xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
213        UI != E;) {
214     User *U = *UI++;
215     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
216       Value *V = SI->getValueOperand();
217       if (isa<Constant>(V)) {
218         Changed = true;
219         SI->eraseFromParent();
220       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
221         if (I->hasOneUse())
222           Dead.push_back(std::make_pair(I, SI));
223       }
224     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
225       if (isa<Constant>(MSI->getValue())) {
226         Changed = true;
227         MSI->eraseFromParent();
228       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
229         if (I->hasOneUse())
230           Dead.push_back(std::make_pair(I, MSI));
231       }
232     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
233       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
234       if (MemSrc && MemSrc->isConstant()) {
235         Changed = true;
236         MTI->eraseFromParent();
237       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
238         if (I->hasOneUse())
239           Dead.push_back(std::make_pair(I, MTI));
240       }
241     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
242       if (CE->use_empty()) {
243         CE->destroyConstant();
244         Changed = true;
245       }
246     } else if (Constant *C = dyn_cast<Constant>(U)) {
247       if (isSafeToDestroyConstant(C)) {
248         C->destroyConstant();
249         // This could have invalidated UI, start over from scratch.
250         Dead.clear();
251         CleanupPointerRootUsers(GV, GetTLI);
252         return true;
253       }
254     }
255   }
256 
257   for (int i = 0, e = Dead.size(); i != e; ++i) {
258     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
259       Dead[i].second->eraseFromParent();
260       Instruction *I = Dead[i].first;
261       do {
262         if (isAllocationFn(I, GetTLI))
263           break;
264         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
265         if (!J)
266           break;
267         I->eraseFromParent();
268         I = J;
269       } while (true);
270       I->eraseFromParent();
271     }
272   }
273 
274   return Changed;
275 }
276 
277 /// We just marked GV constant.  Loop over all users of the global, cleaning up
278 /// the obvious ones.  This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft.  This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281     Value *V, Constant *Init, const DataLayout &DL,
282     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283   bool Changed = false;
284   // Note that we need to use a weak value handle for the worklist items. When
285   // we delete a constant array, we may also be holding pointer to one of its
286   // elements (or an element of one of its elements if we're dealing with an
287   // array of arrays) in the worklist.
288   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
289   while (!WorkList.empty()) {
290     Value *UV = WorkList.pop_back_val();
291     if (!UV)
292       continue;
293 
294     User *U = cast<User>(UV);
295 
296     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297       if (Init) {
298         // Replace the load with the initializer.
299         LI->replaceAllUsesWith(Init);
300         LI->eraseFromParent();
301         Changed = true;
302       }
303     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
304       // Store must be unreachable or storing Init into the global.
305       SI->eraseFromParent();
306       Changed = true;
307     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
308       if (CE->getOpcode() == Instruction::GetElementPtr) {
309         Constant *SubInit = nullptr;
310         if (Init)
311           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
312         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
313       } else if ((CE->getOpcode() == Instruction::BitCast &&
314                   CE->getType()->isPointerTy()) ||
315                  CE->getOpcode() == Instruction::AddrSpaceCast) {
316         // Pointer cast, delete any stores and memsets to the global.
317         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
318       }
319 
320       if (CE->use_empty()) {
321         CE->destroyConstant();
322         Changed = true;
323       }
324     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
325       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
326       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
327       // and will invalidate our notion of what Init is.
328       Constant *SubInit = nullptr;
329       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
330         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
331             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
332         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
333           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
334 
335         // If the initializer is an all-null value and we have an inbounds GEP,
336         // we already know what the result of any load from that GEP is.
337         // TODO: Handle splats.
338         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
339           SubInit = Constant::getNullValue(GEP->getResultElementType());
340       }
341       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
342 
343       if (GEP->use_empty()) {
344         GEP->eraseFromParent();
345         Changed = true;
346       }
347     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
348       if (MI->getRawDest() == V) {
349         MI->eraseFromParent();
350         Changed = true;
351       }
352 
353     } else if (Constant *C = dyn_cast<Constant>(U)) {
354       // If we have a chain of dead constantexprs or other things dangling from
355       // us, and if they are all dead, nuke them without remorse.
356       if (isSafeToDestroyConstant(C)) {
357         C->destroyConstant();
358         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
359         return true;
360       }
361     }
362   }
363   return Changed;
364 }
365 
366 static bool isSafeSROAElementUse(Value *V);
367 
368 /// Return true if the specified GEP is a safe user of a derived
369 /// expression from a global that we want to SROA.
370 static bool isSafeSROAGEP(User *U) {
371   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
372   // don't like < 3 operand CE's, and we don't like non-constant integer
373   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
374   // value of C.
375   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
376       !cast<Constant>(U->getOperand(1))->isNullValue())
377     return false;
378 
379   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
380   ++GEPI; // Skip over the pointer index.
381 
382   // For all other level we require that the indices are constant and inrange.
383   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
384   // invalid things like allowing i to index an out-of-range subscript that
385   // accesses A[1]. This can also happen between different members of a struct
386   // in llvm IR.
387   for (; GEPI != E; ++GEPI) {
388     if (GEPI.isStruct())
389       continue;
390 
391     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
392     if (!IdxVal || (GEPI.isBoundedSequential() &&
393                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
394       return false;
395   }
396 
397   return llvm::all_of(U->users(),
398                       [](User *UU) { return isSafeSROAElementUse(UU); });
399 }
400 
401 /// Return true if the specified instruction is a safe user of a derived
402 /// expression from a global that we want to SROA.
403 static bool isSafeSROAElementUse(Value *V) {
404   // We might have a dead and dangling constant hanging off of here.
405   if (Constant *C = dyn_cast<Constant>(V))
406     return isSafeToDestroyConstant(C);
407 
408   Instruction *I = dyn_cast<Instruction>(V);
409   if (!I) return false;
410 
411   // Loads are ok.
412   if (isa<LoadInst>(I)) return true;
413 
414   // Stores *to* the pointer are ok.
415   if (StoreInst *SI = dyn_cast<StoreInst>(I))
416     return SI->getOperand(0) != V;
417 
418   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
419   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
420 }
421 
422 /// Look at all uses of the global and decide whether it is safe for us to
423 /// perform this transformation.
424 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
425   for (User *U : GV->users()) {
426     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
427     if (!isa<GetElementPtrInst>(U) &&
428         (!isa<ConstantExpr>(U) ||
429         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
430       return false;
431 
432     // Check the gep and it's users are safe to SRA
433     if (!isSafeSROAGEP(U))
434       return false;
435   }
436 
437   return true;
438 }
439 
440 static bool IsSRASequential(Type *T) {
441   return isa<ArrayType>(T) || isa<VectorType>(T);
442 }
443 static uint64_t GetSRASequentialNumElements(Type *T) {
444   if (ArrayType *AT = dyn_cast<ArrayType>(T))
445     return AT->getNumElements();
446   return cast<FixedVectorType>(T)->getNumElements();
447 }
448 static Type *GetSRASequentialElementType(Type *T) {
449   if (ArrayType *AT = dyn_cast<ArrayType>(T))
450     return AT->getElementType();
451   return cast<VectorType>(T)->getElementType();
452 }
453 static bool CanDoGlobalSRA(GlobalVariable *GV) {
454   Constant *Init = GV->getInitializer();
455 
456   if (isa<StructType>(Init->getType())) {
457     // nothing to check
458   } else if (IsSRASequential(Init->getType())) {
459     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
460         GV->hasNUsesOrMore(16))
461       return false; // It's not worth it.
462   } else
463     return false;
464 
465   return GlobalUsersSafeToSRA(GV);
466 }
467 
468 /// Copy over the debug info for a variable to its SRA replacements.
469 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
470                                  uint64_t FragmentOffsetInBits,
471                                  uint64_t FragmentSizeInBits,
472                                  uint64_t VarSize) {
473   SmallVector<DIGlobalVariableExpression *, 1> GVs;
474   GV->getDebugInfo(GVs);
475   for (auto *GVE : GVs) {
476     DIVariable *Var = GVE->getVariable();
477     DIExpression *Expr = GVE->getExpression();
478     // If the FragmentSize is smaller than the variable,
479     // emit a fragment expression.
480     if (FragmentSizeInBits < VarSize) {
481       if (auto E = DIExpression::createFragmentExpression(
482               Expr, FragmentOffsetInBits, FragmentSizeInBits))
483         Expr = *E;
484       else
485         return;
486     }
487     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
488     NGV->addDebugInfo(NGVE);
489   }
490 }
491 
492 /// Perform scalar replacement of aggregates on the specified global variable.
493 /// This opens the door for other optimizations by exposing the behavior of the
494 /// program in a more fine-grained way.  We have determined that this
495 /// transformation is safe already.  We return the first global variable we
496 /// insert so that the caller can reprocess it.
497 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
498   // Make sure this global only has simple uses that we can SRA.
499   if (!CanDoGlobalSRA(GV))
500     return nullptr;
501 
502   assert(GV->hasLocalLinkage());
503   Constant *Init = GV->getInitializer();
504   Type *Ty = Init->getType();
505   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
506 
507   std::map<unsigned, GlobalVariable *> NewGlobals;
508 
509   // Get the alignment of the global, either explicit or target-specific.
510   Align StartAlignment =
511       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
512 
513   // Loop over all users and create replacement variables for used aggregate
514   // elements.
515   for (User *GEP : GV->users()) {
516     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
517                                            Instruction::GetElementPtr) ||
518             isa<GetElementPtrInst>(GEP)) &&
519            "NonGEP CE's are not SRAable!");
520 
521     // Ignore the 1th operand, which has to be zero or else the program is quite
522     // broken (undefined).  Get the 2nd operand, which is the structure or array
523     // index.
524     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
525     if (NewGlobals.count(ElementIdx) == 1)
526       continue; // we`ve already created replacement variable
527     assert(NewGlobals.count(ElementIdx) == 0);
528 
529     Type *ElTy = nullptr;
530     if (StructType *STy = dyn_cast<StructType>(Ty))
531       ElTy = STy->getElementType(ElementIdx);
532     else
533       ElTy = GetSRASequentialElementType(Ty);
534     assert(ElTy);
535 
536     Constant *In = Init->getAggregateElement(ElementIdx);
537     assert(In && "Couldn't get element of initializer?");
538 
539     GlobalVariable *NGV = new GlobalVariable(
540         ElTy, false, GlobalVariable::InternalLinkage, In,
541         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
542         GV->getType()->getAddressSpace());
543     NGV->setExternallyInitialized(GV->isExternallyInitialized());
544     NGV->copyAttributesFrom(GV);
545     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
546 
547     if (StructType *STy = dyn_cast<StructType>(Ty)) {
548       const StructLayout &Layout = *DL.getStructLayout(STy);
549 
550       // Calculate the known alignment of the field.  If the original aggregate
551       // had 256 byte alignment for example, something might depend on that:
552       // propagate info to each field.
553       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
554       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
555       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
556         NGV->setAlignment(NewAlign);
557 
558       // Copy over the debug info for the variable.
559       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
560       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
561       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
562     } else {
563       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
564       Align EltAlign = DL.getABITypeAlign(ElTy);
565       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
566 
567       // Calculate the known alignment of the field.  If the original aggregate
568       // had 256 byte alignment for example, something might depend on that:
569       // propagate info to each field.
570       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
571       if (NewAlign > EltAlign)
572         NGV->setAlignment(NewAlign);
573       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
574                            FragmentSizeInBits, VarSize);
575     }
576   }
577 
578   if (NewGlobals.empty())
579     return nullptr;
580 
581   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
582   for (auto NewGlobalVar : NewGlobals)
583     Globals.push_back(NewGlobalVar.second);
584 
585   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
586 
587   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
588 
589   // Loop over all of the uses of the global, replacing the constantexpr geps,
590   // with smaller constantexpr geps or direct references.
