1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 212 UI != E;) { 213 User *U = *UI++; 214 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 215 Value *V = SI->getValueOperand(); 216 if (isa<Constant>(V)) { 217 Changed = true; 218 SI->eraseFromParent(); 219 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 220 if (I->hasOneUse()) 221 Dead.push_back(std::make_pair(I, SI)); 222 } 223 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 224 if (isa<Constant>(MSI->getValue())) { 225 Changed = true; 226 MSI->eraseFromParent(); 227 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 228 if (I->hasOneUse()) 229 Dead.push_back(std::make_pair(I, MSI)); 230 } 231 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 232 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 233 if (MemSrc && MemSrc->isConstant()) { 234 Changed = true; 235 MTI->eraseFromParent(); 236 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 237 if (I->hasOneUse()) 238 Dead.push_back(std::make_pair(I, MTI)); 239 } 240 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 241 if (CE->use_empty()) { 242 CE->destroyConstant(); 243 Changed = true; 244 } 245 } else if (Constant *C = dyn_cast<Constant>(U)) { 246 if (isSafeToDestroyConstant(C)) { 247 C->destroyConstant(); 248 // This could have invalidated UI, start over from scratch. 249 Dead.clear(); 250 CleanupPointerRootUsers(GV, GetTLI); 251 return true; 252 } 253 } 254 } 255 256 for (int i = 0, e = Dead.size(); i != e; ++i) { 257 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 258 Dead[i].second->eraseFromParent(); 259 Instruction *I = Dead[i].first; 260 do { 261 if (isAllocationFn(I, GetTLI)) 262 break; 263 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 264 if (!J) 265 break; 266 I->eraseFromParent(); 267 I = J; 268 } while (true); 269 I->eraseFromParent(); 270 Changed = true; 271 } 272 } 273 274 return Changed; 275 } 276 277 /// We just marked GV constant. Loop over all users of the global, cleaning up 278 /// the obvious ones. This is largely just a quick scan over the use list to 279 /// clean up the easy and obvious cruft. This returns true if it made a change. 280 static bool CleanupConstantGlobalUsers( 281 Value *V, Constant *Init, const DataLayout &DL, 282 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 283 bool Changed = false; 284 // Note that we need to use a weak value handle for the worklist items. When 285 // we delete a constant array, we may also be holding pointer to one of its 286 // elements (or an element of one of its elements if we're dealing with an 287 // array of arrays) in the worklist. 288 SmallVector<WeakTrackingVH, 8> WorkList(V->users()); 289 while (!WorkList.empty()) { 290 Value *UV = WorkList.pop_back_val(); 291 if (!UV) 292 continue; 293 294 User *U = cast<User>(UV); 295 296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 297 if (Init) { 298 if (auto *Casted = 299 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) { 300 // Replace the load with the initializer. 301 LI->replaceAllUsesWith(Casted); 302 LI->eraseFromParent(); 303 Changed = true; 304 } 305 } 306 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 307 // Store must be unreachable or storing Init into the global. 308 SI->eraseFromParent(); 309 Changed = true; 310 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 311 if (CE->getOpcode() == Instruction::GetElementPtr) { 312 Constant *SubInit = nullptr; 313 if (Init) 314 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 315 Init, CE, V->getType()->getPointerElementType(), DL); 316 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 317 } else if ((CE->getOpcode() == Instruction::BitCast && 318 CE->getType()->isPointerTy()) || 319 CE->getOpcode() == Instruction::AddrSpaceCast) { 320 // Pointer cast, delete any stores and memsets to the global. 321 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 322 } 323 324 if (CE->use_empty()) { 325 CE->destroyConstant(); 326 Changed = true; 327 } 328 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 329 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 330 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 331 // and will invalidate our notion of what Init is. 332 Constant *SubInit = nullptr; 333 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 334 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 335 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 336 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 337 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 338 Init, CE, V->getType()->getPointerElementType(), DL); 339 340 // If the initializer is an all-null value and we have an inbounds GEP, 341 // we already know what the result of any load from that GEP is. 342 // TODO: Handle splats. 343 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 344 SubInit = Constant::getNullValue(GEP->getResultElementType()); 345 } 346 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 347 348 if (GEP->use_empty()) { 349 GEP->eraseFromParent(); 350 Changed = true; 351 } 352 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 353 if (MI->getRawDest() == V) { 354 MI->eraseFromParent(); 355 Changed = true; 356 } 357 358 } else if (Constant *C = dyn_cast<Constant>(U)) { 359 // If we have a chain of dead constantexprs or other things dangling from 360 // us, and if they are all dead, nuke them without remorse. 361 if (isSafeToDestroyConstant(C)) { 362 C->destroyConstant(); 363 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 364 return true; 365 } 366 } 367 } 368 return Changed; 369 } 370 371 static bool isSafeSROAElementUse(Value *V); 372 373 /// Return true if the specified GEP is a safe user of a derived 374 /// expression from a global that we want to SROA. 375 static bool isSafeSROAGEP(User *U) { 376 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 377 // don't like < 3 operand CE's, and we don't like non-constant integer 378 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 379 // value of C. 380 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 381 !cast<Constant>(U->getOperand(1))->isNullValue()) 382 return false; 383 384 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 385 ++GEPI; // Skip over the pointer index. 386 387 // For all other level we require that the indices are constant and inrange. 388 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 389 // invalid things like allowing i to index an out-of-range subscript that 390 // accesses A[1]. This can also happen between different members of a struct 391 // in llvm IR. 392 for (; GEPI != E; ++GEPI) { 393 if (GEPI.isStruct()) 394 continue; 395 396 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 397 if (!IdxVal || (GEPI.isBoundedSequential() && 398 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 399 return false; 400 } 401 402 return llvm::all_of(U->users(), 403 [](User *UU) { return isSafeSROAElementUse(UU); }); 404 } 405 406 /// Return true if the specified instruction is a safe user of a derived 407 /// expression from a global that we want to SROA. 408 static bool isSafeSROAElementUse(Value *V) { 409 // We might have a dead and dangling constant hanging off of here. 410 if (Constant *C = dyn_cast<Constant>(V)) 411 return isSafeToDestroyConstant(C); 412 413 Instruction *I = dyn_cast<Instruction>(V); 414 if (!I) return false; 415 416 // Loads are ok. 417 if (isa<LoadInst>(I)) return true; 418 419 // Stores *to* the pointer are ok. 420 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 421 return SI->getOperand(0) != V; 422 423 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 424 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 425 } 426 427 /// Look at all uses of the global and decide whether it is safe for us to 428 /// perform this transformation. 429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 430 for (User *U : GV->users()) { 431 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 432 if (!isa<GetElementPtrInst>(U) && 433 (!isa<ConstantExpr>(U) || 434 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 435 return false; 436 437 // Check the gep and it's users are safe to SRA 438 if (!isSafeSROAGEP(U)) 439 return false; 440 } 441 442 return true; 443 } 444 445 static bool IsSRASequential(Type *T) { 446 return isa<ArrayType>(T) || isa<VectorType>(T); 447 } 448 static uint64_t GetSRASequentialNumElements(Type *T) { 449 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 450 return AT->getNumElements(); 451 return cast<FixedVectorType>(T)->getNumElements(); 452 } 453 static Type *GetSRASequentialElementType(Type *T) { 454 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 455 return AT->getElementType(); 456 return cast<VectorType>(T)->getElementType(); 457 } 458 static bool CanDoGlobalSRA(GlobalVariable *GV) { 459 Constant *Init = GV->getInitializer(); 460 461 if (isa<StructType>(Init->getType())) { 462 // nothing to check 463 } else if (IsSRASequential(Init->getType())) { 464 if (GetSRASequentialNumElements(Init->getType()) > 16 && 465 GV->hasNUsesOrMore(16)) 466 return false; // It's not worth it. 467 } else 468 return false; 469 470 return GlobalUsersSafeToSRA(GV); 471 } 472 473 /// Copy over the debug info for a variable to its SRA replacements. 474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 475 uint64_t FragmentOffsetInBits, 476 uint64_t FragmentSizeInBits, 477 uint64_t VarSize) { 478 SmallVector<DIGlobalVariableExpression *, 1> GVs; 479 GV->getDebugInfo(GVs); 480 for (auto *GVE : GVs) { 481 DIVariable *Var = GVE->getVariable(); 482 DIExpression *Expr = GVE->getExpression(); 483 // If the FragmentSize is smaller than the variable, 484 // emit a fragment expression. 485 if (FragmentSizeInBits < VarSize) { 486 if (auto E = DIExpression::createFragmentExpression( 487 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 488 Expr = *E; 489 else 490 return; 491 } 492 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 493 NGV->addDebugInfo(NGVE); 494 } 495 } 496 497 /// Perform scalar replacement of aggregates on the specified global variable. 498 /// This opens the door for other optimizations by exposing the behavior of the 499 /// program in a more fine-grained way. We have determined that this 500 /// transformation is safe already. We return the first global variable we 501 /// insert so that the caller can reprocess it. 502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 503 // Make sure this global only has simple uses that we can SRA. 504 if (!CanDoGlobalSRA(GV)) 505 return nullptr; 506 507 assert(GV->hasLocalLinkage()); 508 Constant *Init = GV->getInitializer(); 509 Type *Ty = Init->getType(); 510 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 511 512 std::map<unsigned, GlobalVariable *> NewGlobals; 513 514 // Get the alignment of the global, either explicit or target-specific. 515 Align StartAlignment = 516 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 517 518 // Loop over all users and create replacement variables for used aggregate 519 // elements. 520 for (User *GEP : GV->users()) { 521 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 522 Instruction::GetElementPtr) || 523 isa<GetElementPtrInst>(GEP)) && 524 "NonGEP CE's are not SRAable!"); 525 526 // Ignore the 1th operand, which has to be zero or else the program is quite 527 // broken (undefined). Get the 2nd operand, which is the structure or array 528 // index. 