (Used.usedErase(&*J))
2804         Used.usedInsert(Target);
2805 
2806       if (Used.compilerUsedErase(&*J))
2807         Used.compilerUsedInsert(Target);
2808     } else if (mayHaveOtherReferences(*J, Used))
2809       continue;
2810 
2811     // Delete the alias.
2812     M.getAliasList().erase(J);
2813     ++NumAliasesRemoved;
2814     Changed = true;
2815   }
2816 
2817   Used.syncVariablesAndSets();
2818 
2819   return Changed;
2820 }
2821 
2822 static Function *
2823 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2824   // Hack to get a default TLI before we have actual Function.
2825   auto FuncIter = M.begin();
2826   if (FuncIter == M.end())
2827     return nullptr;
2828   auto *TLI = &GetTLI(*FuncIter);
2829 
2830   LibFunc F = LibFunc_cxa_atexit;
2831   if (!TLI->has(F))
2832     return nullptr;
2833 
2834   Function *Fn = M.getFunction(TLI->getName(F));
2835   if (!Fn)
2836     return nullptr;
2837 
2838   // Now get the actual TLI for Fn.
2839   TLI = &GetTLI(*Fn);
2840 
2841   // Make sure that the function has the correct prototype.
2842   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2843     return nullptr;
2844 
2845   return Fn;
2846 }
2847 
2848 /// Returns whether the given function is an empty C++ destructor and can
2849 /// therefore be eliminated.
2850 /// Note that we assume that other optimization passes have already simplified
2851 /// the code so we simply check for 'ret'.
2852 static bool cxxDtorIsEmpty(const Function &Fn) {
2853   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2854   // nounwind, but that doesn't seem worth doing.
2855   if (Fn.isDeclaration())
2856     return false;
2857 
2858   for (auto &I : Fn.getEntryBlock()) {
2859     if (isa<DbgInfoIntrinsic>(I))
2860       continue;
2861     if (isa<ReturnInst>(I))
2862       return true;
2863     break;
2864   }
2865   return false;
2866 }
2867 
2868 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2869   /// Itanium C++ ABI p3.3.5:
2870   ///
2871   ///   After constructing a global (or local static) object, that will require
2872   ///   destruction on exit, a termination function is registered as follows:
2873   ///
2874   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2875   ///
2876   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2877   ///   call f(p) when DSO d is unloaded, before all such termination calls
2878   ///   registered before this one. It returns zero if registration is
2879   ///   successful, nonzero on failure.
2880 
2881   // This pass will look for calls to __cxa_atexit where the function is trivial
2882   // and remove them.
2883   bool Changed = false;
2884 
2885   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2886        I != E;) {
2887     // We're only interested in calls. Theoretically, we could handle invoke
2888     // instructions as well, but neither llvm-gcc nor clang generate invokes
2889     // to __cxa_atexit.
2890     CallInst *CI = dyn_cast<CallInst>(*I++);
2891     if (!CI)
2892       continue;
2893 
2894     Function *DtorFn =
2895       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2896     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2897       continue;
2898 
2899     // Just remove the call.
2900     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2901     CI->eraseFromParent();
2902 
2903     ++NumCXXDtorsRemoved;
2904 
2905     Changed |= true;
2906   }
2907 
2908   return Changed;
2909 }
2910 
2911 static bool optimizeGlobalsInModule(
2912     Module &M, const DataLayout &DL,
2913     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2914     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2915     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2916     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2917   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2918   bool Changed = false;
2919   bool LocalChange = true;
2920   while (LocalChange) {
2921     LocalChange = false;
2922 
2923     NotDiscardableComdats.clear();
2924     for (const GlobalVariable &GV : M.globals())
2925       if (const Comdat *C = GV.getComdat())
2926         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2927           NotDiscardableComdats.insert(C);
2928     for (Function &F : M)
2929       if (const Comdat *C = F.getComdat())
2930         if (!F.isDefTriviallyDead())
2931           NotDiscardableComdats.insert(C);
2932     for (GlobalAlias &GA : M.aliases())
2933       if (const Comdat *C = GA.getComdat())
2934         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2935           NotDiscardableComdats.insert(C);
2936 
2937     // Delete functions that are trivially dead, ccc -> fastcc
2938     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2939                                      NotDiscardableComdats);
2940 
2941     // Optimize global_ctors list.
2942     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2943       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2944     });
2945 
2946     // Optimize non-address-taken globals.
2947     LocalChange |=
2948         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2949 
2950     // Resolve aliases, when possible.
2951     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2952 
2953     // Try to remove trivial global destructors if they are not removed
2954     // already.
2955     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2956     if (CXAAtExitFn)
2957       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2958 
2959     Changed |= LocalChange;
2960   }
2961 
2962   // TODO: Move all global ctors functions to the end of the module for code
2963   // layout.
2964 
2965   return Changed;
2966 }
2967 
2968 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2969     auto &DL = M.getDataLayout();
2970     auto &FAM =
2971         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2972     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2973       return FAM.getResult<DominatorTreeAnalysis>(F);
2974     };
2975     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2976       return FAM.getResult<TargetLibraryAnalysis>(F);
2977     };
2978     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2979       return FAM.getResult<TargetIRAnalysis>(F);
2980     };
2981 
2982     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2983       return FAM.getResult<BlockFrequencyAnalysis>(F);
2984     };
2985 
2986     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2987       return PreservedAnalyses::all();
2988     return PreservedAnalyses::none();
2989 }
2990 
2991 namespace {
2992 
2993 struct GlobalOptLegacyPass : public ModulePass {
2994   static char ID; // Pass identification, replacement for typeid
2995 
2996   GlobalOptLegacyPass() : ModulePass(ID) {
2997     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2998   }
2999 
3000   bool runOnModule(Module &M) override {
3001     if (skipModule(M))
3002       return false;
3003 
3004     auto &DL = M.getDataLayout();
3005     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3006       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3007     };
3008     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3009       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3010     };
3011     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3012       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3013     };
3014 
3015     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3016       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3017     };
3018 
3019     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3020                                    LookupDomTree);
3021   }
3022 
3023   void getAnalysisUsage(AnalysisUsage &AU) const override {
3024     AU.addRequired<TargetLibraryInfoWrapperPass>();
3025     AU.addRequired<TargetTransformInfoWrapperPass>();
3026     AU.addRequired<DominatorTreeWrapperPass>();
3027     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3028   }
3029 };
3030 
3031 } // end anonymous namespace
3032 
3033 char GlobalOptLegacyPass::ID = 0;
3034 
3035 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3036                       "Global Variable Optimizer", false, false)
3037 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3039 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3041 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3042                     "Global Variable Optimizer", false, false)
3043 
3044 ModulePass *llvm::createGlobalOptimizerPass() {
3045   return new GlobalOptLegacyPass();
3046 }
3047