1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: return true; 132 case Type::ArrayTyID: 133 case Type::VectorTyID: { 134 SequentialType *STy = cast<SequentialType>(Ty); 135 Types.push_back(STy->getElementType()); 136 break; 137 } 138 case Type::StructTyID: { 139 StructType *STy = cast<StructType>(Ty); 140 if (STy->isOpaque()) return true; 141 for (StructType::element_iterator I = STy->element_begin(), 142 E = STy->element_end(); I != E; ++I) { 143 Type *InnerTy = *I; 144 if (isa<PointerType>(InnerTy)) return true; 145 if (isa<CompositeType>(InnerTy)) 146 Types.push_back(InnerTy); 147 } 148 break; 149 } 150 } 151 if (--Limit == 0) return true; 152 } while (!Types.empty()); 153 return false; 154 } 155 156 /// Given a value that is stored to a global but never read, determine whether 157 /// it's safe to remove the store and the chain of computation that feeds the 158 /// store. 159 static bool IsSafeComputationToRemove( 160 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 161 do { 162 if (isa<Constant>(V)) 163 return true; 164 if (!V->hasOneUse()) 165 return false; 166 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 167 isa<GlobalValue>(V)) 168 return false; 169 if (isAllocationFn(V, GetTLI)) 170 return true; 171 172 Instruction *I = cast<Instruction>(V); 173 if (I->mayHaveSideEffects()) 174 return false; 175 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 176 if (!GEP->hasAllConstantIndices()) 177 return false; 178 } else if (I->getNumOperands() != 1) { 179 return false; 180 } 181 182 V = I->getOperand(0); 183 } while (true); 184 } 185 186 /// This GV is a pointer root. Loop over all users of the global and clean up 187 /// any that obviously don't assign the global a value that isn't dynamically 188 /// allocated. 189 static bool 190 CleanupPointerRootUsers(GlobalVariable *GV, 191 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 192 // A brief explanation of leak checkers. The goal is to find bugs where 193 // pointers are forgotten, causing an accumulating growth in memory 194 // usage over time. The common strategy for leak checkers is to whitelist the 195 // memory pointed to by globals at exit. This is popular because it also 196 // solves another problem where the main thread of a C++ program may shut down 197 // before other threads that are still expecting to use those globals. To 198 // handle that case, we expect the program may create a singleton and never 199 // destroy it. 200 201 bool Changed = false; 202 203 // If Dead[n].first is the only use of a malloc result, we can delete its 204 // chain of computation and the store to the global in Dead[n].second. 205 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 206 207 // Constants can't be pointers to dynamically allocated memory. 208 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 209 UI != E;) { 210 User *U = *UI++; 211 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 212 Value *V = SI->getValueOperand(); 213 if (isa<Constant>(V)) { 214 Changed = true; 215 SI->eraseFromParent(); 216 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 217 if (I->hasOneUse()) 218 Dead.push_back(std::make_pair(I, SI)); 219 } 220 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 221 if (isa<Constant>(MSI->getValue())) { 222 Changed = true; 223 MSI->eraseFromParent(); 224 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 225 if (I->hasOneUse()) 226 Dead.push_back(std::make_pair(I, MSI)); 227 } 228 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 229 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 230 if (MemSrc && MemSrc->isConstant()) { 231 Changed = true; 232 MTI->eraseFromParent(); 233 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 234 if (I->hasOneUse()) 235 Dead.push_back(std::make_pair(I, MTI)); 236 } 237 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 238 if (CE->use_empty()) { 239 CE->destroyConstant(); 240 Changed = true; 241 } 242 } else if (Constant *C = dyn_cast<Constant>(U)) { 243 if (isSafeToDestroyConstant(C)) { 244 C->destroyConstant(); 245 // This could have invalidated UI, start over from scratch. 246 Dead.clear(); 247 CleanupPointerRootUsers(GV, GetTLI); 248 return true; 249 } 250 } 251 } 252 253 for (int i = 0, e = Dead.size(); i != e; ++i) { 254 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 255 Dead[i].second->eraseFromParent(); 256 Instruction *I = Dead[i].first; 257 do { 258 if (isAllocationFn(I, GetTLI)) 259 break; 260 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 261 if (!J) 262 break; 263 I->eraseFromParent(); 264 I = J; 265 } while (true); 266 I->eraseFromParent(); 267 } 268 } 269 270 return Changed; 271 } 272 273 /// We just marked GV constant. Loop over all users of the global, cleaning up 274 /// the obvious ones. This is largely just a quick scan over the use list to 275 /// clean up the easy and obvious cruft. This returns true if it made a change. 276 static bool CleanupConstantGlobalUsers( 277 Value *V, Constant *Init, const DataLayout &DL, 278 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 279 bool Changed = false; 280 // Note that we need to use a weak value handle for the worklist items. When 281 // we delete a constant array, we may also be holding pointer to one of its 282 // elements (or an element of one of its elements if we're dealing with an 283 // array of arrays) in the worklist. 284 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 285 while (!WorkList.empty()) { 286 Value *UV = WorkList.pop_back_val(); 287 if (!UV) 288 continue; 289 290 User *U = cast<User>(UV); 291 292 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 293 if (Init) { 294 // Replace the load with the initializer. 295 LI->replaceAllUsesWith(Init); 296 LI->eraseFromParent(); 297 Changed = true; 298 } 299 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 300 // Store must be unreachable or storing Init into the global. 301 SI->eraseFromParent(); 302 Changed = true; 303 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 304 if (CE->getOpcode() == Instruction::GetElementPtr) { 305 Constant *SubInit = nullptr; 306 if (Init) 307 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 308 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 309 } else if ((CE->getOpcode() == Instruction::BitCast && 310 CE->getType()->isPointerTy()) || 311 CE->getOpcode() == Instruction::AddrSpaceCast) { 312 // Pointer cast, delete any stores and memsets to the global. 313 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 314 } 315 316 if (CE->use_empty()) { 317 CE->destroyConstant(); 318 Changed = true; 319 } 320 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 321 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 322 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 323 // and will invalidate our notion of what Init is. 324 Constant *SubInit = nullptr; 325 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 326 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 327 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 328 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 329 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 330 331 // If the initializer is an all-null value and we have an inbounds GEP, 332 // we already know what the result of any load from that GEP is. 333 // TODO: Handle splats. 334 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 335 SubInit = Constant::getNullValue(GEP->getResultElementType()); 336 } 337 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 338 339 if (GEP->use_empty()) { 340 GEP->eraseFromParent(); 341 Changed = true; 342 } 343 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 344 if (MI->getRawDest() == V) { 345 MI->eraseFromParent(); 346 Changed = true; 347 } 348 349 } else if (Constant *C = dyn_cast<Constant>(U)) { 350 // If we have a chain of dead constantexprs or other things dangling from 351 // us, and if they are all dead, nuke them without remorse. 352 if (isSafeToDestroyConstant(C)) { 353 C->destroyConstant(); 354 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 355 return true; 356 } 357 } 358 } 359 return Changed; 360 } 361 362 static bool isSafeSROAElementUse(Value *V); 363 364 /// Return true if the specified GEP is a safe user of a derived 365 /// expression from a global that we want to SROA. 366 static bool isSafeSROAGEP(User *U) { 367 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 368 // don't like < 3 operand CE's, and we don't like non-constant integer 369 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 370 // value of C. 371 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 372 !cast<Constant>(U->getOperand(1))->isNullValue()) 373 return false; 374 375 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 376 ++GEPI; // Skip over the pointer index. 377 378 // For all other level we require that the indices are constant and inrange. 379 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 380 // invalid things like allowing i to index an out-of-range subscript that 381 // accesses A[1]. This can also happen between different members of a struct 382 // in llvm IR. 383 for (; GEPI != E; ++GEPI) { 384 if (GEPI.isStruct()) 385 continue; 386 387 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 388 if (!IdxVal || (GEPI.isBoundedSequential() && 389 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 390 return false; 391 } 392 393 return llvm::all_of(U->users(), 394 [](User *UU) { return isSafeSROAElementUse(UU); }); 395 } 396 397 /// Return true if the specified instruction is a safe user of a derived 398 /// expression from a global that we want to SROA. 399 static bool isSafeSROAElementUse(Value *V) { 400 // We might have a dead and dangling constant hanging off of here. 401 if (Constant *C = dyn_cast<Constant>(V)) 402 return isSafeToDestroyConstant(C); 403 404 Instruction *I = dyn_cast<Instruction>(V); 405 if (!I) return false; 406 407 // Loads are ok. 408 if (isa<LoadInst>(I)) return true; 409 410 // Stores *to* the pointer are ok. 411 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 412 return SI->getOperand(0) != V; 413 414 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 415 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 416 } 417 418 /// Look at all uses of the global and decide whether it is safe for us to 419 /// perform this transformation. 420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 421 for (User *U : GV->users()) { 422 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 423 if (!isa<GetElementPtrInst>(U) && 424 (!isa<ConstantExpr>(U) || 425 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 426 return false; 427 428 // Check the gep and it's users are safe to SRA 429 if (!isSafeSROAGEP(U)) 430 return false; 431 } 432 433 return true; 434 } 435 436 static bool CanDoGlobalSRA(GlobalVariable *GV) { 437 Constant *Init = GV->getInitializer(); 438 439 if (isa<StructType>(Init->getType())) { 440 // nothing to check 441 } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) { 442 if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16)) 443 return false; // It's not worth it. 444 } else 445 return false; 446 447 return GlobalUsersSafeToSRA(GV); 448 } 449 450 /// Copy over the debug info for a variable to its SRA replacements. 451 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 452 uint64_t FragmentOffsetInBits, 453 uint64_t FragmentSizeInBits, 454 unsigned NumElements) { 455 SmallVector<DIGlobalVariableExpression *, 1> GVs; 456 GV->getDebugInfo(GVs); 457 for (auto *GVE : GVs) { 458 DIVariable *Var = GVE->getVariable(); 459 DIExpression *Expr = GVE->getExpression(); 460 if (NumElements > 1) { 461 if (auto E = DIExpression::createFragmentExpression( 462 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 463 Expr = *E; 464 else 465 return; 466 } 467 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 468 NGV->addDebugInfo(NGVE); 469 } 470 } 471 472 /// Perform scalar replacement of aggregates on the specified global variable. 473 /// This opens the door for other optimizations by exposing the behavior of the 474 /// program in a more fine-grained way. We have determined that this 475 /// transformation is safe already. We return the first global variable we 476 /// insert so that the caller can reprocess it. 477 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 478 // Make sure this global only has simple uses that we can SRA. 479 if (!CanDoGlobalSRA(GV)) 480 return nullptr; 481 482 assert(GV->hasLocalLinkage()); 483 Constant *Init = GV->getInitializer(); 484 Type *Ty = Init->getType(); 485 486 std::map<unsigned, GlobalVariable *> NewGlobals; 487 488 // Get the alignment of the global, either explicit or target-specific. 489 unsigned StartAlignment = GV->getAlignment(); 490 if (StartAlignment == 0) 491 StartAlignment = DL.getABITypeAlignment(GV->getType()); 492 493 // Loop over all users and create replacement variables for used aggregate 494 // elements. 495 for (User *GEP : GV->users()) { 496 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 497 Instruction::GetElementPtr) || 498 isa<GetElementPtrInst>(GEP)) && 499 "NonGEP CE's are not SRAable!"); 500 501 // Ignore the 1th operand, which has to be zero or else the program is quite 502 // broken (undefined). Get the 2nd operand, which is the structure or array 503 // index. 