529 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 530 if (NewGlobals.count(ElementIdx) == 1) 531 continue; // we`ve already created replacement variable 532 assert(NewGlobals.count(ElementIdx) == 0); 533 534 Type *ElTy = nullptr; 535 if (StructType *STy = dyn_cast<StructType>(Ty)) 536 ElTy = STy->getElementType(ElementIdx); 537 else 538 ElTy = GetSRASequentialElementType(Ty); 539 assert(ElTy); 540 541 Constant *In = Init->getAggregateElement(ElementIdx); 542 assert(In && "Couldn't get element of initializer?"); 543 544 GlobalVariable *NGV = new GlobalVariable( 545 ElTy, false, GlobalVariable::InternalLinkage, In, 546 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 547 GV->getType()->getAddressSpace()); 548 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 549 NGV->copyAttributesFrom(GV); 550 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 551 552 if (StructType *STy = dyn_cast<StructType>(Ty)) { 553 const StructLayout &Layout = *DL.getStructLayout(STy); 554 555 // Calculate the known alignment of the field. If the original aggregate 556 // had 256 byte alignment for example, something might depend on that: 557 // propagate info to each field. 558 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 559 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 560 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 561 NGV->setAlignment(NewAlign); 562 563 // Copy over the debug info for the variable. 564 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 565 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 566 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 567 } else { 568 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 569 Align EltAlign = DL.getABITypeAlign(ElTy); 570 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 571 572 // Calculate the known alignment of the field. If the original aggregate 573 // had 256 byte alignment for example, something might depend on that: 574 // propagate info to each field. 575 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 576 if (NewAlign > EltAlign) 577 NGV->setAlignment(NewAlign); 578 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 579 FragmentSizeInBits, VarSize); 580 } 581 } 582 583 if (NewGlobals.empty()) 584 return nullptr; 585 586 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 587 for (auto NewGlobalVar : NewGlobals) 588 Globals.push_back(NewGlobalVar.second); 589 590 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 591 592 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 593 594 // Loop over all of the uses of the global, replacing the constantexpr geps, 595 // with smaller constantexpr geps or direct references. 596 while (!GV->use_empty()) { 597 User *GEP = GV->user_back(); 598 assert(((isa<ConstantExpr>(GEP) && 599 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 600 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 601 602 // Ignore the 1th operand, which has to be zero or else the program is quite 603 // broken (undefined). Get the 2nd operand, which is the structure or array 604 // index. 605 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 606 assert(NewGlobals.count(ElementIdx) == 1); 607 608 Value *NewPtr = NewGlobals[ElementIdx]; 609 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 610 611 // Form a shorter GEP if needed. 612 if (GEP->getNumOperands() > 3) { 613 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 614 SmallVector<Constant*, 8> Idxs; 615 Idxs.push_back(NullInt); 616 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 617 Idxs.push_back(CE->getOperand(i)); 618 NewPtr = 619 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 620 } else { 621 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 622 SmallVector<Value*, 8> Idxs; 623 Idxs.push_back(NullInt); 624 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 625 Idxs.push_back(GEPI->getOperand(i)); 626 NewPtr = GetElementPtrInst::Create( 627 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 628 GEPI); 629 } 630 } 631 GEP->replaceAllUsesWith(NewPtr); 632 633 // We changed the pointer of any memory access user. Recalculate alignments. 634 for (User *U : NewPtr->users()) { 635 if (auto *Load = dyn_cast<LoadInst>(U)) { 636 Align PrefAlign = DL.getPrefTypeAlign(Load->getType()); 637 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(), 638 PrefAlign, DL, Load); 639 Load->setAlignment(NewAlign); 640 } 641 if (auto *Store = dyn_cast<StoreInst>(U)) { 642 Align PrefAlign = 643 DL.getPrefTypeAlign(Store->getValueOperand()->getType()); 644 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(), 645 PrefAlign, DL, Store); 646 Store->setAlignment(NewAlign); 647 } 648 } 649 650 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 651 GEPI->eraseFromParent(); 652 else 653 cast<ConstantExpr>(GEP)->destroyConstant(); 654 } 655 656 // Delete the old global, now that it is dead. 657 Globals.erase(GV); 658 ++NumSRA; 659 660 assert(NewGlobals.size() > 0); 661 return NewGlobals.begin()->second; 662 } 663 664 /// Return true if all users of the specified value will trap if the value is 665 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 666 /// reprocessing them. 667 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 668 SmallPtrSetImpl<const PHINode*> &PHIs) { 669 for (const User *U : V->users()) { 670 if (const Instruction *I = dyn_cast<Instruction>(U)) { 671 // If null pointer is considered valid, then all uses are non-trapping. 672 // Non address-space 0 globals have already been pruned by the caller. 673 if (NullPointerIsDefined(I->getFunction())) 674 return false; 675 } 676 if (isa<LoadInst>(U)) { 677 // Will trap. 678 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 679 if (SI->getOperand(0) == V) { 680 //cerr << "NONTRAPPING USE: " << *U; 681 return false; // Storing the value. 682 } 683 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 684 if (CI->getCalledOperand() != V) { 685 //cerr << "NONTRAPPING USE: " << *U; 686 return false; // Not calling the ptr 687 } 688 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 689 if (II->getCalledOperand() != V) { 690 //cerr << "NONTRAPPING USE: " << *U; 691 return false; // Not calling the ptr 692 } 693 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 694 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 695 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 696 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 697 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 698 // If we've already seen this phi node, ignore it, it has already been 699 // checked. 700 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 701 return false; 702 } else if (isa<ICmpInst>(U) && 703 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 704 isa<LoadInst>(U->getOperand(0)) && 705 isa<ConstantPointerNull>(U->getOperand(1))) { 706 assert(isa<GlobalValue>( 707 cast<LoadInst>(U->getOperand(0))->getPointerOperand()) && 708 "Should be GlobalVariable"); 709 // This and only this kind of non-signed ICmpInst is to be replaced with 710 // the comparing of the value of the created global init bool later in 711 // optimizeGlobalAddressOfMalloc for the global variable. 712 } else { 713 //cerr << "NONTRAPPING USE: " << *U; 714 return false; 715 } 716 } 717 return true; 718 } 719 720 /// Return true if all uses of any loads from GV will trap if the loaded value 721 /// is null. Note that this also permits comparisons of the loaded value 722 /// against null, as a special case. 723 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 724 for (const User *U : GV->users()) 725 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 726 SmallPtrSet<const PHINode*, 8> PHIs; 727 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 728 return false; 729 } else if (isa<StoreInst>(U)) { 730 // Ignore stores to the global. 731 } else { 732 // We don't know or understand this user, bail out. 733 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 734 return false; 735 } 736 return true; 737 } 738 739 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 740 bool Changed = false; 741 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 742 Instruction *I = cast<Instruction>(*UI++); 743 // Uses are non-trapping if null pointer is considered valid. 744 // Non address-space 0 globals are already pruned by the caller. 745 if (NullPointerIsDefined(I->getFunction())) 746 return false; 747 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 748 LI->setOperand(0, NewV); 749 Changed = true; 750 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 751 if (SI->getOperand(1) == V) { 752 SI->setOperand(1, NewV); 753 Changed = true; 754 } 755 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 756 CallBase *CB = cast<CallBase>(I); 757 if (CB->getCalledOperand() == V) { 758 // Calling through the pointer! Turn into a direct call, but be careful 759 // that the pointer is not also being passed as an argument. 760 CB->setCalledOperand(NewV); 761 Changed = true; 762 bool PassedAsArg = false; 763 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 764 if (CB->getArgOperand(i) == V) { 765 PassedAsArg = true; 766 CB->setArgOperand(i, NewV); 767 } 768 769 if (PassedAsArg) { 770 // Being passed as an argument also. Be careful to not invalidate UI! 771 UI = V->user_begin(); 772 } 773 } 774 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 775 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 776 ConstantExpr::getCast(CI->getOpcode(), 777 NewV, CI->getType())); 778 if (CI->use_empty()) { 779 Changed = true; 780 CI->eraseFromParent(); 781 } 782 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 783 // Should handle GEP here. 784 SmallVector<Constant*, 8> Idxs; 785 Idxs.reserve(GEPI->getNumOperands()-1); 786 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 787 i != e; ++i) 788 if (Constant *C = dyn_cast<Constant>(*i)) 789 Idxs.push_back(C); 790 else 791 break; 792 if (Idxs.size() == GEPI->getNumOperands()-1) 793 Changed |= OptimizeAwayTrappingUsesOfValue( 794 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 795 NewV, Idxs)); 796 if (GEPI->use_empty()) { 797 Changed = true; 798 GEPI->eraseFromParent(); 799 } 800 } 801 } 802 803 return Changed; 804 } 805 806 /// The specified global has only one non-null value stored into it. If there 807 /// are uses of the loaded value that would trap if the loaded value is 808 /// dynamically null, then we know that they cannot be reachable with a null 809 /// optimize away the load. 810 static bool OptimizeAwayTrappingUsesOfLoads( 811 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 812 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 813 bool Changed = false; 814 815 // Keep track of whether we are able to remove all the uses of the global 816 // other than the store that defines it. 817 bool AllNonStoreUsesGone = true; 818 819 // Replace all uses of loads with uses of uses of the stored value. 820 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 821 User *GlobalUser = *GUI++; 822 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 823 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 824 // If we were able to delete all uses of the loads 825 if (LI->use_empty()) { 826 LI->eraseFromParent(); 827 Changed = true; 828 } else { 829 AllNonStoreUsesGone = false; 830 } 831 } else if (isa<StoreInst>(GlobalUser)) { 832 // Ignore the store that stores "LV" to the global. 