xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 54c1a65736ec012b583ade1d53c477e182c574e4)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
212        UI != E;) {
213     User *U = *UI++;
214     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
215       Value *V = SI->getValueOperand();
216       if (isa<Constant>(V)) {
217         Changed = true;
218         SI->eraseFromParent();
219       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
220         if (I->hasOneUse())
221           Dead.push_back(std::make_pair(I, SI));
222       }
223     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
224       if (isa<Constant>(MSI->getValue())) {
225         Changed = true;
226         MSI->eraseFromParent();
227       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
228         if (I->hasOneUse())
229           Dead.push_back(std::make_pair(I, MSI));
230       }
231     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
232       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
233       if (MemSrc && MemSrc->isConstant()) {
234         Changed = true;
235         MTI->eraseFromParent();
236       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
237         if (I->hasOneUse())
238           Dead.push_back(std::make_pair(I, MTI));
239       }
240     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
241       if (CE->use_empty()) {
242         CE->destroyConstant();
243         Changed = true;
244       }
245     } else if (Constant *C = dyn_cast<Constant>(U)) {
246       if (isSafeToDestroyConstant(C)) {
247         C->destroyConstant();
248         // This could have invalidated UI, start over from scratch.
249         Dead.clear();
250         CleanupPointerRootUsers(GV, GetTLI);
251         return true;
252       }
253     }
254   }
255 
256   for (int i = 0, e = Dead.size(); i != e; ++i) {
257     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
258       Dead[i].second->eraseFromParent();
259       Instruction *I = Dead[i].first;
260       do {
261         if (isAllocationFn(I, GetTLI))
262           break;
263         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
264         if (!J)
265           break;
266         I->eraseFromParent();
267         I = J;
268       } while (true);
269       I->eraseFromParent();
270       Changed = true;
271     }
272   }
273 
274   return Changed;
275 }
276 
277 /// We just marked GV constant.  Loop over all users of the global, cleaning up
278 /// the obvious ones.  This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft.  This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281     Value *V, Constant *Init, const DataLayout &DL,
282     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283   bool Changed = false;
284   // Note that we need to use a weak value handle for the worklist items. When
285   // we delete a constant array, we may also be holding pointer to one of its
286   // elements (or an element of one of its elements if we're dealing with an
287   // array of arrays) in the worklist.
288   SmallVector<WeakTrackingVH, 8> WorkList(V->users());
289   while (!WorkList.empty()) {
290     Value *UV = WorkList.pop_back_val();
291     if (!UV)
292       continue;
293 
294     User *U = cast<User>(UV);
295 
296     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297       if (Init) {
298         if (auto *Casted =
299                 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
300           // Replace the load with the initializer.
301           LI->replaceAllUsesWith(Casted);
302           LI->eraseFromParent();
303           Changed = true;
304         }
305       }
306     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
307       // Store must be unreachable or storing Init into the global.
308       SI->eraseFromParent();
309       Changed = true;
310     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
311       if (CE->getOpcode() == Instruction::GetElementPtr) {
312         Constant *SubInit = nullptr;
313         if (Init)
314           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
315               Init, CE, V->getType()->getPointerElementType(), DL);
316         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
317       } else if ((CE->getOpcode() == Instruction::BitCast &&
318                   CE->getType()->isPointerTy()) ||
319                  CE->getOpcode() == Instruction::AddrSpaceCast) {
320         // Pointer cast, delete any stores and memsets to the global.
321         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
322       }
323 
324       if (CE->use_empty()) {
325         CE->destroyConstant();
326         Changed = true;
327       }
328     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
329       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
330       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
331       // and will invalidate our notion of what Init is.
332       Constant *SubInit = nullptr;
333       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
334         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
335             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
336         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
337           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
338               Init, CE, V->getType()->getPointerElementType(), DL);
339 
340         // If the initializer is an all-null value and we have an inbounds GEP,
341         // we already know what the result of any load from that GEP is.
342         // TODO: Handle splats.
343         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
344           SubInit = Constant::getNullValue(GEP->getResultElementType());
345       }
346       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
347 
348       if (GEP->use_empty()) {
349         GEP->eraseFromParent();
350         Changed = true;
351       }
352     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
353       if (MI->getRawDest() == V) {
354         MI->eraseFromParent();
355         Changed = true;
356       }
357 
358     } else if (Constant *C = dyn_cast<Constant>(U)) {
359       // If we have a chain of dead constantexprs or other things dangling from
360       // us, and if they are all dead, nuke them without remorse.
361       if (isSafeToDestroyConstant(C)) {
362         C->destroyConstant();
363         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
364         return true;
365       }
366     }
367   }
368   return Changed;
369 }
370 
371 static bool isSafeSROAElementUse(Value *V);
372 
373 /// Return true if the specified GEP is a safe user of a derived
374 /// expression from a global that we want to SROA.
375 static bool isSafeSROAGEP(User *U) {
376   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
377   // don't like < 3 operand CE's, and we don't like non-constant integer
378   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
379   // value of C.
380   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
381       !cast<Constant>(U->getOperand(1))->isNullValue())
382     return false;
383 
384   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
385   ++GEPI; // Skip over the pointer index.
386 
387   // For all other level we require that the indices are constant and inrange.
