xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<CompositeType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
159 static bool IsSafeComputationToRemove(
160     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, GetTLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool
190 CleanupPointerRootUsers(GlobalVariable *GV,
191                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
192   // A brief explanation of leak checkers.  The goal is to find bugs where
193   // pointers are forgotten, causing an accumulating growth in memory
194   // usage over time.  The common strategy for leak checkers is to whitelist the
195   // memory pointed to by globals at exit.  This is popular because it also
196   // solves another problem where the main thread of a C++ program may shut down
197   // before other threads that are still expecting to use those globals.  To
198   // handle that case, we expect the program may create a singleton and never
199   // destroy it.
200 
201   bool Changed = false;
202 
203   // If Dead[n].first is the only use of a malloc result, we can delete its
204   // chain of computation and the store to the global in Dead[n].second.
205   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206 
207   // Constants can't be pointers to dynamically allocated memory.
208   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
209        UI != E;) {
210     User *U = *UI++;
211     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212       Value *V = SI->getValueOperand();
213       if (isa<Constant>(V)) {
214         Changed = true;
215         SI->eraseFromParent();
216       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217         if (I->hasOneUse())
218           Dead.push_back(std::make_pair(I, SI));
219       }
220     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221       if (isa<Constant>(MSI->getValue())) {
222         Changed = true;
223         MSI->eraseFromParent();
224       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225         if (I->hasOneUse())
226           Dead.push_back(std::make_pair(I, MSI));
227       }
228     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230       if (MemSrc && MemSrc->isConstant()) {
231         Changed = true;
232         MTI->eraseFromParent();
233       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
234         if (I->hasOneUse())
235           Dead.push_back(std::make_pair(I, MTI));
236       }
237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238       if (CE->use_empty()) {
239         CE->destroyConstant();
240         Changed = true;
241       }
242     } else if (Constant *C = dyn_cast<Constant>(U)) {
243       if (isSafeToDestroyConstant(C)) {
244         C->destroyConstant();
245         // This could have invalidated UI, start over from scratch.
246         Dead.clear();
247         CleanupPointerRootUsers(GV, GetTLI);
248         return true;
249       }
250     }
251   }
252 
253   for (int i = 0, e = Dead.size(); i != e; ++i) {
254     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255       Dead[i].second->eraseFromParent();
256       Instruction *I = Dead[i].first;
257       do {
258         if (isAllocationFn(I, GetTLI))
259           break;
260         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261         if (!J)
262           break;
263         I->eraseFromParent();
264         I = J;
265       } while (true);
266       I->eraseFromParent();
267     }
268   }
269 
270   return Changed;
271 }
272 
273 /// We just marked GV constant.  Loop over all users of the global, cleaning up
274 /// the obvious ones.  This is largely just a quick scan over the use list to
275 /// clean up the easy and obvious cruft.  This returns true if it made a change.
276 static bool CleanupConstantGlobalUsers(
277     Value *V, Constant *Init, const DataLayout &DL,
278     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
279   bool Changed = false;
280   // Note that we need to use a weak value handle for the worklist items. When
281   // we delete a constant array, we may also be holding pointer to one of its
282   // elements (or an element of one of its elements if we're dealing with an
283   // array of arrays) in the worklist.
284   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
285   while (!WorkList.empty()) {
286     Value *UV = WorkList.pop_back_val();
287     if (!UV)
288       continue;
289 
290     User *U = cast<User>(UV);
291 
292     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293       if (Init) {
294         // Replace the load with the initializer.
295         LI->replaceAllUsesWith(Init);
296         LI->eraseFromParent();
297         Changed = true;
298       }
299     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300       // Store must be unreachable or storing Init into the global.
301       SI->eraseFromParent();
302       Changed = true;
303     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304       if (CE->getOpcode() == Instruction::GetElementPtr) {
305         Constant *SubInit = nullptr;
306         if (Init)
307           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
309       } else if ((CE->getOpcode() == Instruction::BitCast &&
310                   CE->getType()->isPointerTy()) ||
311                  CE->getOpcode() == Instruction::AddrSpaceCast) {
312         // Pointer cast, delete any stores and memsets to the global.
313         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
314       }
315 
316       if (CE->use_empty()) {
317         CE->destroyConstant();
318         Changed = true;
319       }
320     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323       // and will invalidate our notion of what Init is.
324       Constant *SubInit = nullptr;
325       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
327             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
328         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330 
331         // If the initializer is an all-null value and we have an inbounds GEP,
332         // we already know what the result of any load from that GEP is.
333         // TODO: Handle splats.
334         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
335           SubInit = Constant::getNullValue(GEP->getResultElementType());
336       }
337       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338 
339       if (GEP->use_empty()) {
340         GEP->eraseFromParent();
341         Changed = true;
342       }
343     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
344       if (MI->getRawDest() == V) {
345         MI->eraseFromParent();
346         Changed = true;
347       }
348 
349     } else if (Constant *C = dyn_cast<Constant>(U)) {
350       // If we have a chain of dead constantexprs or other things dangling from
351       // us, and if they are all dead, nuke them without remorse.
352       if (isSafeToDestroyConstant(C)) {
353         C->destroyConstant();
354         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
355         return true;
356       }
357     }
358   }
359   return Changed;
360 }
361 
362 static bool isSafeSROAElementUse(Value *V);
363 
364 /// Return true if the specified GEP is a safe user of a derived
365 /// expression from a global that we want to SROA.
366 static bool isSafeSROAGEP(User *U) {
367   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
368   // don't like < 3 operand CE's, and we don't like non-constant integer
369   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
370   // value of C.
371   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
372       !cast<Constant>(U->getOperand(1))->isNullValue())
373     return false;
374 
375   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
376   ++GEPI; // Skip over the pointer index.
377 
378   // For all other level we require that the indices are constant and inrange.
379   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
380   // invalid things like allowing i to index an out-of-range subscript that
381   // accesses A[1]. This can also happen between different members of a struct
382   // in llvm IR.
383   for (; GEPI != E; ++GEPI) {
384     if (GEPI.isStruct())
385       continue;
386 
387     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
388     if (!IdxVal || (GEPI.isBoundedSequential() &&
389                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
390       return false;
391   }
392 
393   return llvm::all_of(U->users(),
394                       [](User *UU) { return isSafeSROAElementUse(UU); });
395 }
396 
397 /// Return true if the specified instruction is a safe user of a derived
398 /// expression from a global that we want to SROA.
399 static bool isSafeSROAElementUse(Value *V) {
400   // We might have a dead and dangling constant hanging off of here.
401   if (Constant *C = dyn_cast<Constant>(V))
402     return isSafeToDestroyConstant(C);
403 
404   Instruction *I = dyn_cast<Instruction>(V);
405   if (!I) return false;
406 
407   // Loads are ok.
408   if (isa<LoadInst>(I)) return true;
409 
410   // Stores *to* the pointer are ok.
411   if (StoreInst *SI = dyn_cast<StoreInst>(I))
412     return SI->getOperand(0) != V;
413 
414   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
415   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
416 }
417 
418 /// Look at all uses of the global and decide whether it is safe for us to
419 /// perform this transformation.
420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
421   for (User *U : GV->users()) {
422     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
423     if (!isa<GetElementPtrInst>(U) &&
424         (!isa<ConstantExpr>(U) ||
425         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
426       return false;
427 
428     // Check the gep and it's users are safe to SRA
429     if (!isSafeSROAGEP(U))
430       return false;
431   }
432 
433   return true;
434 }
435 
436 static bool CanDoGlobalSRA(GlobalVariable *GV) {
437   Constant *Init = GV->getInitializer();
438 
439   if (isa<StructType>(Init->getType())) {
440     // nothing to check
441   } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) {
442     if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16))
443       return false; // It's not worth it.
444   } else
445     return false;
446 
447   return GlobalUsersSafeToSRA(GV);
448 }
449 
450 /// Copy over the debug info for a variable to its SRA replacements.
451 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
452                                  uint64_t FragmentOffsetInBits,
453                                  uint64_t FragmentSizeInBits,
454                                  unsigned NumElements) {
455   SmallVector<DIGlobalVariableExpression *, 1> GVs;
456   GV->getDebugInfo(GVs);
457   for (auto *GVE : GVs) {
458     DIVariable *Var = GVE->getVariable();
459     DIExpression *Expr = GVE->getExpression();
460     if (NumElements > 1) {
461       if (auto E = DIExpression::createFragmentExpression(
462               Expr, FragmentOffsetInBits, FragmentSizeInBits))
463         Expr = *E;
464       else
465         return;
466     }
467     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
468     NGV->addDebugInfo(NGVE);
469   }
470 }
471 
472 /// Perform scalar replacement of aggregates on the specified global variable.
473 /// This opens the door for other optimizations by exposing the behavior of the
474 /// program in a more fine-grained way.  We have determined that this
475 /// transformation is safe already.  We return the first global variable we
476 /// insert so that the caller can reprocess it.
477 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
478   // Make sure this global only has simple uses that we can SRA.
479   if (!CanDoGlobalSRA(GV))
480     return nullptr;
481 
482   assert(GV->hasLocalLinkage());
483   Constant *Init = GV->getInitializer();
484   Type *Ty = Init->getType();
485 
486   std::map<unsigned, GlobalVariable *> NewGlobals;
487 
488   // Get the alignment of the global, either explicit or target-specific.
489   unsigned StartAlignment = GV->getAlignment();
490   if (StartAlignment == 0)
491     StartAlignment = DL.getABITypeAlignment(GV->getType());
492 
493   // Loop over all users and create replacement variables for used aggregate
494   // elements.
495   for (User *GEP : GV->users()) {
496     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
497                                            Instruction::GetElementPtr) ||
498             isa<GetElementPtrInst>(GEP)) &&
499            "NonGEP CE's are not SRAable!");
500 
501     // Ignore the 1th operand, which has to be zero or else the program is quite
502     // broken (undefined).  Get the 2nd operand, which is the structure or array
503     // index.
504     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
505     if (NewGlobals.count(ElementIdx) == 1)
506       continue; // we`ve already created replacement variable
507     assert(NewGlobals.count(ElementIdx) == 0);
508 
509     Type *ElTy = nullptr;
510     if (StructType *STy = dyn_cast<StructType>(Ty))
511       ElTy = STy->getElementType(ElementIdx);
512     else if (SequentialType *STy = dyn_cast<SequentialType>(Ty))
513       ElTy = STy->getElementType();
514     assert(ElTy);
515 
516     Constant *In = Init->getAggregateElement(ElementIdx);
517     assert(In && "Couldn't get element of initializer?");
518 
519     GlobalVariable *NGV = new GlobalVariable(
520         ElTy, false, GlobalVariable::InternalLinkage, In,
521         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
522         GV->getType()->getAddressSpace());
523     NGV->setExternallyInitialized(GV->isExternallyInitialized());
524     NGV->copyAttributesFrom(GV);
525     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
526 
527     if (StructType *STy = dyn_cast<StructType>(Ty)) {
528       const StructLayout &Layout = *DL.getStructLayout(STy);
529 
530       // Calculate the known alignment of the field.  If the original aggregate
531       // had 256 byte alignment for example, something might depend on that:
532       // propagate info to each field.