833 assert(GlobalUser->getOperand(1) == GV && 834 "Must be storing *to* the global"); 835 } else { 836 AllNonStoreUsesGone = false; 837 838 // If we get here we could have other crazy uses that are transitively 839 // loaded. 840 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 841 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 842 isa<BitCastInst>(GlobalUser) || 843 isa<GetElementPtrInst>(GlobalUser)) && 844 "Only expect load and stores!"); 845 } 846 } 847 848 if (Changed) { 849 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 850 << "\n"); 851 ++NumGlobUses; 852 } 853 854 // If we nuked all of the loads, then none of the stores are needed either, 855 // nor is the global. 856 if (AllNonStoreUsesGone) { 857 if (isLeakCheckerRoot(GV)) { 858 Changed |= CleanupPointerRootUsers(GV, GetTLI); 859 } else { 860 Changed = true; 861 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 862 } 863 if (GV->use_empty()) { 864 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 865 Changed = true; 866 GV->eraseFromParent(); 867 ++NumDeleted; 868 } 869 } 870 return Changed; 871 } 872 873 /// Walk the use list of V, constant folding all of the instructions that are 874 /// foldable. 875 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 876 TargetLibraryInfo *TLI) { 877 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 878 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 879 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 880 I->replaceAllUsesWith(NewC); 881 882 // Advance UI to the next non-I use to avoid invalidating it! 883 // Instructions could multiply use V. 884 while (UI != E && *UI == I) 885 ++UI; 886 if (isInstructionTriviallyDead(I, TLI)) 887 I->eraseFromParent(); 888 } 889 } 890 891 /// This function takes the specified global variable, and transforms the 892 /// program as if it always contained the result of the specified malloc. 893 /// Because it is always the result of the specified malloc, there is no reason 894 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 895 /// loads of GV as uses of the new global. 896 static GlobalVariable * 897 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 898 ConstantInt *NElements, const DataLayout &DL, 899 TargetLibraryInfo *TLI) { 900 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 901 << '\n'); 902 903 Type *GlobalType; 904 if (NElements->getZExtValue() == 1) 905 GlobalType = AllocTy; 906 else 907 // If we have an array allocation, the global variable is of an array. 908 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 909 910 // Create the new global variable. The contents of the malloc'd memory is 911 // undefined, so initialize with an undef value. 912 GlobalVariable *NewGV = new GlobalVariable( 913 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 914 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 915 GV->getThreadLocalMode()); 916 917 // If there are bitcast users of the malloc (which is typical, usually we have 918 // a malloc + bitcast) then replace them with uses of the new global. Update 919 // other users to use the global as well. 920 BitCastInst *TheBC = nullptr; 921 while (!CI->use_empty()) { 922 Instruction *User = cast<Instruction>(CI->user_back()); 923 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 924 if (BCI->getType() == NewGV->getType()) { 925 BCI->replaceAllUsesWith(NewGV); 926 BCI->eraseFromParent(); 927 } else { 928 BCI->setOperand(0, NewGV); 929 } 930 } else { 931 if (!TheBC) 932 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 933 User->replaceUsesOfWith(CI, TheBC); 934 } 935 } 936 937 Constant *RepValue = NewGV; 938 if (NewGV->getType() != GV->getValueType()) 939 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 940 941 // If there is a comparison against null, we will insert a global bool to 942 // keep track of whether the global was initialized yet or not. 943 GlobalVariable *InitBool = 944 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 945 GlobalValue::InternalLinkage, 946 ConstantInt::getFalse(GV->getContext()), 947 GV->getName()+".init", GV->getThreadLocalMode()); 948 bool InitBoolUsed = false; 949 950 // Loop over all uses of GV, processing them in turn. 951 while (!GV->use_empty()) { 952 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 953 // The global is initialized when the store to it occurs. If the stored 954 // value is null value, the global bool is set to false, otherwise true. 955 new StoreInst(ConstantInt::getBool( 956 GV->getContext(), 957 !isa<ConstantPointerNull>(SI->getValueOperand())), 958 InitBool, false, Align(1), SI->getOrdering(), 959 SI->getSyncScopeID(), SI); 960 SI->eraseFromParent(); 961 continue; 962 } 963 964 LoadInst *LI = cast<LoadInst>(GV->user_back()); 965 while (!LI->use_empty()) { 966 Use &LoadUse = *LI->use_begin(); 967 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 968 if (!ICI) { 969 LoadUse = RepValue; 970 continue; 971 } 972 973 // Replace the cmp X, 0 with a use of the bool value. 974 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 975 InitBool->getName() + ".val", false, Align(1), 976 LI->getOrdering(), LI->getSyncScopeID(), LI); 977 InitBoolUsed = true; 978 switch (ICI->getPredicate()) { 979 default: llvm_unreachable("Unknown ICmp Predicate!"); 980 case ICmpInst::ICMP_ULT: // X < null -> always false 981 LV = ConstantInt::getFalse(GV->getContext()); 982 break; 983 case ICmpInst::ICMP_UGE: // X >= null -> always true 984 LV = ConstantInt::getTrue(GV->getContext()); 985 break; 986 case ICmpInst::ICMP_ULE: 987 case ICmpInst::ICMP_EQ: 988 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 989 break; 990 case ICmpInst::ICMP_NE: 991 case ICmpInst::ICMP_UGT: 992 break; // no change. 993 } 994 ICI->replaceAllUsesWith(LV); 995 ICI->eraseFromParent(); 996 } 997 LI->eraseFromParent(); 998 } 999 1000 // If the initialization boolean was used, insert it, otherwise delete it. 1001 if (!InitBoolUsed) { 1002 while (!InitBool->use_empty()) // Delete initializations 1003 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 1004 delete InitBool; 1005 } else 1006 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 1007 1008 // Now the GV is dead, nuke it and the malloc.. 1009 GV->eraseFromParent(); 1010 CI->eraseFromParent(); 1011 1012 // To further other optimizations, loop over all users of NewGV and try to 1013 // constant prop them. This will promote GEP instructions with constant 1014 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1015 ConstantPropUsersOf(NewGV, DL, TLI); 1016 if (RepValue != NewGV) 1017 ConstantPropUsersOf(RepValue, DL, TLI); 1018 1019 return NewGV; 1020 } 1021 1022 /// Scan the use-list of V checking to make sure that there are no complex uses 1023 /// of V. We permit simple things like dereferencing the pointer, but not 1024 /// storing through the address, unless it is to the specified global. 1025 static bool 1026 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 1027 const GlobalVariable *GV) { 1028 for (const User *U : V->users()) { 1029 const Instruction *Inst = cast<Instruction>(U); 1030 1031 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 1032 continue; // Fine, ignore. 1033 } 1034 1035 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1036 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 1037 return false; // Storing the pointer itself... bad. 1038 continue; // Otherwise, storing through it, or storing into GV... fine. 1039 } 1040 1041 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1042 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV)) 1043 return false; 1044 continue; 1045 } 1046 1047 return false; 1048 } 1049 return true; 1050 } 1051 1052 /// This function is called when we see a pointer global variable with a single 1053 /// value stored it that is a malloc or cast of malloc. 1054 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1055 Type *AllocTy, 1056 AtomicOrdering Ordering, 1057 const DataLayout &DL, 1058 TargetLibraryInfo *TLI) { 1059 // If this is a malloc of an abstract type, don't touch it. 1060 if (!AllocTy->isSized()) 1061 return false; 1062 1063 // We can't optimize this global unless all uses of it are *known* to be 1064 // of the malloc value, not of the null initializer value (consider a use 1065 // that compares the global's value against zero to see if the malloc has 1066 // been reached). To do this, we check to see if all uses of the global 1067 // would trap if the global were null: this proves that they must all 1068 // happen after the malloc. 1069 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1070 return false; 1071 1072 // We can't optimize this if the malloc itself is used in a complex way, 1073 // for example, being stored into multiple globals. This allows the 1074 // malloc to be stored into the specified global, loaded icmp'd. 1075 // These are all things we could transform to using the global for. 1076 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1077 return false; 1078 1079 // If we have a global that is only initialized with a fixed size malloc, 1080 // transform the program to use global memory instead of malloc'd memory. 1081 // This eliminates dynamic allocation, avoids an indirection accessing the 1082 // data, and exposes the resultant global to further GlobalOpt. 1083 // We cannot optimize the malloc if we cannot determine malloc array size. 1084 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1085 if (!NElems) 1086 return false; 1087 1088 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1089 // Restrict this transformation to only working on small allocations 1090 // (2048 bytes currently), as we don't want to introduce a 16M global or 1091 // something. 1092 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1093 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1094 return true; 1095 } 1096 1097 return false; 1098 } 1099 1100 // Try to optimize globals based on the knowledge that only one value (besides 1101 // its initializer) is ever stored to the global. 1102 static bool 1103 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1104 AtomicOrdering Ordering, const DataLayout &DL, 1105 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1106 // Ignore no-op GEPs and bitcasts. 1107 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1108 1109 // If we are dealing with a pointer global that is initialized to null and 1110 // only has one (non-null) value stored into it, then we can optimize any 1111 // users of the loaded value (often calls and loads) that would trap if the 1112 // value was null. 1113 if (GV->getInitializer()->getType()->isPointerTy() && 1114 GV->getInitializer()->isNullValue() && 1115 !NullPointerIsDefined( 1116 nullptr /* F */, 1117 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1118 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1119 if (GV->getInitializer()->getType() != SOVC->getType()) 1120 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1121 1122 // Optimize away any trapping uses of the loaded value. 