388   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
389   // invalid things like allowing i to index an out-of-range subscript that
390   // accesses A[1]. This can also happen between different members of a struct
391   // in llvm IR.
392   for (; GEPI != E; ++GEPI) {
393     if (GEPI.isStruct())
394       continue;
395 
396     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
397     if (!IdxVal || (GEPI.isBoundedSequential() &&
398                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
399       return false;
400   }
401 
402   return llvm::all_of(U->users(),
403                       [](User *UU) { return isSafeSROAElementUse(UU); });
404 }
405 
406 /// Return true if the specified instruction is a safe user of a derived
407 /// expression from a global that we want to SROA.
408 static bool isSafeSROAElementUse(Value *V) {
409   // We might have a dead and dangling constant hanging off of here.
410   if (Constant *C = dyn_cast<Constant>(V))
411     return isSafeToDestroyConstant(C);
412 
413   Instruction *I = dyn_cast<Instruction>(V);
414   if (!I) return false;
415 
416   // Loads are ok.
417   if (isa<LoadInst>(I)) return true;
418 
419   // Stores *to* the pointer are ok.
420   if (StoreInst *SI = dyn_cast<StoreInst>(I))
421     return SI->getOperand(0) != V;
422 
423   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
424   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
425 }
426 
427 /// Look at all uses of the global and decide whether it is safe for us to
428 /// perform this transformation.
429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
430   for (User *U : GV->users()) {
431     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
432     if (!isa<GetElementPtrInst>(U) &&
433         (!isa<ConstantExpr>(U) ||
434         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
435       return false;
436 
437     // Check the gep and it's users are safe to SRA
438     if (!isSafeSROAGEP(U))
439       return false;
440   }
441 
442   return true;
443 }
444 
445 static bool IsSRASequential(Type *T) {
446   return isa<ArrayType>(T) || isa<VectorType>(T);
447 }
448 static uint64_t GetSRASequentialNumElements(Type *T) {
449   if (ArrayType *AT = dyn_cast<ArrayType>(T))
450     return AT->getNumElements();
451   return cast<FixedVectorType>(T)->getNumElements();
452 }
453 static Type *GetSRASequentialElementType(Type *T) {
454   if (ArrayType *AT = dyn_cast<ArrayType>(T))
455     return AT->getElementType();
456   return cast<VectorType>(T)->getElementType();
457 }
458 static bool CanDoGlobalSRA(GlobalVariable *GV) {
459   Constant *Init = GV->getInitializer();
460 
461   if (isa<StructType>(Init->getType())) {
462     // nothing to check
463   } else if (IsSRASequential(Init->getType())) {
464     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
465         GV->hasNUsesOrMore(16))
466       return false; // It's not worth it.
467   } else
468     return false;
469 
470   return GlobalUsersSafeToSRA(GV);
471 }
472 
473 /// Copy over the debug info for a variable to its SRA replacements.
474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
475                                  uint64_t FragmentOffsetInBits,
476                                  uint64_t FragmentSizeInBits,
477                                  uint64_t VarSize) {
478   SmallVector<DIGlobalVariableExpression *, 1> GVs;
479   GV->getDebugInfo(GVs);
480   for (auto *GVE : GVs) {
481     DIVariable *Var = GVE->getVariable();
482     DIExpression *Expr = GVE->getExpression();
483     // If the FragmentSize is smaller than the variable,
484     // emit a fragment expression.
485     if (FragmentSizeInBits < VarSize) {
486       if (auto E = DIExpression::createFragmentExpression(
487               Expr, FragmentOffsetInBits, FragmentSizeInBits))
488         Expr = *E;
489       else
490         return;
491     }
492     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
493     NGV->addDebugInfo(NGVE);
494   }
495 }
496 
497 /// Perform scalar replacement of aggregates on the specified global variable.
498 /// This opens the door for other optimizations by exposing the behavior of the
499 /// program in a more fine-grained way.  We have determined that this
500 /// transformation is safe already.  We return the first global variable we
501 /// insert so that the caller can reprocess it.
502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
503   // Make sure this global only has simple uses that we can SRA.
504   if (!CanDoGlobalSRA(GV))
505     return nullptr;
506 
507   assert(GV->hasLocalLinkage());
508   Constant *Init = GV->getInitializer();
509   Type *Ty = Init->getType();
510   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
511 
512   std::map<unsigned, GlobalVariable *> NewGlobals;
513 
514   // Get the alignment of the global, either explicit or target-specific.
515   Align StartAlignment =
516       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
517 
518   // Loop over all users and create replacement variables for used aggregate
519   // elements.
520   for (User *GEP : GV->users()) {
521     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
522                                            Instruction::GetElementPtr) ||
523             isa<GetElementPtrInst>(GEP)) &&
524            "NonGEP CE's are not SRAable!");
525 
526     // Ignore the 1th operand, which has to be zero or else the program is quite
527     // broken (undefined).  Get the 2nd operand, which is the structure or array
528     // index.