533       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
534       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
535       if (NewAlign >
536           Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
537         NGV->setAlignment(NewAlign);
538 
539       // Copy over the debug info for the variable.
540       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
541       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
542       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size,
543                            STy->getNumElements());
544     } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
545       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
546       Align EltAlign(DL.getABITypeAlignment(ElTy));
547       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
548 
549       // Calculate the known alignment of the field.  If the original aggregate
550       // had 256 byte alignment for example, something might depend on that:
551       // propagate info to each field.
552       Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
553       if (NewAlign > EltAlign)
554         NGV->setAlignment(NewAlign);
555       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
556                            FragmentSizeInBits, STy->getNumElements());
557     }
558   }
559 
560   if (NewGlobals.empty())
561     return nullptr;
562 
563   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
564   for (auto NewGlobalVar : NewGlobals)
565     Globals.push_back(NewGlobalVar.second);
566 
567   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
568 
569   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
570 
571   // Loop over all of the uses of the global, replacing the constantexpr geps,
572   // with smaller constantexpr geps or direct references.
573   while (!GV->use_empty()) {
574     User *GEP = GV->user_back();
575     assert(((isa<ConstantExpr>(GEP) &&
576              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
577             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
578 
579     // Ignore the 1th operand, which has to be zero or else the program is quite
580     // broken (undefined).  Get the 2nd operand, which is the structure or array
581     // index.
582     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
583     assert(NewGlobals.count(ElementIdx) == 1);
584 
585     Value *NewPtr = NewGlobals[ElementIdx];
586     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
587 
588     // Form a shorter GEP if needed.
589     if (GEP->getNumOperands() > 3) {
590       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
591         SmallVector<Constant*, 8> Idxs;
592         Idxs.push_back(NullInt);
593         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
594           Idxs.push_back(CE->getOperand(i));
595         NewPtr =
596             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
597       } else {
598         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
599         SmallVector<Value*, 8> Idxs;
600         Idxs.push_back(NullInt);
601         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
602           Idxs.push_back(GEPI->getOperand(i));
603         NewPtr = GetElementPtrInst::Create(
604             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
605             GEPI);
606       }
607     }
608     GEP->replaceAllUsesWith(NewPtr);
609 
610     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
611       GEPI->eraseFromParent();
612     else
613       cast<ConstantExpr>(GEP)->destroyConstant();
614   }
615 
616   // Delete the old global, now that it is dead.
617   Globals.erase(GV);
618   ++NumSRA;
619 
620   assert(NewGlobals.size() > 0);
621   return NewGlobals.begin()->second;
622 }
623 
624 /// Return true if all users of the specified value will trap if the value is
625 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
626 /// reprocessing them.
627 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
628                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
629   for (const User *U : V->users()) {
630     if (const Instruction *I = dyn_cast<Instruction>(U)) {
631       // If null pointer is considered valid, then all uses are non-trapping.
632       // Non address-space 0 globals have already been pruned by the caller.
633       if (NullPointerIsDefined(I->getFunction()))
634         return false;
635     }
636     if (isa<LoadInst>(U)) {
637       // Will trap.
638     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
639       if (SI->getOperand(0) == V) {
640         //cerr << "NONTRAPPING USE: " << *U;
641         return false;  // Storing the value.
642       }
643     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
644       if (CI->getCalledValue() != V) {
645         //cerr << "NONTRAPPING USE: " << *U;
646         return false;  // Not calling the ptr
647       }
648     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
649       if (II->getCalledValue() != V) {
650         //cerr << "NONTRAPPING USE: " << *U;
651         return false;  // Not calling the ptr
652       }
653     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
654       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
655     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
656       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
657     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
658       // If we've already seen this phi node, ignore it, it has already been
659       // checked.
660       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
661         return false;
662     } else if (isa<ICmpInst>(U) &&
663                isa<ConstantPointerNull>(U->getOperand(1))) {
664       // Ignore icmp X, null
665     } else {
666       //cerr << "NONTRAPPING USE: " << *U;
667       return false;
668     }
669   }
670   return true;
671 }
672 
673 /// Return true if all uses of any loads from GV will trap if the loaded value
674 /// is null.  Note that this also permits comparisons of the loaded value
675 /// against null, as a special case.
676 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
677   for (const User *U : GV->users())
678     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
679       SmallPtrSet<const PHINode*, 8> PHIs;
680       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
681         return false;
682     } else if (isa<StoreInst>(U)) {
683       // Ignore stores to the global.
684     } else {
685       // We don't know or understand this user, bail out.
686       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
687       return false;
688     }
689   return true;
690 }
691 
692 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
693   bool Changed = false;
694   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
695     Instruction *I = cast<Instruction>(*UI++);
696     // Uses are non-trapping if null pointer is considered valid.
697     // Non address-space 0 globals are already pruned by the caller.
698     if (NullPointerIsDefined(I->getFunction()))
699       return false;
700     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
701       LI->setOperand(0, NewV);
702       Changed = true;
703     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
704       if (SI->getOperand(1) == V) {
705         SI->setOperand(1, NewV);
706         Changed = true;
707       }
708     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
709       CallSite CS(I);
710       if (CS.getCalledValue() == V) {
711         // Calling through the pointer!  Turn into a direct call, but be careful
712         // that the pointer is not also being passed as an argument.
713         CS.setCalledFunction(NewV);
714         Changed = true;
715         bool PassedAsArg = false;
716         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
717           if (CS.getArgument(i) == V) {
718             PassedAsArg = true;
719             CS.setArgument(i, NewV);
720           }
721 
722         if (PassedAsArg) {
723           // Being passed as an argument also.  Be careful to not invalidate UI!
724           UI = V->user_begin();
725         }
726       }
727     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
728       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
729                                 ConstantExpr::getCast(CI->getOpcode(),
730                                                       NewV, CI->getType()));
731       if (CI->use_empty()) {
732         Changed = true;
733         CI->eraseFromParent();
734       }
735     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
736       // Should handle GEP here.
737       SmallVector<Constant*, 8> Idxs;
738       Idxs.reserve(GEPI->getNumOperands()-1);
739       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
740            i != e; ++i)
741         if (Constant *C = dyn_cast<Constant>(*i))
742           Idxs.push_back(C);
743         else
744           break;
745       if (Idxs.size() == GEPI->getNumOperands()-1)
746         Changed |= OptimizeAwayTrappingUsesOfValue(
747             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
748                                                  NewV, Idxs));
749       if (GEPI->use_empty()) {
750         Changed = true;
751         GEPI->eraseFromParent();
752       }
753     }
754   }
755 
756   return Changed;
757 }
758 
759 /// The specified global has only one non-null value stored into it.  If there
760 /// are uses of the loaded value that would trap if the loaded value is
761 /// dynamically null, then we know that they cannot be reachable with a null
762 /// optimize away the load.
763 static bool OptimizeAwayTrappingUsesOfLoads(
764     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
765     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
766   bool Changed = false;
767 
768   // Keep track of whether we are able to remove all the uses of the global
769   // other than the store that defines it.
770   bool AllNonStoreUsesGone = true;
771 
772   // Replace all uses of loads with uses of uses of the stored value.
773   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
774     User *GlobalUser = *GUI++;
775     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
776       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
777       // If we were able to delete all uses of the loads
778       if (LI->use_empty()) {
779         LI->eraseFromParent();
780         Changed = true;
781       } else {
782         AllNonStoreUsesGone = false;
783       }
784     } else if (isa<StoreInst>(GlobalUser)) {
785       // Ignore the store that stores "LV" to the global.
786       assert(GlobalUser->getOperand(1) == GV &&
787              "Must be storing *to* the global");
788     } else {
789       AllNonStoreUsesGone = false;
790 
791       // If we get here we could have other crazy uses that are transitively
792       // loaded.
793       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
794               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
795               isa<BitCastInst>(GlobalUser) ||
796               isa<GetElementPtrInst>(GlobalUser)) &&
797              "Only expect load and stores!");
798     }
799   }
800 
801   if (Changed) {
802     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
803                       << "\n");
804     ++NumGlobUses;
805   }
806 
807   // If we nuked all of the loads, then none of the stores are needed either,
808   // nor is the global.
809   if (AllNonStoreUsesGone) {
810     if (isLeakCheckerRoot(GV)) {
811       Changed |= CleanupPointerRootUsers(GV, GetTLI);
812     } else {
813       Changed = true;
814       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
815     }
816     if (GV->use_empty()) {
817       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
818       Changed = true;
819       GV->eraseFromParent();
820       ++NumDeleted;
821     }
822   }
823   return Changed;
824 }
825 
826 /// Walk the use list of V, constant folding all of the instructions that are
827 /// foldable.
828 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
829                                 TargetLibraryInfo *TLI) {
830   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
831     if (Instruction *I = dyn_cast<Instruction>(*UI++))
832       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
833         I->replaceAllUsesWith(NewC);
834 
835         // Advance UI to the next non-I use to avoid invalidating it!
836         // Instructions could multiply use V.
837         while (UI != E && *UI == I)
838           ++UI;
839         if (isInstructionTriviallyDead(I, TLI))
840           I->eraseFromParent();
841       }
842 }
843 
844 /// This function takes the specified global variable, and transforms the
845 /// program as if it always contained the result of the specified malloc.
846 /// Because it is always the result of the specified malloc, there is no reason
847 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
848 /// loads of GV as uses of the new global.
849 static GlobalVariable *
850 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
851                               ConstantInt *NElements, const DataLayout &DL,
852                               TargetLibraryInfo *TLI) {
853   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
854                     << '\n');
855 
856   Type *GlobalType;
857   if (NElements->getZExtValue() == 1)
858     GlobalType = AllocTy;
859   else
860     // If we have an array allocation, the global variable is of an array.
861     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
862 
863   // Create the new global variable.  The contents of the malloc'd memory is
864   // undefined, so initialize with an undef value.
865   GlobalVariable *NewGV = new GlobalVariable(
866       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
867       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
868       GV->getThreadLocalMode());
869 
870   // If there are bitcast users of the malloc (which is typical, usually we have
871   // a malloc + bitcast) then replace them with uses of the new global.  Update
872   // other users to use the global as well.
873   BitCastInst *TheBC = nullptr;
874   while (!CI->use_empty()) {
875     Instruction *User = cast<Instruction>(CI->user_back());
876     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
877       if (BCI->getType() == NewGV->getType()) {
878         BCI->replaceAllUsesWith(NewGV);
879         BCI->eraseFromParent();
880       } else {
881         BCI->setOperand(0, NewGV);
882       }
883     } else {
884       if (!TheBC)
885         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
886       User->replaceUsesOfWith(CI, TheBC);
887     }
888   }
889 
890   Constant *RepValue = NewGV;
891   if (NewGV->getType() != GV->getValueType())
892     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
893 
894   // If there is a comparison against null, we will insert a global bool to
895   // keep track of whether the global was initialized yet or not.
896   GlobalVariable *InitBool =
897     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
898                        GlobalValue::InternalLinkage,
899                        ConstantInt::getFalse(GV->getContext()),
900                        GV->getName()+".init", GV->getThreadLocalMode());
901   bool InitBoolUsed = false;
902 
903   // Loop over all uses of GV, processing them in turn.