1123 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1124 return true; 1125 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1126 auto *TLI = &GetTLI(*CI->getFunction()); 1127 Type *MallocType = getMallocAllocatedType(CI, TLI); 1128 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1129 Ordering, DL, TLI)) 1130 return true; 1131 } 1132 } 1133 1134 return false; 1135 } 1136 1137 /// At this point, we have learned that the only two values ever stored into GV 1138 /// are its initializer and OtherVal. See if we can shrink the global into a 1139 /// boolean and select between the two values whenever it is used. This exposes 1140 /// the values to other scalar optimizations. 1141 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1142 Type *GVElType = GV->getValueType(); 1143 1144 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1145 // an FP value, pointer or vector, don't do this optimization because a select 1146 // between them is very expensive and unlikely to lead to later 1147 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1148 // where v1 and v2 both require constant pool loads, a big loss. 1149 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1150 GVElType->isFloatingPointTy() || 1151 GVElType->isPointerTy() || GVElType->isVectorTy()) 1152 return false; 1153 1154 // Walk the use list of the global seeing if all the uses are load or store. 1155 // If there is anything else, bail out. 1156 for (User *U : GV->users()) 1157 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1158 return false; 1159 1160 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1161 1162 // Create the new global, initializing it to false. 1163 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1164 false, 1165 GlobalValue::InternalLinkage, 1166 ConstantInt::getFalse(GV->getContext()), 1167 GV->getName()+".b", 1168 GV->getThreadLocalMode(), 1169 GV->getType()->getAddressSpace()); 1170 NewGV->copyAttributesFrom(GV); 1171 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1172 1173 Constant *InitVal = GV->getInitializer(); 1174 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1175 "No reason to shrink to bool!"); 1176 1177 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1178 GV->getDebugInfo(GVs); 1179 1180 // If initialized to zero and storing one into the global, we can use a cast 1181 // instead of a select to synthesize the desired value. 1182 bool IsOneZero = false; 1183 bool EmitOneOrZero = true; 1184 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1185 if (CI && CI->getValue().getActiveBits() <= 64) { 1186 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1187 1188 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1189 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1190 uint64_t ValInit = CIInit->getZExtValue(); 1191 uint64_t ValOther = CI->getZExtValue(); 1192 uint64_t ValMinus = ValOther - ValInit; 1193 1194 for(auto *GVe : GVs){ 1195 DIGlobalVariable *DGV = GVe->getVariable(); 1196 DIExpression *E = GVe->getExpression(); 1197 const DataLayout &DL = GV->getParent()->getDataLayout(); 1198 unsigned SizeInOctets = 1199 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1200 1201 // It is expected that the address of global optimized variable is on 1202 // top of the stack. After optimization, value of that variable will 1203 // be ether 0 for initial value or 1 for other value. The following 1204 // expression should return constant integer value depending on the 1205 // value at global object address: 1206 // val * (ValOther - ValInit) + ValInit: 1207 // DW_OP_deref DW_OP_constu <ValMinus> 1208 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1209 SmallVector<uint64_t, 12> Ops = { 1210 dwarf::DW_OP_deref_size, SizeInOctets, 1211 dwarf::DW_OP_constu, ValMinus, 1212 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1213 dwarf::DW_OP_plus}; 1214 bool WithStackValue = true; 1215 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1216 DIGlobalVariableExpression *DGVE = 1217 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1218 NewGV->addDebugInfo(DGVE); 1219 } 1220 EmitOneOrZero = false; 1221 } 1222 } 1223 1224 if (EmitOneOrZero) { 1225 // FIXME: This will only emit address for debugger on which will 1226 // be written only 0 or 1. 1227 for(auto *GV : GVs) 1228 NewGV->addDebugInfo(GV); 1229 } 1230 1231 while (!GV->use_empty()) { 1232 Instruction *UI = cast<Instruction>(GV->user_back()); 1233 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1234 // Change the store into a boolean store. 1235 bool StoringOther = SI->getOperand(0) == OtherVal; 1236 // Only do this if we weren't storing a loaded value. 1237 Value *StoreVal; 1238 if (StoringOther || SI->getOperand(0) == InitVal) { 1239 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1240 StoringOther); 1241 } else { 1242 // Otherwise, we are storing a previously loaded copy. To do this, 1243 // change the copy from copying the original value to just copying the 1244 // bool. 1245 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1246 1247 // If we've already replaced the input, StoredVal will be a cast or 1248 // select instruction. If not, it will be a load of the original 1249 // global. 1250 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1251 assert(LI->getOperand(0) == GV && "Not a copy!"); 1252 // Insert a new load, to preserve the saved value. 1253 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1254 LI->getName() + ".b", false, Align(1), 1255 LI->getOrdering(), LI->getSyncScopeID(), LI); 1256 } else { 1257 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1258 "This is not a form that we understand!"); 1259 StoreVal = StoredVal->getOperand(0); 1260 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1261 } 1262 } 1263 StoreInst *NSI = 1264 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1265 SI->getSyncScopeID(), SI); 1266 NSI->setDebugLoc(SI->getDebugLoc()); 1267 } else { 1268 // Change the load into a load of bool then a select. 1269 LoadInst *LI = cast<LoadInst>(UI); 1270 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1271 LI->getName() + ".b", false, Align(1), 1272 LI->getOrdering(), LI->getSyncScopeID(), LI); 1273 Instruction *NSI; 1274 if (IsOneZero) 1275 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1276 else 1277 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1278 NSI->takeName(LI); 1279 // Since LI is split into two instructions, NLI and NSI both inherit the 1280 // same DebugLoc 1281 NLI->setDebugLoc(LI->getDebugLoc()); 1282 NSI->setDebugLoc(LI->getDebugLoc()); 1283 LI->replaceAllUsesWith(NSI); 1284 } 1285 UI->eraseFromParent(); 1286 } 1287 1288 // Retain the name of the old global variable. People who are debugging their 1289 // programs may expect these variables to be named the same. 1290 NewGV->takeName(GV); 1291 GV->eraseFromParent(); 1292 return true; 1293 } 1294 1295 static bool deleteIfDead( 1296 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1297 GV.removeDeadConstantUsers(); 1298 1299 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1300 return false; 1301 1302 if (const Comdat *C = GV.getComdat()) 1303 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1304 return false; 1305 1306 bool Dead; 1307 if (auto *F = dyn_cast<Function>(&GV)) 1308 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1309 else 1310 Dead = GV.use_empty(); 1311 if (!Dead) 1312 return false; 1313 1314 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1315 GV.eraseFromParent(); 1316 ++NumDeleted; 1317 return true; 1318 } 1319 1320 static bool isPointerValueDeadOnEntryToFunction( 1321 const Function *F, GlobalValue *GV, 1322 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1323 // Find all uses of GV. We expect them all to be in F, and if we can't 1324 // identify any of the uses we bail out. 1325 // 1326 // On each of these uses, identify if the memory that GV points to is 1327 // used/required/live at the start of the function. If it is not, for example 1328 // if the first thing the function does is store to the GV, the GV can 1329 // possibly be demoted. 1330 // 1331 // We don't do an exhaustive search for memory operations - simply look 1332 // through bitcasts as they're quite common and benign. 1333 const DataLayout &DL = GV->getParent()->getDataLayout(); 1334 SmallVector<LoadInst *, 4> Loads; 1335 SmallVector<StoreInst *, 4> Stores; 1336 for (auto *U : GV->users()) { 1337 if (Operator::getOpcode(U) == Instruction::BitCast) { 1338 for (auto *UU : U->users()) { 1339 if (auto *LI = dyn_cast<LoadInst>(UU)) 1340 Loads.push_back(LI); 1341 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1342 Stores.push_back(SI); 1343 else 1344 return false; 1345 } 1346 continue; 1347 } 1348 1349 Instruction *I = dyn_cast<Instruction>(U); 1350 if (!I) 1351 return false; 1352 assert(I->getParent()->getParent() == F); 1353 1354 if (auto *LI = dyn_cast<LoadInst>(I)) 1355 Loads.push_back(LI); 1356 else if (auto *SI = dyn_cast<StoreInst>(I)) 1357 Stores.push_back(SI); 1358 else 1359 return false; 1360 } 1361 1362 // We have identified all uses of GV into loads and stores. Now check if all 1363 // of them are known not to depend on the value of the global at the function 1364 // entry point. We do this by ensuring that every load is dominated by at 1365 // least one store. 1366 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1367 1368 // The below check is quadratic. Check we're not going to do too many tests. 1369 // FIXME: Even though this will always have worst-case quadratic time, we 1370 // could put effort into minimizing the average time by putting stores that 1371 // have been shown to dominate at least one load at the beginning of the 1372 // Stores array, making subsequent dominance checks more likely to succeed 1373 // early. 1374 // 1375 // The threshold here is fairly large because global->local demotion is a 1376 // very powerful optimization should it fire. 1377 const unsigned Threshold = 100; 1378 if (Loads.size() * Stores.size() > Threshold) 1379 return false; 1380 1381 for (auto *L : Loads) { 1382 auto *LTy = L->getType(); 1383 if (none_of(Stores, [&](const StoreInst *S) { 1384 auto *STy = S->getValueOperand()->getType(); 1385 // The load is only dominated by the store if DomTree says so 1386 // and the number of bits loaded in L is less than or equal to 1387 // the number of bits stored in S. 1388 return DT.dominates(S, L) && 1389 DL.getTypeStoreSize(LTy).getFixedSize() <= 1390 DL.getTypeStoreSize(STy).getFixedSize(); 1391 })) 1392 return false; 1393 } 1394 // All loads have known dependences inside F, so the global can be localized. 1395 return true; 1396 } 1397 1398 /// C may have non-instruction users. Can all of those users be turned into 1399 /// instructions? 1400 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1401 // We don't do this exhaustively. The most common pattern that we really need 1402 // to care about is a constant GEP or constant bitcast - so just looking 1403 // through one single ConstantExpr. 1404 // 1405 // The set of constants that this function returns true for must be able to be 1406 // handled by makeAllConstantUsesInstructions. 1407 for (auto *U : C->users()) { 1408 if (isa<Instruction>(U)) 1409 continue; 1410 if (!isa<ConstantExpr>(U)) 1411 // Non instruction, non-constantexpr user; cannot convert this. 1412 return false; 1413 for (auto *UU : U->users()) 1414 if (!isa<Instruction>(UU)) 1415 // A constantexpr used by another constant. We don't try and recurse any 1416 // further but just bail out at this point. 