529     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
530     if (NewGlobals.count(ElementIdx) == 1)
531       continue; // we`ve already created replacement variable
532     assert(NewGlobals.count(ElementIdx) == 0);
533 
534     Type *ElTy = nullptr;
535     if (StructType *STy = dyn_cast<StructType>(Ty))
536       ElTy = STy->getElementType(ElementIdx);
537     else
538       ElTy = GetSRASequentialElementType(Ty);
539     assert(ElTy);
540 
541     Constant *In = Init->getAggregateElement(ElementIdx);
542     assert(In && "Couldn't get element of initializer?");
543 
544     GlobalVariable *NGV = new GlobalVariable(
545         ElTy, false, GlobalVariable::InternalLinkage, In,
546         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
547         GV->getType()->getAddressSpace());
548     NGV->setExternallyInitialized(GV->isExternallyInitialized());
549     NGV->copyAttributesFrom(GV);
550     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
551 
552     if (StructType *STy = dyn_cast<StructType>(Ty)) {
553       const StructLayout &Layout = *DL.getStructLayout(STy);
554 
555       // Calculate the known alignment of the field.  If the original aggregate
556       // had 256 byte alignment for example, something might depend on that:
557       // propagate info to each field.
558       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
559       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
560       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
561         NGV->setAlignment(NewAlign);
562 
563       // Copy over the debug info for the variable.
564       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
565       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
566       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
567     } else {
568       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
569       Align EltAlign = DL.getABITypeAlign(ElTy);
570       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
571 
572       // Calculate the known alignment of the field.  If the original aggregate
573       // had 256 byte alignment for example, something might depend on that:
574       // propagate info to each field.
575       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
576       if (NewAlign > EltAlign)
577         NGV->setAlignment(NewAlign);
578       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
579                            FragmentSizeInBits, VarSize);
580     }
581   }
582 
583   if (NewGlobals.empty())
584     return nullptr;
585 
586   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
587   for (auto NewGlobalVar : NewGlobals)
588     Globals.push_back(NewGlobalVar.second);
589 
590   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
591 
592   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
593 
594   // Loop over all of the uses of the global, replacing the constantexpr geps,
595   // with smaller constantexpr geps or direct references.
596   while (!GV->use_empty()) {
597     User *GEP = GV->user_back();
598     assert(((isa<ConstantExpr>(GEP) &&
599              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
600             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
601 
602     // Ignore the 1th operand, which has to be zero or else the program is quite
603     // broken (undefined).  Get the 2nd operand, which is the structure or array
604     // index.
605     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
606     assert(NewGlobals.count(ElementIdx) == 1);
607 
608     Value *NewPtr = NewGlobals[ElementIdx];
609     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
610 
611     // Form a shorter GEP if needed.
612     if (GEP->getNumOperands() > 3) {
613       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
614         SmallVector<Constant*, 8> Idxs;
615         Idxs.push_back(NullInt);
616         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
617           Idxs.push_back(CE->getOperand(i));
618         NewPtr =
619             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
620       } else {
621         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
622         SmallVector<Value*, 8> Idxs;
623         Idxs.push_back(NullInt);
624         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
625           Idxs.push_back(GEPI->getOperand(i));
626         NewPtr = GetElementPtrInst::Create(
627             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
628             GEPI);
629       }
630     }
631     GEP->replaceAllUsesWith(NewPtr);
632 
633     // We changed the pointer of any memory access user. Recalculate alignments.
634     for (User *U : NewPtr->users()) {
635       if (auto *Load = dyn_cast<LoadInst>(U)) {
636         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
637         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
638                                                     PrefAlign, DL, Load);
639         Load->setAlignment(NewAlign);
640       }
641       if (auto *Store = dyn_cast<StoreInst>(U)) {
642         Align PrefAlign =
643             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
644         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
645                                                     PrefAlign, DL, Store);
646         Store->setAlignment(NewAlign);
647       }
648     }
649 
650     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
651       GEPI->eraseFromParent();
652     else
653       cast<ConstantExpr>(GEP)->destroyConstant();
654   }
655 
656   // Delete the old global, now that it is dead.
657   Globals.erase(GV);
658   ++NumSRA;
659 
660   assert(NewGlobals.size() > 0);
661   return NewGlobals.begin()->second;
662 }
663 
664 /// Return true if all users of the specified value will trap if the value is
665 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
666 /// reprocessing them.
667 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
668                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
669   for (const User *U : V->users()) {
670     if (const Instruction *I = dyn_cast<Instruction>(U)) {
671       // If null pointer is considered valid, then all uses are non-trapping.
672       // Non address-space 0 globals have already been pruned by the caller.
673       if (NullPointerIsDefined(I->getFunction()))
674         return false;
675     }
676     if (isa<LoadInst>(U)) {
677       // Will trap.
678     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
679       if (SI->getOperand(0) == V) {
680         //cerr << "NONTRAPPING USE: " << *U;
681         return false;  // Storing the value.
682       }
683     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
684       if (CI->getCalledOperand() != V) {
685         //cerr << "NONTRAPPING USE: " << *U;
686         return false;  // Not calling the ptr
687       }
688     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
689       if (II->getCalledOperand() != V) {
690         //cerr << "NONTRAPPING USE: " << *U;
691         return false;  // Not calling the ptr
692       }
693     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
694       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
695     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
696       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
697     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
698       // If we've already seen this phi node, ignore it, it has already been
699       // checked.
700       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
701         return false;
702     } else if (isa<ICmpInst>(U) &&
703                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
704                isa<LoadInst>(U->getOperand(0)) &&
705                isa<ConstantPointerNull>(U->getOperand(1))) {
706       assert(isa<GlobalValue>(
707                  cast<LoadInst>(U->getOperand(0))->getPointerOperand()) &&
708              "Should be GlobalVariable");
709       // This and only this kind of non-signed ICmpInst is to be replaced with
710       // the comparing of the value of the created global init bool later in
711       // optimizeGlobalAddressOfMalloc for the global variable.