591   while (!GV->use_empty()) {
592     User *GEP = GV->user_back();
593     assert(((isa<ConstantExpr>(GEP) &&
594              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
595             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
596 
597     // Ignore the 1th operand, which has to be zero or else the program is quite
598     // broken (undefined).  Get the 2nd operand, which is the structure or array
599     // index.
600     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
601     assert(NewGlobals.count(ElementIdx) == 1);
602 
603     Value *NewPtr = NewGlobals[ElementIdx];
604     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
605 
606     // Form a shorter GEP if needed.
607     if (GEP->getNumOperands() > 3) {
608       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
609         SmallVector<Constant*, 8> Idxs;
610         Idxs.push_back(NullInt);
611         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
612           Idxs.push_back(CE->getOperand(i));
613         NewPtr =
614             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
615       } else {
616         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
617         SmallVector<Value*, 8> Idxs;
618         Idxs.push_back(NullInt);
619         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
620           Idxs.push_back(GEPI->getOperand(i));
621         NewPtr = GetElementPtrInst::Create(
622             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
623             GEPI);
624       }
625     }
626     GEP->replaceAllUsesWith(NewPtr);
627 
628     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
629       GEPI->eraseFromParent();
630     else
631       cast<ConstantExpr>(GEP)->destroyConstant();
632   }
633 
634   // Delete the old global, now that it is dead.
635   Globals.erase(GV);
636   ++NumSRA;
637 
638   assert(NewGlobals.size() > 0);
639   return NewGlobals.begin()->second;
640 }
641 
642 /// Return true if all users of the specified value will trap if the value is
643 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
644 /// reprocessing them.
645 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
646                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
647   for (const User *U : V->users()) {
648     if (const Instruction *I = dyn_cast<Instruction>(U)) {
649       // If null pointer is considered valid, then all uses are non-trapping.
650       // Non address-space 0 globals have already been pruned by the caller.
651       if (NullPointerIsDefined(I->getFunction()))
652         return false;
653     }
654     if (isa<LoadInst>(U)) {
655       // Will trap.
656     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
657       if (SI->getOperand(0) == V) {
658         //cerr << "NONTRAPPING USE: " << *U;
659         return false;  // Storing the value.
660       }
661     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
662       if (CI->getCalledOperand() != V) {
663         //cerr << "NONTRAPPING USE: " << *U;
664         return false;  // Not calling the ptr
665       }
666     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
667       if (II->getCalledOperand() != V) {
668         //cerr << "NONTRAPPING USE: " << *U;
669         return false;  // Not calling the ptr
670       }
671     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
672       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
673     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
674       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
675     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
676       // If we've already seen this phi node, ignore it, it has already been
677       // checked.
678       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
679         return false;
680     } else {
681       //cerr << "NONTRAPPING USE: " << *U;
682       return false;
683     }
684   }
685   return true;
686 }
687 
688 /// Return true if all uses of any loads from GV will trap if the loaded value
689 /// is null.  Note that this also permits comparisons of the loaded value
690 /// against null, as a special case.
691 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
692   for (const User *U : GV->users())
693     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
694       SmallPtrSet<const PHINode*, 8> PHIs;
695       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
696         return false;
697     } else if (isa<StoreInst>(U)) {
698       // Ignore stores to the global.
699     } else {
700       // We don't know or understand this user, bail out.
701       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
702       return false;
703     }
704   return true;
705 }
706 
707 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
708   bool Changed = false;
709   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
710     Instruction *I = cast<Instruction>(*UI++);
711     // Uses are non-trapping if null pointer is considered valid.
712     // Non address-space 0 globals are already pruned by the caller.
713     if (NullPointerIsDefined(I->getFunction()))
714       return false;
715     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
716       LI->setOperand(0, NewV);
717       Changed = true;
718     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
719       if (SI->getOperand(1) == V) {
720         SI->setOperand(1, NewV);
721         Changed = true;
722       }
723     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
724       CallBase *CB = cast<CallBase>(I);
725       if (CB->getCalledOperand() == V) {
726         // Calling through the pointer!  Turn into a direct call, but be careful
727         // that the pointer is not also being passed as an argument.
728         CB->setCalledOperand(NewV);
729         Changed = true;
730         bool PassedAsArg = false;
731         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
732           if (CB->getArgOperand(i) == V) {
733             PassedAsArg = true;
734             CB->setArgOperand(i, NewV);
735           }
736 
737         if (PassedAsArg) {
738           // Being passed as an argument also.  Be careful to not invalidate UI!
739           UI = V->user_begin();
740         }
741       }
742     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
743       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
744                                 ConstantExpr::getCast(CI->getOpcode(),
745                                                       NewV, CI->getType()));
746       if (CI->use_empty()) {
747         Changed = true;
748         CI->eraseFromParent();
749       }
750     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
751       // Should handle GEP here.
752       SmallVector<Constant*, 8> Idxs;
753       Idxs.reserve(GEPI->getNumOperands()-1);
754       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
755            i != e; ++i)
756         if (Constant *C = dyn_cast<Constant>(*i))
757           Idxs.push_back(C);
758         else
759           break;
760       if (Idxs.size() == GEPI->getNumOperands()-1)
761         Changed |= OptimizeAwayTrappingUsesOfValue(
762             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
763                                                  NewV, Idxs));
764       if (GEPI->use_empty()) {
765         Changed = true;
766         GEPI->eraseFromParent();
767       }
768     }
769   }
770 
771   return Changed;
772 }
773 
774 /// The specified global has only one non-null value stored into it.  If there
775 /// are uses of the loaded value that would trap if the loaded value is
776 /// dynamically null, then we know that they cannot be reachable with a null
777 /// optimize away the load.
778 static bool OptimizeAwayTrappingUsesOfLoads(
779     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
780     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
781   bool Changed = false;
782 
783   // Keep track of whether we are able to remove all the uses of the global
784   // other than the store that defines it.
785   bool AllNonStoreUsesGone = true;
786 
787   // Replace all uses of loads with uses of uses of the stored value.
788   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
789     User *GlobalUser = *GUI++;
790     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
791       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
792       // If we were able to delete all uses of the loads
793       if (LI->use_empty()) {
794         LI->eraseFromParent();
795         Changed = true;
796       } else {
797         AllNonStoreUsesGone = false;
798       }
799     } else if (isa<StoreInst>(GlobalUser)) {
800       // Ignore the store that stores "LV" to the global.
801       assert(GlobalUser->getOperand(1) == GV &&
802              "Must be storing *to* the global");
803     } else {
804       AllNonStoreUsesGone = false;
805 
806       // If we get here we could have other crazy uses that are transitively
807       // loaded.
808       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
809               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
810               isa<BitCastInst>(GlobalUser) ||
811               isa<GetElementPtrInst>(GlobalUser)) &&
812              "Only expect load and stores!");
813     }
814   }
815 
816   if (Changed) {
817     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
818                       << "\n");
819     ++NumGlobUses;
820   }
821 
822   // If we nuked all of the loads, then none of the stores are needed either,
823   // nor is the global.
824   if (AllNonStoreUsesGone) {
825     if (isLeakCheckerRoot(GV)) {
826       Changed |= CleanupPointerRootUsers(GV, GetTLI);
827     } else {
828       Changed = true;
829       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
830     }
831     if (GV->use_empty()) {
832       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
833       Changed = true;
834       GV->eraseFromParent();
835       ++NumDeleted;
836     }
837   }
838   return Changed;
839 }
840 
841 /// Walk the use list of V, constant folding all of the instructions that are
842 /// foldable.
843 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
844                                 TargetLibraryInfo *TLI) {
845   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
846     if (Instruction *I = dyn_cast<Instruction>(*UI++))
847       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
848         I->replaceAllUsesWith(NewC);
849 
850         // Advance UI to the next non-I use to avoid invalidating it!
851         // Instructions could multiply use V.
852         while (UI != E && *UI == I)
853           ++UI;
854         if (isInstructionTriviallyDead(I, TLI))
855           I->eraseFromParent();
856       }
857 }
858 
859 /// This function takes the specified global variable, and transforms the
860 /// program as if it always contained the result of the specified malloc.
861 /// Because it is always the result of the specified malloc, there is no reason
862 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
863 /// loads of GV as uses of the new global.
864 static GlobalVariable *
865 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
866                               ConstantInt *NElements, const DataLayout &DL,
867                               TargetLibraryInfo *TLI) {
868   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
869                     << '\n');
870 
871   Type *GlobalType;
872   if (NElements->getZExtValue() == 1)
873     GlobalType = AllocTy;
874   else
875     // If we have an array allocation, the global variable is of an array.
876     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
877 
878   // Create the new global variable.  The contents of the malloc'd memory is
879   // undefined, so initialize with an undef value.
880   GlobalVariable *NewGV = new GlobalVariable(
881       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
882       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
883       GV->getThreadLocalMode());
884 
885   // If there are bitcast users of the malloc (which is typical, usually we have
886   // a malloc + bitcast) then replace them with uses of the new global.  Update
887   // other users to use the global as well.
888   BitCastInst *TheBC = nullptr;
889   while (!CI->use_empty()) {
890     Instruction *User = cast<Instruction>(CI->user_back());
891     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
892       if (BCI->getType() == NewGV->getType()) {
893         BCI->replaceAllUsesWith(NewGV);
894         BCI->eraseFromParent();
895       } else {
896         BCI->setOperand(0, NewGV);
897       }
898     } else {
899       if (!TheBC)
900         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
901       User->replaceUsesOfWith(CI, TheBC);
902     }
903   }
904 
905   Constant *RepValue = NewGV;
906   if (NewGV->getType() != GV->getValueType())
907     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
908 
909   // If there is a comparison against null, we will insert a global bool to
910   // keep track of whether the global was initialized yet or not.
911   GlobalVariable *InitBool =
912     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
913                        GlobalValue::InternalLinkage,
914                        ConstantInt::getFalse(GV->getContext()),
915                        GV->getName()+".init", GV->getThreadLocalMode());
916   bool InitBoolUsed = false;
917 
918   // Loop over all uses of GV, processing them in turn.
919   while (!GV->use_empty()) {
920     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
921       // The global is initialized when the store to it occurs.
922       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
923                     Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
924       SI->eraseFromParent();
925       continue;
926     }
927 
928     LoadInst *LI = cast<LoadInst>(GV->user_back());
929     while (!LI->use_empty()) {
930       Use &LoadUse = *LI->use_begin();
931       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
932       if (!ICI) {
933         LoadUse = RepValue;
934         continue;
935       }
936 
937       // Replace the cmp X, 0 with a use of the bool value.
938       // Sink the load to where the compare was, if atomic rules allow us to.
939       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
940                                InitBool->getName() + ".val", false, Align(1),
941                                LI->getOrdering(), LI->getSyncScopeID(),
942                                LI->isUnordered() ? (Instruction *)ICI : LI);
943       InitBoolUsed = true;
944       switch (ICI->getPredicate()) {
945       default: llvm_unreachable("Unknown ICmp Predicate!");
946       case ICmpInst::ICMP_ULT:
947       case ICmpInst::ICMP_SLT:   // X < null -> always false
948         LV = ConstantInt::getFalse(GV->getContext());
949         break;
950       case ICmpInst::ICMP_ULE:
951       case ICmpInst::ICMP_SLE:
952       case ICmpInst::ICMP_EQ:
953         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
954         break;
955       case ICmpInst::ICMP_NE:
956       case ICmpInst::ICMP_UGE:
957       case ICmpInst::ICMP_SGE:
958       case ICmpInst::ICMP_UGT:
959       case ICmpInst::ICMP_SGT:
960         break;  // no change.