504 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 505 if (NewGlobals.count(ElementIdx) == 1) 506 continue; // we`ve already created replacement variable 507 assert(NewGlobals.count(ElementIdx) == 0); 508 509 Type *ElTy = nullptr; 510 if (StructType *STy = dyn_cast<StructType>(Ty)) 511 ElTy = STy->getElementType(ElementIdx); 512 else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) 513 ElTy = STy->getElementType(); 514 assert(ElTy); 515 516 Constant *In = Init->getAggregateElement(ElementIdx); 517 assert(In && "Couldn't get element of initializer?"); 518 519 GlobalVariable *NGV = new GlobalVariable( 520 ElTy, false, GlobalVariable::InternalLinkage, In, 521 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 522 GV->getType()->getAddressSpace()); 523 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 524 NGV->copyAttributesFrom(GV); 525 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 526 527 if (StructType *STy = dyn_cast<StructType>(Ty)) { 528 const StructLayout &Layout = *DL.getStructLayout(STy); 529 530 // Calculate the known alignment of the field. If the original aggregate 531 // had 256 byte alignment for example, something might depend on that: 532 // propagate info to each field. 533 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 534 Align NewAlign(MinAlign(StartAlignment, FieldOffset)); 535 if (NewAlign > 536 Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx)))) 537 NGV->setAlignment(NewAlign); 538 539 // Copy over the debug info for the variable. 540 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 541 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 542 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, 543 STy->getNumElements()); 544 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 545 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 546 Align EltAlign(DL.getABITypeAlignment(ElTy)); 547 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 548 549 // Calculate the known alignment of the field. If the original aggregate 550 // had 256 byte alignment for example, something might depend on that: 551 // propagate info to each field. 552 Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx)); 553 if (NewAlign > EltAlign) 554 NGV->setAlignment(NewAlign); 555 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 556 FragmentSizeInBits, STy->getNumElements()); 557 } 558 } 559 560 if (NewGlobals.empty()) 561 return nullptr; 562 563 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 564 for (auto NewGlobalVar : NewGlobals) 565 Globals.push_back(NewGlobalVar.second); 566 567 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 568 569 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 570 571 // Loop over all of the uses of the global, replacing the constantexpr geps, 572 // with smaller constantexpr geps or direct references. 573 while (!GV->use_empty()) { 574 User *GEP = GV->user_back(); 575 assert(((isa<ConstantExpr>(GEP) && 576 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 577 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 578 579 // Ignore the 1th operand, which has to be zero or else the program is quite 580 // broken (undefined). Get the 2nd operand, which is the structure or array 581 // index. 582 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 583 assert(NewGlobals.count(ElementIdx) == 1); 584 585 Value *NewPtr = NewGlobals[ElementIdx]; 586 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 587 588 // Form a shorter GEP if needed. 589 if (GEP->getNumOperands() > 3) { 590 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 591 SmallVector<Constant*, 8> Idxs; 592 Idxs.push_back(NullInt); 593 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 594 Idxs.push_back(CE->getOperand(i)); 595 NewPtr = 596 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 597 } else { 598 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 599 SmallVector<Value*, 8> Idxs; 600 Idxs.push_back(NullInt); 601 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 602 Idxs.push_back(GEPI->getOperand(i)); 603 NewPtr = GetElementPtrInst::Create( 604 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 605 GEPI); 606 } 607 } 608 GEP->replaceAllUsesWith(NewPtr); 609 610 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 611 GEPI->eraseFromParent(); 612 else 613 cast<ConstantExpr>(GEP)->destroyConstant(); 614 } 615 616 // Delete the old global, now that it is dead. 617 Globals.erase(GV); 618 ++NumSRA; 619 620 assert(NewGlobals.size() > 0); 621 return NewGlobals.begin()->second; 622 } 623 624 /// Return true if all users of the specified value will trap if the value is 625 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 626 /// reprocessing them. 627 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 628 SmallPtrSetImpl<const PHINode*> &PHIs) { 629 for (const User *U : V->users()) { 630 if (const Instruction *I = dyn_cast<Instruction>(U)) { 631 // If null pointer is considered valid, then all uses are non-trapping. 632 // Non address-space 0 globals have already been pruned by the caller. 633 if (NullPointerIsDefined(I->getFunction())) 634 return false; 635 } 636 if (isa<LoadInst>(U)) { 637 // Will trap. 638 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 639 if (SI->getOperand(0) == V) { 640 //cerr << "NONTRAPPING USE: " << *U; 641 return false; // Storing the value. 642 } 643 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 644 if (CI->getCalledValue() != V) { 645 //cerr << "NONTRAPPING USE: " << *U; 646 return false; // Not calling the ptr 647 } 648 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 649 if (II->getCalledValue() != V) { 650 //cerr << "NONTRAPPING USE: " << *U; 651 return false; // Not calling the ptr 652 } 653 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 654 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 655 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 656 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 657 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 658 // If we've already seen this phi node, ignore it, it has already been 659 // checked. 660 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 661 return false; 662 } else if (isa<ICmpInst>(U) && 663 isa<ConstantPointerNull>(U->getOperand(1))) { 664 // Ignore icmp X, null 665 } else { 666 //cerr << "NONTRAPPING USE: " << *U; 667 return false; 668 } 669 } 670 return true; 671 } 672 673 /// Return true if all uses of any loads from GV will trap if the loaded value 674 /// is null. Note that this also permits comparisons of the loaded value 675 /// against null, as a special case. 676 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 677 for (const User *U : GV->users()) 678 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 679 SmallPtrSet<const PHINode*, 8> PHIs; 680 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 681 return false; 682 } else if (isa<StoreInst>(U)) { 683 // Ignore stores to the global. 684 } else { 685 // We don't know or understand this user, bail out. 686 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 687 return false; 688 } 689 return true; 690 } 691 692 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 693 bool Changed = false; 694 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 695 Instruction *I = cast<Instruction>(*UI++); 696 // Uses are non-trapping if null pointer is considered valid. 697 // Non address-space 0 globals are already pruned by the caller. 698 if (NullPointerIsDefined(I->getFunction())) 699 return false; 700 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 701 LI->setOperand(0, NewV); 702 Changed = true; 703 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 704 if (SI->getOperand(1) == V) { 705 SI->setOperand(1, NewV); 706 Changed = true; 707 } 708 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 709 CallSite CS(I); 710 if (CS.getCalledValue() == V) { 711 // Calling through the pointer! Turn into a direct call, but be careful 712 // that the pointer is not also being passed as an argument. 713 CS.setCalledFunction(NewV); 714 Changed = true; 715 bool PassedAsArg = false; 716 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 717 if (CS.getArgument(i) == V) { 718 PassedAsArg = true; 719 CS.setArgument(i, NewV); 720 } 721 722 if (PassedAsArg) { 723 // Being passed as an argument also. Be careful to not invalidate UI! 724 UI = V->user_begin(); 725 } 726 } 727 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 728 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 729 ConstantExpr::getCast(CI->getOpcode(), 730 NewV, CI->getType())); 731 if (CI->use_empty()) { 732 Changed = true; 733 CI->eraseFromParent(); 734 } 735 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 736 // Should handle GEP here. 737 SmallVector<Constant*, 8> Idxs; 738 Idxs.reserve(GEPI->getNumOperands()-1); 739 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 740 i != e; ++i) 741 if (Constant *C = dyn_cast<Constant>(*i)) 742 Idxs.push_back(C); 743 else 744 break; 745 if (Idxs.size() == GEPI->getNumOperands()-1) 746 Changed |= OptimizeAwayTrappingUsesOfValue( 747 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 748 NewV, Idxs)); 749 if (GEPI->use_empty()) { 750 Changed = true; 751 GEPI->eraseFromParent(); 752 } 753 } 754 } 755 756 return Changed; 757 } 758 759 /// The specified global has only one non-null value stored into it. If there 760 /// are uses of the loaded value that would trap if the loaded value is 761 /// dynamically null, then we know that they cannot be reachable with a null 762 /// optimize away the load. 763 static bool OptimizeAwayTrappingUsesOfLoads( 764 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 765 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 766 bool Changed = false; 767 768 // Keep track of whether we are able to remove all the uses of the global 769 // other than the store that defines it. 770 bool AllNonStoreUsesGone = true; 771 772 // Replace all uses of loads with uses of uses of the stored value. 773 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 774 User *GlobalUser = *GUI++; 775 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 776 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 777 // If we were able to delete all uses of the loads 778 if (LI->use_empty()) { 779 LI->eraseFromParent(); 780 Changed = true; 781 } else { 782 AllNonStoreUsesGone = false; 783 } 784 } else if (isa<StoreInst>(GlobalUser)) { 785 // Ignore the store that stores "LV" to the global. 786 assert(GlobalUser->getOperand(1) == GV && 787 "Must be storing *to* the global"); 788 } else { 789 AllNonStoreUsesGone = false; 790 791 // If we get here we could have other crazy uses that are transitively 792 // loaded. 793 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 794 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 795 isa<BitCastInst>(GlobalUser) || 796 isa<GetElementPtrInst>(GlobalUser)) && 797 "Only expect load and stores!"); 798 } 799 } 800 801 if (Changed) { 802 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 803 << "\n"); 804 ++NumGlobUses; 805 } 806 807 // If we nuked all of the loads, then none of the stores are needed either, 808 // nor is the global. 809 if (AllNonStoreUsesGone) { 810 if (isLeakCheckerRoot(GV)) { 811 Changed |= CleanupPointerRootUsers(GV, GetTLI); 812 } else { 813 Changed = true; 814 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 815 } 816 if (GV->use_empty()) { 817 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 818 Changed = true; 819 GV->eraseFromParent(); 820 ++NumDeleted; 821 } 822 } 823 return Changed; 824 } 825 826 /// Walk the use list of V, constant folding all of the instructions that are 827 /// foldable. 828 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 829 TargetLibraryInfo *TLI) { 830 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 831 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 832 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 833 I->replaceAllUsesWith(NewC); 834 835 // Advance UI to the next non-I use to avoid invalidating it! 836 // Instructions could multiply use V. 837 while (UI != E && *UI == I) 838 ++UI; 839 if (isInstructionTriviallyDead(I, TLI)) 840 I->eraseFromParent(); 841 } 842 } 843 844 /// This function takes the specified global variable, and transforms the 845 /// program as if it always contained the result of the specified malloc. 846 /// Because it is always the result of the specified malloc, there is no reason 847 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 848 /// loads of GV as uses of the new global. 849 static GlobalVariable * 850 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 851 ConstantInt *NElements, const DataLayout &DL, 852 TargetLibraryInfo *TLI) { 853 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 854 << '\n'); 855 856 Type *GlobalType; 857 if (NElements->getZExtValue() == 1) 858 GlobalType = AllocTy; 859 else 860 // If we have an array allocation, the global variable is of an array. 861 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 862 863 // Create the new global variable. The contents of the malloc'd memory is 864 // undefined, so initialize with an undef value. 