712     } else {
713       //cerr << "NONTRAPPING USE: " << *U;
714       return false;
715     }
716   }
717   return true;
718 }
719 
720 /// Return true if all uses of any loads from GV will trap if the loaded value
721 /// is null.  Note that this also permits comparisons of the loaded value
722 /// against null, as a special case.
723 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
724   for (const User *U : GV->users())
725     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
726       SmallPtrSet<const PHINode*, 8> PHIs;
727       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
728         return false;
729     } else if (isa<StoreInst>(U)) {
730       // Ignore stores to the global.
731     } else {
732       // We don't know or understand this user, bail out.
733       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
734       return false;
735     }
736   return true;
737 }
738 
739 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
740   bool Changed = false;
741   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
742     Instruction *I = cast<Instruction>(*UI++);
743     // Uses are non-trapping if null pointer is considered valid.
744     // Non address-space 0 globals are already pruned by the caller.
745     if (NullPointerIsDefined(I->getFunction()))
746       return false;
747     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
748       LI->setOperand(0, NewV);
749       Changed = true;
750     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
751       if (SI->getOperand(1) == V) {
752         SI->setOperand(1, NewV);
753         Changed = true;
754       }
755     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
756       CallBase *CB = cast<CallBase>(I);
757       if (CB->getCalledOperand() == V) {
758         // Calling through the pointer!  Turn into a direct call, but be careful
759         // that the pointer is not also being passed as an argument.
760         CB->setCalledOperand(NewV);
761         Changed = true;
762         bool PassedAsArg = false;
763         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
764           if (CB->getArgOperand(i) == V) {
765             PassedAsArg = true;
766             CB->setArgOperand(i, NewV);
767           }
768 
769         if (PassedAsArg) {
770           // Being passed as an argument also.  Be careful to not invalidate UI!
771           UI = V->user_begin();
772         }
773       }
774     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
775       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
776                                 ConstantExpr::getCast(CI->getOpcode(),
777                                                       NewV, CI->getType()));
778       if (CI->use_empty()) {
779         Changed = true;
780         CI->eraseFromParent();
781       }
782     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
783       // Should handle GEP here.
784       SmallVector<Constant*, 8> Idxs;
785       Idxs.reserve(GEPI->getNumOperands()-1);
786       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
787            i != e; ++i)
788         if (Constant *C = dyn_cast<Constant>(*i))
789           Idxs.push_back(C);
790         else
791           break;
792       if (Idxs.size() == GEPI->getNumOperands()-1)
793         Changed |= OptimizeAwayTrappingUsesOfValue(
794             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
795                                                  NewV, Idxs));
796       if (GEPI->use_empty()) {
797         Changed = true;
798         GEPI->eraseFromParent();
799       }
800     }
801   }
802 
803   return Changed;
804 }
805 
806 /// The specified global has only one non-null value stored into it.  If there
807 /// are uses of the loaded value that would trap if the loaded value is
808 /// dynamically null, then we know that they cannot be reachable with a null
809 /// optimize away the load.
810 static bool OptimizeAwayTrappingUsesOfLoads(
811     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
812     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
813   bool Changed = false;
814 
815   // Keep track of whether we are able to remove all the uses of the global
816   // other than the store that defines it.
817   bool AllNonStoreUsesGone = true;
818 
819   // Replace all uses of loads with uses of uses of the stored value.
820   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
821     User *GlobalUser = *GUI++;
822     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
823       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
824       // If we were able to delete all uses of the loads
825       if (LI->use_empty()) {
826         LI->eraseFromParent();
827         Changed = true;
828       } else {
829         AllNonStoreUsesGone = false;
830       }
831     } else if (isa<StoreInst>(GlobalUser)) {
832       // Ignore the store that stores "LV" to the global.
833       assert(GlobalUser->getOperand(1) == GV &&
834              "Must be storing *to* the global");
835     } else {
836       AllNonStoreUsesGone = false;
837 
838       // If we get here we could have other crazy uses that are transitively
839       // loaded.
840       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
841               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
842               isa<BitCastInst>(GlobalUser) ||
843               isa<GetElementPtrInst>(GlobalUser)) &&
844              "Only expect load and stores!");
845     }
846   }
847 
848   if (Changed) {
849     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
850                       << "\n");
851     ++NumGlobUses;
852   }
853 
854   // If we nuked all of the loads, then none of the stores are needed either,
855   // nor is the global.
856   if (AllNonStoreUsesGone) {
857     if (isLeakCheckerRoot(GV)) {
858       Changed |= CleanupPointerRootUsers(GV, GetTLI);
859     } else {
860       Changed = true;
861       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
862     }
863     if (GV->use_empty()) {
864       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
865       Changed = true;
866       GV->eraseFromParent();
867       ++NumDeleted;
868     }
869   }
870   return Changed;
871 }
872 
873 /// Walk the use list of V, constant folding all of the instructions that are
874 /// foldable.