904   while (!GV->use_empty()) {
905     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
906       // The global is initialized when the store to it occurs.
907       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
908                     None, SI->getOrdering(), SI->getSyncScopeID(), SI);
909       SI->eraseFromParent();
910       continue;
911     }
912 
913     LoadInst *LI = cast<LoadInst>(GV->user_back());
914     while (!LI->use_empty()) {
915       Use &LoadUse = *LI->use_begin();
916       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
917       if (!ICI) {
918         LoadUse = RepValue;
919         continue;
920       }
921 
922       // Replace the cmp X, 0 with a use of the bool value.
923       // Sink the load to where the compare was, if atomic rules allow us to.
924       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
925                                InitBool->getName() + ".val", false, None,
926                                LI->getOrdering(), LI->getSyncScopeID(),
927                                LI->isUnordered() ? (Instruction *)ICI : LI);
928       InitBoolUsed = true;
929       switch (ICI->getPredicate()) {
930       default: llvm_unreachable("Unknown ICmp Predicate!");
931       case ICmpInst::ICMP_ULT:
932       case ICmpInst::ICMP_SLT:   // X < null -> always false
933         LV = ConstantInt::getFalse(GV->getContext());
934         break;
935       case ICmpInst::ICMP_ULE:
936       case ICmpInst::ICMP_SLE:
937       case ICmpInst::ICMP_EQ:
938         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
939         break;
940       case ICmpInst::ICMP_NE:
941       case ICmpInst::ICMP_UGE:
942       case ICmpInst::ICMP_SGE:
943       case ICmpInst::ICMP_UGT:
944       case ICmpInst::ICMP_SGT:
945         break;  // no change.
946       }
947       ICI->replaceAllUsesWith(LV);
948       ICI->eraseFromParent();
949     }
950     LI->eraseFromParent();
951   }
952 
953   // If the initialization boolean was used, insert it, otherwise delete it.
954   if (!InitBoolUsed) {
955     while (!InitBool->use_empty())  // Delete initializations
956       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
957     delete InitBool;
958   } else
959     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
960 
961   // Now the GV is dead, nuke it and the malloc..
962   GV->eraseFromParent();
963   CI->eraseFromParent();
964 
965   // To further other optimizations, loop over all users of NewGV and try to
966   // constant prop them.  This will promote GEP instructions with constant
967   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
968   ConstantPropUsersOf(NewGV, DL, TLI);
969   if (RepValue != NewGV)
970     ConstantPropUsersOf(RepValue, DL, TLI);
971 
972   return NewGV;
973 }
974 
975 /// Scan the use-list of V checking to make sure that there are no complex uses
976 /// of V.  We permit simple things like dereferencing the pointer, but not
977 /// storing through the address, unless it is to the specified global.
978 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
979                                                       const GlobalVariable *GV,
980                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
981   for (const User *U : V->users()) {
982     const Instruction *Inst = cast<Instruction>(U);
983 
984     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
985       continue; // Fine, ignore.
986     }
987 
988     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
989       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
990         return false;  // Storing the pointer itself... bad.
991       continue; // Otherwise, storing through it, or storing into GV... fine.
992     }
993 
994     // Must index into the array and into the struct.
995     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
996       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
997         return false;
998       continue;
999     }
1000 
1001     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1002       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1003       // cycles.
1004       if (PHIs.insert(PN).second)
1005         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1006           return false;
1007       continue;
1008     }
1009 
1010     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1011       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1012         return false;
1013       continue;
1014     }
1015 
1016     return false;
1017   }
1018   return true;
1019 }
1020 
1021 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1022 /// allocation into loads from the global and uses of the resultant pointer.
1023 /// Further, delete the store into GV.  This assumes that these value pass the
1024 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1025 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1026                                           GlobalVariable *GV) {
1027   while (!Alloc->use_empty()) {
1028     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1029     Instruction *InsertPt = U;
1030     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1031       // If this is the store of the allocation into the global, remove it.
1032       if (SI->getOperand(1) == GV) {
1033         SI->eraseFromParent();
1034         continue;
1035       }
1036     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1037       // Insert the load in the corresponding predecessor, not right before the
1038       // PHI.
1039       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1040     } else if (isa<BitCastInst>(U)) {
1041       // Must be bitcast between the malloc and store to initialize the global.
1042       ReplaceUsesOfMallocWithGlobal(U, GV);
1043       U->eraseFromParent();
1044       continue;
1045     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1046       // If this is a "GEP bitcast" and the user is a store to the global, then
1047       // just process it as a bitcast.
1048       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1049         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1050           if (SI->getOperand(1) == GV) {
1051             // Must be bitcast GEP between the malloc and store to initialize
1052             // the global.
1053             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1054             GEPI->eraseFromParent();
1055             continue;
1056           }
1057     }
1058 
1059     // Insert a load from the global, and use it instead of the malloc.
1060     Value *NL =
1061         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1062     U->replaceUsesOfWith(Alloc, NL);
1063   }
1064 }
1065 
1066 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1067 /// perform heap SRA on.  This permits GEP's that index through the array and
1068 /// struct field, icmps of null, and PHIs.
1069 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1070                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1071                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1072   // We permit two users of the load: setcc comparing against the null
1073   // pointer, and a getelementptr of a specific form.
1074   for (const User *U : V->users()) {
1075     const Instruction *UI = cast<Instruction>(U);
1076 
1077     // Comparison against null is ok.
1078     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1079       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1080         return false;
1081       continue;
1082     }
1083 
1084     // getelementptr is also ok, but only a simple form.
1085     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1086       // Must index into the array and into the struct.
1087       if (GEPI->getNumOperands() < 3)
1088         return false;
1089 
1090       // Otherwise the GEP is ok.
1091       continue;
1092     }
1093 
1094     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1095       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1096         // This means some phi nodes are dependent on each other.
1097         // Avoid infinite looping!
1098         return false;
1099       if (!LoadUsingPHIs.insert(PN).second)
1100         // If we have already analyzed this PHI, then it is safe.
1101         continue;
1102 
1103       // Make sure all uses of the PHI are simple enough to transform.
1104       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1105                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1106         return false;
1107 
1108       continue;
1109     }
1110 
1111     // Otherwise we don't know what this is, not ok.
1112     return false;
1113   }
1114 
1115   return true;
1116 }
1117 
1118 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1119 /// return true.
1120 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1121                                                     Instruction *StoredVal) {
1122   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1123   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1124   for (const User *U : GV->users())
1125     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1126       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1127                                           LoadUsingPHIsPerLoad))
1128         return false;
1129       LoadUsingPHIsPerLoad.clear();
1130     }
1131 
1132   // If we reach here, we know that all uses of the loads and transitive uses
1133   // (through PHI nodes) are simple enough to transform.  However, we don't know
1134   // that all inputs the to the PHI nodes are in the same equivalence sets.
1135   // Check to verify that all operands of the PHIs are either PHIS that can be
1136   // transformed, loads from GV, or MI itself.
1137   for (const PHINode *PN : LoadUsingPHIs) {
1138     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1139       Value *InVal = PN->getIncomingValue(op);
1140 
1141       // PHI of the stored value itself is ok.
1142       if (InVal == StoredVal) continue;
1143 
1144       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1145         // One of the PHIs in our set is (optimistically) ok.
1146         if (LoadUsingPHIs.count(InPN))
1147           continue;
1148         return false;
1149       }
1150 
1151       // Load from GV is ok.
1152       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1153         if (LI->getOperand(0) == GV)
1154           continue;
1155 
1156       // UNDEF? NULL?
1157 
1158       // Anything else is rejected.
1159       return false;
1160     }
1161   }
1162 
1163   return true;
1164 }
1165 
1166 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1167               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1168                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1169   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1170 
1171   if (FieldNo >= FieldVals.size())
1172     FieldVals.resize(FieldNo+1);
1173 
1174   // If we already have this value, just reuse the previously scalarized
1175   // version.
1176   if (Value *FieldVal = FieldVals[FieldNo])
1177     return FieldVal;
1178 
1179   // Depending on what instruction this is, we have several cases.
1180   Value *Result;
1181   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1182     // This is a scalarized version of the load from the global.  Just create
1183     // a new Load of the scalarized global.
1184     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1185                                 InsertedScalarizedValues, PHIsToRewrite);
1186     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1187                           LI->getName() + ".f" + Twine(FieldNo), LI);
1188   } else {
1189     PHINode *PN = cast<PHINode>(V);
1190     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1191     // field.
1192 
1193     PointerType *PTy = cast<PointerType>(PN->getType());
1194     StructType *ST = cast<StructType>(PTy->getElementType());
1195 
1196     unsigned AS = PTy->getAddressSpace();
1197     PHINode *NewPN =
1198       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1199                      PN->getNumIncomingValues(),
1200                      PN->getName()+".f"+Twine(FieldNo), PN);
1201     Result = NewPN;
1202     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1203   }
1204 
1205   return FieldVals[FieldNo] = Result;
1206 }
1207 
1208 /// Given a load instruction and a value derived from the load, rewrite the
1209 /// derived value to use the HeapSRoA'd load.
1210 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1211               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1212                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1213   // If this is a comparison against null, handle it.
1214   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1215     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1216     // If we have a setcc of the loaded pointer, we can use a setcc of any
1217     // field.
1218     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1219                                    InsertedScalarizedValues, PHIsToRewrite);
1220 
1221     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1222                               Constant::getNullValue(NPtr->getType()),
1223                               SCI->getName());
1224     SCI->replaceAllUsesWith(New);
1225     SCI->eraseFromParent();
1226     return;
1227   }
1228 
1229   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1230   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1231     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1232            && "Unexpected GEPI!");
1233 
1234     // Load the pointer for this field.
1235     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1236     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1237                                      InsertedScalarizedValues, PHIsToRewrite);
1238 
1239     // Create the new GEP idx vector.
1240     SmallVector<Value*, 8> GEPIdx;
1241     GEPIdx.push_back(GEPI->getOperand(1));
1242     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1243 
1244     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1245                                              GEPI->getName(), GEPI);
1246     GEPI->replaceAllUsesWith(NGEPI);
1247     GEPI->eraseFromParent();
1248     return;
1249   }
1250 
1251   // Recursively transform the users of PHI nodes.  This will lazily create the
1252   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1253   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1254   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1255   // already been seen first by another load, so its uses have already been
1256   // processed.
1257   PHINode *PN = cast<PHINode>(LoadUser);
1258   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1259                                               std::vector<Value *>())).second)
1260     return;
1261 
1262   // If this is the first time we've seen this PHI, recursively process all
1263   // users.
1264   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1265     Instruction *User = cast<Instruction>(*UI++);
1266     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1267   }
1268 }
1269 
1270 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1271 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1272 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1273 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1274               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1275                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1276   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1277     Instruction *User = cast<Instruction>(*UI++);
1278     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1279   }
1280 
1281   if (Load->use_empty()) {
1282     Load->eraseFromParent();
1283     InsertedScalarizedValues.erase(Load);
1284   }
1285 }
1286 
1287 /// CI is an allocation of an array of structures.  Break it up into multiple
1288 /// allocations of arrays of the fields.