1417 return false; 1418 } 1419 1420 return true; 1421 } 1422 1423 /// C may have non-instruction users, and 1424 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1425 /// non-instruction users to instructions. 1426 static void makeAllConstantUsesInstructions(Constant *C) { 1427 SmallVector<ConstantExpr*,4> Users; 1428 for (auto *U : C->users()) { 1429 if (isa<ConstantExpr>(U)) 1430 Users.push_back(cast<ConstantExpr>(U)); 1431 else 1432 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1433 // should not have returned true for C. 1434 assert( 1435 isa<Instruction>(U) && 1436 "Can't transform non-constantexpr non-instruction to instruction!"); 1437 } 1438 1439 SmallVector<Value*,4> UUsers; 1440 for (auto *U : Users) { 1441 UUsers.clear(); 1442 append_range(UUsers, U->users()); 1443 for (auto *UU : UUsers) { 1444 Instruction *UI = cast<Instruction>(UU); 1445 Instruction *NewU = U->getAsInstruction(); 1446 NewU->insertBefore(UI); 1447 UI->replaceUsesOfWith(U, NewU); 1448 } 1449 // We've replaced all the uses, so destroy the constant. (destroyConstant 1450 // will update value handles and metadata.) 1451 U->destroyConstant(); 1452 } 1453 } 1454 1455 /// Analyze the specified global variable and optimize 1456 /// it if possible. If we make a change, return true. 1457 static bool 1458 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1459 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1460 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1461 auto &DL = GV->getParent()->getDataLayout(); 1462 // If this is a first class global and has only one accessing function and 1463 // this function is non-recursive, we replace the global with a local alloca 1464 // in this function. 1465 // 1466 // NOTE: It doesn't make sense to promote non-single-value types since we 1467 // are just replacing static memory to stack memory. 1468 // 1469 // If the global is in different address space, don't bring it to stack. 1470 if (!GS.HasMultipleAccessingFunctions && 1471 GS.AccessingFunction && 1472 GV->getValueType()->isSingleValueType() && 1473 GV->getType()->getAddressSpace() == 0 && 1474 !GV->isExternallyInitialized() && 1475 allNonInstructionUsersCanBeMadeInstructions(GV) && 1476 GS.AccessingFunction->doesNotRecurse() && 1477 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1478 LookupDomTree)) { 1479 const DataLayout &DL = GV->getParent()->getDataLayout(); 1480 1481 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1482 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1483 ->getEntryBlock().begin()); 1484 Type *ElemTy = GV->getValueType(); 1485 // FIXME: Pass Global's alignment when globals have alignment 1486 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1487 GV->getName(), &FirstI); 1488 if (!isa<UndefValue>(GV->getInitializer())) 1489 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1490 1491 makeAllConstantUsesInstructions(GV); 1492 1493 GV->replaceAllUsesWith(Alloca); 1494 GV->eraseFromParent(); 1495 ++NumLocalized; 1496 return true; 1497 } 1498 1499 bool Changed = false; 1500 1501 // If the global is never loaded (but may be stored to), it is dead. 1502 // Delete it now. 1503 if (!GS.IsLoaded) { 1504 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1505 1506 if (isLeakCheckerRoot(GV)) { 1507 // Delete any constant stores to the global. 1508 Changed = CleanupPointerRootUsers(GV, GetTLI); 1509 } else { 1510 // Delete any stores we can find to the global. We may not be able to 1511 // make it completely dead though. 1512 Changed = 1513 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1514 } 1515 1516 // If the global is dead now, delete it. 1517 if (GV->use_empty()) { 1518 GV->eraseFromParent(); 1519 ++NumDeleted; 1520 Changed = true; 1521 } 1522 return Changed; 1523 1524 } 1525 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1526 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1527 1528 // Don't actually mark a global constant if it's atomic because atomic loads 1529 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1530 // requires write access to the variable even if it's not actually changed. 1531 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1532 assert(!GV->isConstant() && "Expected a non-constant global"); 1533 GV->setConstant(true); 1534 Changed = true; 1535 } 1536 1537 // Clean up any obviously simplifiable users now. 1538 Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1539 1540 // If the global is dead now, just nuke it. 1541 if (GV->use_empty()) { 1542 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1543 << "all users and delete global!\n"); 1544 GV->eraseFromParent(); 1545 ++NumDeleted; 1546 return true; 1547 } 1548 1549 // Fall through to the next check; see if we can optimize further. 1550 ++NumMarked; 1551 } 1552 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1553 const DataLayout &DL = GV->getParent()->getDataLayout(); 1554 if (SRAGlobal(GV, DL)) 1555 return true; 1556 } 1557 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1558 // If the initial value for the global was an undef value, and if only 1559 // one other value was stored into it, we can just change the 1560 // initializer to be the stored value, then delete all stores to the 1561 // global. This allows us to mark it constant. 1562 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1563 if (isa<UndefValue>(GV->getInitializer())) { 1564 // Change the initial value here. 1565 GV->setInitializer(SOVConstant); 1566 1567 // Clean up any obviously simplifiable users now. 1568 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1569 1570 if (GV->use_empty()) { 1571 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1572 << "simplify all users and delete global!\n"); 1573 GV->eraseFromParent(); 1574 ++NumDeleted; 1575 } 1576 ++NumSubstitute; 1577 return true; 1578 } 1579 1580 // Try to optimize globals based on the knowledge that only one value 1581 // (besides its initializer) is ever stored to the global. 1582 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 1583 GetTLI)) 1584 return true; 1585 1586 // Otherwise, if the global was not a boolean, we can shrink it to be a 1587 // boolean. 1588 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1589 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1590 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1591 ++NumShrunkToBool; 1592 return true; 1593 } 1594 } 1595 } 1596 } 1597 1598 return Changed; 1599 } 1600 1601 /// Analyze the specified global variable and optimize it if possible. If we 1602 /// make a change, return true. 1603 static bool 1604 processGlobal(GlobalValue &GV, 1605 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1606 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1607 if (GV.getName().startswith("llvm.")) 1608 return false; 1609 1610 GlobalStatus GS; 1611 1612 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1613 return false; 1614 1615 bool Changed = false; 1616 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1617 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1618 : GlobalValue::UnnamedAddr::Local; 1619 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1620 GV.setUnnamedAddr(NewUnnamedAddr); 1621 NumUnnamed++; 1622 Changed = true; 1623 } 1624 } 1625 1626 // Do more involved optimizations if the global is internal. 1627 if (!GV.hasLocalLinkage()) 1628 return Changed; 1629 1630 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1631 if (!GVar) 1632 return Changed; 1633 1634 if (GVar->isConstant() || !GVar->hasInitializer()) 1635 return Changed; 1636 1637 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 1638 } 1639 1640 /// Walk all of the direct calls of the specified function, changing them to 1641 /// FastCC. 1642 static void ChangeCalleesToFastCall(Function *F) { 1643 for (User *U : F->users()) { 1644 if (isa<BlockAddress>(U)) 1645 continue; 1646 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1647 } 1648 } 1649 1650 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1651 Attribute::AttrKind A) { 1652 unsigned AttrIndex; 1653 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1654 return Attrs.removeAttribute(C, AttrIndex, A); 1655 return Attrs; 1656 } 1657 1658 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1659 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1660 for (User *U : F->users()) { 1661 if (isa<BlockAddress>(U)) 1662 continue; 1663 CallBase *CB = cast<CallBase>(U); 1664 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1665 } 1666 } 1667 1668 /// Return true if this is a calling convention that we'd like to change. The 1669 /// idea here is that we don't want to mess with the convention if the user 1670 /// explicitly requested something with performance implications like coldcc, 1671 /// GHC, or anyregcc. 1672 static bool hasChangeableCC(Function *F) { 1673 CallingConv::ID CC = F->getCallingConv(); 1674 1675 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1676 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1677 return false; 1678 1679 // FIXME: Change CC for the whole chain of musttail calls when possible. 1680 // 1681 // Can't change CC of the function that either has musttail calls, or is a 1682 // musttail callee itself 1683 for (User *U : F->users()) { 1684 if (isa<BlockAddress>(U)) 1685 continue; 1686 CallInst* CI = dyn_cast<CallInst>(U); 1687 if (!CI) 1688 continue; 1689 1690 if (CI->isMustTailCall()) 1691 return false; 1692 } 1693 1694 for (BasicBlock &BB : *F) 1695 if (BB.getTerminatingMustTailCall()) 1696 return false; 1697 1698 return true; 1699 } 1700 1701 /// Return true if the block containing the call site has a BlockFrequency of 1702 /// less than ColdCCRelFreq% of the entry block. 1703 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1704 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1705 auto *CallSiteBB = CB.getParent(); 1706 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1707 auto CallerEntryFreq = 1708 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1709 return CallSiteFreq < CallerEntryFreq * ColdProb; 1710 } 1711 1712 // This function checks if the input function F is cold at all call sites. It 1713 // also looks each call site's containing function, returning false if the 1714 // caller function contains other non cold calls. The input vector AllCallsCold 1715 // contains a list of functions that only have call sites in cold blocks. 1716 static bool 1717 isValidCandidateForColdCC(Function &F, 1718 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1719 const std::vector<Function *> &AllCallsCold) { 1720 1721 if (F.user_empty()) 1722 return false; 1723 1724 for (User *U : F.users()) { 1725 if (isa<BlockAddress>(U)) 1726 continue; 1727 1728 CallBase &CB = cast<CallBase>(*U); 1729 Function *CallerFunc = CB.getParent()->getParent(); 1730 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1731 if (!isColdCallSite(CB, CallerBFI)) 1732 return false; 1733 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1734 return false; 1735 } 1736 return true; 1737 } 1738 1739 static void changeCallSitesToColdCC(Function *F) { 1740 for (User *U : F->users()) { 1741 if (isa<BlockAddress>(U)) 1742 continue; 1743 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1744 } 1745 } 1746 1747 // This function iterates over all the call instructions in the input Function 1748 // and checks that all call sites are in cold blocks and are allowed to use the 1749 // coldcc calling convention. 