865 GlobalVariable *NewGV = new GlobalVariable( 866 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 867 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 868 GV->getThreadLocalMode()); 869 870 // If there are bitcast users of the malloc (which is typical, usually we have 871 // a malloc + bitcast) then replace them with uses of the new global. Update 872 // other users to use the global as well. 873 BitCastInst *TheBC = nullptr; 874 while (!CI->use_empty()) { 875 Instruction *User = cast<Instruction>(CI->user_back()); 876 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 877 if (BCI->getType() == NewGV->getType()) { 878 BCI->replaceAllUsesWith(NewGV); 879 BCI->eraseFromParent(); 880 } else { 881 BCI->setOperand(0, NewGV); 882 } 883 } else { 884 if (!TheBC) 885 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 886 User->replaceUsesOfWith(CI, TheBC); 887 } 888 } 889 890 Constant *RepValue = NewGV; 891 if (NewGV->getType() != GV->getValueType()) 892 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 893 894 // If there is a comparison against null, we will insert a global bool to 895 // keep track of whether the global was initialized yet or not. 896 GlobalVariable *InitBool = 897 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 898 GlobalValue::InternalLinkage, 899 ConstantInt::getFalse(GV->getContext()), 900 GV->getName()+".init", GV->getThreadLocalMode()); 901 bool InitBoolUsed = false; 902 903 // Loop over all uses of GV, processing them in turn. 904 while (!GV->use_empty()) { 905 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 906 // The global is initialized when the store to it occurs. 907 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 908 None, SI->getOrdering(), SI->getSyncScopeID(), SI); 909 SI->eraseFromParent(); 910 continue; 911 } 912 913 LoadInst *LI = cast<LoadInst>(GV->user_back()); 914 while (!LI->use_empty()) { 915 Use &LoadUse = *LI->use_begin(); 916 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 917 if (!ICI) { 918 LoadUse = RepValue; 919 continue; 920 } 921 922 // Replace the cmp X, 0 with a use of the bool value. 923 // Sink the load to where the compare was, if atomic rules allow us to. 924 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 925 InitBool->getName() + ".val", false, None, 926 LI->getOrdering(), LI->getSyncScopeID(), 927 LI->isUnordered() ? (Instruction *)ICI : LI); 928 InitBoolUsed = true; 929 switch (ICI->getPredicate()) { 930 default: llvm_unreachable("Unknown ICmp Predicate!"); 931 case ICmpInst::ICMP_ULT: 932 case ICmpInst::ICMP_SLT: // X < null -> always false 933 LV = ConstantInt::getFalse(GV->getContext()); 934 break; 935 case ICmpInst::ICMP_ULE: 936 case ICmpInst::ICMP_SLE: 937 case ICmpInst::ICMP_EQ: 938 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 939 break; 940 case ICmpInst::ICMP_NE: 941 case ICmpInst::ICMP_UGE: 942 case ICmpInst::ICMP_SGE: 943 case ICmpInst::ICMP_UGT: 944 case ICmpInst::ICMP_SGT: 945 break; // no change. 946 } 947 ICI->replaceAllUsesWith(LV); 948 ICI->eraseFromParent(); 949 } 950 LI->eraseFromParent(); 951 } 952 953 // If the initialization boolean was used, insert it, otherwise delete it. 954 if (!InitBoolUsed) { 955 while (!InitBool->use_empty()) // Delete initializations 956 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 957 delete InitBool; 958 } else 959 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 960 961 // Now the GV is dead, nuke it and the malloc.. 962 GV->eraseFromParent(); 963 CI->eraseFromParent(); 964 965 // To further other optimizations, loop over all users of NewGV and try to 966 // constant prop them. This will promote GEP instructions with constant 967 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 968 ConstantPropUsersOf(NewGV, DL, TLI); 969 if (RepValue != NewGV) 970 ConstantPropUsersOf(RepValue, DL, TLI); 971 972 return NewGV; 973 } 974 975 /// Scan the use-list of V checking to make sure that there are no complex uses 976 /// of V. We permit simple things like dereferencing the pointer, but not 977 /// storing through the address, unless it is to the specified global. 978 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 979 const GlobalVariable *GV, 980 SmallPtrSetImpl<const PHINode*> &PHIs) { 981 for (const User *U : V->users()) { 982 const Instruction *Inst = cast<Instruction>(U); 983 984 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 985 continue; // Fine, ignore. 986 } 987 988 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 989 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 990 return false; // Storing the pointer itself... bad. 991 continue; // Otherwise, storing through it, or storing into GV... fine. 992 } 993 994 // Must index into the array and into the struct. 995 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 996 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 997 return false; 998 continue; 999 } 1000 1001 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1002 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1003 // cycles. 1004 if (PHIs.insert(PN).second) 1005 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1006 return false; 1007 continue; 1008 } 1009 1010 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1011 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1012 return false; 1013 continue; 1014 } 1015 1016 return false; 1017 } 1018 return true; 1019 } 1020 1021 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1022 /// allocation into loads from the global and uses of the resultant pointer. 1023 /// Further, delete the store into GV. This assumes that these value pass the 1024 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1025 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1026 GlobalVariable *GV) { 1027 while (!Alloc->use_empty()) { 1028 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1029 Instruction *InsertPt = U; 1030 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1031 // If this is the store of the allocation into the global, remove it. 1032 if (SI->getOperand(1) == GV) { 1033 SI->eraseFromParent(); 1034 continue; 1035 } 1036 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1037 // Insert the load in the corresponding predecessor, not right before the 1038 // PHI. 1039 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1040 } else if (isa<BitCastInst>(U)) { 1041 // Must be bitcast between the malloc and store to initialize the global. 1042 ReplaceUsesOfMallocWithGlobal(U, GV); 1043 U->eraseFromParent(); 1044 continue; 1045 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1046 // If this is a "GEP bitcast" and the user is a store to the global, then 1047 // just process it as a bitcast. 1048 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1049 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1050 if (SI->getOperand(1) == GV) { 1051 // Must be bitcast GEP between the malloc and store to initialize 1052 // the global. 1053 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1054 GEPI->eraseFromParent(); 1055 continue; 1056 } 1057 } 1058 1059 // Insert a load from the global, and use it instead of the malloc. 1060 Value *NL = 1061 new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt); 1062 U->replaceUsesOfWith(Alloc, NL); 1063 } 1064 } 1065 1066 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1067 /// perform heap SRA on. This permits GEP's that index through the array and 1068 /// struct field, icmps of null, and PHIs. 1069 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1070 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1071 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1072 // We permit two users of the load: setcc comparing against the null 1073 // pointer, and a getelementptr of a specific form. 1074 for (const User *U : V->users()) { 1075 const Instruction *UI = cast<Instruction>(U); 1076 1077 // Comparison against null is ok. 1078 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1079 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1080 return false; 1081 continue; 1082 } 1083 1084 // getelementptr is also ok, but only a simple form. 1085 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1086 // Must index into the array and into the struct. 1087 if (GEPI->getNumOperands() < 3) 1088 return false; 1089 1090 // Otherwise the GEP is ok. 1091 continue; 1092 } 1093 1094 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1095 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1096 // This means some phi nodes are dependent on each other. 1097 // Avoid infinite looping! 1098 return false; 1099 if (!LoadUsingPHIs.insert(PN).second) 1100 // If we have already analyzed this PHI, then it is safe. 1101 continue; 1102 1103 // Make sure all uses of the PHI are simple enough to transform. 1104 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1105 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1106 return false; 1107 1108 continue; 1109 } 1110 1111 // Otherwise we don't know what this is, not ok. 1112 return false; 1113 } 1114 1115 return true; 1116 } 1117 1118 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1119 /// return true. 1120 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1121 Instruction *StoredVal) { 1122 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1123 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1124 for (const User *U : GV->users()) 1125 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1126 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1127 LoadUsingPHIsPerLoad)) 1128 return false; 1129 LoadUsingPHIsPerLoad.clear(); 1130 } 1131 1132 // If we reach here, we know that all uses of the loads and transitive uses 1133 // (through PHI nodes) are simple enough to transform. However, we don't know 1134 // that all inputs the to the PHI nodes are in the same equivalence sets. 1135 // Check to verify that all operands of the PHIs are either PHIS that can be 1136 // transformed, loads from GV, or MI itself. 1137 for (const PHINode *PN : LoadUsingPHIs) { 1138 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1139 Value *InVal = PN->getIncomingValue(op); 1140 1141 // PHI of the stored value itself is ok. 1142 if (InVal == StoredVal) continue; 1143 1144 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1145 // One of the PHIs in our set is (optimistically) ok. 1146 if (LoadUsingPHIs.count(InPN)) 1147 continue; 1148 return false; 1149 } 1150 1151 // Load from GV is ok. 1152 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1153 if (LI->getOperand(0) == GV) 1154 continue; 1155 1156 // UNDEF? NULL? 1157 1158 // Anything else is rejected. 1159 return false; 1160 } 1161 } 1162 1163 return true; 1164 } 1165 1166 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1167 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1168 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1169 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1170 1171 if (FieldNo >= FieldVals.size()) 1172 FieldVals.resize(FieldNo+1); 1173 1174 // If we already have this value, just reuse the previously scalarized 1175 // version. 1176 if (Value *FieldVal = FieldVals[FieldNo]) 1177 return FieldVal; 1178 1179 // Depending on what instruction this is, we have several cases. 1180 Value *Result; 1181 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1182 // This is a scalarized version of the load from the global. Just create 1183 // a new Load of the scalarized global. 1184 Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo, 1185 InsertedScalarizedValues, PHIsToRewrite); 1186 Result = new LoadInst(V->getType()->getPointerElementType(), V, 1187 LI->getName() + ".f" + Twine(FieldNo), LI); 1188 } else { 1189 PHINode *PN = cast<PHINode>(V); 1190 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1191 // field. 1192 1193 PointerType *PTy = cast<PointerType>(PN->getType()); 1194 StructType *ST = cast<StructType>(PTy->getElementType()); 1195 1196 unsigned AS = PTy->getAddressSpace(); 1197 PHINode *NewPN = 1198 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1199 PN->getNumIncomingValues(), 1200 PN->getName()+".f"+Twine(FieldNo), PN); 1201 Result = NewPN; 1202 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1203 } 1204 1205 return FieldVals[FieldNo] = Result; 1206 } 1207 1208 /// Given a load instruction and a value derived from the load, rewrite the 1209 /// derived value to use the HeapSRoA'd load. 1210 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1211 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1212 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1213 // If this is a comparison against null, handle it. 1214 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1215 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1216 // If we have a setcc of the loaded pointer, we can use a setcc of any 1217 // field. 1218 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1219 InsertedScalarizedValues, PHIsToRewrite); 1220 1221 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1222 Constant::getNullValue(NPtr->getType()), 1223 SCI->getName()); 1224 SCI->replaceAllUsesWith(New); 1225 SCI->eraseFromParent(); 1226 return; 1227 } 1228 1229 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1230 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1231 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1232 && "Unexpected GEPI!"); 1233 1234 // Load the pointer for this field. 1235 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1236 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1237 InsertedScalarizedValues, PHIsToRewrite); 1238 1239 // Create the new GEP idx vector. 