1289 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1290                                             Value *NElems, const DataLayout &DL,
1291                                             const TargetLibraryInfo *TLI) {
1292   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1293                     << '\n');
1294   Type *MAT = getMallocAllocatedType(CI, TLI);
1295   StructType *STy = cast<StructType>(MAT);
1296 
1297   // There is guaranteed to be at least one use of the malloc (storing
1298   // it into GV).  If there are other uses, change them to be uses of
1299   // the global to simplify later code.  This also deletes the store
1300   // into GV.
1301   ReplaceUsesOfMallocWithGlobal(CI, GV);
1302 
1303   // Okay, at this point, there are no users of the malloc.  Insert N
1304   // new mallocs at the same place as CI, and N globals.
1305   std::vector<Value *> FieldGlobals;
1306   std::vector<Value *> FieldMallocs;
1307 
1308   SmallVector<OperandBundleDef, 1> OpBundles;
1309   CI->getOperandBundlesAsDefs(OpBundles);
1310 
1311   unsigned AS = GV->getType()->getPointerAddressSpace();
1312   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1313     Type *FieldTy = STy->getElementType(FieldNo);
1314     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1315 
1316     GlobalVariable *NGV = new GlobalVariable(
1317         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1318         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1319         nullptr, GV->getThreadLocalMode());
1320     NGV->copyAttributesFrom(GV);
1321     FieldGlobals.push_back(NGV);
1322 
1323     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1324     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1325       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1326     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1327     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1328                                         ConstantInt::get(IntPtrTy, TypeSize),
1329                                         NElems, OpBundles, nullptr,
1330                                         CI->getName() + ".f" + Twine(FieldNo));
1331     FieldMallocs.push_back(NMI);
1332     new StoreInst(NMI, NGV, CI);
1333   }
1334 
1335   // The tricky aspect of this transformation is handling the case when malloc
1336   // fails.  In the original code, malloc failing would set the result pointer
1337   // of malloc to null.  In this case, some mallocs could succeed and others
1338   // could fail.  As such, we emit code that looks like this:
1339   //    F0 = malloc(field0)
1340   //    F1 = malloc(field1)
1341   //    F2 = malloc(field2)
1342   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1343   //      if (F0) { free(F0); F0 = 0; }
1344   //      if (F1) { free(F1); F1 = 0; }
1345   //      if (F2) { free(F2); F2 = 0; }
1346   //    }
1347   // The malloc can also fail if its argument is too large.
1348   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1349   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1350                                   ConstantZero, "isneg");
1351   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1352     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1353                              Constant::getNullValue(FieldMallocs[i]->getType()),
1354                                "isnull");
1355     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1356   }
1357 
1358   // Split the basic block at the old malloc.
1359   BasicBlock *OrigBB = CI->getParent();
1360   BasicBlock *ContBB =
1361       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1362 
1363   // Create the block to check the first condition.  Put all these blocks at the
1364   // end of the function as they are unlikely to be executed.
1365   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1366                                                 "malloc_ret_null",
1367                                                 OrigBB->getParent());
1368 
1369   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1370   // branch on RunningOr.
1371   OrigBB->getTerminator()->eraseFromParent();
1372   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1373 
1374   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1375   // pointer, because some may be null while others are not.
1376   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1377     Value *GVVal =
1378         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1379                      FieldGlobals[i], "tmp", NullPtrBlock);
1380     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1381                               Constant::getNullValue(GVVal->getType()));
1382     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1383                                                OrigBB->getParent());
1384     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1385                                                OrigBB->getParent());
1386     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1387                                          Cmp, NullPtrBlock);
1388 
1389     // Fill in FreeBlock.
1390     CallInst::CreateFree(GVVal, OpBundles, BI);
1391     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1392                   FreeBlock);
1393     BranchInst::Create(NextBlock, FreeBlock);
1394 
1395     NullPtrBlock = NextBlock;
1396   }
1397 
1398   BranchInst::Create(ContBB, NullPtrBlock);
1399 
1400   // CI is no longer needed, remove it.
1401   CI->eraseFromParent();
1402 
1403   /// As we process loads, if we can't immediately update all uses of the load,
1404   /// keep track of what scalarized loads are inserted for a given load.
1405   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1406   InsertedScalarizedValues[GV] = FieldGlobals;
1407 
1408   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1409 
1410   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1411   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1412   // of the per-field globals instead.
1413   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1414     Instruction *User = cast<Instruction>(*UI++);
1415 
1416     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1417       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1418       continue;
1419     }
1420 
1421     // Must be a store of null.
1422     StoreInst *SI = cast<StoreInst>(User);
1423     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1424            "Unexpected heap-sra user!");
1425 
1426     // Insert a store of null into each global.
1427     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1428       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1429       Constant *Null = Constant::getNullValue(ValTy);
1430       new StoreInst(Null, FieldGlobals[i], SI);
1431     }
1432     // Erase the original store.
1433     SI->eraseFromParent();
1434   }
1435 
1436   // While we have PHIs that are interesting to rewrite, do it.
1437   while (!PHIsToRewrite.empty()) {
1438     PHINode *PN = PHIsToRewrite.back().first;
1439     unsigned FieldNo = PHIsToRewrite.back().second;
1440     PHIsToRewrite.pop_back();
1441     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1442     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1443 
1444     // Add all the incoming values.  This can materialize more phis.
1445     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1446       Value *InVal = PN->getIncomingValue(i);
1447       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1448                                PHIsToRewrite);
1449       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1450     }
1451   }
1452 
1453   // Drop all inter-phi links and any loads that made it this far.
1454   for (DenseMap<Value *, std::vector<Value *>>::iterator
1455        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1456        I != E; ++I) {
1457     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1458       PN->dropAllReferences();
1459     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1460       LI->dropAllReferences();
1461   }
1462 
1463   // Delete all the phis and loads now that inter-references are dead.
1464   for (DenseMap<Value *, std::vector<Value *>>::iterator
1465        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1466        I != E; ++I) {
1467     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1468       PN->eraseFromParent();
1469     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1470       LI->eraseFromParent();
1471   }
1472 
1473   // The old global is now dead, remove it.
1474   GV->eraseFromParent();
1475 
1476   ++NumHeapSRA;
1477   return cast<GlobalVariable>(FieldGlobals[0]);
1478 }
1479 
1480 /// This function is called when we see a pointer global variable with a single
1481 /// value stored it that is a malloc or cast of malloc.
1482 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1483                                                Type *AllocTy,
1484                                                AtomicOrdering Ordering,
1485                                                const DataLayout &DL,
1486                                                TargetLibraryInfo *TLI) {
1487   // If this is a malloc of an abstract type, don't touch it.
1488   if (!AllocTy->isSized())
1489     return false;
1490 
1491   // We can't optimize this global unless all uses of it are *known* to be
1492   // of the malloc value, not of the null initializer value (consider a use
1493   // that compares the global's value against zero to see if the malloc has
1494   // been reached).  To do this, we check to see if all uses of the global
1495   // would trap if the global were null: this proves that they must all
1496   // happen after the malloc.
1497   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1498     return false;
1499 
1500   // We can't optimize this if the malloc itself is used in a complex way,
1501   // for example, being stored into multiple globals.  This allows the
1502   // malloc to be stored into the specified global, loaded icmp'd, and
1503   // GEP'd.  These are all things we could transform to using the global
1504   // for.
1505   SmallPtrSet<const PHINode*, 8> PHIs;
1506   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1507     return false;
1508 
1509   // If we have a global that is only initialized with a fixed size malloc,
1510   // transform the program to use global memory instead of malloc'd memory.
1511   // This eliminates dynamic allocation, avoids an indirection accessing the
1512   // data, and exposes the resultant global to further GlobalOpt.
1513   // We cannot optimize the malloc if we cannot determine malloc array size.
1514   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1515   if (!NElems)
1516     return false;
1517 
1518   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1519     // Restrict this transformation to only working on small allocations
1520     // (2048 bytes currently), as we don't want to introduce a 16M global or
1521     // something.
1522     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1523       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1524       return true;
1525     }
1526 
1527   // If the allocation is an array of structures, consider transforming this
1528   // into multiple malloc'd arrays, one for each field.  This is basically
1529   // SRoA for malloc'd memory.
1530 
1531   if (Ordering != AtomicOrdering::NotAtomic)
1532     return false;
1533 
1534   // If this is an allocation of a fixed size array of structs, analyze as a
1535   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1536   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1537     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1538       AllocTy = AT->getElementType();
1539 
1540   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1541   if (!AllocSTy)
1542     return false;
1543 
1544   // This the structure has an unreasonable number of fields, leave it
1545   // alone.
1546   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1547       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1548 
1549     // If this is a fixed size array, transform the Malloc to be an alloc of
1550     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1551     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1552       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1553       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1554       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1555       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1556       SmallVector<OperandBundleDef, 1> OpBundles;
1557       CI->getOperandBundlesAsDefs(OpBundles);
1558       Instruction *Malloc =
1559           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1560                                  OpBundles, nullptr, CI->getName());
1561       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1562       CI->replaceAllUsesWith(Cast);
1563       CI->eraseFromParent();
1564       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1565         CI = cast<CallInst>(BCI->getOperand(0));
1566       else
1567         CI = cast<CallInst>(Malloc);
1568     }
1569 
1570     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1571                          TLI);
1572     return true;
1573   }
1574 
1575   return false;
1576 }
1577 
1578 // Try to optimize globals based on the knowledge that only one value (besides
1579 // its initializer) is ever stored to the global.
1580 static bool
1581 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1582                          AtomicOrdering Ordering, const DataLayout &DL,
1583                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1584   // Ignore no-op GEPs and bitcasts.
1585   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1586 
1587   // If we are dealing with a pointer global that is initialized to null and
1588   // only has one (non-null) value stored into it, then we can optimize any
1589   // users of the loaded value (often calls and loads) that would trap if the
1590   // value was null.
1591   if (GV->getInitializer()->getType()->isPointerTy() &&
1592       GV->getInitializer()->isNullValue() &&
1593       !NullPointerIsDefined(
1594           nullptr /* F */,
1595           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1596     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1597       if (GV->getInitializer()->getType() != SOVC->getType())
1598         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1599 
1600       // Optimize away any trapping uses of the loaded value.
1601       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1602         return true;
1603     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1604       auto *TLI = &GetTLI(*CI->getFunction());
1605       Type *MallocType = getMallocAllocatedType(CI, TLI);
1606       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1607                                                            Ordering, DL, TLI))
1608         return true;
1609     }
1610   }
1611 
1612   return false;
1613 }
1614 
1615 /// At this point, we have learned that the only two values ever stored into GV
1616 /// are its initializer and OtherVal.  See if we can shrink the global into a
1617 /// boolean and select between the two values whenever it is used.  This exposes
1618 /// the values to other scalar optimizations.
1619 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1620   Type *GVElType = GV->getValueType();
1621 
1622   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1623   // an FP value, pointer or vector, don't do this optimization because a select
1624   // between them is very expensive and unlikely to lead to later
1625   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1626   // where v1 and v2 both require constant pool loads, a big loss.
1627   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1628       GVElType->isFloatingPointTy() ||
1629       GVElType->isPointerTy() || GVElType->isVectorTy())
1630     return false;
1631 
1632   // Walk the use list of the global seeing if all the uses are load or store.