961       }
962       ICI->replaceAllUsesWith(LV);
963       ICI->eraseFromParent();
964     }
965     LI->eraseFromParent();
966   }
967 
968   // If the initialization boolean was used, insert it, otherwise delete it.
969   if (!InitBoolUsed) {
970     while (!InitBool->use_empty())  // Delete initializations
971       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
972     delete InitBool;
973   } else
974     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
975 
976   // Now the GV is dead, nuke it and the malloc..
977   GV->eraseFromParent();
978   CI->eraseFromParent();
979 
980   // To further other optimizations, loop over all users of NewGV and try to
981   // constant prop them.  This will promote GEP instructions with constant
982   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
983   ConstantPropUsersOf(NewGV, DL, TLI);
984   if (RepValue != NewGV)
985     ConstantPropUsersOf(RepValue, DL, TLI);
986 
987   return NewGV;
988 }
989 
990 /// Scan the use-list of V checking to make sure that there are no complex uses
991 /// of V.  We permit simple things like dereferencing the pointer, but not
992 /// storing through the address, unless it is to the specified global.
993 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
994                                                       const GlobalVariable *GV,
995                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
996   for (const User *U : V->users()) {
997     const Instruction *Inst = cast<Instruction>(U);
998 
999     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1000       continue; // Fine, ignore.
1001     }
1002 
1003     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1004       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1005         return false;  // Storing the pointer itself... bad.
1006       continue; // Otherwise, storing through it, or storing into GV... fine.
1007     }
1008 
1009     // Must index into the array and into the struct.
1010     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1011       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1012         return false;
1013       continue;
1014     }
1015 
1016     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1017       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1018       // cycles.
1019       if (PHIs.insert(PN).second)
1020         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1021           return false;
1022       continue;
1023     }
1024 
1025     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1026       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1027         return false;
1028       continue;
1029     }
1030 
1031     return false;
1032   }
1033   return true;
1034 }
1035 
1036 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1037 /// allocation into loads from the global and uses of the resultant pointer.
1038 /// Further, delete the store into GV.  This assumes that these value pass the
1039 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1040 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1041                                           GlobalVariable *GV) {
1042   while (!Alloc->use_empty()) {
1043     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1044     Instruction *InsertPt = U;
1045     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1046       // If this is the store of the allocation into the global, remove it.
1047       if (SI->getOperand(1) == GV) {
1048         SI->eraseFromParent();
1049         continue;
1050       }
1051     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1052       // Insert the load in the corresponding predecessor, not right before the
1053       // PHI.
1054       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1055     } else if (isa<BitCastInst>(U)) {
1056       // Must be bitcast between the malloc and store to initialize the global.
1057       ReplaceUsesOfMallocWithGlobal(U, GV);
1058       U->eraseFromParent();
1059       continue;
1060     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1061       // If this is a "GEP bitcast" and the user is a store to the global, then
1062       // just process it as a bitcast.
1063       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1064         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1065           if (SI->getOperand(1) == GV) {
1066             // Must be bitcast GEP between the malloc and store to initialize
1067             // the global.
1068             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1069             GEPI->eraseFromParent();
1070             continue;
1071           }
1072     }
1073 
1074     // Insert a load from the global, and use it instead of the malloc.
1075     Value *NL =
1076         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1077     U->replaceUsesOfWith(Alloc, NL);
1078   }
1079 }
1080 
1081 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1082 /// perform heap SRA on.  This permits GEP's that index through the array and
1083 /// struct field, icmps of null, and PHIs.
1084 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1085                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1086                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1087   // We permit two users of the load: setcc comparing against the null
1088   // pointer, and a getelementptr of a specific form.
1089   for (const User *U : V->users()) {
1090     const Instruction *UI = cast<Instruction>(U);
1091 
1092     // Comparison against null is ok.
1093     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1094       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1095         return false;
1096       continue;
1097     }
1098 
1099     // getelementptr is also ok, but only a simple form.
1100     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1101       // Must index into the array and into the struct.
1102       if (GEPI->getNumOperands() < 3)
1103         return false;
1104 
1105       // Otherwise the GEP is ok.
1106       continue;
1107     }
1108 
1109     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1110       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1111         // This means some phi nodes are dependent on each other.
1112         // Avoid infinite looping!
1113         return false;
1114       if (!LoadUsingPHIs.insert(PN).second)
1115         // If we have already analyzed this PHI, then it is safe.
1116         continue;
1117 
1118       // Make sure all uses of the PHI are simple enough to transform.
1119       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1120                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1121         return false;
1122 
1123       continue;
1124     }
1125 
1126     // Otherwise we don't know what this is, not ok.
1127     return false;
1128   }
1129 
1130   return true;
1131 }
1132 
1133 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1134 /// return true.
1135 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1136                                                     Instruction *StoredVal) {
1137   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1138   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1139   for (const User *U : GV->users())
1140     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1141       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1142                                           LoadUsingPHIsPerLoad))
1143         return false;
1144       LoadUsingPHIsPerLoad.clear();
1145     }
1146 
1147   // If we reach here, we know that all uses of the loads and transitive uses
1148   // (through PHI nodes) are simple enough to transform.  However, we don't know
1149   // that all inputs the to the PHI nodes are in the same equivalence sets.
1150   // Check to verify that all operands of the PHIs are either PHIS that can be
1151   // transformed, loads from GV, or MI itself.
1152   for (const PHINode *PN : LoadUsingPHIs) {
1153     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1154       Value *InVal = PN->getIncomingValue(op);
1155 
1156       // PHI of the stored value itself is ok.
1157       if (InVal == StoredVal) continue;
1158 
1159       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1160         // One of the PHIs in our set is (optimistically) ok.
1161         if (LoadUsingPHIs.count(InPN))
1162           continue;
1163         return false;
1164       }
1165 
1166       // Load from GV is ok.
1167       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1168         if (LI->getOperand(0) == GV)
1169           continue;
1170 
1171       // UNDEF? NULL?
1172 
1173       // Anything else is rejected.
1174       return false;
1175     }
1176   }
1177 
1178   return true;
1179 }
1180 
1181 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1182               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1183                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1184   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1185 
1186   if (FieldNo >= FieldVals.size())
1187     FieldVals.resize(FieldNo+1);
1188 
1189   // If we already have this value, just reuse the previously scalarized
1190   // version.
1191   if (Value *FieldVal = FieldVals[FieldNo])
1192     return FieldVal;
1193 
1194   // Depending on what instruction this is, we have several cases.
1195   Value *Result;
1196   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1197     // This is a scalarized version of the load from the global.  Just create
1198     // a new Load of the scalarized global.
1199     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1200                                 InsertedScalarizedValues, PHIsToRewrite);
1201     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1202                           LI->getName() + ".f" + Twine(FieldNo), LI);
1203   } else {
1204     PHINode *PN = cast<PHINode>(V);
1205     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1206     // field.
1207 
1208     PointerType *PTy = cast<PointerType>(PN->getType());
1209     StructType *ST = cast<StructType>(PTy->getElementType());
1210 
1211     unsigned AS = PTy->getAddressSpace();
1212     PHINode *NewPN =
1213       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1214                      PN->getNumIncomingValues(),
1215                      PN->getName()+".f"+Twine(FieldNo), PN);
1216     Result = NewPN;
1217     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1218   }
1219 
1220   return FieldVals[FieldNo] = Result;
1221 }
1222 
1223 /// Given a load instruction and a value derived from the load, rewrite the
1224 /// derived value to use the HeapSRoA'd load.
1225 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1226               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1227                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1228   // If this is a comparison against null, handle it.
1229   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1230     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1231     // If we have a setcc of the loaded pointer, we can use a setcc of any
1232     // field.
1233     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1234                                    InsertedScalarizedValues, PHIsToRewrite);
1235 
1236     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1237                               Constant::getNullValue(NPtr->getType()),
1238                               SCI->getName());
1239     SCI->replaceAllUsesWith(New);
1240     SCI->eraseFromParent();
1241     return;
1242   }
1243 
1244   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1245   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1246     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1247            && "Unexpected GEPI!");
1248 
1249     // Load the pointer for this field.
1250     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1251     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1252                                      InsertedScalarizedValues, PHIsToRewrite);
1253 
1254     // Create the new GEP idx vector.
1255     SmallVector<Value*, 8> GEPIdx;
1256     GEPIdx.push_back(GEPI->getOperand(1));
1257     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1258 
1259     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1260                                              GEPI->getName(), GEPI);
1261     GEPI->replaceAllUsesWith(NGEPI);
1262     GEPI->eraseFromParent();
1263     return;
1264   }
1265 
1266   // Recursively transform the users of PHI nodes.  This will lazily create the
1267   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1268   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1269   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1270   // already been seen first by another load, so its uses have already been
1271   // processed.
1272   PHINode *PN = cast<PHINode>(LoadUser);
1273   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1274                                               std::vector<Value *>())).second)
1275     return;
1276 
1277   // If this is the first time we've seen this PHI, recursively process all
1278   // users.
1279   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1280     Instruction *User = cast<Instruction>(*UI++);
1281     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1282   }
1283 }
1284 
1285 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1286 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1287 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1288 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1289               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1290                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1291   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1292     Instruction *User = cast<Instruction>(*UI++);
1293     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1294   }
1295 
1296   if (Load->use_empty()) {
1297     Load->eraseFromParent();
1298     InsertedScalarizedValues.erase(Load);
1299   }
1300 }
1301 
1302 /// CI is an allocation of an array of structures.  Break it up into multiple
1303 /// allocations of arrays of the fields.
1304 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1305                                             Value *NElems, const DataLayout &DL,
1306                                             const TargetLibraryInfo *TLI) {
1307   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1308                     << '\n');
1309   Type *MAT = getMallocAllocatedType(CI, TLI);
1310   StructType *STy = cast<StructType>(MAT);
1311 
1312   // There is guaranteed to be at least one use of the malloc (storing
1313   // it into GV).  If there are other uses, change them to be uses of
1314   // the global to simplify later code.  This also deletes the store
1315   // into GV.
1316   ReplaceUsesOfMallocWithGlobal(CI, GV);
1317 
1318   // Okay, at this point, there are no users of the malloc.  Insert N
1319   // new mallocs at the same place as CI, and N globals.
1320   std::vector<Value *> FieldGlobals;
1321   std::vector<Value *> FieldMallocs;
1322 
1323   SmallVector<OperandBundleDef, 1> OpBundles;
1324   CI->getOperandBundlesAsDefs(OpBundles);
1325 
1326   unsigned AS = GV->getType()->getPointerAddressSpace();
1327   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1328     Type *FieldTy = STy->getElementType(FieldNo);
1329     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1330 
1331     GlobalVariable *NGV = new GlobalVariable(
1332         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1333         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1334         nullptr, GV->getThreadLocalMode());
1335     NGV->copyAttributesFrom(GV);
1336     FieldGlobals.push_back(NGV);
1337 
1338     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1339     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1340       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1341     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1342     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1343                                         ConstantInt::get(IntPtrTy, TypeSize),
1344                                         NElems, OpBundles, nullptr,
1345                                         CI->getName() + ".f" + Twine(FieldNo));
1346     FieldMallocs.push_back(NMI);
1347     new StoreInst(NMI, NGV, CI);
1348   }
1349 
1350   // The tricky aspect of this transformation is handling the case when malloc
1351   // fails.  In the original code, malloc failing would set the result pointer
1352   // of malloc to null.  In this case, some mallocs could succeed and others
1353   // could fail.  As such, we emit code that looks like this:
1354   //    F0 = malloc(field0)
1355   //    F1 = malloc(field1)
1356   //    F2 = malloc(field2)
1357   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1358   //      if (F0) { free(F0); F0 = 0; }
1359   //      if (F1) { free(F1); F1 = 0; }
1360   //      if (F2) { free(F2); F2 = 0; }
1361   //    }
1362   // The malloc can also fail if its argument is too large.