1240 SmallVector<Value*, 8> GEPIdx; 1241 GEPIdx.push_back(GEPI->getOperand(1)); 1242 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1243 1244 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1245 GEPI->getName(), GEPI); 1246 GEPI->replaceAllUsesWith(NGEPI); 1247 GEPI->eraseFromParent(); 1248 return; 1249 } 1250 1251 // Recursively transform the users of PHI nodes. This will lazily create the 1252 // PHIs that are needed for individual elements. Keep track of what PHIs we 1253 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1254 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1255 // already been seen first by another load, so its uses have already been 1256 // processed. 1257 PHINode *PN = cast<PHINode>(LoadUser); 1258 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1259 std::vector<Value *>())).second) 1260 return; 1261 1262 // If this is the first time we've seen this PHI, recursively process all 1263 // users. 1264 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1265 Instruction *User = cast<Instruction>(*UI++); 1266 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1267 } 1268 } 1269 1270 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1271 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1272 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1273 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1274 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1275 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1276 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1277 Instruction *User = cast<Instruction>(*UI++); 1278 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1279 } 1280 1281 if (Load->use_empty()) { 1282 Load->eraseFromParent(); 1283 InsertedScalarizedValues.erase(Load); 1284 } 1285 } 1286 1287 /// CI is an allocation of an array of structures. Break it up into multiple 1288 /// allocations of arrays of the fields. 1289 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1290 Value *NElems, const DataLayout &DL, 1291 const TargetLibraryInfo *TLI) { 1292 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI 1293 << '\n'); 1294 Type *MAT = getMallocAllocatedType(CI, TLI); 1295 StructType *STy = cast<StructType>(MAT); 1296 1297 // There is guaranteed to be at least one use of the malloc (storing 1298 // it into GV). If there are other uses, change them to be uses of 1299 // the global to simplify later code. This also deletes the store 1300 // into GV. 1301 ReplaceUsesOfMallocWithGlobal(CI, GV); 1302 1303 // Okay, at this point, there are no users of the malloc. Insert N 1304 // new mallocs at the same place as CI, and N globals. 1305 std::vector<Value *> FieldGlobals; 1306 std::vector<Value *> FieldMallocs; 1307 1308 SmallVector<OperandBundleDef, 1> OpBundles; 1309 CI->getOperandBundlesAsDefs(OpBundles); 1310 1311 unsigned AS = GV->getType()->getPointerAddressSpace(); 1312 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1313 Type *FieldTy = STy->getElementType(FieldNo); 1314 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1315 1316 GlobalVariable *NGV = new GlobalVariable( 1317 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1318 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1319 nullptr, GV->getThreadLocalMode()); 1320 NGV->copyAttributesFrom(GV); 1321 FieldGlobals.push_back(NGV); 1322 1323 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1324 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1325 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1326 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1327 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1328 ConstantInt::get(IntPtrTy, TypeSize), 1329 NElems, OpBundles, nullptr, 1330 CI->getName() + ".f" + Twine(FieldNo)); 1331 FieldMallocs.push_back(NMI); 1332 new StoreInst(NMI, NGV, CI); 1333 } 1334 1335 // The tricky aspect of this transformation is handling the case when malloc 1336 // fails. In the original code, malloc failing would set the result pointer 1337 // of malloc to null. In this case, some mallocs could succeed and others 1338 // could fail. As such, we emit code that looks like this: 1339 // F0 = malloc(field0) 1340 // F1 = malloc(field1) 1341 // F2 = malloc(field2) 1342 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1343 // if (F0) { free(F0); F0 = 0; } 1344 // if (F1) { free(F1); F1 = 0; } 1345 // if (F2) { free(F2); F2 = 0; } 1346 // } 1347 // The malloc can also fail if its argument is too large. 1348 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1349 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1350 ConstantZero, "isneg"); 1351 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1352 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1353 Constant::getNullValue(FieldMallocs[i]->getType()), 1354 "isnull"); 1355 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1356 } 1357 1358 // Split the basic block at the old malloc. 1359 BasicBlock *OrigBB = CI->getParent(); 1360 BasicBlock *ContBB = 1361 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1362 1363 // Create the block to check the first condition. Put all these blocks at the 1364 // end of the function as they are unlikely to be executed. 1365 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1366 "malloc_ret_null", 1367 OrigBB->getParent()); 1368 1369 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1370 // branch on RunningOr. 1371 OrigBB->getTerminator()->eraseFromParent(); 1372 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1373 1374 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1375 // pointer, because some may be null while others are not. 1376 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1377 Value *GVVal = 1378 new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(), 1379 FieldGlobals[i], "tmp", NullPtrBlock); 1380 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1381 Constant::getNullValue(GVVal->getType())); 1382 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1383 OrigBB->getParent()); 1384 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1385 OrigBB->getParent()); 1386 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1387 Cmp, NullPtrBlock); 1388 1389 // Fill in FreeBlock. 1390 CallInst::CreateFree(GVVal, OpBundles, BI); 1391 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1392 FreeBlock); 1393 BranchInst::Create(NextBlock, FreeBlock); 1394 1395 NullPtrBlock = NextBlock; 1396 } 1397 1398 BranchInst::Create(ContBB, NullPtrBlock); 1399 1400 // CI is no longer needed, remove it. 1401 CI->eraseFromParent(); 1402 1403 /// As we process loads, if we can't immediately update all uses of the load, 1404 /// keep track of what scalarized loads are inserted for a given load. 1405 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1406 InsertedScalarizedValues[GV] = FieldGlobals; 1407 1408 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1409 1410 // Okay, the malloc site is completely handled. All of the uses of GV are now 1411 // loads, and all uses of those loads are simple. Rewrite them to use loads 1412 // of the per-field globals instead. 1413 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1414 Instruction *User = cast<Instruction>(*UI++); 1415 1416 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1417 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1418 continue; 1419 } 1420 1421 // Must be a store of null. 1422 StoreInst *SI = cast<StoreInst>(User); 1423 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1424 "Unexpected heap-sra user!"); 1425 1426 // Insert a store of null into each global. 1427 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1428 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1429 Constant *Null = Constant::getNullValue(ValTy); 1430 new StoreInst(Null, FieldGlobals[i], SI); 1431 } 1432 // Erase the original store. 1433 SI->eraseFromParent(); 1434 } 1435 1436 // While we have PHIs that are interesting to rewrite, do it. 1437 while (!PHIsToRewrite.empty()) { 1438 PHINode *PN = PHIsToRewrite.back().first; 1439 unsigned FieldNo = PHIsToRewrite.back().second; 1440 PHIsToRewrite.pop_back(); 1441 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1442 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1443 1444 // Add all the incoming values. This can materialize more phis. 1445 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1446 Value *InVal = PN->getIncomingValue(i); 1447 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1448 PHIsToRewrite); 1449 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1450 } 1451 } 1452 1453 // Drop all inter-phi links and any loads that made it this far. 1454 for (DenseMap<Value *, std::vector<Value *>>::iterator 1455 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1456 I != E; ++I) { 1457 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1458 PN->dropAllReferences(); 1459 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1460 LI->dropAllReferences(); 1461 } 1462 1463 // Delete all the phis and loads now that inter-references are dead. 1464 for (DenseMap<Value *, std::vector<Value *>>::iterator 1465 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1466 I != E; ++I) { 1467 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1468 PN->eraseFromParent(); 1469 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1470 LI->eraseFromParent(); 1471 } 1472 1473 // The old global is now dead, remove it. 1474 GV->eraseFromParent(); 1475 1476 ++NumHeapSRA; 1477 return cast<GlobalVariable>(FieldGlobals[0]); 1478 } 1479 1480 /// This function is called when we see a pointer global variable with a single 1481 /// value stored it that is a malloc or cast of malloc. 1482 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1483 Type *AllocTy, 1484 AtomicOrdering Ordering, 1485 const DataLayout &DL, 1486 TargetLibraryInfo *TLI) { 1487 // If this is a malloc of an abstract type, don't touch it. 1488 if (!AllocTy->isSized()) 1489 return false; 1490 1491 // We can't optimize this global unless all uses of it are *known* to be 1492 // of the malloc value, not of the null initializer value (consider a use 1493 // that compares the global's value against zero to see if the malloc has 1494 // been reached). To do this, we check to see if all uses of the global 1495 // would trap if the global were null: this proves that they must all 1496 // happen after the malloc. 1497 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1498 return false; 1499 1500 // We can't optimize this if the malloc itself is used in a complex way, 1501 // for example, being stored into multiple globals. This allows the 1502 // malloc to be stored into the specified global, loaded icmp'd, and 1503 // GEP'd. These are all things we could transform to using the global 1504 // for. 1505 SmallPtrSet<const PHINode*, 8> PHIs; 1506 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1507 return false; 1508 1509 // If we have a global that is only initialized with a fixed size malloc, 1510 // transform the program to use global memory instead of malloc'd memory. 1511 // This eliminates dynamic allocation, avoids an indirection accessing the 1512 // data, and exposes the resultant global to further GlobalOpt. 1513 // We cannot optimize the malloc if we cannot determine malloc array size. 1514 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1515 if (!NElems) 1516 return false; 1517 1518 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1519 // Restrict this transformation to only working on small allocations 1520 // (2048 bytes currently), as we don't want to introduce a 16M global or 1521 // something. 1522 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1523 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1524 return true; 1525 } 1526 1527 // If the allocation is an array of structures, consider transforming this 1528 // into multiple malloc'd arrays, one for each field. This is basically 1529 // SRoA for malloc'd memory. 1530 1531 if (Ordering != AtomicOrdering::NotAtomic) 1532 return false; 1533 1534 // If this is an allocation of a fixed size array of structs, analyze as a 1535 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1536 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1537 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1538 AllocTy = AT->getElementType(); 1539 1540 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1541 if (!AllocSTy) 1542 return false; 1543 1544 // This the structure has an unreasonable number of fields, leave it 1545 // alone. 1546 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1547 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1548 1549 // If this is a fixed size array, transform the Malloc to be an alloc of 1550 // structs. malloc [100 x struct],1 -> malloc struct, 100 1551 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1552 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1553 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1554 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1555 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1556 SmallVector<OperandBundleDef, 1> OpBundles; 1557 CI->getOperandBundlesAsDefs(OpBundles); 1558 Instruction *Malloc = 1559 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1560 OpBundles, nullptr, CI->getName()); 1561 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1562 CI->replaceAllUsesWith(Cast); 1563 CI->eraseFromParent(); 1564 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1565 CI = cast<CallInst>(BCI->getOperand(0)); 1566 else 1567 CI = cast<CallInst>(Malloc); 1568 } 1569 1570 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1571 TLI); 1572 return true; 1573 } 1574 1575 return false; 1576 } 1577 1578 // Try to optimize globals based on the knowledge that only one value (besides 1579 // its initializer) is ever stored to the global. 