1633   // If there is anything else, bail out.
1634   for (User *U : GV->users())
1635     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1636       return false;
1637 
1638   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1639 
1640   // Create the new global, initializing it to false.
1641   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1642                                              false,
1643                                              GlobalValue::InternalLinkage,
1644                                         ConstantInt::getFalse(GV->getContext()),
1645                                              GV->getName()+".b",
1646                                              GV->getThreadLocalMode(),
1647                                              GV->getType()->getAddressSpace());
1648   NewGV->copyAttributesFrom(GV);
1649   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1650 
1651   Constant *InitVal = GV->getInitializer();
1652   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1653          "No reason to shrink to bool!");
1654 
1655   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1656   GV->getDebugInfo(GVs);
1657 
1658   // If initialized to zero and storing one into the global, we can use a cast
1659   // instead of a select to synthesize the desired value.
1660   bool IsOneZero = false;
1661   bool EmitOneOrZero = true;
1662   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1663   if (CI && CI->getValue().getActiveBits() <= 64) {
1664     IsOneZero = InitVal->isNullValue() && CI->isOne();
1665 
1666     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1667     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1668       uint64_t ValInit = CIInit->getZExtValue();
1669       uint64_t ValOther = CI->getZExtValue();
1670       uint64_t ValMinus = ValOther - ValInit;
1671 
1672       for(auto *GVe : GVs){
1673         DIGlobalVariable *DGV = GVe->getVariable();
1674         DIExpression *E = GVe->getExpression();
1675         const DataLayout &DL = GV->getParent()->getDataLayout();
1676         unsigned SizeInOctets =
1677           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1678 
1679         // It is expected that the address of global optimized variable is on
1680         // top of the stack. After optimization, value of that variable will
1681         // be ether 0 for initial value or 1 for other value. The following
1682         // expression should return constant integer value depending on the
1683         // value at global object address:
1684         // val * (ValOther - ValInit) + ValInit:
1685         // DW_OP_deref DW_OP_constu <ValMinus>
1686         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1687         SmallVector<uint64_t, 12> Ops = {
1688             dwarf::DW_OP_deref_size, SizeInOctets,
1689             dwarf::DW_OP_constu, ValMinus,
1690             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1691             dwarf::DW_OP_plus};
1692         bool WithStackValue = true;
1693         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1694         DIGlobalVariableExpression *DGVE =
1695           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1696         NewGV->addDebugInfo(DGVE);
1697      }
1698      EmitOneOrZero = false;
1699     }
1700   }
1701 
1702   if (EmitOneOrZero) {
1703      // FIXME: This will only emit address for debugger on which will
1704      // be written only 0 or 1.
1705      for(auto *GV : GVs)
1706        NewGV->addDebugInfo(GV);
1707    }
1708 
1709   while (!GV->use_empty()) {
1710     Instruction *UI = cast<Instruction>(GV->user_back());
1711     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1712       // Change the store into a boolean store.
1713       bool StoringOther = SI->getOperand(0) == OtherVal;
1714       // Only do this if we weren't storing a loaded value.
1715       Value *StoreVal;
1716       if (StoringOther || SI->getOperand(0) == InitVal) {
1717         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1718                                     StoringOther);
1719       } else {
1720         // Otherwise, we are storing a previously loaded copy.  To do this,
1721         // change the copy from copying the original value to just copying the
1722         // bool.
1723         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1724 
1725         // If we've already replaced the input, StoredVal will be a cast or
1726         // select instruction.  If not, it will be a load of the original
1727         // global.
1728         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1729           assert(LI->getOperand(0) == GV && "Not a copy!");
1730           // Insert a new load, to preserve the saved value.
1731           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1732                                   LI->getName() + ".b", false, None,
1733                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1734         } else {
1735           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1736                  "This is not a form that we understand!");
1737           StoreVal = StoredVal->getOperand(0);
1738           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1739         }
1740       }
1741       StoreInst *NSI =
1742           new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1743                         SI->getSyncScopeID(), SI);
1744       NSI->setDebugLoc(SI->getDebugLoc());
1745     } else {
1746       // Change the load into a load of bool then a select.
1747       LoadInst *LI = cast<LoadInst>(UI);
1748       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1749                                    LI->getName() + ".b", false, None,
1750                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1751       Instruction *NSI;
1752       if (IsOneZero)
1753         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1754       else
1755         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1756       NSI->takeName(LI);
1757       // Since LI is split into two instructions, NLI and NSI both inherit the
1758       // same DebugLoc
1759       NLI->setDebugLoc(LI->getDebugLoc());
1760       NSI->setDebugLoc(LI->getDebugLoc());
1761       LI->replaceAllUsesWith(NSI);
1762     }
1763     UI->eraseFromParent();
1764   }
1765 
1766   // Retain the name of the old global variable. People who are debugging their
1767   // programs may expect these variables to be named the same.
1768   NewGV->takeName(GV);
1769   GV->eraseFromParent();
1770   return true;
1771 }
1772 
1773 static bool deleteIfDead(
1774     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1775   GV.removeDeadConstantUsers();
1776 
1777   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1778     return false;
1779 
1780   if (const Comdat *C = GV.getComdat())
1781     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1782       return false;
1783 
1784   bool Dead;
1785   if (auto *F = dyn_cast<Function>(&GV))
1786     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1787   else
1788     Dead = GV.use_empty();
1789   if (!Dead)
1790     return false;
1791 
1792   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1793   GV.eraseFromParent();
1794   ++NumDeleted;
1795   return true;
1796 }
1797 
1798 static bool isPointerValueDeadOnEntryToFunction(
1799     const Function *F, GlobalValue *GV,
1800     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1801   // Find all uses of GV. We expect them all to be in F, and if we can't
1802   // identify any of the uses we bail out.
1803   //
1804   // On each of these uses, identify if the memory that GV points to is
1805   // used/required/live at the start of the function. If it is not, for example
1806   // if the first thing the function does is store to the GV, the GV can
1807   // possibly be demoted.
1808   //
1809   // We don't do an exhaustive search for memory operations - simply look
1810   // through bitcasts as they're quite common and benign.
1811   const DataLayout &DL = GV->getParent()->getDataLayout();
1812   SmallVector<LoadInst *, 4> Loads;
1813   SmallVector<StoreInst *, 4> Stores;
1814   for (auto *U : GV->users()) {
1815     if (Operator::getOpcode(U) == Instruction::BitCast) {
1816       for (auto *UU : U->users()) {
1817         if (auto *LI = dyn_cast<LoadInst>(UU))
1818           Loads.push_back(LI);
1819         else if (auto *SI = dyn_cast<StoreInst>(UU))
1820           Stores.push_back(SI);
1821         else
1822           return false;
1823       }
1824       continue;
1825     }
1826 
1827     Instruction *I = dyn_cast<Instruction>(U);
1828     if (!I)
1829       return false;
1830     assert(I->getParent()->getParent() == F);
1831 
1832     if (auto *LI = dyn_cast<LoadInst>(I))
1833       Loads.push_back(LI);
1834     else if (auto *SI = dyn_cast<StoreInst>(I))
1835       Stores.push_back(SI);
1836     else
1837       return false;
1838   }
1839 
1840   // We have identified all uses of GV into loads and stores. Now check if all
1841   // of them are known not to depend on the value of the global at the function
1842   // entry point. We do this by ensuring that every load is dominated by at
1843   // least one store.
1844   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1845 
1846   // The below check is quadratic. Check we're not going to do too many tests.
1847   // FIXME: Even though this will always have worst-case quadratic time, we
1848   // could put effort into minimizing the average time by putting stores that
1849   // have been shown to dominate at least one load at the beginning of the
1850   // Stores array, making subsequent dominance checks more likely to succeed
1851   // early.
1852   //
1853   // The threshold here is fairly large because global->local demotion is a
1854   // very powerful optimization should it fire.
1855   const unsigned Threshold = 100;
1856   if (Loads.size() * Stores.size() > Threshold)
1857     return false;
1858 
1859   for (auto *L : Loads) {
1860     auto *LTy = L->getType();
1861     if (none_of(Stores, [&](const StoreInst *S) {
1862           auto *STy = S->getValueOperand()->getType();
1863           // The load is only dominated by the store if DomTree says so
1864           // and the number of bits loaded in L is less than or equal to
1865           // the number of bits stored in S.
1866           return DT.dominates(S, L) &&
1867                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1868         }))
1869       return false;
1870   }
1871   // All loads have known dependences inside F, so the global can be localized.
1872   return true;
1873 }
1874 
1875 /// C may have non-instruction users. Can all of those users be turned into
1876 /// instructions?
1877 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1878   // We don't do this exhaustively. The most common pattern that we really need
1879   // to care about is a constant GEP or constant bitcast - so just looking
1880   // through one single ConstantExpr.
1881   //
1882   // The set of constants that this function returns true for must be able to be
1883   // handled by makeAllConstantUsesInstructions.
1884   for (auto *U : C->users()) {
1885     if (isa<Instruction>(U))
1886       continue;
1887     if (!isa<ConstantExpr>(U))
1888       // Non instruction, non-constantexpr user; cannot convert this.
1889       return false;
1890     for (auto *UU : U->users())
1891       if (!isa<Instruction>(UU))
1892         // A constantexpr used by another constant. We don't try and recurse any
1893         // further but just bail out at this point.
1894         return false;
1895   }
1896 
1897   return true;
1898 }
1899 
1900 /// C may have non-instruction users, and
1901 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1902 /// non-instruction users to instructions.
1903 static void makeAllConstantUsesInstructions(Constant *C) {
1904   SmallVector<ConstantExpr*,4> Users;
1905   for (auto *U : C->users()) {
1906     if (isa<ConstantExpr>(U))
1907       Users.push_back(cast<ConstantExpr>(U));
1908     else
1909       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1910       // should not have returned true for C.
1911       assert(
1912           isa<Instruction>(U) &&
1913           "Can't transform non-constantexpr non-instruction to instruction!");
1914   }
1915 
1916   SmallVector<Value*,4> UUsers;
1917   for (auto *U : Users) {
1918     UUsers.clear();
1919     for (auto *UU : U->users())
1920       UUsers.push_back(UU);
1921     for (auto *UU : UUsers) {
1922       Instruction *UI = cast<Instruction>(UU);
1923       Instruction *NewU = U->getAsInstruction();
1924       NewU->insertBefore(UI);
1925       UI->replaceUsesOfWith(U, NewU);
1926     }
1927     // We've replaced all the uses, so destroy the constant. (destroyConstant
1928     // will update value handles and metadata.)
1929     U->destroyConstant();
1930   }
1931 }
1932 
1933 /// Analyze the specified global variable and optimize
1934 /// it if possible.  If we make a change, return true.
1935 static bool
1936 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1937                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1938                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1939   auto &DL = GV->getParent()->getDataLayout();
1940   // If this is a first class global and has only one accessing function and
1941   // this function is non-recursive, we replace the global with a local alloca
1942   // in this function.
1943   //
1944   // NOTE: It doesn't make sense to promote non-single-value types since we
1945   // are just replacing static memory to stack memory.
1946   //
1947   // If the global is in different address space, don't bring it to stack.