1363   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1364   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1365                                   ConstantZero, "isneg");
1366   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1367     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1368                              Constant::getNullValue(FieldMallocs[i]->getType()),
1369                                "isnull");
1370     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1371   }
1372 
1373   // Split the basic block at the old malloc.
1374   BasicBlock *OrigBB = CI->getParent();
1375   BasicBlock *ContBB =
1376       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1377 
1378   // Create the block to check the first condition.  Put all these blocks at the
1379   // end of the function as they are unlikely to be executed.
1380   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1381                                                 "malloc_ret_null",
1382                                                 OrigBB->getParent());
1383 
1384   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1385   // branch on RunningOr.
1386   OrigBB->getTerminator()->eraseFromParent();
1387   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1388 
1389   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1390   // pointer, because some may be null while others are not.
1391   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1392     Value *GVVal =
1393         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1394                      FieldGlobals[i], "tmp", NullPtrBlock);
1395     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1396                               Constant::getNullValue(GVVal->getType()));
1397     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1398                                                OrigBB->getParent());
1399     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1400                                                OrigBB->getParent());
1401     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1402                                          Cmp, NullPtrBlock);
1403 
1404     // Fill in FreeBlock.
1405     CallInst::CreateFree(GVVal, OpBundles, BI);
1406     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1407                   FreeBlock);
1408     BranchInst::Create(NextBlock, FreeBlock);
1409 
1410     NullPtrBlock = NextBlock;
1411   }
1412 
1413   BranchInst::Create(ContBB, NullPtrBlock);
1414 
1415   // CI is no longer needed, remove it.
1416   CI->eraseFromParent();
1417 
1418   /// As we process loads, if we can't immediately update all uses of the load,
1419   /// keep track of what scalarized loads are inserted for a given load.
1420   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1421   InsertedScalarizedValues[GV] = FieldGlobals;
1422 
1423   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1424 
1425   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1426   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1427   // of the per-field globals instead.
1428   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1429     Instruction *User = cast<Instruction>(*UI++);
1430 
1431     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1432       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1433       continue;
1434     }
1435 
1436     // Must be a store of null.
1437     StoreInst *SI = cast<StoreInst>(User);
1438     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1439            "Unexpected heap-sra user!");
1440 
1441     // Insert a store of null into each global.
1442     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1443       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1444       Constant *Null = Constant::getNullValue(ValTy);
1445       new StoreInst(Null, FieldGlobals[i], SI);
1446     }
1447     // Erase the original store.
1448     SI->eraseFromParent();
1449   }
1450 
1451   // While we have PHIs that are interesting to rewrite, do it.
1452   while (!PHIsToRewrite.empty()) {
1453     PHINode *PN = PHIsToRewrite.back().first;
1454     unsigned FieldNo = PHIsToRewrite.back().second;
1455     PHIsToRewrite.pop_back();
1456     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1457     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1458 
1459     // Add all the incoming values.  This can materialize more phis.
1460     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1461       Value *InVal = PN->getIncomingValue(i);
1462       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1463                                PHIsToRewrite);
1464       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1465     }
1466   }
1467 
1468   // Drop all inter-phi links and any loads that made it this far.
1469   for (DenseMap<Value *, std::vector<Value *>>::iterator
1470        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1471        I != E; ++I) {
1472     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1473       PN->dropAllReferences();
1474     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1475       LI->dropAllReferences();
1476   }
1477 
1478   // Delete all the phis and loads now that inter-references are dead.
1479   for (DenseMap<Value *, std::vector<Value *>>::iterator
1480        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1481        I != E; ++I) {
1482     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1483       PN->eraseFromParent();
1484     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1485       LI->eraseFromParent();
1486   }
1487 
1488   // The old global is now dead, remove it.
1489   GV->eraseFromParent();
1490 
1491   ++NumHeapSRA;
1492   return cast<GlobalVariable>(FieldGlobals[0]);
1493 }
1494 
1495 /// This function is called when we see a pointer global variable with a single
1496 /// value stored it that is a malloc or cast of malloc.
1497 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1498                                                Type *AllocTy,
1499                                                AtomicOrdering Ordering,
1500                                                const DataLayout &DL,
1501                                                TargetLibraryInfo *TLI) {
1502   // If this is a malloc of an abstract type, don't touch it.
1503   if (!AllocTy->isSized())
1504     return false;
1505 
1506   // We can't optimize this global unless all uses of it are *known* to be
1507   // of the malloc value, not of the null initializer value (consider a use
1508   // that compares the global's value against zero to see if the malloc has
1509   // been reached).  To do this, we check to see if all uses of the global
1510   // would trap if the global were null: this proves that they must all
1511   // happen after the malloc.
1512   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1513     return false;
1514 
1515   // We can't optimize this if the malloc itself is used in a complex way,
1516   // for example, being stored into multiple globals.  This allows the
1517   // malloc to be stored into the specified global, loaded icmp'd, and
1518   // GEP'd.  These are all things we could transform to using the global
1519   // for.
1520   SmallPtrSet<const PHINode*, 8> PHIs;
1521   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1522     return false;
1523 
1524   // If we have a global that is only initialized with a fixed size malloc,
1525   // transform the program to use global memory instead of malloc'd memory.
1526   // This eliminates dynamic allocation, avoids an indirection accessing the
1527   // data, and exposes the resultant global to further GlobalOpt.
1528   // We cannot optimize the malloc if we cannot determine malloc array size.
1529   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1530   if (!NElems)
1531     return false;
1532 
1533   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1534     // Restrict this transformation to only working on small allocations
1535     // (2048 bytes currently), as we don't want to introduce a 16M global or
1536     // something.
1537     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1538       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1539       return true;
1540     }
1541 
1542   // If the allocation is an array of structures, consider transforming this
1543   // into multiple malloc'd arrays, one for each field.  This is basically
1544   // SRoA for malloc'd memory.
1545 
1546   if (Ordering != AtomicOrdering::NotAtomic)
1547     return false;
1548 
1549   // If this is an allocation of a fixed size array of structs, analyze as a
1550   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1551   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1552     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1553       AllocTy = AT->getElementType();
1554 
1555   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1556   if (!AllocSTy)
1557     return false;
1558 
1559   // This the structure has an unreasonable number of fields, leave it
1560   // alone.
1561   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1562       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1563 
1564     // If this is a fixed size array, transform the Malloc to be an alloc of
1565     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1566     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1567       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1568       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1569       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1570       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1571       SmallVector<OperandBundleDef, 1> OpBundles;
1572       CI->getOperandBundlesAsDefs(OpBundles);
1573       Instruction *Malloc =
1574           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1575                                  OpBundles, nullptr, CI->getName());
1576       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1577       CI->replaceAllUsesWith(Cast);
1578       CI->eraseFromParent();
1579       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1580         CI = cast<CallInst>(BCI->getOperand(0));
1581       else
1582         CI = cast<CallInst>(Malloc);
1583     }
1584 
1585     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1586                          TLI);
1587     return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 // Try to optimize globals based on the knowledge that only one value (besides
1594 // its initializer) is ever stored to the global.
1595 static bool
1596 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1597                          AtomicOrdering Ordering, const DataLayout &DL,
1598                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1599   // Ignore no-op GEPs and bitcasts.
1600   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1601 
1602   // If we are dealing with a pointer global that is initialized to null and
1603   // only has one (non-null) value stored into it, then we can optimize any
1604   // users of the loaded value (often calls and loads) that would trap if the
1605   // value was null.
1606   if (GV->getInitializer()->getType()->isPointerTy() &&
1607       GV->getInitializer()->isNullValue() &&
1608       !NullPointerIsDefined(
1609           nullptr /* F */,
1610           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1611     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1612       if (GV->getInitializer()->getType() != SOVC->getType())
1613         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1614 
1615       // Optimize away any trapping uses of the loaded value.
1616       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1617         return true;
1618     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1619       auto *TLI = &GetTLI(*CI->getFunction());
1620       Type *MallocType = getMallocAllocatedType(CI, TLI);
1621       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1622                                                            Ordering, DL, TLI))
1623         return true;
1624     }
1625   }
1626 
1627   return false;
1628 }
1629 
1630 /// At this point, we have learned that the only two values ever stored into GV
1631 /// are its initializer and OtherVal.  See if we can shrink the global into a
1632 /// boolean and select between the two values whenever it is used.  This exposes
1633 /// the values to other scalar optimizations.
1634 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1635   Type *GVElType = GV->getValueType();
1636 
1637   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1638   // an FP value, pointer or vector, don't do this optimization because a select
1639   // between them is very expensive and unlikely to lead to later
1640   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1641   // where v1 and v2 both require constant pool loads, a big loss.
1642   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1643       GVElType->isFloatingPointTy() ||
1644       GVElType->isPointerTy() || GVElType->isVectorTy())
1645     return false;
1646 
1647   // Walk the use list of the global seeing if all the uses are load or store.
1648   // If there is anything else, bail out.
1649   for (User *U : GV->users())
1650     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1651       return false;
1652 
1653   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1654 
1655   // Create the new global, initializing it to false.
1656   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1657                                              false,
1658                                              GlobalValue::InternalLinkage,
1659                                         ConstantInt::getFalse(GV->getContext()),
1660                                              GV->getName()+".b",
1661                                              GV->getThreadLocalMode(),
1662                                              GV->getType()->getAddressSpace());
1663   NewGV->copyAttributesFrom(GV);
1664   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1665 
1666   Constant *InitVal = GV->getInitializer();
1667   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1668          "No reason to shrink to bool!");
1669 
1670   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1671   GV->getDebugInfo(GVs);
1672 
1673   // If initialized to zero and storing one into the global, we can use a cast
1674   // instead of a select to synthesize the desired value.
1675   bool IsOneZero = false;
1676   bool EmitOneOrZero = true;
1677   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1678   if (CI && CI->getValue().getActiveBits() <= 64) {
1679     IsOneZero = InitVal->isNullValue() && CI->isOne();
1680 
1681     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1682     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1683       uint64_t ValInit = CIInit->getZExtValue();
1684       uint64_t ValOther = CI->getZExtValue();
1685       uint64_t ValMinus = ValOther - ValInit;
1686 
1687       for(auto *GVe : GVs){
1688         DIGlobalVariable *DGV = GVe->getVariable();
1689         DIExpression *E = GVe->getExpression();
1690         const DataLayout &DL = GV->getParent()->getDataLayout();
1691         unsigned SizeInOctets =
1692           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1693 
1694         // It is expected that the address of global optimized variable is on
1695         // top of the stack. After optimization, value of that variable will
1696         // be ether 0 for initial value or 1 for other value. The following
1697         // expression should return constant integer value depending on the
1698         // value at global object address:
1699         // val * (ValOther - ValInit) + ValInit:
1700         // DW_OP_deref DW_OP_constu <ValMinus>
1701         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1702         SmallVector<uint64_t, 12> Ops = {
1703             dwarf::DW_OP_deref_size, SizeInOctets,
1704             dwarf::DW_OP_constu, ValMinus,
1705             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1706             dwarf::DW_OP_plus};
1707         bool WithStackValue = true;
1708         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1709         DIGlobalVariableExpression *DGVE =
1710           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1711         NewGV->addDebugInfo(DGVE);
1712      }
1713      EmitOneOrZero = false;
1714     }
1715   }
1716 
1717   if (EmitOneOrZero) {
1718      // FIXME: This will only emit address for debugger on which will
1719      // be written only 0 or 1.