875 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
876                                 TargetLibraryInfo *TLI) {
877   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
878     if (Instruction *I = dyn_cast<Instruction>(*UI++))
879       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
880         I->replaceAllUsesWith(NewC);
881 
882         // Advance UI to the next non-I use to avoid invalidating it!
883         // Instructions could multiply use V.
884         while (UI != E && *UI == I)
885           ++UI;
886         if (isInstructionTriviallyDead(I, TLI))
887           I->eraseFromParent();
888       }
889 }
890 
891 /// This function takes the specified global variable, and transforms the
892 /// program as if it always contained the result of the specified malloc.
893 /// Because it is always the result of the specified malloc, there is no reason
894 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
895 /// loads of GV as uses of the new global.
896 static GlobalVariable *
897 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
898                               ConstantInt *NElements, const DataLayout &DL,
899                               TargetLibraryInfo *TLI) {
900   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
901                     << '\n');
902 
903   Type *GlobalType;
904   if (NElements->getZExtValue() == 1)
905     GlobalType = AllocTy;
906   else
907     // If we have an array allocation, the global variable is of an array.
908     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
909 
910   // Create the new global variable.  The contents of the malloc'd memory is
911   // undefined, so initialize with an undef value.
912   GlobalVariable *NewGV = new GlobalVariable(
913       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
914       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
915       GV->getThreadLocalMode());
916 
917   // If there are bitcast users of the malloc (which is typical, usually we have
918   // a malloc + bitcast) then replace them with uses of the new global.  Update
919   // other users to use the global as well.
920   BitCastInst *TheBC = nullptr;
921   while (!CI->use_empty()) {
922     Instruction *User = cast<Instruction>(CI->user_back());
923     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
924       if (BCI->getType() == NewGV->getType()) {
925         BCI->replaceAllUsesWith(NewGV);
926         BCI->eraseFromParent();
927       } else {
928         BCI->setOperand(0, NewGV);
929       }
930     } else {
931       if (!TheBC)
932         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
933       User->replaceUsesOfWith(CI, TheBC);
934     }
935   }
936 
937   Constant *RepValue = NewGV;
938   if (NewGV->getType() != GV->getValueType())
939     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
940 
941   // If there is a comparison against null, we will insert a global bool to
942   // keep track of whether the global was initialized yet or not.
943   GlobalVariable *InitBool =
944     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
945                        GlobalValue::InternalLinkage,
946                        ConstantInt::getFalse(GV->getContext()),
947                        GV->getName()+".init", GV->getThreadLocalMode());
948   bool InitBoolUsed = false;
949 
950   // Loop over all uses of GV, processing them in turn.
951   while (!GV->use_empty()) {
952     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
953       // The global is initialized when the store to it occurs. If the stored
954       // value is null value, the global bool is set to false, otherwise true.
955       new StoreInst(ConstantInt::getBool(
956                         GV->getContext(),
957                         !isa<ConstantPointerNull>(SI->getValueOperand())),
958                     InitBool, false, Align(1), SI->getOrdering(),
959                     SI->getSyncScopeID(), SI);
960       SI->eraseFromParent();
961       continue;
962     }
963 
964     LoadInst *LI = cast<LoadInst>(GV->user_back());
965     while (!LI->use_empty()) {
966       Use &LoadUse = *LI->use_begin();
967       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
968       if (!ICI) {
969         LoadUse = RepValue;
970         continue;
971       }
972 
973       // Replace the cmp X, 0 with a use of the bool value.
974       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
975                                InitBool->getName() + ".val", false, Align(1),
976                                LI->getOrdering(), LI->getSyncScopeID(), LI);
977       InitBoolUsed = true;
978       switch (ICI->getPredicate()) {
979       default: llvm_unreachable("Unknown ICmp Predicate!");
980       case ICmpInst::ICMP_ULT: // X < null -> always false
981         LV = ConstantInt::getFalse(GV->getContext());
982         break;
983       case ICmpInst::ICMP_UGE: // X >= null -> always true
984         LV = ConstantInt::getTrue(GV->getContext());
985         break;
986       case ICmpInst::ICMP_ULE:
987       case ICmpInst::ICMP_EQ:
988         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
989         break;
990       case ICmpInst::ICMP_NE:
991       case ICmpInst::ICMP_UGT:
992         break;  // no change.
993       }
994       ICI->replaceAllUsesWith(LV);
995       ICI->eraseFromParent();
996     }
997     LI->eraseFromParent();
998   }
999 
1000   // If the initialization boolean was used, insert it, otherwise delete it.
1001   if (!InitBoolUsed) {
1002     while (!InitBool->use_empty())  // Delete initializations
1003       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1004     delete InitBool;
1005   } else
1006     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1007 
1008   // Now the GV is dead, nuke it and the malloc..
1009   GV->eraseFromParent();
1010   CI->eraseFromParent();
1011 
1012   // To further other optimizations, loop over all users of NewGV and try to
1013   // constant prop them.  This will promote GEP instructions with constant
1014   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1015   ConstantPropUsersOf(NewGV, DL, TLI);
1016   if (RepValue != NewGV)
1017     ConstantPropUsersOf(RepValue, DL, TLI);
1018 
1019   return NewGV;
1020 }
1021 
1022 /// Scan the use-list of V checking to make sure that there are no complex uses
1023 /// of V.  We permit simple things like dereferencing the pointer, but not
1024 /// storing through the address, unless it is to the specified global.