1750 static bool 1751 hasOnlyColdCalls(Function &F, 1752 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1753 for (BasicBlock &BB : F) { 1754 for (Instruction &I : BB) { 1755 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1756 // Skip over isline asm instructions since they aren't function calls. 1757 if (CI->isInlineAsm()) 1758 continue; 1759 Function *CalledFn = CI->getCalledFunction(); 1760 if (!CalledFn) 1761 return false; 1762 if (!CalledFn->hasLocalLinkage()) 1763 return false; 1764 // Skip over instrinsics since they won't remain as function calls. 1765 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1766 continue; 1767 // Check if it's valid to use coldcc calling convention. 1768 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1769 CalledFn->hasAddressTaken()) 1770 return false; 1771 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1772 if (!isColdCallSite(*CI, CallerBFI)) 1773 return false; 1774 } 1775 } 1776 } 1777 return true; 1778 } 1779 1780 static bool hasMustTailCallers(Function *F) { 1781 for (User *U : F->users()) { 1782 CallBase *CB = dyn_cast<CallBase>(U); 1783 if (!CB) { 1784 assert(isa<BlockAddress>(U) && 1785 "Expected either CallBase or BlockAddress"); 1786 continue; 1787 } 1788 if (CB->isMustTailCall()) 1789 return true; 1790 } 1791 return false; 1792 } 1793 1794 static bool hasInvokeCallers(Function *F) { 1795 for (User *U : F->users()) 1796 if (isa<InvokeInst>(U)) 1797 return true; 1798 return false; 1799 } 1800 1801 static void RemovePreallocated(Function *F) { 1802 RemoveAttribute(F, Attribute::Preallocated); 1803 1804 auto *M = F->getParent(); 1805 1806 IRBuilder<> Builder(M->getContext()); 1807 1808 // Cannot modify users() while iterating over it, so make a copy. 1809 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1810 for (User *U : PreallocatedCalls) { 1811 CallBase *CB = dyn_cast<CallBase>(U); 1812 if (!CB) 1813 continue; 1814 1815 assert( 1816 !CB->isMustTailCall() && 1817 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1818 // Create copy of call without "preallocated" operand bundle. 1819 SmallVector<OperandBundleDef, 1> OpBundles; 1820 CB->getOperandBundlesAsDefs(OpBundles); 1821 CallBase *PreallocatedSetup = nullptr; 1822 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1823 if (It->getTag() == "preallocated") { 1824 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1825 OpBundles.erase(It); 1826 break; 1827 } 1828 } 1829 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1830 uint64_t ArgCount = 1831 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1832 1833 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1834 "Unknown indirect call type"); 1835 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1836 CB->replaceAllUsesWith(NewCB); 1837 NewCB->takeName(CB); 1838 CB->eraseFromParent(); 1839 1840 Builder.SetInsertPoint(PreallocatedSetup); 1841 auto *StackSave = 1842 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1843 1844 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1845 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1846 StackSave); 1847 1848 // Replace @llvm.call.preallocated.arg() with alloca. 1849 // Cannot modify users() while iterating over it, so make a copy. 1850 // @llvm.call.preallocated.arg() can be called with the same index multiple 1851 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1852 // already created a Value* for the index, and if not, create an alloca and 1853 // bitcast right after the @llvm.call.preallocated.setup() so that it 1854 // dominates all uses. 1855 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1856 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1857 for (auto *User : PreallocatedArgs) { 1858 auto *UseCall = cast<CallBase>(User); 1859 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1860 Intrinsic::call_preallocated_arg && 1861 "preallocated token use was not a llvm.call.preallocated.arg"); 1862 uint64_t AllocArgIndex = 1863 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1864 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1865 if (!AllocaReplacement) { 1866 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1867 auto *ArgType = UseCall 1868 ->getAttribute(AttributeList::FunctionIndex, 1869 Attribute::Preallocated) 1870 .getValueAsType(); 1871 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1872 Builder.SetInsertPoint(InsertBefore); 1873 auto *Alloca = 1874 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1875 auto *BitCast = Builder.CreateBitCast( 1876 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1877 ArgAllocas[AllocArgIndex] = BitCast; 1878 AllocaReplacement = BitCast; 1879 } 1880 1881 UseCall->replaceAllUsesWith(AllocaReplacement); 1882 UseCall->eraseFromParent(); 1883 } 1884 // Remove @llvm.call.preallocated.setup(). 1885 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1886 } 1887 } 1888 1889 static bool 1890 OptimizeFunctions(Module &M, 1891 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1892 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1893 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1894 function_ref<DominatorTree &(Function &)> LookupDomTree, 1895 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1896 1897 bool Changed = false; 1898 1899 std::vector<Function *> AllCallsCold; 1900 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 1901 Function *F = &*FI++; 1902 if (hasOnlyColdCalls(*F, GetBFI)) 1903 AllCallsCold.push_back(F); 1904 } 1905 1906 // Optimize functions. 1907 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1908 Function *F = &*FI++; 1909 1910 // Don't perform global opt pass on naked functions; we don't want fast 1911 // calling conventions for naked functions. 1912 if (F->hasFnAttribute(Attribute::Naked)) 1913 continue; 1914 1915 // Functions without names cannot be referenced outside this module. 1916 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1917 F->setLinkage(GlobalValue::InternalLinkage); 1918 1919 if (deleteIfDead(*F, NotDiscardableComdats)) { 1920 Changed = true; 1921 continue; 1922 } 1923 1924 // LLVM's definition of dominance allows instructions that are cyclic 1925 // in unreachable blocks, e.g.: 1926 // %pat = select i1 %condition, @global, i16* %pat 1927 // because any instruction dominates an instruction in a block that's 1928 // not reachable from entry. 1929 // So, remove unreachable blocks from the function, because a) there's 1930 // no point in analyzing them and b) GlobalOpt should otherwise grow 1931 // some more complicated logic to break these cycles. 1932 // Removing unreachable blocks might invalidate the dominator so we 1933 // recalculate it. 1934 if (!F->isDeclaration()) { 1935 if (removeUnreachableBlocks(*F)) { 1936 auto &DT = LookupDomTree(*F); 1937 DT.recalculate(*F); 1938 Changed = true; 1939 } 1940 } 1941 1942 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 1943 1944 if (!F->hasLocalLinkage()) 1945 continue; 1946 1947 // If we have an inalloca parameter that we can safely remove the 1948 // inalloca attribute from, do so. This unlocks optimizations that 1949 // wouldn't be safe in the presence of inalloca. 1950 // FIXME: We should also hoist alloca affected by this to the entry 1951 // block if possible. 1952 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1953 !F->hasAddressTaken() && !hasMustTailCallers(F)) { 1954 RemoveAttribute(F, Attribute::InAlloca); 1955 Changed = true; 1956 } 1957 1958 // FIXME: handle invokes 1959 // FIXME: handle musttail 1960 if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1961 if (!F->hasAddressTaken() && !hasMustTailCallers(F) && 1962 !hasInvokeCallers(F)) { 1963 RemovePreallocated(F); 1964 Changed = true; 1965 } 1966 continue; 1967 } 1968 1969 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 1970 NumInternalFunc++; 1971 TargetTransformInfo &TTI = GetTTI(*F); 1972 // Change the calling convention to coldcc if either stress testing is 1973 // enabled or the target would like to use coldcc on functions which are 1974 // cold at all call sites and the callers contain no other non coldcc 1975 // calls. 1976 if (EnableColdCCStressTest || 1977 (TTI.useColdCCForColdCall(*F) && 1978 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 1979 F->setCallingConv(CallingConv::Cold); 1980 changeCallSitesToColdCC(F); 1981 Changed = true; 1982 NumColdCC++; 1983 } 1984 } 1985 1986 if (hasChangeableCC(F) && !F->isVarArg() && 1987 !F->hasAddressTaken()) { 1988 // If this function has a calling convention worth changing, is not a 1989 // varargs function, and is only called directly, promote it to use the 1990 // Fast calling convention. 1991 F->setCallingConv(CallingConv::Fast); 1992 ChangeCalleesToFastCall(F); 1993 ++NumFastCallFns; 1994 Changed = true; 1995 } 1996 1997 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1998 !F->hasAddressTaken()) { 1999 // The function is not used by a trampoline intrinsic, so it is safe 2000 // to remove the 'nest' attribute. 2001 RemoveAttribute(F, Attribute::Nest); 2002 ++NumNestRemoved; 2003 Changed = true; 2004 } 2005 } 2006 return Changed; 2007 } 2008 2009 static bool 2010 OptimizeGlobalVars(Module &M, 2011 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2012 function_ref<DominatorTree &(Function &)> LookupDomTree, 2013 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2014 bool Changed = false; 2015 2016 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2017 GVI != E; ) { 2018 GlobalVariable *GV = &*GVI++; 2019 // Global variables without names cannot be referenced outside this module. 2020 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2021 GV->setLinkage(GlobalValue::InternalLinkage); 2022 // Simplify the initializer. 2023 if (GV->hasInitializer()) 2024 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2025 auto &DL = M.getDataLayout(); 2026 // TLI is not used in the case of a Constant, so use default nullptr 2027 // for that optional parameter, since we don't have a Function to 2028 // provide GetTLI anyway. 2029 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2030 if (New != C) 2031 GV->setInitializer(New); 2032 } 2033 2034 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2035 Changed = true; 2036 continue; 2037 } 2038 2039 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2040 } 2041 return Changed; 2042 } 2043 2044 /// Evaluate a piece of a constantexpr store into a global initializer. This 2045 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2046 /// GEP operands of Addr [0, OpNo) have been stepped into. 2047 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2048 ConstantExpr *Addr, unsigned OpNo) { 2049 // Base case of the recursion. 2050 if (OpNo == Addr->getNumOperands()) { 2051 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2052 return Val; 2053 } 2054 2055 SmallVector<Constant*, 32> Elts; 2056 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2057 // Break up the constant into its elements. 