1720      for(auto *GV : GVs)
1721        NewGV->addDebugInfo(GV);
1722    }
1723 
1724   while (!GV->use_empty()) {
1725     Instruction *UI = cast<Instruction>(GV->user_back());
1726     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1727       // Change the store into a boolean store.
1728       bool StoringOther = SI->getOperand(0) == OtherVal;
1729       // Only do this if we weren't storing a loaded value.
1730       Value *StoreVal;
1731       if (StoringOther || SI->getOperand(0) == InitVal) {
1732         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1733                                     StoringOther);
1734       } else {
1735         // Otherwise, we are storing a previously loaded copy.  To do this,
1736         // change the copy from copying the original value to just copying the
1737         // bool.
1738         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1739 
1740         // If we've already replaced the input, StoredVal will be a cast or
1741         // select instruction.  If not, it will be a load of the original
1742         // global.
1743         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1744           assert(LI->getOperand(0) == GV && "Not a copy!");
1745           // Insert a new load, to preserve the saved value.
1746           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1747                                   LI->getName() + ".b", false, Align(1),
1748                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1749         } else {
1750           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1751                  "This is not a form that we understand!");
1752           StoreVal = StoredVal->getOperand(0);
1753           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1754         }
1755       }
1756       StoreInst *NSI =
1757           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1758                         SI->getSyncScopeID(), SI);
1759       NSI->setDebugLoc(SI->getDebugLoc());
1760     } else {
1761       // Change the load into a load of bool then a select.
1762       LoadInst *LI = cast<LoadInst>(UI);
1763       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1764                                    LI->getName() + ".b", false, Align(1),
1765                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1766       Instruction *NSI;
1767       if (IsOneZero)
1768         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1769       else
1770         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1771       NSI->takeName(LI);
1772       // Since LI is split into two instructions, NLI and NSI both inherit the
1773       // same DebugLoc
1774       NLI->setDebugLoc(LI->getDebugLoc());
1775       NSI->setDebugLoc(LI->getDebugLoc());
1776       LI->replaceAllUsesWith(NSI);
1777     }
1778     UI->eraseFromParent();
1779   }
1780 
1781   // Retain the name of the old global variable. People who are debugging their
1782   // programs may expect these variables to be named the same.
1783   NewGV->takeName(GV);
1784   GV->eraseFromParent();
1785   return true;
1786 }
1787 
1788 static bool deleteIfDead(
1789     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1790   GV.removeDeadConstantUsers();
1791 
1792   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1793     return false;
1794 
1795   if (const Comdat *C = GV.getComdat())
1796     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1797       return false;
1798 
1799   bool Dead;
1800   if (auto *F = dyn_cast<Function>(&GV))
1801     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1802   else
1803     Dead = GV.use_empty();
1804   if (!Dead)
1805     return false;
1806 
1807   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1808   GV.eraseFromParent();
1809   ++NumDeleted;
1810   return true;
1811 }
1812 
1813 static bool isPointerValueDeadOnEntryToFunction(
1814     const Function *F, GlobalValue *GV,
1815     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1816   // Find all uses of GV. We expect them all to be in F, and if we can't
1817   // identify any of the uses we bail out.
1818   //
1819   // On each of these uses, identify if the memory that GV points to is
1820   // used/required/live at the start of the function. If it is not, for example
1821   // if the first thing the function does is store to the GV, the GV can
1822   // possibly be demoted.
1823   //
1824   // We don't do an exhaustive search for memory operations - simply look
1825   // through bitcasts as they're quite common and benign.
1826   const DataLayout &DL = GV->getParent()->getDataLayout();
1827   SmallVector<LoadInst *, 4> Loads;
1828   SmallVector<StoreInst *, 4> Stores;
1829   for (auto *U : GV->users()) {
1830     if (Operator::getOpcode(U) == Instruction::BitCast) {
1831       for (auto *UU : U->users()) {
1832         if (auto *LI = dyn_cast<LoadInst>(UU))
1833           Loads.push_back(LI);
1834         else if (auto *SI = dyn_cast<StoreInst>(UU))
1835           Stores.push_back(SI);
1836         else
1837           return false;
1838       }
1839       continue;
1840     }
1841 
1842     Instruction *I = dyn_cast<Instruction>(U);
1843     if (!I)
1844       return false;
1845     assert(I->getParent()->getParent() == F);
1846 
1847     if (auto *LI = dyn_cast<LoadInst>(I))
1848       Loads.push_back(LI);
1849     else if (auto *SI = dyn_cast<StoreInst>(I))
1850       Stores.push_back(SI);
1851     else
1852       return false;
1853   }
1854 
1855   // We have identified all uses of GV into loads and stores. Now check if all
1856   // of them are known not to depend on the value of the global at the function
1857   // entry point. We do this by ensuring that every load is dominated by at
1858   // least one store.
1859   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1860 
1861   // The below check is quadratic. Check we're not going to do too many tests.
1862   // FIXME: Even though this will always have worst-case quadratic time, we
1863   // could put effort into minimizing the average time by putting stores that
1864   // have been shown to dominate at least one load at the beginning of the
1865   // Stores array, making subsequent dominance checks more likely to succeed
1866   // early.
1867   //
1868   // The threshold here is fairly large because global->local demotion is a
1869   // very powerful optimization should it fire.
1870   const unsigned Threshold = 100;
1871   if (Loads.size() * Stores.size() > Threshold)
1872     return false;
1873 
1874   for (auto *L : Loads) {
1875     auto *LTy = L->getType();
1876     if (none_of(Stores, [&](const StoreInst *S) {
1877           auto *STy = S->getValueOperand()->getType();
1878           // The load is only dominated by the store if DomTree says so
1879           // and the number of bits loaded in L is less than or equal to
1880           // the number of bits stored in S.
1881           return DT.dominates(S, L) &&
1882                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1883         }))
1884       return false;
1885   }
1886   // All loads have known dependences inside F, so the global can be localized.
1887   return true;
1888 }
1889 
1890 /// C may have non-instruction users. Can all of those users be turned into
1891 /// instructions?
1892 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1893   // We don't do this exhaustively. The most common pattern that we really need
1894   // to care about is a constant GEP or constant bitcast - so just looking
1895   // through one single ConstantExpr.
1896   //
1897   // The set of constants that this function returns true for must be able to be
1898   // handled by makeAllConstantUsesInstructions.
1899   for (auto *U : C->users()) {
1900     if (isa<Instruction>(U))
1901       continue;
1902     if (!isa<ConstantExpr>(U))
1903       // Non instruction, non-constantexpr user; cannot convert this.
1904       return false;
1905     for (auto *UU : U->users())
1906       if (!isa<Instruction>(UU))
1907         // A constantexpr used by another constant. We don't try and recurse any
1908         // further but just bail out at this point.
1909         return false;
1910   }
1911 
1912   return true;
1913 }
1914 
1915 /// C may have non-instruction users, and
1916 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1917 /// non-instruction users to instructions.
1918 static void makeAllConstantUsesInstructions(Constant *C) {
1919   SmallVector<ConstantExpr*,4> Users;
1920   for (auto *U : C->users()) {
1921     if (isa<ConstantExpr>(U))
1922       Users.push_back(cast<ConstantExpr>(U));
1923     else
1924       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1925       // should not have returned true for C.
1926       assert(
1927           isa<Instruction>(U) &&
1928           "Can't transform non-constantexpr non-instruction to instruction!");
1929   }
1930 
1931   SmallVector<Value*,4> UUsers;
1932   for (auto *U : Users) {
1933     UUsers.clear();
1934     for (auto *UU : U->users())
1935       UUsers.push_back(UU);
1936     for (auto *UU : UUsers) {
1937       Instruction *UI = cast<Instruction>(UU);
1938       Instruction *NewU = U->getAsInstruction();
1939       NewU->insertBefore(UI);
1940       UI->replaceUsesOfWith(U, NewU);
1941     }
1942     // We've replaced all the uses, so destroy the constant. (destroyConstant
1943     // will update value handles and metadata.)
1944     U->destroyConstant();
1945   }
1946 }
1947 
1948 /// Analyze the specified global variable and optimize
1949 /// it if possible.  If we make a change, return true.
1950 static bool
1951 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1952                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1953                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1954   auto &DL = GV->getParent()->getDataLayout();
1955   // If this is a first class global and has only one accessing function and
1956   // this function is non-recursive, we replace the global with a local alloca
1957   // in this function.
1958   //
1959   // NOTE: It doesn't make sense to promote non-single-value types since we
1960   // are just replacing static memory to stack memory.
1961   //
1962   // If the global is in different address space, don't bring it to stack.
1963   if (!GS.HasMultipleAccessingFunctions &&
1964       GS.AccessingFunction &&
1965       GV->getValueType()->isSingleValueType() &&
1966       GV->getType()->getAddressSpace() == 0 &&
1967       !GV->isExternallyInitialized() &&
1968       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1969       GS.AccessingFunction->doesNotRecurse() &&
1970       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1971                                           LookupDomTree)) {
1972     const DataLayout &DL = GV->getParent()->getDataLayout();
1973 
1974     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1975     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1976                                                    ->getEntryBlock().begin());
1977     Type *ElemTy = GV->getValueType();
1978     // FIXME: Pass Global's alignment when globals have alignment
1979     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1980                                         GV->getName(), &FirstI);
1981     if (!isa<UndefValue>(GV->getInitializer()))
1982       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1983 
1984     makeAllConstantUsesInstructions(GV);
1985 
1986     GV->replaceAllUsesWith(Alloca);
1987     GV->eraseFromParent();
1988     ++NumLocalized;
1989     return true;
1990   }
1991 
1992   // If the global is never loaded (but may be stored to), it is dead.
1993   // Delete it now.
1994   if (!GS.IsLoaded) {
1995     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1996 
1997     bool Changed;
1998     if (isLeakCheckerRoot(GV)) {
1999       // Delete any constant stores to the global.
2000       Changed = CleanupPointerRootUsers(GV, GetTLI);
2001     } else {
2002       // Delete any stores we can find to the global.  We may not be able to
2003       // make it completely dead though.
2004       Changed =
2005           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2006     }
2007 
2008     // If the global is dead now, delete it.
2009     if (GV->use_empty()) {
2010       GV->eraseFromParent();
2011       ++NumDeleted;
2012       Changed = true;
2013     }
2014     return Changed;
2015 
2016   }
2017   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2018     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2019 
2020     // Don't actually mark a global constant if it's atomic because atomic loads
2021     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2022     // requires write access to the variable even if it's not actually changed.
2023     if (GS.Ordering == AtomicOrdering::NotAtomic)
2024       GV->setConstant(true);
2025 
2026     // Clean up any obviously simplifiable users now.
2027     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2028 
2029     // If the global is dead now, just nuke it.
2030     if (GV->use_empty()) {
2031       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2032                         << "all users and delete global!\n");
2033       GV->eraseFromParent();
2034       ++NumDeleted;
2035       return true;
2036     }
2037 
2038     // Fall through to the next check; see if we can optimize further.
2039     ++NumMarked;
2040   }
2041   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2042     const DataLayout &DL = GV->getParent()->getDataLayout();
2043     if (SRAGlobal(GV, DL))
2044       return true;
2045   }
2046   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2047     // If the initial value for the global was an undef value, and if only
2048     // one other value was stored into it, we can just change the
2049     // initializer to be the stored value, then delete all stores to the
2050     // global.  This allows us to mark it constant.