1580 static bool 1581 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1582 AtomicOrdering Ordering, const DataLayout &DL, 1583 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1584 // Ignore no-op GEPs and bitcasts. 1585 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1586 1587 // If we are dealing with a pointer global that is initialized to null and 1588 // only has one (non-null) value stored into it, then we can optimize any 1589 // users of the loaded value (often calls and loads) that would trap if the 1590 // value was null. 1591 if (GV->getInitializer()->getType()->isPointerTy() && 1592 GV->getInitializer()->isNullValue() && 1593 !NullPointerIsDefined( 1594 nullptr /* F */, 1595 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1596 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1597 if (GV->getInitializer()->getType() != SOVC->getType()) 1598 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1599 1600 // Optimize away any trapping uses of the loaded value. 1601 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1602 return true; 1603 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1604 auto *TLI = &GetTLI(*CI->getFunction()); 1605 Type *MallocType = getMallocAllocatedType(CI, TLI); 1606 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1607 Ordering, DL, TLI)) 1608 return true; 1609 } 1610 } 1611 1612 return false; 1613 } 1614 1615 /// At this point, we have learned that the only two values ever stored into GV 1616 /// are its initializer and OtherVal. See if we can shrink the global into a 1617 /// boolean and select between the two values whenever it is used. This exposes 1618 /// the values to other scalar optimizations. 1619 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1620 Type *GVElType = GV->getValueType(); 1621 1622 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1623 // an FP value, pointer or vector, don't do this optimization because a select 1624 // between them is very expensive and unlikely to lead to later 1625 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1626 // where v1 and v2 both require constant pool loads, a big loss. 1627 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1628 GVElType->isFloatingPointTy() || 1629 GVElType->isPointerTy() || GVElType->isVectorTy()) 1630 return false; 1631 1632 // Walk the use list of the global seeing if all the uses are load or store. 1633 // If there is anything else, bail out. 1634 for (User *U : GV->users()) 1635 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1636 return false; 1637 1638 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1639 1640 // Create the new global, initializing it to false. 1641 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1642 false, 1643 GlobalValue::InternalLinkage, 1644 ConstantInt::getFalse(GV->getContext()), 1645 GV->getName()+".b", 1646 GV->getThreadLocalMode(), 1647 GV->getType()->getAddressSpace()); 1648 NewGV->copyAttributesFrom(GV); 1649 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1650 1651 Constant *InitVal = GV->getInitializer(); 1652 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1653 "No reason to shrink to bool!"); 1654 1655 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1656 GV->getDebugInfo(GVs); 1657 1658 // If initialized to zero and storing one into the global, we can use a cast 1659 // instead of a select to synthesize the desired value. 1660 bool IsOneZero = false; 1661 bool EmitOneOrZero = true; 1662 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1663 if (CI && CI->getValue().getActiveBits() <= 64) { 1664 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1665 1666 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1667 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1668 uint64_t ValInit = CIInit->getZExtValue(); 1669 uint64_t ValOther = CI->getZExtValue(); 1670 uint64_t ValMinus = ValOther - ValInit; 1671 1672 for(auto *GVe : GVs){ 1673 DIGlobalVariable *DGV = GVe->getVariable(); 1674 DIExpression *E = GVe->getExpression(); 1675 const DataLayout &DL = GV->getParent()->getDataLayout(); 1676 unsigned SizeInOctets = 1677 DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8; 1678 1679 // It is expected that the address of global optimized variable is on 1680 // top of the stack. After optimization, value of that variable will 1681 // be ether 0 for initial value or 1 for other value. The following 1682 // expression should return constant integer value depending on the 1683 // value at global object address: 1684 // val * (ValOther - ValInit) + ValInit: 1685 // DW_OP_deref DW_OP_constu <ValMinus> 1686 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1687 SmallVector<uint64_t, 12> Ops = { 1688 dwarf::DW_OP_deref_size, SizeInOctets, 1689 dwarf::DW_OP_constu, ValMinus, 1690 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1691 dwarf::DW_OP_plus}; 1692 bool WithStackValue = true; 1693 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1694 DIGlobalVariableExpression *DGVE = 1695 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1696 NewGV->addDebugInfo(DGVE); 1697 } 1698 EmitOneOrZero = false; 1699 } 1700 } 1701 1702 if (EmitOneOrZero) { 1703 // FIXME: This will only emit address for debugger on which will 1704 // be written only 0 or 1. 1705 for(auto *GV : GVs) 1706 NewGV->addDebugInfo(GV); 1707 } 1708 1709 while (!GV->use_empty()) { 1710 Instruction *UI = cast<Instruction>(GV->user_back()); 1711 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1712 // Change the store into a boolean store. 1713 bool StoringOther = SI->getOperand(0) == OtherVal; 1714 // Only do this if we weren't storing a loaded value. 1715 Value *StoreVal; 1716 if (StoringOther || SI->getOperand(0) == InitVal) { 1717 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1718 StoringOther); 1719 } else { 1720 // Otherwise, we are storing a previously loaded copy. To do this, 1721 // change the copy from copying the original value to just copying the 1722 // bool. 1723 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1724 1725 // If we've already replaced the input, StoredVal will be a cast or 1726 // select instruction. If not, it will be a load of the original 1727 // global. 1728 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1729 assert(LI->getOperand(0) == GV && "Not a copy!"); 1730 // Insert a new load, to preserve the saved value. 1731 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1732 LI->getName() + ".b", false, None, 1733 LI->getOrdering(), LI->getSyncScopeID(), LI); 1734 } else { 1735 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1736 "This is not a form that we understand!"); 1737 StoreVal = StoredVal->getOperand(0); 1738 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1739 } 1740 } 1741 StoreInst *NSI = 1742 new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(), 1743 SI->getSyncScopeID(), SI); 1744 NSI->setDebugLoc(SI->getDebugLoc()); 1745 } else { 1746 // Change the load into a load of bool then a select. 1747 LoadInst *LI = cast<LoadInst>(UI); 1748 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1749 LI->getName() + ".b", false, None, 1750 LI->getOrdering(), LI->getSyncScopeID(), LI); 1751 Instruction *NSI; 1752 if (IsOneZero) 1753 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1754 else 1755 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1756 NSI->takeName(LI); 1757 // Since LI is split into two instructions, NLI and NSI both inherit the 1758 // same DebugLoc 1759 NLI->setDebugLoc(LI->getDebugLoc()); 1760 NSI->setDebugLoc(LI->getDebugLoc()); 1761 LI->replaceAllUsesWith(NSI); 1762 } 1763 UI->eraseFromParent(); 1764 } 1765 1766 // Retain the name of the old global variable. People who are debugging their 1767 // programs may expect these variables to be named the same. 1768 NewGV->takeName(GV); 1769 GV->eraseFromParent(); 1770 return true; 1771 } 1772 1773 static bool deleteIfDead( 1774 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1775 GV.removeDeadConstantUsers(); 1776 1777 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1778 return false; 1779 1780 if (const Comdat *C = GV.getComdat()) 1781 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1782 return false; 1783 1784 bool Dead; 1785 if (auto *F = dyn_cast<Function>(&GV)) 1786 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1787 else 1788 Dead = GV.use_empty(); 1789 if (!Dead) 1790 return false; 1791 1792 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1793 GV.eraseFromParent(); 1794 ++NumDeleted; 1795 return true; 1796 } 1797 1798 static bool isPointerValueDeadOnEntryToFunction( 1799 const Function *F, GlobalValue *GV, 1800 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1801 // Find all uses of GV. We expect them all to be in F, and if we can't 1802 // identify any of the uses we bail out. 1803 // 1804 // On each of these uses, identify if the memory that GV points to is 1805 // used/required/live at the start of the function. If it is not, for example 1806 // if the first thing the function does is store to the GV, the GV can 1807 // possibly be demoted. 1808 // 1809 // We don't do an exhaustive search for memory operations - simply look 1810 // through bitcasts as they're quite common and benign. 1811 const DataLayout &DL = GV->getParent()->getDataLayout(); 1812 SmallVector<LoadInst *, 4> Loads; 1813 SmallVector<StoreInst *, 4> Stores; 1814 for (auto *U : GV->users()) { 1815 if (Operator::getOpcode(U) == Instruction::BitCast) { 1816 for (auto *UU : U->users()) { 1817 if (auto *LI = dyn_cast<LoadInst>(UU)) 1818 Loads.push_back(LI); 1819 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1820 Stores.push_back(SI); 1821 else 1822 return false; 1823 } 1824 continue; 1825 } 1826 1827 Instruction *I = dyn_cast<Instruction>(U); 1828 if (!I) 1829 return false; 1830 assert(I->getParent()->getParent() == F); 1831 1832 if (auto *LI = dyn_cast<LoadInst>(I)) 1833 Loads.push_back(LI); 1834 else if (auto *SI = dyn_cast<StoreInst>(I)) 1835 Stores.push_back(SI); 1836 else 1837 return false; 1838 } 1839 1840 // We have identified all uses of GV into loads and stores. Now check if all 1841 // of them are known not to depend on the value of the global at the function 1842 // entry point. We do this by ensuring that every load is dominated by at 1843 // least one store. 1844 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1845 1846 // The below check is quadratic. Check we're not going to do too many tests. 1847 // FIXME: Even though this will always have worst-case quadratic time, we 1848 // could put effort into minimizing the average time by putting stores that 1849 // have been shown to dominate at least one load at the beginning of the 1850 // Stores array, making subsequent dominance checks more likely to succeed 1851 // early. 1852 // 1853 // The threshold here is fairly large because global->local demotion is a 1854 // very powerful optimization should it fire. 1855 const unsigned Threshold = 100; 1856 if (Loads.size() * Stores.size() > Threshold) 1857 return false; 1858 1859 for (auto *L : Loads) { 1860 auto *LTy = L->getType(); 1861 if (none_of(Stores, [&](const StoreInst *S) { 1862 auto *STy = S->getValueOperand()->getType(); 1863 // The load is only dominated by the store if DomTree says so 1864 // and the number of bits loaded in L is less than or equal to 1865 // the number of bits stored in S. 1866 return DT.dominates(S, L) && 1867 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1868 })) 1869 return false; 1870 } 1871 // All loads have known dependences inside F, so the global can be localized. 1872 return true; 1873 } 1874 1875 /// C may have non-instruction users. Can all of those users be turned into 1876 /// instructions? 1877 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1878 // We don't do this exhaustively. The most common pattern that we really need 1879 // to care about is a constant GEP or constant bitcast - so just looking 1880 // through one single ConstantExpr. 1881 // 1882 // The set of constants that this function returns true for must be able to be 1883 // handled by makeAllConstantUsesInstructions. 1884 for (auto *U : C->users()) { 1885 if (isa<Instruction>(U)) 1886 continue; 1887 if (!isa<ConstantExpr>(U)) 1888 // Non instruction, non-constantexpr user; cannot convert this. 1889 return false; 1890 for (auto *UU : U->users()) 1891 if (!isa<Instruction>(UU)) 1892 // A constantexpr used by another constant. We don't try and recurse any 1893 // further but just bail out at this point. 1894 return false; 1895 } 1896 1897 return true; 1898 } 1899 1900 /// C may have non-instruction users, and 1901 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1902 /// non-instruction users to instructions. 