2058 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2059 Elts.push_back(Init->getAggregateElement(i)); 2060 2061 // Replace the element that we are supposed to. 2062 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2063 unsigned Idx = CU->getZExtValue(); 2064 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2065 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2066 2067 // Return the modified struct. 2068 return ConstantStruct::get(STy, Elts); 2069 } 2070 2071 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2072 uint64_t NumElts; 2073 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2074 NumElts = ATy->getNumElements(); 2075 else 2076 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2077 2078 // Break up the array into elements. 2079 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2080 Elts.push_back(Init->getAggregateElement(i)); 2081 2082 assert(CI->getZExtValue() < NumElts); 2083 Elts[CI->getZExtValue()] = 2084 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2085 2086 if (Init->getType()->isArrayTy()) 2087 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2088 return ConstantVector::get(Elts); 2089 } 2090 2091 /// We have decided that Addr (which satisfies the predicate 2092 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2093 static void CommitValueTo(Constant *Val, Constant *Addr) { 2094 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2095 assert(GV->hasInitializer()); 2096 GV->setInitializer(Val); 2097 return; 2098 } 2099 2100 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2101 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2102 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2103 } 2104 2105 /// Given a map of address -> value, where addresses are expected to be some form 2106 /// of either a global or a constant GEP, set the initializer for the address to 2107 /// be the value. This performs mostly the same function as CommitValueTo() 2108 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2109 /// case where the set of addresses are GEPs sharing the same underlying global, 2110 /// processing the GEPs in batches rather than individually. 2111 /// 2112 /// To give an example, consider the following C++ code adapted from the clang 2113 /// regression tests: 2114 /// struct S { 2115 /// int n = 10; 2116 /// int m = 2 * n; 2117 /// S(int a) : n(a) {} 2118 /// }; 2119 /// 2120 /// template<typename T> 2121 /// struct U { 2122 /// T *r = &q; 2123 /// T q = 42; 2124 /// U *p = this; 2125 /// }; 2126 /// 2127 /// U<S> e; 2128 /// 2129 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2130 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2131 /// members. This batch algorithm will simply use general CommitValueTo() method 2132 /// to handle the complex nested S struct initialization of 'q', before 2133 /// processing the outermost members in a single batch. Using CommitValueTo() to 2134 /// handle member in the outer struct is inefficient when the struct/array is 2135 /// very large as we end up creating and destroy constant arrays for each 2136 /// initialization. 2137 /// For the above case, we expect the following IR to be generated: 2138 /// 2139 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2140 /// %struct.S = type { i32, i32 } 2141 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2142 /// i64 0, i32 1), 2143 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2144 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2145 /// constant expression, while the other two elements of @e are "simple". 2146 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2147 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2148 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2149 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2150 SimpleCEs.reserve(Mem.size()); 2151 2152 for (const auto &I : Mem) { 2153 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2154 GVs.push_back(std::make_pair(GV, I.second)); 2155 } else { 2156 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2157 // We don't handle the deeply recursive case using the batch method. 2158 if (GEP->getNumOperands() > 3) 2159 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2160 else 2161 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2162 } 2163 } 2164 2165 // The algorithm below doesn't handle cases like nested structs, so use the 2166 // slower fully general method if we have to. 2167 for (auto ComplexCE : ComplexCEs) 2168 CommitValueTo(ComplexCE.second, ComplexCE.first); 2169 2170 for (auto GVPair : GVs) { 2171 assert(GVPair.first->hasInitializer()); 2172 GVPair.first->setInitializer(GVPair.second); 2173 } 2174 2175 if (SimpleCEs.empty()) 2176 return; 2177 2178 // We cache a single global's initializer elements in the case where the 2179 // subsequent address/val pair uses the same one. This avoids throwing away and 2180 // rebuilding the constant struct/vector/array just because one element is 2181 // modified at a time. 2182 SmallVector<Constant *, 32> Elts; 2183 Elts.reserve(SimpleCEs.size()); 2184 GlobalVariable *CurrentGV = nullptr; 2185 2186 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2187 Constant *Init = GV->getInitializer(); 2188 Type *Ty = Init->getType(); 2189 if (Update) { 2190 if (CurrentGV) { 2191 assert(CurrentGV && "Expected a GV to commit to!"); 2192 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2193 // We have a valid cache that needs to be committed. 2194 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2195 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2196 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2197 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2198 else 2199 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2200 } 2201 if (CurrentGV == GV) 2202 return; 2203 // Need to clear and set up cache for new initializer. 2204 CurrentGV = GV; 2205 Elts.clear(); 2206 unsigned NumElts; 2207 if (auto *STy = dyn_cast<StructType>(Ty)) 2208 NumElts = STy->getNumElements(); 2209 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2210 NumElts = ATy->getNumElements(); 2211 else 2212 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2213 for (unsigned i = 0, e = NumElts; i != e; ++i) 2214 Elts.push_back(Init->getAggregateElement(i)); 2215 } 2216 }; 2217 2218 for (auto CEPair : SimpleCEs) { 2219 ConstantExpr *GEP = CEPair.first; 2220 Constant *Val = CEPair.second; 2221 2222 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2223 commitAndSetupCache(GV, GV != CurrentGV); 2224 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2225 Elts[CI->getZExtValue()] = Val; 2226 } 2227 // The last initializer in the list needs to be committed, others 2228 // will be committed on a new initializer being processed. 2229 commitAndSetupCache(CurrentGV, true); 2230 } 2231 2232 /// Evaluate static constructors in the function, if we can. Return true if we 2233 /// can, false otherwise. 2234 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2235 TargetLibraryInfo *TLI) { 2236 // Call the function. 2237 Evaluator Eval(DL, TLI); 2238 Constant *RetValDummy; 2239 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2240 SmallVector<Constant*, 0>()); 2241 2242 if (EvalSuccess) { 2243 ++NumCtorsEvaluated; 2244 2245 // We succeeded at evaluation: commit the result. 2246 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2247 << F->getName() << "' to " 2248 << Eval.getMutatedMemory().size() << " stores.\n"); 2249 BatchCommitValueTo(Eval.getMutatedMemory()); 2250 for (GlobalVariable *GV : Eval.getInvariants()) 2251 GV->setConstant(true); 2252 } 2253 2254 return EvalSuccess; 2255 } 2256 2257 static int compareNames(Constant *const *A, Constant *const *B) { 2258 Value *AStripped = (*A)->stripPointerCasts(); 2259 Value *BStripped = (*B)->stripPointerCasts(); 2260 return AStripped->getName().compare(BStripped->getName()); 2261 } 2262 2263 static void setUsedInitializer(GlobalVariable &V, 2264 const SmallPtrSetImpl<GlobalValue *> &Init) { 2265 if (Init.empty()) { 2266 V.eraseFromParent(); 2267 return; 2268 } 2269 2270 // Type of pointer to the array of pointers. 2271 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2272 2273 SmallVector<Constant *, 8> UsedArray; 2274 for (GlobalValue *GV : Init) { 2275 Constant *Cast 2276 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2277 UsedArray.push_back(Cast); 2278 } 2279 // Sort to get deterministic order. 2280 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2281 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2282 2283 Module *M = V.getParent(); 2284 V.removeFromParent(); 2285 GlobalVariable *NV = 2286 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2287 ConstantArray::get(ATy, UsedArray), ""); 2288 NV->takeName(&V); 2289 NV->setSection("llvm.metadata"); 2290 delete &V; 2291 } 2292 2293 namespace { 2294 2295 /// An easy to access representation of llvm.used and llvm.compiler.used. 2296 class LLVMUsed { 2297 SmallPtrSet<GlobalValue *, 4> Used; 2298 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2299 GlobalVariable *UsedV; 2300 GlobalVariable *CompilerUsedV; 2301 2302 public: 2303 LLVMUsed(Module &M) { 2304 SmallVector<GlobalValue *, 4> Vec; 2305 UsedV = collectUsedGlobalVariables(M, Vec, false); 2306 Used = {Vec.begin(), Vec.end()}; 2307 Vec.clear(); 2308 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2309 CompilerUsed = {Vec.begin(), Vec.end()}; 2310 } 2311 2312 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2313 using used_iterator_range = iterator_range<iterator>; 2314 2315 iterator usedBegin() { return Used.begin(); } 2316 iterator usedEnd() { return Used.end(); } 2317 2318 used_iterator_range used() { 2319 return used_iterator_range(usedBegin(), usedEnd()); 2320 } 2321 2322 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2323 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2324 2325 used_iterator_range compilerUsed() { 2326 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2327 } 2328 2329 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2330 2331 bool compilerUsedCount(GlobalValue *GV) const { 2332 return CompilerUsed.count(GV); 2333 } 2334 2335 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2336 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2337 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2338 2339 bool compilerUsedInsert(GlobalValue *GV) { 2340 return CompilerUsed.insert(GV).second; 2341 } 2342 2343 void syncVariablesAndSets() { 2344 if (UsedV) 2345 setUsedInitializer(*UsedV, Used); 2346 if (CompilerUsedV) 2347 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2348 } 2349 }; 2350 2351 } // end anonymous namespace 2352 2353 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2354 if (GA.use_empty()) // No use at all. 2355 return false; 2356 2357 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2358 "We should have removed the duplicated " 2359 "element from llvm.compiler.used"); 2360 if (!GA.hasOneUse()) 2361 // Strictly more than one use. So at least one is not in llvm.used and 2362 // llvm.compiler.used. 2363 return true; 2364 2365 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2366 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2367 } 2368 2369 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2370 const LLVMUsed &U) { 2371 unsigned N = 2; 2372 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2373 "We should have removed the duplicated " 2374 "element from llvm.compiler.used"); 2375 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2376 ++N; 2377 return V.hasNUsesOrMore(N); 2378 } 2379 2380 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2381 if (!GA.hasLocalLinkage()) 2382 return true; 2383 2384 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2385 } 2386 2387 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2388 bool &RenameTarget) { 2389 RenameTarget = false; 2390 bool Ret = false; 2391 if (hasUseOtherThanLLVMUsed(GA, U)) 2392 Ret = true; 2393 2394 // If the alias is externally visible, we may still be able to simplify it. 2395 if (!mayHaveOtherReferences(GA, U)) 2396 return Ret; 2397 2398 // If the aliasee has internal linkage, give it the name and linkage 2399 // of the alias, and delete the alias. This turns: 2400 // define internal ... @f(...) 