2051     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2052       if (isa<UndefValue>(GV->getInitializer())) {
2053         // Change the initial value here.
2054         GV->setInitializer(SOVConstant);
2055 
2056         // Clean up any obviously simplifiable users now.
2057         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2058 
2059         if (GV->use_empty()) {
2060           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2061                             << "simplify all users and delete global!\n");
2062           GV->eraseFromParent();
2063           ++NumDeleted;
2064         }
2065         ++NumSubstitute;
2066         return true;
2067       }
2068 
2069     // Try to optimize globals based on the knowledge that only one value
2070     // (besides its initializer) is ever stored to the global.
2071     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2072                                  GetTLI))
2073       return true;
2074 
2075     // Otherwise, if the global was not a boolean, we can shrink it to be a
2076     // boolean.
2077     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2078       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2079         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2080           ++NumShrunkToBool;
2081           return true;
2082         }
2083       }
2084     }
2085   }
2086 
2087   return false;
2088 }
2089 
2090 /// Analyze the specified global variable and optimize it if possible.  If we
2091 /// make a change, return true.
2092 static bool
2093 processGlobal(GlobalValue &GV,
2094               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2095               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2096   if (GV.getName().startswith("llvm."))
2097     return false;
2098 
2099   GlobalStatus GS;
2100 
2101   if (GlobalStatus::analyzeGlobal(&GV, GS))
2102     return false;
2103 
2104   bool Changed = false;
2105   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2106     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2107                                                : GlobalValue::UnnamedAddr::Local;
2108     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2109       GV.setUnnamedAddr(NewUnnamedAddr);
2110       NumUnnamed++;
2111       Changed = true;
2112     }
2113   }
2114 
2115   // Do more involved optimizations if the global is internal.
2116   if (!GV.hasLocalLinkage())
2117     return Changed;
2118 
2119   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2120   if (!GVar)
2121     return Changed;
2122 
2123   if (GVar->isConstant() || !GVar->hasInitializer())
2124     return Changed;
2125 
2126   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2127 }
2128 
2129 /// Walk all of the direct calls of the specified function, changing them to
2130 /// FastCC.
2131 static void ChangeCalleesToFastCall(Function *F) {
2132   for (User *U : F->users()) {
2133     if (isa<BlockAddress>(U))
2134       continue;
2135     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
2136   }
2137 }
2138 
2139 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2140                                Attribute::AttrKind A) {
2141   unsigned AttrIndex;
2142   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2143     return Attrs.removeAttribute(C, AttrIndex, A);
2144   return Attrs;
2145 }
2146 
2147 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2148   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2149   for (User *U : F->users()) {
2150     if (isa<BlockAddress>(U))
2151       continue;
2152     CallBase *CB = cast<CallBase>(U);
2153     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
2154   }
2155 }
2156 
2157 /// Return true if this is a calling convention that we'd like to change.  The
2158 /// idea here is that we don't want to mess with the convention if the user
2159 /// explicitly requested something with performance implications like coldcc,
2160 /// GHC, or anyregcc.
2161 static bool hasChangeableCC(Function *F) {
2162   CallingConv::ID CC = F->getCallingConv();
2163 
2164   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2165   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2166     return false;
2167 
2168   // FIXME: Change CC for the whole chain of musttail calls when possible.
2169   //
2170   // Can't change CC of the function that either has musttail calls, or is a
2171   // musttail callee itself
2172   for (User *U : F->users()) {
2173     if (isa<BlockAddress>(U))
2174       continue;
2175     CallInst* CI = dyn_cast<CallInst>(U);
2176     if (!CI)
2177       continue;
2178 
2179     if (CI->isMustTailCall())
2180       return false;
2181   }
2182 
2183   for (BasicBlock &BB : *F)
2184     if (BB.getTerminatingMustTailCall())
2185       return false;
2186 
2187   return true;
2188 }
2189 
2190 /// Return true if the block containing the call site has a BlockFrequency of
2191 /// less than ColdCCRelFreq% of the entry block.
2192 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
2193   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2194   auto *CallSiteBB = CB.getParent();
2195   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2196   auto CallerEntryFreq =
2197       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
2198   return CallSiteFreq < CallerEntryFreq * ColdProb;
2199 }
2200 
2201 // This function checks if the input function F is cold at all call sites. It
2202 // also looks each call site's containing function, returning false if the
2203 // caller function contains other non cold calls. The input vector AllCallsCold
2204 // contains a list of functions that only have call sites in cold blocks.
2205 static bool
2206 isValidCandidateForColdCC(Function &F,
2207                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2208                           const std::vector<Function *> &AllCallsCold) {
2209 
2210   if (F.user_empty())
2211     return false;
2212 
2213   for (User *U : F.users()) {
2214     if (isa<BlockAddress>(U))
2215       continue;
2216 
2217     CallBase &CB = cast<CallBase>(*U);
2218     Function *CallerFunc = CB.getParent()->getParent();
2219     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2220     if (!isColdCallSite(CB, CallerBFI))
2221       return false;
2222     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2223     if (It == AllCallsCold.end())
2224       return false;
2225   }
2226   return true;
2227 }
2228 
2229 static void changeCallSitesToColdCC(Function *F) {
2230   for (User *U : F->users()) {
2231     if (isa<BlockAddress>(U))
2232       continue;
2233     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
2234   }
2235 }
2236 
2237 // This function iterates over all the call instructions in the input Function
2238 // and checks that all call sites are in cold blocks and are allowed to use the
2239 // coldcc calling convention.
2240 static bool
2241 hasOnlyColdCalls(Function &F,
2242                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2243   for (BasicBlock &BB : F) {
2244     for (Instruction &I : BB) {
2245       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2246         // Skip over isline asm instructions since they aren't function calls.
2247         if (CI->isInlineAsm())
2248           continue;
2249         Function *CalledFn = CI->getCalledFunction();
2250         if (!CalledFn)
2251           return false;
2252         if (!CalledFn->hasLocalLinkage())
2253           return false;
2254         // Skip over instrinsics since they won't remain as function calls.
2255         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2256           continue;
2257         // Check if it's valid to use coldcc calling convention.
2258         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2259             CalledFn->hasAddressTaken())
2260           return false;
2261         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2262         if (!isColdCallSite(*CI, CallerBFI))
2263           return false;
2264       }
2265     }
2266   }
2267   return true;
2268 }
2269 
2270 static bool hasMustTailCallers(Function *F) {
2271   for (User *U : F->users()) {
2272     CallBase *CB = dyn_cast<CallBase>(U);
2273     if (!CB) {
2274       assert(isa<BlockAddress>(U) &&
2275              "Expected either CallBase or BlockAddress");
2276       continue;
2277     }
2278     if (CB->isMustTailCall())
2279       return true;
2280   }
2281   return false;
2282 }
2283 
2284 static bool hasInvokeCallers(Function *F) {
2285   for (User *U : F->users())
2286     if (isa<InvokeInst>(U))
2287       return true;
2288   return false;
2289 }
2290 
2291 static void RemovePreallocated(Function *F) {
2292   RemoveAttribute(F, Attribute::Preallocated);
2293 
2294   auto *M = F->getParent();
2295 
2296   IRBuilder<> Builder(M->getContext());
2297 
2298   // Cannot modify users() while iterating over it, so make a copy.
2299   SmallVector<User *, 4> PreallocatedCalls(F->users());
2300   for (User *U : PreallocatedCalls) {
2301     CallBase *CB = dyn_cast<CallBase>(U);
2302     if (!CB)
2303       continue;
2304 
2305     assert(
2306         !CB->isMustTailCall() &&
2307         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
2308     // Create copy of call without "preallocated" operand bundle.
2309     SmallVector<OperandBundleDef, 1> OpBundles;
2310     CB->getOperandBundlesAsDefs(OpBundles);
2311     CallBase *PreallocatedSetup = nullptr;
2312     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
2313       if (It->getTag() == "preallocated") {
2314         PreallocatedSetup = cast<CallBase>(*It->input_begin());
2315         OpBundles.erase(It);
2316         break;
2317       }
2318     }
2319     assert(PreallocatedSetup && "Did not find preallocated bundle");
2320     uint64_t ArgCount =
2321         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
2322 
2323     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
2324            "Unknown indirect call type");
2325     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
2326     CB->replaceAllUsesWith(NewCB);
2327     NewCB->takeName(CB);
2328     CB->eraseFromParent();
2329 
2330     Builder.SetInsertPoint(PreallocatedSetup);
2331     auto *StackSave =
2332         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
2333 
2334     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
2335     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
2336                        StackSave);
2337 
2338     // Replace @llvm.call.preallocated.arg() with alloca.
2339     // Cannot modify users() while iterating over it, so make a copy.
2340     // @llvm.call.preallocated.arg() can be called with the same index multiple
2341     // times. So for each @llvm.call.preallocated.arg(), we see if we have
2342     // already created a Value* for the index, and if not, create an alloca and
2343     // bitcast right after the @llvm.call.preallocated.setup() so that it
2344     // dominates all uses.
2345     SmallVector<Value *, 2> ArgAllocas(ArgCount);
2346     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
2347     for (auto *User : PreallocatedArgs) {
2348       auto *UseCall = cast<CallBase>(User);
2349       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
2350                  Intrinsic::call_preallocated_arg &&
2351              "preallocated token use was not a llvm.call.preallocated.arg");
2352       uint64_t AllocArgIndex =
2353           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
2354       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
2355       if (!AllocaReplacement) {
2356         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
2357         auto *ArgType = UseCall
2358                             ->getAttribute(AttributeList::FunctionIndex,
2359                                            Attribute::Preallocated)
2360                             .getValueAsType();
2361         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
2362         Builder.SetInsertPoint(InsertBefore);
2363         auto *Alloca =
2364             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
2365         auto *BitCast = Builder.CreateBitCast(
2366             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
2367         ArgAllocas[AllocArgIndex] = BitCast;
2368         AllocaReplacement = BitCast;
2369       }
2370 
2371       UseCall->replaceAllUsesWith(AllocaReplacement);
2372       UseCall->eraseFromParent();
2373     }
2374     // Remove @llvm.call.preallocated.setup().
2375     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
2376   }
2377 }
2378 
2379 static bool
2380 OptimizeFunctions(Module &M,
2381                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2382                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2383                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2384                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2385                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2386 
2387   bool Changed = false;
2388 
2389   std::vector<Function *> AllCallsCold;
2390   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2391     Function *F = &*FI++;
2392     if (hasOnlyColdCalls(*F, GetBFI))
2393       AllCallsCold.push_back(F);
2394   }
2395 
2396   // Optimize functions.
2397   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2398     Function *F = &*FI++;
2399 
2400     // Don't perform global opt pass on naked functions; we don't want fast
2401     // calling conventions for naked functions.
2402     if (F->hasFnAttribute(Attribute::Naked))
2403       continue;
2404 
2405     // Functions without names cannot be referenced outside this module.
2406     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2407       F->setLinkage(GlobalValue::InternalLinkage);
2408 
2409     if (deleteIfDead(*F, NotDiscardableComdats)) {
2410       Changed = true;
2411       continue;
2412     }
2413 
2414     // LLVM's definition of dominance allows instructions that are cyclic
2415     // in unreachable blocks, e.g.:
2416     // %pat = select i1 %condition, @global, i16* %pat
2417     // because any instruction dominates an instruction in a block that's
2418     // not reachable from entry.
2419     // So, remove unreachable blocks from the function, because a) there's
2420     // no point in analyzing them and b) GlobalOpt should otherwise grow
2421     // some more complicated logic to break these cycles.
2422     // Removing unreachable blocks might invalidate the dominator so we
2423     // recalculate it.