1903 static void makeAllConstantUsesInstructions(Constant *C) { 1904 SmallVector<ConstantExpr*,4> Users; 1905 for (auto *U : C->users()) { 1906 if (isa<ConstantExpr>(U)) 1907 Users.push_back(cast<ConstantExpr>(U)); 1908 else 1909 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1910 // should not have returned true for C. 1911 assert( 1912 isa<Instruction>(U) && 1913 "Can't transform non-constantexpr non-instruction to instruction!"); 1914 } 1915 1916 SmallVector<Value*,4> UUsers; 1917 for (auto *U : Users) { 1918 UUsers.clear(); 1919 for (auto *UU : U->users()) 1920 UUsers.push_back(UU); 1921 for (auto *UU : UUsers) { 1922 Instruction *UI = cast<Instruction>(UU); 1923 Instruction *NewU = U->getAsInstruction(); 1924 NewU->insertBefore(UI); 1925 UI->replaceUsesOfWith(U, NewU); 1926 } 1927 // We've replaced all the uses, so destroy the constant. (destroyConstant 1928 // will update value handles and metadata.) 1929 U->destroyConstant(); 1930 } 1931 } 1932 1933 /// Analyze the specified global variable and optimize 1934 /// it if possible. If we make a change, return true. 1935 static bool 1936 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1937 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1938 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1939 auto &DL = GV->getParent()->getDataLayout(); 1940 // If this is a first class global and has only one accessing function and 1941 // this function is non-recursive, we replace the global with a local alloca 1942 // in this function. 1943 // 1944 // NOTE: It doesn't make sense to promote non-single-value types since we 1945 // are just replacing static memory to stack memory. 1946 // 1947 // If the global is in different address space, don't bring it to stack. 1948 if (!GS.HasMultipleAccessingFunctions && 1949 GS.AccessingFunction && 1950 GV->getValueType()->isSingleValueType() && 1951 GV->getType()->getAddressSpace() == 0 && 1952 !GV->isExternallyInitialized() && 1953 allNonInstructionUsersCanBeMadeInstructions(GV) && 1954 GS.AccessingFunction->doesNotRecurse() && 1955 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1956 LookupDomTree)) { 1957 const DataLayout &DL = GV->getParent()->getDataLayout(); 1958 1959 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1960 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1961 ->getEntryBlock().begin()); 1962 Type *ElemTy = GV->getValueType(); 1963 // FIXME: Pass Global's alignment when globals have alignment 1964 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1965 GV->getName(), &FirstI); 1966 if (!isa<UndefValue>(GV->getInitializer())) 1967 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1968 1969 makeAllConstantUsesInstructions(GV); 1970 1971 GV->replaceAllUsesWith(Alloca); 1972 GV->eraseFromParent(); 1973 ++NumLocalized; 1974 return true; 1975 } 1976 1977 // If the global is never loaded (but may be stored to), it is dead. 1978 // Delete it now. 1979 if (!GS.IsLoaded) { 1980 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1981 1982 bool Changed; 1983 if (isLeakCheckerRoot(GV)) { 1984 // Delete any constant stores to the global. 1985 Changed = CleanupPointerRootUsers(GV, GetTLI); 1986 } else { 1987 // Delete any stores we can find to the global. We may not be able to 1988 // make it completely dead though. 1989 Changed = 1990 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1991 } 1992 1993 // If the global is dead now, delete it. 1994 if (GV->use_empty()) { 1995 GV->eraseFromParent(); 1996 ++NumDeleted; 1997 Changed = true; 1998 } 1999 return Changed; 2000 2001 } 2002 if (GS.StoredType <= GlobalStatus::InitializerStored) { 2003 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 2004 2005 // Don't actually mark a global constant if it's atomic because atomic loads 2006 // are implemented by a trivial cmpxchg in some edge-cases and that usually 2007 // requires write access to the variable even if it's not actually changed. 2008 if (GS.Ordering == AtomicOrdering::NotAtomic) 2009 GV->setConstant(true); 2010 2011 // Clean up any obviously simplifiable users now. 2012 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2013 2014 // If the global is dead now, just nuke it. 2015 if (GV->use_empty()) { 2016 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 2017 << "all users and delete global!\n"); 2018 GV->eraseFromParent(); 2019 ++NumDeleted; 2020 return true; 2021 } 2022 2023 // Fall through to the next check; see if we can optimize further. 2024 ++NumMarked; 2025 } 2026 if (!GV->getInitializer()->getType()->isSingleValueType()) { 2027 const DataLayout &DL = GV->getParent()->getDataLayout(); 2028 if (SRAGlobal(GV, DL)) 2029 return true; 2030 } 2031 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 2032 // If the initial value for the global was an undef value, and if only 2033 // one other value was stored into it, we can just change the 2034 // initializer to be the stored value, then delete all stores to the 2035 // global. This allows us to mark it constant. 2036 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2037 if (isa<UndefValue>(GV->getInitializer())) { 2038 // Change the initial value here. 2039 GV->setInitializer(SOVConstant); 2040 2041 // Clean up any obviously simplifiable users now. 2042 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 2043 2044 if (GV->use_empty()) { 2045 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2046 << "simplify all users and delete global!\n"); 2047 GV->eraseFromParent(); 2048 ++NumDeleted; 2049 } 2050 ++NumSubstitute; 2051 return true; 2052 } 2053 2054 // Try to optimize globals based on the knowledge that only one value 2055 // (besides its initializer) is ever stored to the global. 2056 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 2057 GetTLI)) 2058 return true; 2059 2060 // Otherwise, if the global was not a boolean, we can shrink it to be a 2061 // boolean. 2062 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2063 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2064 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2065 ++NumShrunkToBool; 2066 return true; 2067 } 2068 } 2069 } 2070 } 2071 2072 return false; 2073 } 2074 2075 /// Analyze the specified global variable and optimize it if possible. If we 2076 /// make a change, return true. 2077 static bool 2078 processGlobal(GlobalValue &GV, 2079 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2080 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2081 if (GV.getName().startswith("llvm.")) 2082 return false; 2083 2084 GlobalStatus GS; 2085 2086 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2087 return false; 2088 2089 bool Changed = false; 2090 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2091 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2092 : GlobalValue::UnnamedAddr::Local; 2093 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2094 GV.setUnnamedAddr(NewUnnamedAddr); 2095 NumUnnamed++; 2096 Changed = true; 2097 } 2098 } 2099 2100 // Do more involved optimizations if the global is internal. 2101 if (!GV.hasLocalLinkage()) 2102 return Changed; 2103 2104 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2105 if (!GVar) 2106 return Changed; 2107 2108 if (GVar->isConstant() || !GVar->hasInitializer()) 2109 return Changed; 2110 2111 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 2112 } 2113 2114 /// Walk all of the direct calls of the specified function, changing them to 2115 /// FastCC. 2116 static void ChangeCalleesToFastCall(Function *F) { 2117 for (User *U : F->users()) { 2118 if (isa<BlockAddress>(U)) 2119 continue; 2120 CallSite CS(cast<Instruction>(U)); 2121 CS.setCallingConv(CallingConv::Fast); 2122 } 2123 } 2124 2125 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 2126 Attribute::AttrKind A) { 2127 unsigned AttrIndex; 2128 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 2129 return Attrs.removeAttribute(C, AttrIndex, A); 2130 return Attrs; 2131 } 2132 2133 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 2134 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 2135 for (User *U : F->users()) { 2136 if (isa<BlockAddress>(U)) 2137 continue; 2138 CallSite CS(cast<Instruction>(U)); 2139 CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A)); 2140 } 2141 } 2142 2143 /// Return true if this is a calling convention that we'd like to change. The 2144 /// idea here is that we don't want to mess with the convention if the user 2145 /// explicitly requested something with performance implications like coldcc, 2146 /// GHC, or anyregcc. 2147 static bool hasChangeableCC(Function *F) { 2148 CallingConv::ID CC = F->getCallingConv(); 2149 2150 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2151 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2152 return false; 2153 2154 // FIXME: Change CC for the whole chain of musttail calls when possible. 2155 // 2156 // Can't change CC of the function that either has musttail calls, or is a 2157 // musttail callee itself 2158 for (User *U : F->users()) { 2159 if (isa<BlockAddress>(U)) 2160 continue; 2161 CallInst* CI = dyn_cast<CallInst>(U); 2162 if (!CI) 2163 continue; 2164 2165 if (CI->isMustTailCall()) 2166 return false; 2167 } 2168 2169 for (BasicBlock &BB : *F) 2170 if (BB.getTerminatingMustTailCall()) 2171 return false; 2172 2173 return true; 2174 } 2175 2176 /// Return true if the block containing the call site has a BlockFrequency of 2177 /// less than ColdCCRelFreq% of the entry block. 2178 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { 2179 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2180 auto CallSiteBB = CS.getInstruction()->getParent(); 2181 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2182 auto CallerEntryFreq = 2183 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); 2184 return CallSiteFreq < CallerEntryFreq * ColdProb; 2185 } 2186 2187 // This function checks if the input function F is cold at all call sites. It 2188 // also looks each call site's containing function, returning false if the 2189 // caller function contains other non cold calls. The input vector AllCallsCold 2190 // contains a list of functions that only have call sites in cold blocks. 2191 static bool 2192 isValidCandidateForColdCC(Function &F, 2193 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2194 const std::vector<Function *> &AllCallsCold) { 2195 2196 if (F.user_empty()) 2197 return false; 2198 2199 for (User *U : F.users()) { 2200 if (isa<BlockAddress>(U)) 2201 continue; 2202 2203 CallSite CS(cast<Instruction>(U)); 2204 Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); 2205 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2206 if (!isColdCallSite(CS, CallerBFI)) 2207 return false; 2208 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2209 if (It == AllCallsCold.end()) 2210 return false; 2211 } 2212 return true; 2213 } 2214 2215 static void changeCallSitesToColdCC(Function *F) { 2216 for (User *U : F->users()) { 2217 if (isa<BlockAddress>(U)) 2218 continue; 2219 CallSite CS(cast<Instruction>(U)); 2220 CS.setCallingConv(CallingConv::Cold); 2221 } 2222 } 2223 2224 // This function iterates over all the call instructions in the input Function 2225 // and checks that all call sites are in cold blocks and are allowed to use the 2226 // coldcc calling convention. 2227 static bool 2228 hasOnlyColdCalls(Function &F, 2229 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2230 for (BasicBlock &BB : F) { 2231 for (Instruction &I : BB) { 2232 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2233 CallSite CS(cast<Instruction>(CI)); 2234 // Skip over isline asm instructions since they aren't function calls. 2235 if (CI->isInlineAsm()) 2236 continue; 2237 Function *CalledFn = CI->getCalledFunction(); 2238 if (!CalledFn) 2239 return false; 2240 if (!CalledFn->hasLocalLinkage()) 2241 return false; 2242 // Skip over instrinsics since they won't remain as function calls. 2243 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2244 continue; 2245 // Check if it's valid to use coldcc calling convention. 2246 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2247 CalledFn->hasAddressTaken()) 2248 return false; 2249 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2250 if (!isColdCallSite(CS, CallerBFI)) 2251 return false; 2252 } 2253 } 2254 } 2255 return true; 2256 } 2257 2258 static bool 2259 OptimizeFunctions(Module &M, 2260 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2261 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2262 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2263 function_ref<DominatorTree &(Function &)> LookupDomTree, 2264 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2265 2266 bool Changed = false; 2267 2268 std::vector<Function *> AllCallsCold; 2269 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2270 Function *F = &*FI++; 2271 if (hasOnlyColdCalls(*F, GetBFI)) 2272 AllCallsCold.push_back(F); 2273 } 2274 2275 // Optimize functions. 2276 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2277 Function *F = &*FI++; 2278 2279 // Don't perform global opt pass on naked functions; we don't want fast 2280 // calling conventions for naked functions. 2281 if (F->hasFnAttribute(Attribute::Naked)) 2282 continue; 2283 2284 // Functions without names cannot be referenced outside this module. 