1025 static bool
1026 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1027                                           const GlobalVariable *GV) {
1028   for (const User *U : V->users()) {
1029     const Instruction *Inst = cast<Instruction>(U);
1030 
1031     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1032       continue; // Fine, ignore.
1033     }
1034 
1035     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1036       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1037         return false;  // Storing the pointer itself... bad.
1038       continue; // Otherwise, storing through it, or storing into GV... fine.
1039     }
1040 
1041     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1042       if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV))
1043         return false;
1044       continue;
1045     }
1046 
1047     return false;
1048   }
1049   return true;
1050 }
1051 
1052 /// This function is called when we see a pointer global variable with a single
1053 /// value stored it that is a malloc or cast of malloc.
1054 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1055                                                Type *AllocTy,
1056                                                AtomicOrdering Ordering,
1057                                                const DataLayout &DL,
1058                                                TargetLibraryInfo *TLI) {
1059   // If this is a malloc of an abstract type, don't touch it.
1060   if (!AllocTy->isSized())
1061     return false;
1062 
1063   // We can't optimize this global unless all uses of it are *known* to be
1064   // of the malloc value, not of the null initializer value (consider a use
1065   // that compares the global's value against zero to see if the malloc has
1066   // been reached).  To do this, we check to see if all uses of the global
1067   // would trap if the global were null: this proves that they must all
1068   // happen after the malloc.
1069   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1070     return false;
1071 
1072   // We can't optimize this if the malloc itself is used in a complex way,
1073   // for example, being stored into multiple globals.  This allows the
1074   // malloc to be stored into the specified global, loaded icmp'd.
1075   // These are all things we could transform to using the global for.
1076   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1077     return false;
1078 
1079   // If we have a global that is only initialized with a fixed size malloc,
1080   // transform the program to use global memory instead of malloc'd memory.
1081   // This eliminates dynamic allocation, avoids an indirection accessing the
1082   // data, and exposes the resultant global to further GlobalOpt.
1083   // We cannot optimize the malloc if we cannot determine malloc array size.
1084   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1085   if (!NElems)
1086     return false;
1087 
1088   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1089     // Restrict this transformation to only working on small allocations
1090     // (2048 bytes currently), as we don't want to introduce a 16M global or
1091     // something.
1092     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1093       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1094       return true;
1095     }
1096 
1097   return false;
1098 }
1099 
1100 // Try to optimize globals based on the knowledge that only one value (besides
1101 // its initializer) is ever stored to the global.
1102 static bool
1103 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1104                          AtomicOrdering Ordering, const DataLayout &DL,
1105                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1106   // Ignore no-op GEPs and bitcasts.
1107   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1108 
1109   // If we are dealing with a pointer global that is initialized to null and
1110   // only has one (non-null) value stored into it, then we can optimize any
1111   // users of the loaded value (often calls and loads) that would trap if the
1112   // value was null.
1113   if (GV->getInitializer()->getType()->isPointerTy() &&
1114       GV->getInitializer()->isNullValue() &&
1115       !NullPointerIsDefined(
1116           nullptr /* F */,
1117           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1118     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1119       if (GV->getInitializer()->getType() != SOVC->getType())
1120         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1121 
1122       // Optimize away any trapping uses of the loaded value.
1123       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1124         return true;
1125     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1126       auto *TLI = &GetTLI(*CI->getFunction());
1127       Type *MallocType = getMallocAllocatedType(CI, TLI);
1128       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1129                                                            Ordering, DL, TLI))
1130         return true;
1131     }
1132   }
1133 
1134   return false;
1135 }
1136 
1137 /// At this point, we have learned that the only two values ever stored into GV
1138 /// are its initializer and OtherVal.  See if we can shrink the global into a
1139 /// boolean and select between the two values whenever it is used.  This exposes
1140 /// the values to other scalar optimizations.
1141 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1142   Type *GVElType = GV->getValueType();
1143 
1144   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1145   // an FP value, pointer or vector, don't do this optimization because a select
1146   // between them is very expensive and unlikely to lead to later
1147   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1148   // where v1 and v2 both require constant pool loads, a big loss.
1149   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1150       GVElType->isFloatingPointTy() ||
1151       GVElType->isPointerTy() || GVElType->isVectorTy())
1152     return false;
1153 
1154   // Walk the use list of the global seeing if all the uses are load or store.
1155   // If there is anything else, bail out.
1156   for (User *U : GV->users())
1157     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1158       return false;
1159 
1160   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1161 
1162   // Create the new global, initializing it to false.
1163   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1164                                              false,
1165                                              GlobalValue::InternalLinkage,
1166                                         ConstantInt::getFalse(GV->getContext()),
1167                                              GV->getName()+".b",
1168                                              GV->getThreadLocalMode(),
1169                                              GV->getType()->getAddressSpace());
1170   NewGV->copyAttributesFrom(GV);
1171   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1172 
1173   Constant *InitVal = GV->getInitializer();
1174   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1175          "No reason to shrink to bool!");
1176 
1177   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1178   GV->getDebugInfo(GVs);
1179 
1180   // If initialized to zero and storing one into the global, we can use a cast
1181   // instead of a select to synthesize the desired value.