2424     if (!F->isDeclaration()) {
2425       if (removeUnreachableBlocks(*F)) {
2426         auto &DT = LookupDomTree(*F);
2427         DT.recalculate(*F);
2428         Changed = true;
2429       }
2430     }
2431 
2432     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2433 
2434     if (!F->hasLocalLinkage())
2435       continue;
2436 
2437     // If we have an inalloca parameter that we can safely remove the
2438     // inalloca attribute from, do so. This unlocks optimizations that
2439     // wouldn't be safe in the presence of inalloca.
2440     // FIXME: We should also hoist alloca affected by this to the entry
2441     // block if possible.
2442     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2443         !F->hasAddressTaken() && !hasMustTailCallers(F)) {
2444       RemoveAttribute(F, Attribute::InAlloca);
2445       Changed = true;
2446     }
2447 
2448     // FIXME: handle invokes
2449     // FIXME: handle musttail
2450     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2451       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
2452           !hasInvokeCallers(F)) {
2453         RemovePreallocated(F);
2454         Changed = true;
2455       }
2456       continue;
2457     }
2458 
2459     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2460       NumInternalFunc++;
2461       TargetTransformInfo &TTI = GetTTI(*F);
2462       // Change the calling convention to coldcc if either stress testing is
2463       // enabled or the target would like to use coldcc on functions which are
2464       // cold at all call sites and the callers contain no other non coldcc
2465       // calls.
2466       if (EnableColdCCStressTest ||
2467           (TTI.useColdCCForColdCall(*F) &&
2468            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2469         F->setCallingConv(CallingConv::Cold);
2470         changeCallSitesToColdCC(F);
2471         Changed = true;
2472         NumColdCC++;
2473       }
2474     }
2475 
2476     if (hasChangeableCC(F) && !F->isVarArg() &&
2477         !F->hasAddressTaken()) {
2478       // If this function has a calling convention worth changing, is not a
2479       // varargs function, and is only called directly, promote it to use the
2480       // Fast calling convention.
2481       F->setCallingConv(CallingConv::Fast);
2482       ChangeCalleesToFastCall(F);
2483       ++NumFastCallFns;
2484       Changed = true;
2485     }
2486 
2487     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2488         !F->hasAddressTaken()) {
2489       // The function is not used by a trampoline intrinsic, so it is safe
2490       // to remove the 'nest' attribute.
2491       RemoveAttribute(F, Attribute::Nest);
2492       ++NumNestRemoved;
2493       Changed = true;
2494     }
2495   }
2496   return Changed;
2497 }
2498 
2499 static bool
2500 OptimizeGlobalVars(Module &M,
2501                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2502                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2503                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2504   bool Changed = false;
2505 
2506   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2507        GVI != E; ) {
2508     GlobalVariable *GV = &*GVI++;
2509     // Global variables without names cannot be referenced outside this module.
2510     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2511       GV->setLinkage(GlobalValue::InternalLinkage);
2512     // Simplify the initializer.
2513     if (GV->hasInitializer())
2514       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2515         auto &DL = M.getDataLayout();
2516         // TLI is not used in the case of a Constant, so use default nullptr
2517         // for that optional parameter, since we don't have a Function to
2518         // provide GetTLI anyway.
2519         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2520         if (New != C)
2521           GV->setInitializer(New);
2522       }
2523 
2524     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2525       Changed = true;
2526       continue;
2527     }
2528 
2529     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2530   }
2531   return Changed;
2532 }
2533 
2534 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2535 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2536 /// GEP operands of Addr [0, OpNo) have been stepped into.
2537 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2538                                    ConstantExpr *Addr, unsigned OpNo) {
2539   // Base case of the recursion.
2540   if (OpNo == Addr->getNumOperands()) {
2541     assert(Val->getType() == Init->getType() && "Type mismatch!");
2542     return Val;
2543   }
2544 
2545   SmallVector<Constant*, 32> Elts;
2546   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2547     // Break up the constant into its elements.
2548     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2549       Elts.push_back(Init->getAggregateElement(i));
2550 
2551     // Replace the element that we are supposed to.
2552     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2553     unsigned Idx = CU->getZExtValue();
2554     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2555     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2556 
2557     // Return the modified struct.
2558     return ConstantStruct::get(STy, Elts);
2559   }
2560 
2561   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2562   uint64_t NumElts;
2563   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2564     NumElts = ATy->getNumElements();
2565   else
2566     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2567 
2568   // Break up the array into elements.
2569   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2570     Elts.push_back(Init->getAggregateElement(i));
2571 
2572   assert(CI->getZExtValue() < NumElts);
2573   Elts[CI->getZExtValue()] =
2574     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2575 
2576   if (Init->getType()->isArrayTy())
2577     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2578   return ConstantVector::get(Elts);
2579 }
2580 
2581 /// We have decided that Addr (which satisfies the predicate
2582 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2583 static void CommitValueTo(Constant *Val, Constant *Addr) {
2584   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2585     assert(GV->hasInitializer());
2586     GV->setInitializer(Val);
2587     return;
2588   }
2589 
2590   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2591   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2592   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2593 }
2594 
2595 /// Given a map of address -> value, where addresses are expected to be some form
2596 /// of either a global or a constant GEP, set the initializer for the address to
2597 /// be the value. This performs mostly the same function as CommitValueTo()
2598 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2599 /// case where the set of addresses are GEPs sharing the same underlying global,
2600 /// processing the GEPs in batches rather than individually.
2601 ///
2602 /// To give an example, consider the following C++ code adapted from the clang
2603 /// regression tests:
2604 /// struct S {
2605 ///  int n = 10;
2606 ///  int m = 2 * n;
2607 ///  S(int a) : n(a) {}
2608 /// };
2609 ///
2610 /// template<typename T>
2611 /// struct U {
2612 ///  T *r = &q;
2613 ///  T q = 42;
2614 ///  U *p = this;
2615 /// };
2616 ///
2617 /// U<S> e;
2618 ///
2619 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2620 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2621 /// members. This batch algorithm will simply use general CommitValueTo() method
2622 /// to handle the complex nested S struct initialization of 'q', before
2623 /// processing the outermost members in a single batch. Using CommitValueTo() to
2624 /// handle member in the outer struct is inefficient when the struct/array is
2625 /// very large as we end up creating and destroy constant arrays for each
2626 /// initialization.
2627 /// For the above case, we expect the following IR to be generated:
2628 ///
2629 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2630 /// %struct.S = type { i32, i32 }
2631 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2632 ///                                                  i64 0, i32 1),
2633 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2634 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2635 /// constant expression, while the other two elements of @e are "simple".
2636 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2637   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2638   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2639   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2640   SimpleCEs.reserve(Mem.size());
2641 
2642   for (const auto &I : Mem) {
2643     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2644       GVs.push_back(std::make_pair(GV, I.second));
2645     } else {
2646       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2647       // We don't handle the deeply recursive case using the batch method.
2648       if (GEP->getNumOperands() > 3)
2649         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2650       else
2651         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2652     }
2653   }
2654 
2655   // The algorithm below doesn't handle cases like nested structs, so use the
2656   // slower fully general method if we have to.
2657   for (auto ComplexCE : ComplexCEs)
2658     CommitValueTo(ComplexCE.second, ComplexCE.first);
2659 
2660   for (auto GVPair : GVs) {
2661     assert(GVPair.first->hasInitializer());
2662     GVPair.first->setInitializer(GVPair.second);
2663   }
2664 
2665   if (SimpleCEs.empty())
2666     return;
2667 
2668   // We cache a single global's initializer elements in the case where the
2669   // subsequent address/val pair uses the same one. This avoids throwing away and
2670   // rebuilding the constant struct/vector/array just because one element is
2671   // modified at a time.
2672   SmallVector<Constant *, 32> Elts;
2673   Elts.reserve(SimpleCEs.size());
2674   GlobalVariable *CurrentGV = nullptr;
2675 
2676   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2677     Constant *Init = GV->getInitializer();
2678     Type *Ty = Init->getType();
2679     if (Update) {
2680       if (CurrentGV) {
2681         assert(CurrentGV && "Expected a GV to commit to!");
2682         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2683         // We have a valid cache that needs to be committed.
2684         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2685           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2686         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2687           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2688         else
2689           CurrentGV->setInitializer(ConstantVector::get(Elts));
2690       }
2691       if (CurrentGV == GV)
2692         return;
2693       // Need to clear and set up cache for new initializer.
2694       CurrentGV = GV;
2695       Elts.clear();
2696       unsigned NumElts;
2697       if (auto *STy = dyn_cast<StructType>(Ty))
2698         NumElts = STy->getNumElements();
2699       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2700         NumElts = ATy->getNumElements();
2701       else
2702         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2703       for (unsigned i = 0, e = NumElts; i != e; ++i)
2704         Elts.push_back(Init->getAggregateElement(i));
2705     }
2706   };
2707 
2708   for (auto CEPair : SimpleCEs) {
2709     ConstantExpr *GEP = CEPair.first;
2710     Constant *Val = CEPair.second;
2711 
2712     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2713     commitAndSetupCache(GV, GV != CurrentGV);
2714     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2715     Elts[CI->getZExtValue()] = Val;
2716   }
2717   // The last initializer in the list needs to be committed, others
2718   // will be committed on a new initializer being processed.
2719   commitAndSetupCache(CurrentGV, true);
2720 }
2721 
2722 /// Evaluate static constructors in the function, if we can.  Return true if we
2723 /// can, false otherwise.
2724 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2725                                       TargetLibraryInfo *TLI) {
2726   // Call the function.
2727   Evaluator Eval(DL, TLI);
2728   Constant *RetValDummy;
2729   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2730                                            SmallVector<Constant*, 0>());
2731 
2732   if (EvalSuccess) {
2733     ++NumCtorsEvaluated;
2734 
2735     // We succeeded at evaluation: commit the result.
2736     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2737                       << F->getName() << "' to "
2738                       << Eval.getMutatedMemory().size() << " stores.\n");
2739     BatchCommitValueTo(Eval.getMutatedMemory());
2740     for (GlobalVariable *GV : Eval.getInvariants())
2741       GV->setConstant(true);
2742   }
2743 
2744   return EvalSuccess;
2745 }
2746 
2747 static int compareNames(Constant *const *A, Constant *const *B) {
2748   Value *AStripped = (*A)->stripPointerCasts();
2749   Value *BStripped = (*B)->stripPointerCasts();
2750   return AStripped->getName().compare(BStripped->getName());
2751 }
2752 
2753 static void setUsedInitializer(GlobalVariable &V,
2754                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2755   if (Init.empty()) {
2756     V.eraseFromParent();
2757     return;
2758   }
2759 
2760   // Type of pointer to the array of pointers.
2761   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2762 
2763   SmallVector<Constant *, 8> UsedArray;
2764   for (GlobalValue *GV : Init) {
2765     Constant *Cast
2766       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2767     UsedArray.push_back(Cast);
2768   }
2769   // Sort to get deterministic order.
2770   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2771   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2772 
2773   Module *M = V.getParent();
2774   V.removeFromParent();
2775   GlobalVariable *NV =
2776       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2777                          ConstantArray::get(ATy, UsedArray), "");
2778   NV->takeName(&V);
2779   NV->setSection("llvm.metadata");
2780   delete &V;
2781 }
2782 
2783 namespace {
2784 
2785 /// An easy to access representation of llvm.used and llvm.compiler.used.