2285 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2286 F->setLinkage(GlobalValue::InternalLinkage); 2287 2288 if (deleteIfDead(*F, NotDiscardableComdats)) { 2289 Changed = true; 2290 continue; 2291 } 2292 2293 // LLVM's definition of dominance allows instructions that are cyclic 2294 // in unreachable blocks, e.g.: 2295 // %pat = select i1 %condition, @global, i16* %pat 2296 // because any instruction dominates an instruction in a block that's 2297 // not reachable from entry. 2298 // So, remove unreachable blocks from the function, because a) there's 2299 // no point in analyzing them and b) GlobalOpt should otherwise grow 2300 // some more complicated logic to break these cycles. 2301 // Removing unreachable blocks might invalidate the dominator so we 2302 // recalculate it. 2303 if (!F->isDeclaration()) { 2304 if (removeUnreachableBlocks(*F)) { 2305 auto &DT = LookupDomTree(*F); 2306 DT.recalculate(*F); 2307 Changed = true; 2308 } 2309 } 2310 2311 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 2312 2313 if (!F->hasLocalLinkage()) 2314 continue; 2315 2316 // If we have an inalloca parameter that we can safely remove the 2317 // inalloca attribute from, do so. This unlocks optimizations that 2318 // wouldn't be safe in the presence of inalloca. 2319 // FIXME: We should also hoist alloca affected by this to the entry 2320 // block if possible. 2321 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2322 !F->hasAddressTaken()) { 2323 RemoveAttribute(F, Attribute::InAlloca); 2324 Changed = true; 2325 } 2326 2327 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2328 NumInternalFunc++; 2329 TargetTransformInfo &TTI = GetTTI(*F); 2330 // Change the calling convention to coldcc if either stress testing is 2331 // enabled or the target would like to use coldcc on functions which are 2332 // cold at all call sites and the callers contain no other non coldcc 2333 // calls. 2334 if (EnableColdCCStressTest || 2335 (TTI.useColdCCForColdCall(*F) && 2336 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 2337 F->setCallingConv(CallingConv::Cold); 2338 changeCallSitesToColdCC(F); 2339 Changed = true; 2340 NumColdCC++; 2341 } 2342 } 2343 2344 if (hasChangeableCC(F) && !F->isVarArg() && 2345 !F->hasAddressTaken()) { 2346 // If this function has a calling convention worth changing, is not a 2347 // varargs function, and is only called directly, promote it to use the 2348 // Fast calling convention. 2349 F->setCallingConv(CallingConv::Fast); 2350 ChangeCalleesToFastCall(F); 2351 ++NumFastCallFns; 2352 Changed = true; 2353 } 2354 2355 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2356 !F->hasAddressTaken()) { 2357 // The function is not used by a trampoline intrinsic, so it is safe 2358 // to remove the 'nest' attribute. 2359 RemoveAttribute(F, Attribute::Nest); 2360 ++NumNestRemoved; 2361 Changed = true; 2362 } 2363 } 2364 return Changed; 2365 } 2366 2367 static bool 2368 OptimizeGlobalVars(Module &M, 2369 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2370 function_ref<DominatorTree &(Function &)> LookupDomTree, 2371 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2372 bool Changed = false; 2373 2374 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2375 GVI != E; ) { 2376 GlobalVariable *GV = &*GVI++; 2377 // Global variables without names cannot be referenced outside this module. 2378 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2379 GV->setLinkage(GlobalValue::InternalLinkage); 2380 // Simplify the initializer. 2381 if (GV->hasInitializer()) 2382 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2383 auto &DL = M.getDataLayout(); 2384 // TLI is not used in the case of a Constant, so use default nullptr 2385 // for that optional parameter, since we don't have a Function to 2386 // provide GetTLI anyway. 2387 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2388 if (New && New != C) 2389 GV->setInitializer(New); 2390 } 2391 2392 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2393 Changed = true; 2394 continue; 2395 } 2396 2397 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2398 } 2399 return Changed; 2400 } 2401 2402 /// Evaluate a piece of a constantexpr store into a global initializer. This 2403 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2404 /// GEP operands of Addr [0, OpNo) have been stepped into. 2405 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2406 ConstantExpr *Addr, unsigned OpNo) { 2407 // Base case of the recursion. 2408 if (OpNo == Addr->getNumOperands()) { 2409 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2410 return Val; 2411 } 2412 2413 SmallVector<Constant*, 32> Elts; 2414 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2415 // Break up the constant into its elements. 2416 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2417 Elts.push_back(Init->getAggregateElement(i)); 2418 2419 // Replace the element that we are supposed to. 2420 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2421 unsigned Idx = CU->getZExtValue(); 2422 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2423 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2424 2425 // Return the modified struct. 2426 return ConstantStruct::get(STy, Elts); 2427 } 2428 2429 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2430 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2431 uint64_t NumElts = InitTy->getNumElements(); 2432 2433 // Break up the array into elements. 2434 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2435 Elts.push_back(Init->getAggregateElement(i)); 2436 2437 assert(CI->getZExtValue() < NumElts); 2438 Elts[CI->getZExtValue()] = 2439 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2440 2441 if (Init->getType()->isArrayTy()) 2442 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2443 return ConstantVector::get(Elts); 2444 } 2445 2446 /// We have decided that Addr (which satisfies the predicate 2447 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2448 static void CommitValueTo(Constant *Val, Constant *Addr) { 2449 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2450 assert(GV->hasInitializer()); 2451 GV->setInitializer(Val); 2452 return; 2453 } 2454 2455 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2456 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2457 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2458 } 2459 2460 /// Given a map of address -> value, where addresses are expected to be some form 2461 /// of either a global or a constant GEP, set the initializer for the address to 2462 /// be the value. This performs mostly the same function as CommitValueTo() 2463 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2464 /// case where the set of addresses are GEPs sharing the same underlying global, 2465 /// processing the GEPs in batches rather than individually. 2466 /// 2467 /// To give an example, consider the following C++ code adapted from the clang 2468 /// regression tests: 2469 /// struct S { 2470 /// int n = 10; 2471 /// int m = 2 * n; 2472 /// S(int a) : n(a) {} 2473 /// }; 2474 /// 2475 /// template<typename T> 2476 /// struct U { 2477 /// T *r = &q; 2478 /// T q = 42; 2479 /// U *p = this; 2480 /// }; 2481 /// 2482 /// U<S> e; 2483 /// 2484 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2485 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2486 /// members. This batch algorithm will simply use general CommitValueTo() method 2487 /// to handle the complex nested S struct initialization of 'q', before 2488 /// processing the outermost members in a single batch. Using CommitValueTo() to 2489 /// handle member in the outer struct is inefficient when the struct/array is 2490 /// very large as we end up creating and destroy constant arrays for each 2491 /// initialization. 2492 /// For the above case, we expect the following IR to be generated: 2493 /// 2494 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2495 /// %struct.S = type { i32, i32 } 2496 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2497 /// i64 0, i32 1), 2498 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2499 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2500 /// constant expression, while the other two elements of @e are "simple". 2501 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2502 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2503 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2504 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2505 SimpleCEs.reserve(Mem.size()); 2506 2507 for (const auto &I : Mem) { 2508 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2509 GVs.push_back(std::make_pair(GV, I.second)); 2510 } else { 2511 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2512 // We don't handle the deeply recursive case using the batch method. 2513 if (GEP->getNumOperands() > 3) 2514 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2515 else 2516 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2517 } 2518 } 2519 2520 // The algorithm below doesn't handle cases like nested structs, so use the 2521 // slower fully general method if we have to. 2522 for (auto ComplexCE : ComplexCEs) 2523 CommitValueTo(ComplexCE.second, ComplexCE.first); 2524 2525 for (auto GVPair : GVs) { 2526 assert(GVPair.first->hasInitializer()); 2527 GVPair.first->setInitializer(GVPair.second); 2528 } 2529 2530 if (SimpleCEs.empty()) 2531 return; 2532 2533 // We cache a single global's initializer elements in the case where the 2534 // subsequent address/val pair uses the same one. This avoids throwing away and 2535 // rebuilding the constant struct/vector/array just because one element is 2536 // modified at a time. 2537 SmallVector<Constant *, 32> Elts; 2538 Elts.reserve(SimpleCEs.size()); 2539 GlobalVariable *CurrentGV = nullptr; 2540 2541 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2542 Constant *Init = GV->getInitializer(); 2543 Type *Ty = Init->getType(); 2544 if (Update) { 2545 if (CurrentGV) { 2546 assert(CurrentGV && "Expected a GV to commit to!"); 2547 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2548 // We have a valid cache that needs to be committed. 2549 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2550 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2551 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2552 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2553 else 2554 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2555 } 2556 if (CurrentGV == GV) 2557 return; 2558 // Need to clear and set up cache for new initializer. 2559 CurrentGV = GV; 2560 Elts.clear(); 2561 unsigned NumElts; 2562 if (auto *STy = dyn_cast<StructType>(Ty)) 2563 NumElts = STy->getNumElements(); 2564 else 2565 NumElts = cast<SequentialType>(Ty)->getNumElements(); 2566 for (unsigned i = 0, e = NumElts; i != e; ++i) 2567 Elts.push_back(Init->getAggregateElement(i)); 2568 } 2569 }; 2570 2571 for (auto CEPair : SimpleCEs) { 2572 ConstantExpr *GEP = CEPair.first; 2573 Constant *Val = CEPair.second; 2574 2575 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2576 commitAndSetupCache(GV, GV != CurrentGV); 2577 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2578 Elts[CI->getZExtValue()] = Val; 2579 } 2580 // The last initializer in the list needs to be committed, others 2581 // will be committed on a new initializer being processed. 2582 commitAndSetupCache(CurrentGV, true); 2583 } 2584 2585 /// Evaluate static constructors in the function, if we can. Return true if we 2586 /// can, false otherwise. 2587 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2588 TargetLibraryInfo *TLI) { 2589 // Call the function. 2590 Evaluator Eval(DL, TLI); 2591 Constant *RetValDummy; 2592 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2593 SmallVector<Constant*, 0>()); 2594 2595 if (EvalSuccess) { 2596 ++NumCtorsEvaluated; 2597 2598 // We succeeded at evaluation: commit the result. 2599 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2600 << F->getName() << "' to " 2601 << Eval.getMutatedMemory().size() << " stores.\n"); 2602 BatchCommitValueTo(Eval.getMutatedMemory()); 2603 for (GlobalVariable *GV : Eval.getInvariants()) 2604 GV->setConstant(true); 2605 } 2606 2607 return EvalSuccess; 2608 } 2609 2610 static int compareNames(Constant *const *A, Constant *const *B) { 2611 Value *AStripped = (*A)->stripPointerCasts(); 2612 Value *BStripped = (*B)->stripPointerCasts(); 2613 return AStripped->getName().compare(BStripped->getName()); 2614 } 2615 2616 static void setUsedInitializer(GlobalVariable &V, 2617 const SmallPtrSetImpl<GlobalValue *> &Init) { 2618 if (Init.empty()) { 2619 V.eraseFromParent(); 2620 return; 2621 } 2622 2623 // Type of pointer to the array of pointers. 2624 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2625 2626 SmallVector<Constant *, 8> UsedArray; 2627 for (GlobalValue *GV : Init) { 2628 Constant *Cast 2629 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2630 UsedArray.push_back(Cast); 2631 } 2632 // Sort to get deterministic order. 