1948   if (!GS.HasMultipleAccessingFunctions &&
1949       GS.AccessingFunction &&
1950       GV->getValueType()->isSingleValueType() &&
1951       GV->getType()->getAddressSpace() == 0 &&
1952       !GV->isExternallyInitialized() &&
1953       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1954       GS.AccessingFunction->doesNotRecurse() &&
1955       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1956                                           LookupDomTree)) {
1957     const DataLayout &DL = GV->getParent()->getDataLayout();
1958 
1959     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1960     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1961                                                    ->getEntryBlock().begin());
1962     Type *ElemTy = GV->getValueType();
1963     // FIXME: Pass Global's alignment when globals have alignment
1964     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1965                                         GV->getName(), &FirstI);
1966     if (!isa<UndefValue>(GV->getInitializer()))
1967       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1968 
1969     makeAllConstantUsesInstructions(GV);
1970 
1971     GV->replaceAllUsesWith(Alloca);
1972     GV->eraseFromParent();
1973     ++NumLocalized;
1974     return true;
1975   }
1976 
1977   // If the global is never loaded (but may be stored to), it is dead.
1978   // Delete it now.
1979   if (!GS.IsLoaded) {
1980     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1981 
1982     bool Changed;
1983     if (isLeakCheckerRoot(GV)) {
1984       // Delete any constant stores to the global.
1985       Changed = CleanupPointerRootUsers(GV, GetTLI);
1986     } else {
1987       // Delete any stores we can find to the global.  We may not be able to
1988       // make it completely dead though.
1989       Changed =
1990           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1991     }
1992 
1993     // If the global is dead now, delete it.
1994     if (GV->use_empty()) {
1995       GV->eraseFromParent();
1996       ++NumDeleted;
1997       Changed = true;
1998     }
1999     return Changed;
2000 
2001   }
2002   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2003     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2004 
2005     // Don't actually mark a global constant if it's atomic because atomic loads
2006     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2007     // requires write access to the variable even if it's not actually changed.
2008     if (GS.Ordering == AtomicOrdering::NotAtomic)
2009       GV->setConstant(true);
2010 
2011     // Clean up any obviously simplifiable users now.
2012     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2013 
2014     // If the global is dead now, just nuke it.
2015     if (GV->use_empty()) {
2016       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2017                         << "all users and delete global!\n");
2018       GV->eraseFromParent();
2019       ++NumDeleted;
2020       return true;
2021     }
2022 
2023     // Fall through to the next check; see if we can optimize further.
2024     ++NumMarked;
2025   }
2026   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2027     const DataLayout &DL = GV->getParent()->getDataLayout();
2028     if (SRAGlobal(GV, DL))
2029       return true;
2030   }
2031   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2032     // If the initial value for the global was an undef value, and if only
2033     // one other value was stored into it, we can just change the
2034     // initializer to be the stored value, then delete all stores to the
2035     // global.  This allows us to mark it constant.
2036     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2037       if (isa<UndefValue>(GV->getInitializer())) {
2038         // Change the initial value here.
2039         GV->setInitializer(SOVConstant);
2040 
2041         // Clean up any obviously simplifiable users now.
2042         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2043 
2044         if (GV->use_empty()) {
2045           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2046                             << "simplify all users and delete global!\n");
2047           GV->eraseFromParent();
2048           ++NumDeleted;
2049         }
2050         ++NumSubstitute;
2051         return true;
2052       }
2053 
2054     // Try to optimize globals based on the knowledge that only one value
2055     // (besides its initializer) is ever stored to the global.
2056     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2057                                  GetTLI))
2058       return true;
2059 
2060     // Otherwise, if the global was not a boolean, we can shrink it to be a
2061     // boolean.
2062     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2063       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2064         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2065           ++NumShrunkToBool;
2066           return true;
2067         }
2068       }
2069     }
2070   }
2071 
2072   return false;
2073 }
2074 
2075 /// Analyze the specified global variable and optimize it if possible.  If we
2076 /// make a change, return true.
2077 static bool
2078 processGlobal(GlobalValue &GV,
2079               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2080               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2081   if (GV.getName().startswith("llvm."))
2082     return false;
2083 
2084   GlobalStatus GS;
2085 
2086   if (GlobalStatus::analyzeGlobal(&GV, GS))
2087     return false;
2088 
2089   bool Changed = false;
2090   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2091     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2092                                                : GlobalValue::UnnamedAddr::Local;
2093     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2094       GV.setUnnamedAddr(NewUnnamedAddr);
2095       NumUnnamed++;
2096       Changed = true;
2097     }
2098   }
2099 
2100   // Do more involved optimizations if the global is internal.
2101   if (!GV.hasLocalLinkage())
2102     return Changed;
2103 
2104   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2105   if (!GVar)
2106     return Changed;
2107 
2108   if (GVar->isConstant() || !GVar->hasInitializer())
2109     return Changed;
2110 
2111   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2112 }
2113 
2114 /// Walk all of the direct calls of the specified function, changing them to
2115 /// FastCC.
2116 static void ChangeCalleesToFastCall(Function *F) {
2117   for (User *U : F->users()) {
2118     if (isa<BlockAddress>(U))
2119       continue;
2120     CallSite CS(cast<Instruction>(U));
2121     CS.setCallingConv(CallingConv::Fast);
2122   }
2123 }
2124 
2125 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2126                                Attribute::AttrKind A) {
2127   unsigned AttrIndex;
2128   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2129     return Attrs.removeAttribute(C, AttrIndex, A);
2130   return Attrs;
2131 }
2132 
2133 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2134   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2135   for (User *U : F->users()) {
2136     if (isa<BlockAddress>(U))
2137       continue;
2138     CallSite CS(cast<Instruction>(U));
2139     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2140   }
2141 }
2142 
2143 /// Return true if this is a calling convention that we'd like to change.  The
2144 /// idea here is that we don't want to mess with the convention if the user
2145 /// explicitly requested something with performance implications like coldcc,
2146 /// GHC, or anyregcc.
2147 static bool hasChangeableCC(Function *F) {
2148   CallingConv::ID CC = F->getCallingConv();
2149 
2150   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2151   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2152     return false;
2153 
2154   // FIXME: Change CC for the whole chain of musttail calls when possible.
2155   //
2156   // Can't change CC of the function that either has musttail calls, or is a
2157   // musttail callee itself
2158   for (User *U : F->users()) {
2159     if (isa<BlockAddress>(U))
2160       continue;
2161     CallInst* CI = dyn_cast<CallInst>(U);
2162     if (!CI)
2163       continue;
2164 
2165     if (CI->isMustTailCall())
2166       return false;
2167   }
2168 
2169   for (BasicBlock &BB : *F)
2170     if (BB.getTerminatingMustTailCall())
2171       return false;
2172 
2173   return true;
2174 }
2175 
2176 /// Return true if the block containing the call site has a BlockFrequency of
2177 /// less than ColdCCRelFreq% of the entry block.
2178 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2179   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2180   auto CallSiteBB = CS.getInstruction()->getParent();
2181   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2182   auto CallerEntryFreq =
2183       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2184   return CallSiteFreq < CallerEntryFreq * ColdProb;
2185 }
2186 
2187 // This function checks if the input function F is cold at all call sites. It
2188 // also looks each call site's containing function, returning false if the
2189 // caller function contains other non cold calls. The input vector AllCallsCold
2190 // contains a list of functions that only have call sites in cold blocks.
2191 static bool
2192 isValidCandidateForColdCC(Function &F,
2193                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2194                           const std::vector<Function *> &AllCallsCold) {
2195 
2196   if (F.user_empty())
2197     return false;
2198 
2199   for (User *U : F.users()) {
2200     if (isa<BlockAddress>(U))
2201       continue;
2202 
2203     CallSite CS(cast<Instruction>(U));
2204     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2205     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2206     if (!isColdCallSite(CS, CallerBFI))
2207       return false;
2208     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2209     if (It == AllCallsCold.end())
2210       return false;
2211   }
2212   return true;
2213 }
2214 
2215 static void changeCallSitesToColdCC(Function *F) {
2216   for (User *U : F->users()) {
2217     if (isa<BlockAddress>(U))
2218       continue;
2219     CallSite CS(cast<Instruction>(U));
2220     CS.setCallingConv(CallingConv::Cold);
2221   }
2222 }
2223 
2224 // This function iterates over all the call instructions in the input Function
2225 // and checks that all call sites are in cold blocks and are allowed to use the
2226 // coldcc calling convention.
2227 static bool
2228 hasOnlyColdCalls(Function &F,
2229                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2230   for (BasicBlock &BB : F) {
2231     for (Instruction &I : BB) {
2232       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2233         CallSite CS(cast<Instruction>(CI));
2234         // Skip over isline asm instructions since they aren't function calls.
2235         if (CI->isInlineAsm())
2236           continue;
2237         Function *CalledFn = CI->getCalledFunction();
2238         if (!CalledFn)
2239           return false;
2240         if (!CalledFn->hasLocalLinkage())
2241           return false;
2242         // Skip over instrinsics since they won't remain as function calls.
2243         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2244           continue;
2245         // Check if it's valid to use coldcc calling convention.
2246         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2247             CalledFn->hasAddressTaken())
2248           return false;
2249         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2250         if (!isColdCallSite(CS, CallerBFI))
2251           return false;
2252       }
2253     }
2254   }
2255   return true;
2256 }
2257 
2258 static bool
2259 OptimizeFunctions(Module &M,
2260                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2261                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2262                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2263                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2264                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2265 
2266   bool Changed = false;
2267 
2268   std::vector<Function *> AllCallsCold;
2269   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2270     Function *F = &*FI++;
2271     if (hasOnlyColdCalls(*F, GetBFI))
2272       AllCallsCold.push_back(F);
2273   }
2274 
2275   // Optimize functions.
2276   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2277     Function *F = &*FI++;
2278 
2279     // Don't perform global opt pass on naked functions; we don't want fast
2280     // calling conventions for naked functions.
2281     if (F->hasFnAttribute(Attribute::Naked))
2282       continue;
2283 
2284     // Functions without names cannot be referenced outside this module.
2285     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2286       F->setLinkage(GlobalValue::InternalLinkage);
2287 
2288     if (deleteIfDead(*F, NotDiscardableComdats)) {
2289       Changed = true;
2290       continue;
2291     }
2292 
2293     // LLVM's definition of dominance allows instructions that are cyclic
2294     // in unreachable blocks, e.g.:
2295     // %pat = select i1 %condition, @global, i16* %pat
2296     // because any instruction dominates an instruction in a block that's
2297     // not reachable from entry.
2298     // So, remove unreachable blocks from the function, because a) there's
2299     // no point in analyzing them and b) GlobalOpt should otherwise grow
2300     // some more complicated logic to break these cycles.
2301     // Removing unreachable blocks might invalidate the dominator so we
2302     // recalculate it.
2303     if (!F->isDeclaration()) {
2304       if (removeUnreachableBlocks(*F)) {
2305         auto &DT = LookupDomTree(*F);
2306         DT.recalculate(*F);
2307         Changed = true;
2308       }
2309     }
2310 
2311     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2312 
2313     if (!F->hasLocalLinkage())
2314       continue;
2315 
2316     // If we have an inalloca parameter that we can safely remove the
2317     // inalloca attribute from, do so. This unlocks optimizations that
2318     // wouldn't be safe in the presence of inalloca.