2401 // @a = alias ... @f 2402 // into: 2403 // define ... @a(...) 2404 Constant *Aliasee = GA.getAliasee(); 2405 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2406 if (!Target->hasLocalLinkage()) 2407 return Ret; 2408 2409 // Do not perform the transform if multiple aliases potentially target the 2410 // aliasee. This check also ensures that it is safe to replace the section 2411 // and other attributes of the aliasee with those of the alias. 2412 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2413 return Ret; 2414 2415 RenameTarget = true; 2416 return true; 2417 } 2418 2419 static bool 2420 OptimizeGlobalAliases(Module &M, 2421 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2422 bool Changed = false; 2423 LLVMUsed Used(M); 2424 2425 for (GlobalValue *GV : Used.used()) 2426 Used.compilerUsedErase(GV); 2427 2428 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2429 I != E;) { 2430 GlobalAlias *J = &*I++; 2431 2432 // Aliases without names cannot be referenced outside this module. 2433 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2434 J->setLinkage(GlobalValue::InternalLinkage); 2435 2436 if (deleteIfDead(*J, NotDiscardableComdats)) { 2437 Changed = true; 2438 continue; 2439 } 2440 2441 // If the alias can change at link time, nothing can be done - bail out. 2442 if (J->isInterposable()) 2443 continue; 2444 2445 Constant *Aliasee = J->getAliasee(); 2446 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2447 // We can't trivially replace the alias with the aliasee if the aliasee is 2448 // non-trivial in some way. We also can't replace the alias with the aliasee 2449 // if the aliasee is interposable because aliases point to the local 2450 // definition. 2451 // TODO: Try to handle non-zero GEPs of local aliasees. 2452 if (!Target || Target->isInterposable()) 2453 continue; 2454 Target->removeDeadConstantUsers(); 2455 2456 // Make all users of the alias use the aliasee instead. 2457 bool RenameTarget; 2458 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2459 continue; 2460 2461 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2462 ++NumAliasesResolved; 2463 Changed = true; 2464 2465 if (RenameTarget) { 2466 // Give the aliasee the name, linkage and other attributes of the alias. 2467 Target->takeName(&*J); 2468 Target->setLinkage(J->getLinkage()); 2469 Target->setDSOLocal(J->isDSOLocal()); 2470 Target->setVisibility(J->getVisibility()); 2471 Target->setDLLStorageClass(J->getDLLStorageClass()); 2472 2473 if (Used.usedErase(&*J)) 2474 Used.usedInsert(Target); 2475 2476 if (Used.compilerUsedErase(&*J)) 2477 Used.compilerUsedInsert(Target); 2478 } else if (mayHaveOtherReferences(*J, Used)) 2479 continue; 2480 2481 // Delete the alias. 2482 M.getAliasList().erase(J); 2483 ++NumAliasesRemoved; 2484 Changed = true; 2485 } 2486 2487 Used.syncVariablesAndSets(); 2488 2489 return Changed; 2490 } 2491 2492 static Function * 2493 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2494 // Hack to get a default TLI before we have actual Function. 2495 auto FuncIter = M.begin(); 2496 if (FuncIter == M.end()) 2497 return nullptr; 2498 auto *TLI = &GetTLI(*FuncIter); 2499 2500 LibFunc F = LibFunc_cxa_atexit; 2501 if (!TLI->has(F)) 2502 return nullptr; 2503 2504 Function *Fn = M.getFunction(TLI->getName(F)); 2505 if (!Fn) 2506 return nullptr; 2507 2508 // Now get the actual TLI for Fn. 2509 TLI = &GetTLI(*Fn); 2510 2511 // Make sure that the function has the correct prototype. 2512 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2513 return nullptr; 2514 2515 return Fn; 2516 } 2517 2518 /// Returns whether the given function is an empty C++ destructor and can 2519 /// therefore be eliminated. 2520 /// Note that we assume that other optimization passes have already simplified 2521 /// the code so we simply check for 'ret'. 2522 static bool cxxDtorIsEmpty(const Function &Fn) { 2523 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2524 // nounwind, but that doesn't seem worth doing. 2525 if (Fn.isDeclaration()) 2526 return false; 2527 2528 for (auto &I : Fn.getEntryBlock()) { 2529 if (isa<DbgInfoIntrinsic>(I)) 2530 continue; 2531 if (isa<ReturnInst>(I)) 2532 return true; 2533 break; 2534 } 2535 return false; 2536 } 2537 2538 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2539 /// Itanium C++ ABI p3.3.5: 2540 /// 2541 /// After constructing a global (or local static) object, that will require 2542 /// destruction on exit, a termination function is registered as follows: 2543 /// 2544 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2545 /// 2546 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2547 /// call f(p) when DSO d is unloaded, before all such termination calls 2548 /// registered before this one. It returns zero if registration is 2549 /// successful, nonzero on failure. 2550 2551 // This pass will look for calls to __cxa_atexit where the function is trivial 2552 // and remove them. 2553 bool Changed = false; 2554 2555 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2556 I != E;) { 2557 // We're only interested in calls. Theoretically, we could handle invoke 2558 // instructions as well, but neither llvm-gcc nor clang generate invokes 2559 // to __cxa_atexit. 2560 CallInst *CI = dyn_cast<CallInst>(*I++); 2561 if (!CI) 2562 continue; 2563 2564 Function *DtorFn = 2565 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2566 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2567 continue; 2568 2569 // Just remove the call. 2570 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2571 CI->eraseFromParent(); 2572 2573 ++NumCXXDtorsRemoved; 2574 2575 Changed |= true; 2576 } 2577 2578 return Changed; 2579 } 2580 2581 static bool optimizeGlobalsInModule( 2582 Module &M, const DataLayout &DL, 2583 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2584 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2585 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2586 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2587 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2588 bool Changed = false; 2589 bool LocalChange = true; 2590 while (LocalChange) { 2591 LocalChange = false; 2592 2593 NotDiscardableComdats.clear(); 2594 for (const GlobalVariable &GV : M.globals()) 2595 if (const Comdat *C = GV.getComdat()) 2596 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2597 NotDiscardableComdats.insert(C); 2598 for (Function &F : M) 2599 if (const Comdat *C = F.getComdat()) 2600 if (!F.isDefTriviallyDead()) 2601 NotDiscardableComdats.insert(C); 2602 for (GlobalAlias &GA : M.aliases()) 2603 if (const Comdat *C = GA.getComdat()) 2604 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2605 NotDiscardableComdats.insert(C); 2606 2607 // Delete functions that are trivially dead, ccc -> fastcc 2608 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2609 NotDiscardableComdats); 2610 2611 // Optimize global_ctors list. 2612 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2613 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2614 }); 2615 2616 // Optimize non-address-taken globals. 2617 LocalChange |= 2618 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 2619 2620 // Resolve aliases, when possible. 2621 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2622 2623 // Try to remove trivial global destructors if they are not removed 2624 // already. 2625 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2626 if (CXAAtExitFn) 2627 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2628 2629 Changed |= LocalChange; 2630 } 2631 2632 // TODO: Move all global ctors functions to the end of the module for code 2633 // layout. 2634 2635 return Changed; 2636 } 2637 2638 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2639 auto &DL = M.getDataLayout(); 2640 auto &FAM = 2641 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2642 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2643 return FAM.getResult<DominatorTreeAnalysis>(F); 2644 }; 2645 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2646 return FAM.getResult<TargetLibraryAnalysis>(F); 2647 }; 2648 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2649 return FAM.getResult<TargetIRAnalysis>(F); 2650 }; 2651 2652 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2653 return FAM.getResult<BlockFrequencyAnalysis>(F); 2654 }; 2655 2656 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2657 return PreservedAnalyses::all(); 2658 return PreservedAnalyses::none(); 2659 } 2660 2661 namespace { 2662 2663 struct GlobalOptLegacyPass : public ModulePass { 2664 static char ID; // Pass identification, replacement for typeid 2665 2666 GlobalOptLegacyPass() : ModulePass(ID) { 2667 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2668 } 2669 2670 bool runOnModule(Module &M) override { 2671 if (skipModule(M)) 2672 return false; 2673 2674 auto &DL = M.getDataLayout(); 2675 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2676 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2677 }; 2678 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2679 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2680 }; 2681 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2682 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2683 }; 2684 2685 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2686 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2687 }; 2688 2689 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2690 LookupDomTree); 2691 } 2692 2693 void getAnalysisUsage(AnalysisUsage &AU) const override { 2694 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2695 AU.addRequired<TargetTransformInfoWrapperPass>(); 2696 AU.addRequired<DominatorTreeWrapperPass>(); 2697 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2698 } 2699 }; 2700 2701 } // end anonymous namespace 2702 2703 char GlobalOptLegacyPass::ID = 0; 2704 2705 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2706 "Global Variable Optimizer", false, false) 2707 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2708 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2709 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2710 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2711 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2712 "Global Variable Optimizer", false, false) 2713 2714 ModulePass *llvm::createGlobalOptimizerPass() { 2715 return new GlobalOptLegacyPass(); 2716 } 2717