1182   bool IsOneZero = false;
1183   bool EmitOneOrZero = true;
1184   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1185   if (CI && CI->getValue().getActiveBits() <= 64) {
1186     IsOneZero = InitVal->isNullValue() && CI->isOne();
1187 
1188     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1189     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1190       uint64_t ValInit = CIInit->getZExtValue();
1191       uint64_t ValOther = CI->getZExtValue();
1192       uint64_t ValMinus = ValOther - ValInit;
1193 
1194       for(auto *GVe : GVs){
1195         DIGlobalVariable *DGV = GVe->getVariable();
1196         DIExpression *E = GVe->getExpression();
1197         const DataLayout &DL = GV->getParent()->getDataLayout();
1198         unsigned SizeInOctets =
1199             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1200 
1201         // It is expected that the address of global optimized variable is on
1202         // top of the stack. After optimization, value of that variable will
1203         // be ether 0 for initial value or 1 for other value. The following
1204         // expression should return constant integer value depending on the
1205         // value at global object address:
1206         // val * (ValOther - ValInit) + ValInit:
1207         // DW_OP_deref DW_OP_constu <ValMinus>
1208         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1209         SmallVector<uint64_t, 12> Ops = {
1210             dwarf::DW_OP_deref_size, SizeInOctets,
1211             dwarf::DW_OP_constu, ValMinus,
1212             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1213             dwarf::DW_OP_plus};
1214         bool WithStackValue = true;
1215         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1216         DIGlobalVariableExpression *DGVE =
1217           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1218         NewGV->addDebugInfo(DGVE);
1219      }
1220      EmitOneOrZero = false;
1221     }
1222   }
1223 
1224   if (EmitOneOrZero) {
1225      // FIXME: This will only emit address for debugger on which will
1226      // be written only 0 or 1.
1227      for(auto *GV : GVs)
1228        NewGV->addDebugInfo(GV);
1229    }
1230 
1231   while (!GV->use_empty()) {
1232     Instruction *UI = cast<Instruction>(GV->user_back());
1233     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1234       // Change the store into a boolean store.
1235       bool StoringOther = SI->getOperand(0) == OtherVal;
1236       // Only do this if we weren't storing a loaded value.
1237       Value *StoreVal;
1238       if (StoringOther || SI->getOperand(0) == InitVal) {
1239         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1240                                     StoringOther);
1241       } else {
1242         // Otherwise, we are storing a previously loaded copy.  To do this,
1243         // change the copy from copying the original value to just copying the
1244         // bool.
1245         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1246 
1247         // If we've already replaced the input, StoredVal will be a cast or
1248         // select instruction.  If not, it will be a load of the original
1249         // global.
1250         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1251           assert(LI->getOperand(0) == GV && "Not a copy!");
1252           // Insert a new load, to preserve the saved value.
1253           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1254                                   LI->getName() + ".b", false, Align(1),
1255                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1256         } else {
1257           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1258                  "This is not a form that we understand!");
1259           StoreVal = StoredVal->getOperand(0);
1260           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1261         }
1262       }
1263       StoreInst *NSI =
1264           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1265                         SI->getSyncScopeID(), SI);
1266       NSI->setDebugLoc(SI->getDebugLoc());
1267     } else {
1268       // Change the load into a load of bool then a select.
1269       LoadInst *LI = cast<LoadInst>(UI);
1270       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1271                                    LI->getName() + ".b", false, Align(1),
1272                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1273       Instruction *NSI;
1274       if (IsOneZero)
1275         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1276       else
1277         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1278       NSI->takeName(LI);
1279       // Since LI is split into two instructions, NLI and NSI both inherit the
1280       // same DebugLoc
1281       NLI->setDebugLoc(LI->getDebugLoc());
1282       NSI->setDebugLoc(LI->getDebugLoc());
1283       LI->replaceAllUsesWith(NSI);
1284     }
1285     UI->eraseFromParent();
1286   }
1287 
1288   // Retain the name of the old global variable. People who are debugging their
1289   // programs may expect these variables to be named the same.
1290   NewGV->takeName(GV);
1291   GV->eraseFromParent();
1292   return true;
1293 }
1294 
1295 static bool deleteIfDead(
1296     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1297   GV.removeDeadConstantUsers();
1298 
1299   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1300     return false;
1301 
1302   if (const Comdat *C = GV.getComdat())
1303     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1304       return false;
1305 
1306   bool Dead;
1307   if (auto *F = dyn_cast<Function>(&GV))
1308     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1309   else
1310     Dead = GV.use_empty();
1311   if (!Dead)
1312     return false;
1313 
1314   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1315   GV.eraseFromParent();
1316   ++NumDeleted;
1317   return true;
1318 }
1319 
1320 static bool isPointerValueDeadOnEntryToFunction(
1321     const Function *F, GlobalValue *GV,
1322     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1323   // Find all uses of GV. We expect them all to be in F, and if we can't
1324   // identify any of the uses we bail out.
1325   //
1326   // On each of these uses, identify if the memory that GV points to is
1327   // used/required/live at the start of the function. If it is not, for example
1328   // if the first thing the function does is store to the GV, the GV can
1329   // possibly be demoted.
1330   //
1331   // We don't do an exhaustive search for memory operations - simply look
1332   // through bitcasts as they're quite common and benign.