2633 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2634 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2635 2636 Module *M = V.getParent(); 2637 V.removeFromParent(); 2638 GlobalVariable *NV = 2639 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2640 ConstantArray::get(ATy, UsedArray), ""); 2641 NV->takeName(&V); 2642 NV->setSection("llvm.metadata"); 2643 delete &V; 2644 } 2645 2646 namespace { 2647 2648 /// An easy to access representation of llvm.used and llvm.compiler.used. 2649 class LLVMUsed { 2650 SmallPtrSet<GlobalValue *, 8> Used; 2651 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2652 GlobalVariable *UsedV; 2653 GlobalVariable *CompilerUsedV; 2654 2655 public: 2656 LLVMUsed(Module &M) { 2657 UsedV = collectUsedGlobalVariables(M, Used, false); 2658 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2659 } 2660 2661 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2662 using used_iterator_range = iterator_range<iterator>; 2663 2664 iterator usedBegin() { return Used.begin(); } 2665 iterator usedEnd() { return Used.end(); } 2666 2667 used_iterator_range used() { 2668 return used_iterator_range(usedBegin(), usedEnd()); 2669 } 2670 2671 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2672 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2673 2674 used_iterator_range compilerUsed() { 2675 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2676 } 2677 2678 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2679 2680 bool compilerUsedCount(GlobalValue *GV) const { 2681 return CompilerUsed.count(GV); 2682 } 2683 2684 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2685 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2686 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2687 2688 bool compilerUsedInsert(GlobalValue *GV) { 2689 return CompilerUsed.insert(GV).second; 2690 } 2691 2692 void syncVariablesAndSets() { 2693 if (UsedV) 2694 setUsedInitializer(*UsedV, Used); 2695 if (CompilerUsedV) 2696 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2697 } 2698 }; 2699 2700 } // end anonymous namespace 2701 2702 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2703 if (GA.use_empty()) // No use at all. 2704 return false; 2705 2706 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2707 "We should have removed the duplicated " 2708 "element from llvm.compiler.used"); 2709 if (!GA.hasOneUse()) 2710 // Strictly more than one use. So at least one is not in llvm.used and 2711 // llvm.compiler.used. 2712 return true; 2713 2714 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2715 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2716 } 2717 2718 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2719 const LLVMUsed &U) { 2720 unsigned N = 2; 2721 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2722 "We should have removed the duplicated " 2723 "element from llvm.compiler.used"); 2724 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2725 ++N; 2726 return V.hasNUsesOrMore(N); 2727 } 2728 2729 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2730 if (!GA.hasLocalLinkage()) 2731 return true; 2732 2733 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2734 } 2735 2736 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2737 bool &RenameTarget) { 2738 RenameTarget = false; 2739 bool Ret = false; 2740 if (hasUseOtherThanLLVMUsed(GA, U)) 2741 Ret = true; 2742 2743 // If the alias is externally visible, we may still be able to simplify it. 2744 if (!mayHaveOtherReferences(GA, U)) 2745 return Ret; 2746 2747 // If the aliasee has internal linkage, give it the name and linkage 2748 // of the alias, and delete the alias. This turns: 2749 // define internal ... @f(...) 2750 // @a = alias ... @f 2751 // into: 2752 // define ... @a(...) 2753 Constant *Aliasee = GA.getAliasee(); 2754 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2755 if (!Target->hasLocalLinkage()) 2756 return Ret; 2757 2758 // Do not perform the transform if multiple aliases potentially target the 2759 // aliasee. This check also ensures that it is safe to replace the section 2760 // and other attributes of the aliasee with those of the alias. 2761 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2762 return Ret; 2763 2764 RenameTarget = true; 2765 return true; 2766 } 2767 2768 static bool 2769 OptimizeGlobalAliases(Module &M, 2770 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2771 bool Changed = false; 2772 LLVMUsed Used(M); 2773 2774 for (GlobalValue *GV : Used.used()) 2775 Used.compilerUsedErase(GV); 2776 2777 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2778 I != E;) { 2779 GlobalAlias *J = &*I++; 2780 2781 // Aliases without names cannot be referenced outside this module. 2782 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2783 J->setLinkage(GlobalValue::InternalLinkage); 2784 2785 if (deleteIfDead(*J, NotDiscardableComdats)) { 2786 Changed = true; 2787 continue; 2788 } 2789 2790 // If the alias can change at link time, nothing can be done - bail out. 2791 if (J->isInterposable()) 2792 continue; 2793 2794 Constant *Aliasee = J->getAliasee(); 2795 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2796 // We can't trivially replace the alias with the aliasee if the aliasee is 2797 // non-trivial in some way. 2798 // TODO: Try to handle non-zero GEPs of local aliasees. 2799 if (!Target) 2800 continue; 2801 Target->removeDeadConstantUsers(); 2802 2803 // Make all users of the alias use the aliasee instead. 2804 bool RenameTarget; 2805 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2806 continue; 2807 2808 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2809 ++NumAliasesResolved; 2810 Changed = true; 2811 2812 if (RenameTarget) { 2813 // Give the aliasee the name, linkage and other attributes of the alias. 2814 Target->takeName(&*J); 2815 Target->setLinkage(J->getLinkage()); 2816 Target->setDSOLocal(J->isDSOLocal()); 2817 Target->setVisibility(J->getVisibility()); 2818 Target->setDLLStorageClass(J->getDLLStorageClass()); 2819 2820 if (Used.usedErase(&*J)) 2821 Used.usedInsert(Target); 2822 2823 if (Used.compilerUsedErase(&*J)) 2824 Used.compilerUsedInsert(Target); 2825 } else if (mayHaveOtherReferences(*J, Used)) 2826 continue; 2827 2828 // Delete the alias. 2829 M.getAliasList().erase(J); 2830 ++NumAliasesRemoved; 2831 Changed = true; 2832 } 2833 2834 Used.syncVariablesAndSets(); 2835 2836 return Changed; 2837 } 2838 2839 static Function * 2840 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2841 // Hack to get a default TLI before we have actual Function. 2842 auto FuncIter = M.begin(); 2843 if (FuncIter == M.end()) 2844 return nullptr; 2845 auto *TLI = &GetTLI(*FuncIter); 2846 2847 LibFunc F = LibFunc_cxa_atexit; 2848 if (!TLI->has(F)) 2849 return nullptr; 2850 2851 Function *Fn = M.getFunction(TLI->getName(F)); 2852 if (!Fn) 2853 return nullptr; 2854 2855 // Now get the actual TLI for Fn. 2856 TLI = &GetTLI(*Fn); 2857 2858 // Make sure that the function has the correct prototype. 2859 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2860 return nullptr; 2861 2862 return Fn; 2863 } 2864 2865 /// Returns whether the given function is an empty C++ destructor and can 2866 /// therefore be eliminated. 2867 /// Note that we assume that other optimization passes have already simplified 2868 /// the code so we simply check for 'ret'. 2869 static bool cxxDtorIsEmpty(const Function &Fn) { 2870 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2871 // nounwind, but that doesn't seem worth doing. 2872 if (Fn.isDeclaration()) 2873 return false; 2874 2875 for (auto &I : Fn.getEntryBlock()) { 2876 if (isa<DbgInfoIntrinsic>(I)) 2877 continue; 2878 if (isa<ReturnInst>(I)) 2879 return true; 2880 break; 2881 } 2882 return false; 2883 } 2884 2885 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2886 /// Itanium C++ ABI p3.3.5: 2887 /// 2888 /// After constructing a global (or local static) object, that will require 2889 /// destruction on exit, a termination function is registered as follows: 2890 /// 2891 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2892 /// 2893 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2894 /// call f(p) when DSO d is unloaded, before all such termination calls 2895 /// registered before this one. It returns zero if registration is 2896 /// successful, nonzero on failure. 2897 2898 // This pass will look for calls to __cxa_atexit where the function is trivial 2899 // and remove them. 2900 bool Changed = false; 2901 2902 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2903 I != E;) { 2904 // We're only interested in calls. Theoretically, we could handle invoke 2905 // instructions as well, but neither llvm-gcc nor clang generate invokes 2906 // to __cxa_atexit. 2907 CallInst *CI = dyn_cast<CallInst>(*I++); 2908 if (!CI) 2909 continue; 2910 2911 Function *DtorFn = 2912 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2913 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2914 continue; 2915 2916 // Just remove the call. 2917 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2918 CI->eraseFromParent(); 2919 2920 ++NumCXXDtorsRemoved; 2921 2922 Changed |= true; 2923 } 2924 2925 return Changed; 2926 } 2927 2928 static bool optimizeGlobalsInModule( 2929 Module &M, const DataLayout &DL, 2930 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2931 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2932 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2933 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2934 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2935 bool Changed = false; 2936 bool LocalChange = true; 2937 while (LocalChange) { 2938 LocalChange = false; 2939 2940 NotDiscardableComdats.clear(); 2941 for (const GlobalVariable &GV : M.globals()) 2942 if (const Comdat *C = GV.getComdat()) 2943 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2944 NotDiscardableComdats.insert(C); 2945 for (Function &F : M) 2946 if (const Comdat *C = F.getComdat()) 2947 if (!F.isDefTriviallyDead()) 2948 NotDiscardableComdats.insert(C); 2949 for (GlobalAlias &GA : M.aliases()) 2950 if (const Comdat *C = GA.getComdat()) 2951 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2952 NotDiscardableComdats.insert(C); 2953 2954 // Delete functions that are trivially dead, ccc -> fastcc 2955 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2956 NotDiscardableComdats); 2957 2958 // Optimize global_ctors list. 2959 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2960 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2961 }); 2962 2963 // Optimize non-address-taken globals. 2964 LocalChange |= 2965 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 2966 2967 // Resolve aliases, when possible. 2968 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2969 2970 // Try to remove trivial global destructors if they are not removed 2971 // already. 2972 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2973 if (CXAAtExitFn) 2974 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2975 2976 Changed |= LocalChange; 2977 } 2978 2979 // TODO: Move all global ctors functions to the end of the module for code 2980 // layout. 2981 2982 return Changed; 2983 } 2984 2985 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2986 auto &DL = M.getDataLayout(); 2987 auto &FAM = 2988 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2989 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2990 return FAM.getResult<DominatorTreeAnalysis>(F); 2991 }; 2992 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2993 return FAM.getResult<TargetLibraryAnalysis>(F); 2994 }; 2995 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2996 return FAM.getResult<TargetIRAnalysis>(F); 2997 }; 2998 2999 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 3000 return FAM.getResult<BlockFrequencyAnalysis>(F); 3001 }; 3002 3003 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 3004 return PreservedAnalyses::all(); 3005 return PreservedAnalyses::none(); 3006 } 3007 3008 namespace { 3009 3010 struct GlobalOptLegacyPass : public ModulePass { 3011 static char ID; // Pass identification, replacement for typeid 3012 3013 GlobalOptLegacyPass() : ModulePass(ID) { 3014 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 3015 } 3016 3017 bool runOnModule(Module &M) override { 3018 if (skipModule(M)) 3019 return false; 3020 3021 auto &DL = M.getDataLayout(); 3022 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 3023 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 3024 }; 3025 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 3026 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3027 }; 3028 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 3029 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3030 }; 3031 3032 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 3033 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 3034 }; 3035 3036 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 3037 LookupDomTree); 3038 } 3039 3040 void getAnalysisUsage(AnalysisUsage &AU) const override { 3041 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3042 AU.addRequired<TargetTransformInfoWrapperPass>(); 3043 AU.addRequired<DominatorTreeWrapperPass>(); 3044 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3045 } 3046 }; 3047 3048 } // end anonymous namespace 3049 3050 char GlobalOptLegacyPass::ID = 0; 3051 3052 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3053 "Global Variable Optimizer", false, false) 3054 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3055 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3056 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3058 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3059 "Global Variable Optimizer", false, false) 3060 3061 ModulePass *llvm::createGlobalOptimizerPass() { 3062 return new GlobalOptLegacyPass(); 3063 } 3064