2319     // FIXME: We should also hoist alloca affected by this to the entry
2320     // block if possible.
2321     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2322         !F->hasAddressTaken()) {
2323       RemoveAttribute(F, Attribute::InAlloca);
2324       Changed = true;
2325     }
2326 
2327     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2328       NumInternalFunc++;
2329       TargetTransformInfo &TTI = GetTTI(*F);
2330       // Change the calling convention to coldcc if either stress testing is
2331       // enabled or the target would like to use coldcc on functions which are
2332       // cold at all call sites and the callers contain no other non coldcc
2333       // calls.
2334       if (EnableColdCCStressTest ||
2335           (TTI.useColdCCForColdCall(*F) &&
2336            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2337         F->setCallingConv(CallingConv::Cold);
2338         changeCallSitesToColdCC(F);
2339         Changed = true;
2340         NumColdCC++;
2341       }
2342     }
2343 
2344     if (hasChangeableCC(F) && !F->isVarArg() &&
2345         !F->hasAddressTaken()) {
2346       // If this function has a calling convention worth changing, is not a
2347       // varargs function, and is only called directly, promote it to use the
2348       // Fast calling convention.
2349       F->setCallingConv(CallingConv::Fast);
2350       ChangeCalleesToFastCall(F);
2351       ++NumFastCallFns;
2352       Changed = true;
2353     }
2354 
2355     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2356         !F->hasAddressTaken()) {
2357       // The function is not used by a trampoline intrinsic, so it is safe
2358       // to remove the 'nest' attribute.
2359       RemoveAttribute(F, Attribute::Nest);
2360       ++NumNestRemoved;
2361       Changed = true;
2362     }
2363   }
2364   return Changed;
2365 }
2366 
2367 static bool
2368 OptimizeGlobalVars(Module &M,
2369                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2370                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2371                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2372   bool Changed = false;
2373 
2374   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2375        GVI != E; ) {
2376     GlobalVariable *GV = &*GVI++;
2377     // Global variables without names cannot be referenced outside this module.
2378     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2379       GV->setLinkage(GlobalValue::InternalLinkage);
2380     // Simplify the initializer.
2381     if (GV->hasInitializer())
2382       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2383         auto &DL = M.getDataLayout();
2384         // TLI is not used in the case of a Constant, so use default nullptr
2385         // for that optional parameter, since we don't have a Function to
2386         // provide GetTLI anyway.
2387         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2388         if (New && New != C)
2389           GV->setInitializer(New);
2390       }
2391 
2392     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2393       Changed = true;
2394       continue;
2395     }
2396 
2397     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2398   }
2399   return Changed;
2400 }
2401 
2402 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2403 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2404 /// GEP operands of Addr [0, OpNo) have been stepped into.
2405 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2406                                    ConstantExpr *Addr, unsigned OpNo) {
2407   // Base case of the recursion.
2408   if (OpNo == Addr->getNumOperands()) {
2409     assert(Val->getType() == Init->getType() && "Type mismatch!");
2410     return Val;
2411   }
2412 
2413   SmallVector<Constant*, 32> Elts;
2414   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2415     // Break up the constant into its elements.
2416     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2417       Elts.push_back(Init->getAggregateElement(i));
2418 
2419     // Replace the element that we are supposed to.
2420     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2421     unsigned Idx = CU->getZExtValue();
2422     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2423     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2424 
2425     // Return the modified struct.
2426     return ConstantStruct::get(STy, Elts);
2427   }
2428 
2429   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2430   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2431   uint64_t NumElts = InitTy->getNumElements();
2432 
2433   // Break up the array into elements.
2434   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2435     Elts.push_back(Init->getAggregateElement(i));
2436 
2437   assert(CI->getZExtValue() < NumElts);
2438   Elts[CI->getZExtValue()] =
2439     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2440 
2441   if (Init->getType()->isArrayTy())
2442     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2443   return ConstantVector::get(Elts);
2444 }
2445 
2446 /// We have decided that Addr (which satisfies the predicate
2447 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2448 static void CommitValueTo(Constant *Val, Constant *Addr) {
2449   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2450     assert(GV->hasInitializer());
2451     GV->setInitializer(Val);
2452     return;
2453   }
2454 
2455   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2456   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2457   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2458 }
2459 
2460 /// Given a map of address -> value, where addresses are expected to be some form
2461 /// of either a global or a constant GEP, set the initializer for the address to
2462 /// be the value. This performs mostly the same function as CommitValueTo()
2463 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2464 /// case where the set of addresses are GEPs sharing the same underlying global,
2465 /// processing the GEPs in batches rather than individually.
2466 ///
2467 /// To give an example, consider the following C++ code adapted from the clang
2468 /// regression tests:
2469 /// struct S {
2470 ///  int n = 10;
2471 ///  int m = 2 * n;
2472 ///  S(int a) : n(a) {}
2473 /// };
2474 ///
2475 /// template<typename T>
2476 /// struct U {
2477 ///  T *r = &q;
2478 ///  T q = 42;
2479 ///  U *p = this;
2480 /// };
2481 ///
2482 /// U<S> e;
2483 ///
2484 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2485 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2486 /// members. This batch algorithm will simply use general CommitValueTo() method
2487 /// to handle the complex nested S struct initialization of 'q', before
2488 /// processing the outermost members in a single batch. Using CommitValueTo() to
2489 /// handle member in the outer struct is inefficient when the struct/array is
2490 /// very large as we end up creating and destroy constant arrays for each
2491 /// initialization.
2492 /// For the above case, we expect the following IR to be generated:
2493 ///
2494 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2495 /// %struct.S = type { i32, i32 }
2496 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2497 ///                                                  i64 0, i32 1),
2498 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2499 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2500 /// constant expression, while the other two elements of @e are "simple".
2501 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2502   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2503   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2504   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2505   SimpleCEs.reserve(Mem.size());
2506 
2507   for (const auto &I : Mem) {
2508     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2509       GVs.push_back(std::make_pair(GV, I.second));
2510     } else {
2511       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2512       // We don't handle the deeply recursive case using the batch method.
2513       if (GEP->getNumOperands() > 3)
2514         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2515       else
2516         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2517     }
2518   }
2519 
2520   // The algorithm below doesn't handle cases like nested structs, so use the
2521   // slower fully general method if we have to.
2522   for (auto ComplexCE : ComplexCEs)
2523     CommitValueTo(ComplexCE.second, ComplexCE.first);
2524 
2525   for (auto GVPair : GVs) {
2526     assert(GVPair.first->hasInitializer());
2527     GVPair.first->setInitializer(GVPair.second);
2528   }
2529 
2530   if (SimpleCEs.empty())
2531     return;
2532 
2533   // We cache a single global's initializer elements in the case where the
2534   // subsequent address/val pair uses the same one. This avoids throwing away and
2535   // rebuilding the constant struct/vector/array just because one element is
2536   // modified at a time.
2537   SmallVector<Constant *, 32> Elts;
2538   Elts.reserve(SimpleCEs.size());
2539   GlobalVariable *CurrentGV = nullptr;
2540 
2541   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2542     Constant *Init = GV->getInitializer();
2543     Type *Ty = Init->getType();
2544     if (Update) {
2545       if (CurrentGV) {
2546         assert(CurrentGV && "Expected a GV to commit to!");
2547         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2548         // We have a valid cache that needs to be committed.
2549         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2550           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2551         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2552           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2553         else
2554           CurrentGV->setInitializer(ConstantVector::get(Elts));
2555       }
2556       if (CurrentGV == GV)
2557         return;
2558       // Need to clear and set up cache for new initializer.
2559       CurrentGV = GV;
2560       Elts.clear();
2561       unsigned NumElts;
2562       if (auto *STy = dyn_cast<StructType>(Ty))
2563         NumElts = STy->getNumElements();
2564       else
2565         NumElts = cast<SequentialType>(Ty)->getNumElements();
2566       for (unsigned i = 0, e = NumElts; i != e; ++i)
2567         Elts.push_back(Init->getAggregateElement(i));
2568     }
2569   };
2570 
2571   for (auto CEPair : SimpleCEs) {
2572     ConstantExpr *GEP = CEPair.first;
2573     Constant *Val = CEPair.second;
2574 
2575     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2576     commitAndSetupCache(GV, GV != CurrentGV);
2577     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2578     Elts[CI->getZExtValue()] = Val;
2579   }
2580   // The last initializer in the list needs to be committed, others
2581   // will be committed on a new initializer being processed.
2582   commitAndSetupCache(CurrentGV, true);
2583 }
2584 
2585 /// Evaluate static constructors in the function, if we can.  Return true if we
2586 /// can, false otherwise.
2587 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2588                                       TargetLibraryInfo *TLI) {
2589   // Call the function.
2590   Evaluator Eval(DL, TLI);
2591   Constant *RetValDummy;
2592   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2593                                            SmallVector<Constant*, 0>());
2594 
2595   if (EvalSuccess) {
2596     ++NumCtorsEvaluated;
2597 
2598     // We succeeded at evaluation: commit the result.
2599     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2600                       << F->getName() << "' to "
2601                       << Eval.getMutatedMemory().size() << " stores.\n");
2602     BatchCommitValueTo(Eval.getMutatedMemory());
2603     for (GlobalVariable *GV : Eval.getInvariants())
2604       GV->setConstant(true);
2605   }
2606 
2607   return EvalSuccess;
2608 }
2609 
2610 static int compareNames(Constant *const *A, Constant *const *B) {
2611   Value *AStripped = (*A)->stripPointerCasts();
2612   Value *BStripped = (*B)->stripPointerCasts();
2613   return AStripped->getName().compare(BStripped->getName());
2614 }
2615 
2616 static void setUsedInitializer(GlobalVariable &V,
2617                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2618   if (Init.empty()) {
2619     V.eraseFromParent();
2620     return;
2621   }
2622 
2623   // Type of pointer to the array of pointers.
2624   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2625 
2626   SmallVector<Constant *, 8> UsedArray;
2627   for (GlobalValue *GV : Init) {
2628     Constant *Cast
2629       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2630     UsedArray.push_back(Cast);
2631   }
2632   // Sort to get deterministic order.
2633   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2634   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2635 
2636   Module *M = V.getParent();
2637   V.removeFromParent();
2638   GlobalVariable *NV =
2639       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2640                          ConstantArray::get(ATy, UsedArray), "");
2641   NV->takeName(&V);
2642   NV->setSection("llvm.metadata");
2643   delete &V;
2644 }
2645 
2646 namespace {
2647 
2648 /// An easy to access representation of llvm.used and llvm.compiler.used.