2786 class LLVMUsed {
2787   SmallPtrSet<GlobalValue *, 8> Used;
2788   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2789   GlobalVariable *UsedV;
2790   GlobalVariable *CompilerUsedV;
2791 
2792 public:
2793   LLVMUsed(Module &M) {
2794     UsedV = collectUsedGlobalVariables(M, Used, false);
2795     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2796   }
2797 
2798   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2799   using used_iterator_range = iterator_range<iterator>;
2800 
2801   iterator usedBegin() { return Used.begin(); }
2802   iterator usedEnd() { return Used.end(); }
2803 
2804   used_iterator_range used() {
2805     return used_iterator_range(usedBegin(), usedEnd());
2806   }
2807 
2808   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2809   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2810 
2811   used_iterator_range compilerUsed() {
2812     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2813   }
2814 
2815   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2816 
2817   bool compilerUsedCount(GlobalValue *GV) const {
2818     return CompilerUsed.count(GV);
2819   }
2820 
2821   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2822   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2823   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2824 
2825   bool compilerUsedInsert(GlobalValue *GV) {
2826     return CompilerUsed.insert(GV).second;
2827   }
2828 
2829   void syncVariablesAndSets() {
2830     if (UsedV)
2831       setUsedInitializer(*UsedV, Used);
2832     if (CompilerUsedV)
2833       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2834   }
2835 };
2836 
2837 } // end anonymous namespace
2838 
2839 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2840   if (GA.use_empty()) // No use at all.
2841     return false;
2842 
2843   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2844          "We should have removed the duplicated "
2845          "element from llvm.compiler.used");
2846   if (!GA.hasOneUse())
2847     // Strictly more than one use. So at least one is not in llvm.used and
2848     // llvm.compiler.used.
2849     return true;
2850 
2851   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2852   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2853 }
2854 
2855 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2856                                                const LLVMUsed &U) {
2857   unsigned N = 2;
2858   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2859          "We should have removed the duplicated "
2860          "element from llvm.compiler.used");
2861   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2862     ++N;
2863   return V.hasNUsesOrMore(N);
2864 }
2865 
2866 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2867   if (!GA.hasLocalLinkage())
2868     return true;
2869 
2870   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2871 }
2872 
2873 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2874                              bool &RenameTarget) {
2875   RenameTarget = false;
2876   bool Ret = false;
2877   if (hasUseOtherThanLLVMUsed(GA, U))
2878     Ret = true;
2879 
2880   // If the alias is externally visible, we may still be able to simplify it.
2881   if (!mayHaveOtherReferences(GA, U))
2882     return Ret;
2883 
2884   // If the aliasee has internal linkage, give it the name and linkage
2885   // of the alias, and delete the alias.  This turns:
2886   //   define internal ... @f(...)
2887   //   @a = alias ... @f
2888   // into:
2889   //   define ... @a(...)
2890   Constant *Aliasee = GA.getAliasee();
2891   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2892   if (!Target->hasLocalLinkage())
2893     return Ret;
2894 
2895   // Do not perform the transform if multiple aliases potentially target the
2896   // aliasee. This check also ensures that it is safe to replace the section
2897   // and other attributes of the aliasee with those of the alias.
2898   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2899     return Ret;
2900 
2901   RenameTarget = true;
2902   return true;
2903 }
2904 
2905 static bool
2906 OptimizeGlobalAliases(Module &M,
2907                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2908   bool Changed = false;
2909   LLVMUsed Used(M);
2910 
2911   for (GlobalValue *GV : Used.used())
2912     Used.compilerUsedErase(GV);
2913 
2914   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2915        I != E;) {
2916     GlobalAlias *J = &*I++;
2917 
2918     // Aliases without names cannot be referenced outside this module.
2919     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2920       J->setLinkage(GlobalValue::InternalLinkage);
2921 
2922     if (deleteIfDead(*J, NotDiscardableComdats)) {
2923       Changed = true;
2924       continue;
2925     }
2926 
2927     // If the alias can change at link time, nothing can be done - bail out.
2928     if (J->isInterposable())
2929       continue;
2930 
2931     Constant *Aliasee = J->getAliasee();
2932     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2933     // We can't trivially replace the alias with the aliasee if the aliasee is
2934     // non-trivial in some way.
2935     // TODO: Try to handle non-zero GEPs of local aliasees.
2936     if (!Target)
2937       continue;
2938     Target->removeDeadConstantUsers();
2939 
2940     // Make all users of the alias use the aliasee instead.
2941     bool RenameTarget;
2942     if (!hasUsesToReplace(*J, Used, RenameTarget))
2943       continue;
2944 
2945     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2946     ++NumAliasesResolved;
2947     Changed = true;
2948 
2949     if (RenameTarget) {
2950       // Give the aliasee the name, linkage and other attributes of the alias.
2951       Target->takeName(&*J);
2952       Target->setLinkage(J->getLinkage());
2953       Target->setDSOLocal(J->isDSOLocal());
2954       Target->setVisibility(J->getVisibility());
2955       Target->setDLLStorageClass(J->getDLLStorageClass());
2956 
2957       if (Used.usedErase(&*J))
2958         Used.usedInsert(Target);
2959 
2960       if (Used.compilerUsedErase(&*J))
2961         Used.compilerUsedInsert(Target);
2962     } else if (mayHaveOtherReferences(*J, Used))
2963       continue;
2964 
2965     // Delete the alias.
2966     M.getAliasList().erase(J);
2967     ++NumAliasesRemoved;
2968     Changed = true;
2969   }
2970 
2971   Used.syncVariablesAndSets();
2972 
2973   return Changed;
2974 }
2975 
2976 static Function *
2977 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2978   // Hack to get a default TLI before we have actual Function.
2979   auto FuncIter = M.begin();
2980   if (FuncIter == M.end())
2981     return nullptr;
2982   auto *TLI = &GetTLI(*FuncIter);
2983 
2984   LibFunc F = LibFunc_cxa_atexit;
2985   if (!TLI->has(F))
2986     return nullptr;
2987 
2988   Function *Fn = M.getFunction(TLI->getName(F));
2989   if (!Fn)
2990     return nullptr;
2991 
2992   // Now get the actual TLI for Fn.
2993   TLI = &GetTLI(*Fn);
2994 
2995   // Make sure that the function has the correct prototype.
2996   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2997     return nullptr;
2998 
2999   return Fn;
3000 }
3001 
3002 /// Returns whether the given function is an empty C++ destructor and can
3003 /// therefore be eliminated.
3004 /// Note that we assume that other optimization passes have already simplified
3005 /// the code so we simply check for 'ret'.
3006 static bool cxxDtorIsEmpty(const Function &Fn) {
3007   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3008   // nounwind, but that doesn't seem worth doing.
3009   if (Fn.isDeclaration())
3010     return false;
3011 
3012   for (auto &I : Fn.getEntryBlock()) {
3013     if (isa<DbgInfoIntrinsic>(I))
3014       continue;
3015     if (isa<ReturnInst>(I))
3016       return true;
3017     break;
3018   }
3019   return false;
3020 }
3021 
3022 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3023   /// Itanium C++ ABI p3.3.5:
3024   ///
3025   ///   After constructing a global (or local static) object, that will require
3026   ///   destruction on exit, a termination function is registered as follows:
3027   ///
3028   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3029   ///
3030   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3031   ///   call f(p) when DSO d is unloaded, before all such termination calls
3032   ///   registered before this one. It returns zero if registration is
3033   ///   successful, nonzero on failure.
3034 
3035   // This pass will look for calls to __cxa_atexit where the function is trivial
3036   // and remove them.
3037   bool Changed = false;
3038 
3039   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3040        I != E;) {
3041     // We're only interested in calls. Theoretically, we could handle invoke
3042     // instructions as well, but neither llvm-gcc nor clang generate invokes
3043     // to __cxa_atexit.
3044     CallInst *CI = dyn_cast<CallInst>(*I++);
3045     if (!CI)
3046       continue;
3047 
3048     Function *DtorFn =
3049       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3050     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
3051       continue;
3052 
3053     // Just remove the call.
3054     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3055     CI->eraseFromParent();
3056 
3057     ++NumCXXDtorsRemoved;
3058 
3059     Changed |= true;
3060   }
3061 
3062   return Changed;
3063 }
3064 
3065 static bool optimizeGlobalsInModule(
3066     Module &M, const DataLayout &DL,
3067     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
3068     function_ref<TargetTransformInfo &(Function &)> GetTTI,
3069     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3070     function_ref<DominatorTree &(Function &)> LookupDomTree) {
3071   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
3072   bool Changed = false;
3073   bool LocalChange = true;
3074   while (LocalChange) {
3075     LocalChange = false;
3076 
3077     NotDiscardableComdats.clear();
3078     for (const GlobalVariable &GV : M.globals())
3079       if (const Comdat *C = GV.getComdat())
3080         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3081           NotDiscardableComdats.insert(C);
3082     for (Function &F : M)
3083       if (const Comdat *C = F.getComdat())
3084         if (!F.isDefTriviallyDead())
3085           NotDiscardableComdats.insert(C);
3086     for (GlobalAlias &GA : M.aliases())
3087       if (const Comdat *C = GA.getComdat())
3088         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3089           NotDiscardableComdats.insert(C);
3090 
3091     // Delete functions that are trivially dead, ccc -> fastcc
3092     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
3093                                      NotDiscardableComdats);
3094 
3095     // Optimize global_ctors list.
3096     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3097       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
3098     });
3099 
3100     // Optimize non-address-taken globals.
3101     LocalChange |=
3102         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
3103 
3104     // Resolve aliases, when possible.
3105     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
3106 
3107     // Try to remove trivial global destructors if they are not removed
3108     // already.
3109     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
3110     if (CXAAtExitFn)
3111       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3112 
3113     Changed |= LocalChange;
3114   }
3115 
3116   // TODO: Move all global ctors functions to the end of the module for code
3117   // layout.
3118 
3119   return Changed;
3120 }
3121 
3122 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
3123     auto &DL = M.getDataLayout();
3124     auto &FAM =
3125         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3126     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
3127       return FAM.getResult<DominatorTreeAnalysis>(F);
3128     };
3129     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
3130       return FAM.getResult<TargetLibraryAnalysis>(F);
3131     };
3132     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
3133       return FAM.getResult<TargetIRAnalysis>(F);
3134     };
3135 
3136     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3137       return FAM.getResult<BlockFrequencyAnalysis>(F);
3138     };
3139 
3140     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3141       return PreservedAnalyses::all();
3142     return PreservedAnalyses::none();
3143 }
3144 
3145 namespace {
3146 
3147 struct GlobalOptLegacyPass : public ModulePass {
3148   static char ID; // Pass identification, replacement for typeid
3149 
3150   GlobalOptLegacyPass() : ModulePass(ID) {
3151     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3152   }
3153 
3154   bool runOnModule(Module &M) override {
3155     if (skipModule(M))
3156       return false;
3157 
3158     auto &DL = M.getDataLayout();
3159     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3160       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3161     };
3162     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3163       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3164     };
3165     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3166       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3167     };
3168 
3169     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3170       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3171     };
3172 
3173     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3174                                    LookupDomTree);
3175   }
3176 
3177   void getAnalysisUsage(AnalysisUsage &AU) const override {
3178     AU.addRequired<TargetLibraryInfoWrapperPass>();
3179     AU.addRequired<TargetTransformInfoWrapperPass>();
3180     AU.addRequired<DominatorTreeWrapperPass>();
3181     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3182   }
3183 };
3184 
3185 } // end anonymous namespace
3186 
3187 char GlobalOptLegacyPass::ID = 0;
3188 
3189 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3190                       "Global Variable Optimizer", false, false)
3191 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3192 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3193 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3194 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3195 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3196                     "Global Variable Optimizer", false, false)
3197 
3198 ModulePass *llvm::createGlobalOptimizerPass() {
3199   return new GlobalOptLegacyPass();
3200 }
3201