2649 class LLVMUsed {
2650   SmallPtrSet<GlobalValue *, 8> Used;
2651   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2652   GlobalVariable *UsedV;
2653   GlobalVariable *CompilerUsedV;
2654 
2655 public:
2656   LLVMUsed(Module &M) {
2657     UsedV = collectUsedGlobalVariables(M, Used, false);
2658     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2659   }
2660 
2661   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2662   using used_iterator_range = iterator_range<iterator>;
2663 
2664   iterator usedBegin() { return Used.begin(); }
2665   iterator usedEnd() { return Used.end(); }
2666 
2667   used_iterator_range used() {
2668     return used_iterator_range(usedBegin(), usedEnd());
2669   }
2670 
2671   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2672   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2673 
2674   used_iterator_range compilerUsed() {
2675     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2676   }
2677 
2678   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2679 
2680   bool compilerUsedCount(GlobalValue *GV) const {
2681     return CompilerUsed.count(GV);
2682   }
2683 
2684   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2685   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2686   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2687 
2688   bool compilerUsedInsert(GlobalValue *GV) {
2689     return CompilerUsed.insert(GV).second;
2690   }
2691 
2692   void syncVariablesAndSets() {
2693     if (UsedV)
2694       setUsedInitializer(*UsedV, Used);
2695     if (CompilerUsedV)
2696       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2697   }
2698 };
2699 
2700 } // end anonymous namespace
2701 
2702 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2703   if (GA.use_empty()) // No use at all.
2704     return false;
2705 
2706   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2707          "We should have removed the duplicated "
2708          "element from llvm.compiler.used");
2709   if (!GA.hasOneUse())
2710     // Strictly more than one use. So at least one is not in llvm.used and
2711     // llvm.compiler.used.
2712     return true;
2713 
2714   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2715   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2716 }
2717 
2718 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2719                                                const LLVMUsed &U) {
2720   unsigned N = 2;
2721   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2722          "We should have removed the duplicated "
2723          "element from llvm.compiler.used");
2724   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2725     ++N;
2726   return V.hasNUsesOrMore(N);
2727 }
2728 
2729 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2730   if (!GA.hasLocalLinkage())
2731     return true;
2732 
2733   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2734 }
2735 
2736 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2737                              bool &RenameTarget) {
2738   RenameTarget = false;
2739   bool Ret = false;
2740   if (hasUseOtherThanLLVMUsed(GA, U))
2741     Ret = true;
2742 
2743   // If the alias is externally visible, we may still be able to simplify it.
2744   if (!mayHaveOtherReferences(GA, U))
2745     return Ret;
2746 
2747   // If the aliasee has internal linkage, give it the name and linkage
2748   // of the alias, and delete the alias.  This turns:
2749   //   define internal ... @f(...)
2750   //   @a = alias ... @f
2751   // into:
2752   //   define ... @a(...)
2753   Constant *Aliasee = GA.getAliasee();
2754   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2755   if (!Target->hasLocalLinkage())
2756     return Ret;
2757 
2758   // Do not perform the transform if multiple aliases potentially target the
2759   // aliasee. This check also ensures that it is safe to replace the section
2760   // and other attributes of the aliasee with those of the alias.
2761   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2762     return Ret;
2763 
2764   RenameTarget = true;
2765   return true;
2766 }
2767 
2768 static bool
2769 OptimizeGlobalAliases(Module &M,
2770                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2771   bool Changed = false;
2772   LLVMUsed Used(M);
2773 
2774   for (GlobalValue *GV : Used.used())
2775     Used.compilerUsedErase(GV);
2776 
2777   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2778        I != E;) {
2779     GlobalAlias *J = &*I++;
2780 
2781     // Aliases without names cannot be referenced outside this module.
2782     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2783       J->setLinkage(GlobalValue::InternalLinkage);
2784 
2785     if (deleteIfDead(*J, NotDiscardableComdats)) {
2786       Changed = true;
2787       continue;
2788     }
2789 
2790     // If the alias can change at link time, nothing can be done - bail out.
2791     if (J->isInterposable())
2792       continue;
2793 
2794     Constant *Aliasee = J->getAliasee();
2795     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2796     // We can't trivially replace the alias with the aliasee if the aliasee is
2797     // non-trivial in some way.
2798     // TODO: Try to handle non-zero GEPs of local aliasees.
2799     if (!Target)
2800       continue;
2801     Target->removeDeadConstantUsers();
2802 
2803     // Make all users of the alias use the aliasee instead.
2804     bool RenameTarget;
2805     if (!hasUsesToReplace(*J, Used, RenameTarget))
2806       continue;
2807 
2808     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2809     ++NumAliasesResolved;
2810     Changed = true;
2811 
2812     if (RenameTarget) {
2813       // Give the aliasee the name, linkage and other attributes of the alias.
2814       Target->takeName(&*J);
2815       Target->setLinkage(J->getLinkage());
2816       Target->setDSOLocal(J->isDSOLocal());
2817       Target->setVisibility(J->getVisibility());
2818       Target->setDLLStorageClass(J->getDLLStorageClass());
2819 
2820       if (Used.usedErase(&*J))
2821         Used.usedInsert(Target);
2822 
2823       if (Used.compilerUsedErase(&*J))
2824         Used.compilerUsedInsert(Target);
2825     } else if (mayHaveOtherReferences(*J, Used))
2826       continue;
2827 
2828     // Delete the alias.
2829     M.getAliasList().erase(J);
2830     ++NumAliasesRemoved;
2831     Changed = true;
2832   }
2833 
2834   Used.syncVariablesAndSets();
2835 
2836   return Changed;
2837 }
2838 
2839 static Function *
2840 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2841   // Hack to get a default TLI before we have actual Function.
2842   auto FuncIter = M.begin();
2843   if (FuncIter == M.end())
2844     return nullptr;
2845   auto *TLI = &GetTLI(*FuncIter);
2846 
2847   LibFunc F = LibFunc_cxa_atexit;
2848   if (!TLI->has(F))
2849     return nullptr;
2850 
2851   Function *Fn = M.getFunction(TLI->getName(F));
2852   if (!Fn)
2853     return nullptr;
2854 
2855   // Now get the actual TLI for Fn.
2856   TLI = &GetTLI(*Fn);
2857 
2858   // Make sure that the function has the correct prototype.
2859   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2860     return nullptr;
2861 
2862   return Fn;
2863 }
2864 
2865 /// Returns whether the given function is an empty C++ destructor and can
2866 /// therefore be eliminated.
2867 /// Note that we assume that other optimization passes have already simplified
2868 /// the code so we simply check for 'ret'.
2869 static bool cxxDtorIsEmpty(const Function &Fn) {
2870   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2871   // nounwind, but that doesn't seem worth doing.
2872   if (Fn.isDeclaration())
2873     return false;
2874 
2875   for (auto &I : Fn.getEntryBlock()) {
2876     if (isa<DbgInfoIntrinsic>(I))
2877       continue;
2878     if (isa<ReturnInst>(I))
2879       return true;
2880     break;
2881   }
2882   return false;
2883 }
2884 
2885 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2886   /// Itanium C++ ABI p3.3.5:
2887   ///
2888   ///   After constructing a global (or local static) object, that will require
2889   ///   destruction on exit, a termination function is registered as follows:
2890   ///
2891   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2892   ///
2893   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2894   ///   call f(p) when DSO d is unloaded, before all such termination calls
2895   ///   registered before this one. It returns zero if registration is
2896   ///   successful, nonzero on failure.
2897 
2898   // This pass will look for calls to __cxa_atexit where the function is trivial
2899   // and remove them.
2900   bool Changed = false;
2901 
2902   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2903        I != E;) {
2904     // We're only interested in calls. Theoretically, we could handle invoke
2905     // instructions as well, but neither llvm-gcc nor clang generate invokes
2906     // to __cxa_atexit.
2907     CallInst *CI = dyn_cast<CallInst>(*I++);
2908     if (!CI)
2909       continue;
2910 
2911     Function *DtorFn =
2912       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2913     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2914       continue;
2915 
2916     // Just remove the call.
2917     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2918     CI->eraseFromParent();
2919 
2920     ++NumCXXDtorsRemoved;
2921 
2922     Changed |= true;
2923   }
2924 
2925   return Changed;
2926 }
2927 
2928 static bool optimizeGlobalsInModule(
2929     Module &M, const DataLayout &DL,
2930     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2931     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2932     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2933     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2934   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2935   bool Changed = false;
2936   bool LocalChange = true;
2937   while (LocalChange) {
2938     LocalChange = false;
2939 
2940     NotDiscardableComdats.clear();
2941     for (const GlobalVariable &GV : M.globals())
2942       if (const Comdat *C = GV.getComdat())
2943         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2944           NotDiscardableComdats.insert(C);
2945     for (Function &F : M)
2946       if (const Comdat *C = F.getComdat())
2947         if (!F.isDefTriviallyDead())
2948           NotDiscardableComdats.insert(C);
2949     for (GlobalAlias &GA : M.aliases())
2950       if (const Comdat *C = GA.getComdat())
2951         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2952           NotDiscardableComdats.insert(C);
2953 
2954     // Delete functions that are trivially dead, ccc -> fastcc
2955     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2956                                      NotDiscardableComdats);
2957 
2958     // Optimize global_ctors list.
2959     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2960       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2961     });
2962 
2963     // Optimize non-address-taken globals.
2964     LocalChange |=
2965         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2966 
2967     // Resolve aliases, when possible.
2968     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2969 
2970     // Try to remove trivial global destructors if they are not removed
2971     // already.
2972     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2973     if (CXAAtExitFn)
2974       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2975 
2976     Changed |= LocalChange;
2977   }
2978 
2979   // TODO: Move all global ctors functions to the end of the module for code
2980   // layout.
2981 
2982   return Changed;
2983 }
2984 
2985 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2986     auto &DL = M.getDataLayout();
2987     auto &FAM =
2988         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2989     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2990       return FAM.getResult<DominatorTreeAnalysis>(F);
2991     };
2992     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2993       return FAM.getResult<TargetLibraryAnalysis>(F);
2994     };
2995     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2996       return FAM.getResult<TargetIRAnalysis>(F);
2997     };
2998 
2999     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3000       return FAM.getResult<BlockFrequencyAnalysis>(F);
3001     };
3002 
3003     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3004       return PreservedAnalyses::all();
3005     return PreservedAnalyses::none();
3006 }
3007 
3008 namespace {
3009 
3010 struct GlobalOptLegacyPass : public ModulePass {
3011   static char ID; // Pass identification, replacement for typeid
3012 
3013   GlobalOptLegacyPass() : ModulePass(ID) {
3014     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3015   }
3016 
3017   bool runOnModule(Module &M) override {
3018     if (skipModule(M))
3019       return false;
3020 
3021     auto &DL = M.getDataLayout();
3022     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3023       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3024     };
3025     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3026       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3027     };
3028     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3029       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3030     };
3031 
3032     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3033       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3034     };
3035 
3036     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3037                                    LookupDomTree);
3038   }
3039 
3040   void getAnalysisUsage(AnalysisUsage &AU) const override {
3041     AU.addRequired<TargetLibraryInfoWrapperPass>();
3042     AU.addRequired<TargetTransformInfoWrapperPass>();
3043     AU.addRequired<DominatorTreeWrapperPass>();
3044     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3045   }
3046 };
3047 
3048 } // end anonymous namespace
3049 
3050 char GlobalOptLegacyPass::ID = 0;
3051 
3052 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3053                       "Global Variable Optimizer", false, false)
3054 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3055 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3056 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3058 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3059                     "Global Variable Optimizer", false, false)
3060 
3061 ModulePass *llvm::createGlobalOptimizerPass() {
3062   return new GlobalOptLegacyPass();
3063 }
3064