1333   const DataLayout &DL = GV->getParent()->getDataLayout();
1334   SmallVector<LoadInst *, 4> Loads;
1335   SmallVector<StoreInst *, 4> Stores;
1336   for (auto *U : GV->users()) {
1337     if (Operator::getOpcode(U) == Instruction::BitCast) {
1338       for (auto *UU : U->users()) {
1339         if (auto *LI = dyn_cast<LoadInst>(UU))
1340           Loads.push_back(LI);
1341         else if (auto *SI = dyn_cast<StoreInst>(UU))
1342           Stores.push_back(SI);
1343         else
1344           return false;
1345       }
1346       continue;
1347     }
1348 
1349     Instruction *I = dyn_cast<Instruction>(U);
1350     if (!I)
1351       return false;
1352     assert(I->getParent()->getParent() == F);
1353 
1354     if (auto *LI = dyn_cast<LoadInst>(I))
1355       Loads.push_back(LI);
1356     else if (auto *SI = dyn_cast<StoreInst>(I))
1357       Stores.push_back(SI);
1358     else
1359       return false;
1360   }
1361 
1362   // We have identified all uses of GV into loads and stores. Now check if all
1363   // of them are known not to depend on the value of the global at the function
1364   // entry point. We do this by ensuring that every load is dominated by at
1365   // least one store.
1366   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1367 
1368   // The below check is quadratic. Check we're not going to do too many tests.
1369   // FIXME: Even though this will always have worst-case quadratic time, we
1370   // could put effort into minimizing the average time by putting stores that
1371   // have been shown to dominate at least one load at the beginning of the
1372   // Stores array, making subsequent dominance checks more likely to succeed
1373   // early.
1374   //
1375   // The threshold here is fairly large because global->local demotion is a
1376   // very powerful optimization should it fire.
1377   const unsigned Threshold = 100;
1378   if (Loads.size() * Stores.size() > Threshold)
1379     return false;
1380 
1381   for (auto *L : Loads) {
1382     auto *LTy = L->getType();
1383     if (none_of(Stores, [&](const StoreInst *S) {
1384           auto *STy = S->getValueOperand()->getType();
1385           // The load is only dominated by the store if DomTree says so
1386           // and the number of bits loaded in L is less than or equal to
1387           // the number of bits stored in S.
1388           return DT.dominates(S, L) &&
1389                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1390                      DL.getTypeStoreSize(STy).getFixedSize();
1391         }))
1392       return false;
1393   }
1394   // All loads have known dependences inside F, so the global can be localized.
1395   return true;
1396 }
1397 
1398 /// C may have non-instruction users. Can all of those users be turned into
1399 /// instructions?
1400 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1401   // We don't do this exhaustively. The most common pattern that we really need
1402   // to care about is a constant GEP or constant bitcast - so just looking
1403   // through one single ConstantExpr.
1404   //
1405   // The set of constants that this function returns true for must be able to be
1406   // handled by makeAllConstantUsesInstructions.
1407   for (auto *U : C->users()) {
1408     if (isa<Instruction>(U))
1409       continue;
1410     if (!isa<ConstantExpr>(U))
1411       // Non instruction, non-constantexpr user; cannot convert this.
1412       return false;
1413     for (auto *UU : U->users())
1414       if (!isa<Instruction>(UU))
1415         // A constantexpr used by another constant. We don't try and recurse any
1416         // further but just bail out at this point.
1417         return false;
1418   }
1419 
1420   return true;
1421 }
1422 
1423 /// C may have non-instruction users, and
1424 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1425 /// non-instruction users to instructions.
1426 static void makeAllConstantUsesInstructions(Constant *C) {
1427   SmallVector<ConstantExpr*,4> Users;
1428   for (auto *U : C->users()) {
1429     if (isa<ConstantExpr>(U))
1430       Users.push_back(cast<ConstantExpr>(U));
1431     else
1432       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1433       // should not have returned true for C.
1434       assert(
1435           isa<Instruction>(U) &&
1436           "Can't transform non-constantexpr non-instruction to instruction!");
1437   }
1438 
1439   SmallVector<Value*,4> UUsers;
1440   for (auto *U : Users) {
1441     UUsers.clear();
1442     append_range(UUsers, U->users());
1443     for (auto *UU : UUsers) {
1444       Instruction *UI = cast<Instruction>(UU);
1445       Instruction *NewU = U->getAsInstruction();
1446       NewU->insertBefore(UI);
1447       UI->replaceUsesOfWith(U, NewU);
1448     }
1449     // We've replaced all the uses, so destroy the constant. (destroyConstant
1450     // will update value handles and metadata.)
1451     U->destroyConstant();
1452   }
1453 }
1454 
1455 /// Analyze the specified global variable and optimize
1456 /// it if possible.  If we make a change, return true.
1457 static bool
1458 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1459                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1460                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1461   auto &DL = GV->getParent()->getDataLayout();
1462   // If this is a first class global and has only one accessing function and
1463   // this function is non-recursive, we replace the global with a local alloca
1464   // in this function.
1465   //
1466   // NOTE: It doesn't make sense to promote non-single-value types since we
1467   // are just replacing static memory to stack memory.
1468   //
1469   // If the global is in different address space, don't bring it to stack.
1470   if (!GS.HasMultipleAccessingFunctions &&
1471       GS.AccessingFunction &&
1472       GV->getValueType()->isSingleValueType() &&
1473       GV->getType()->getAddressSpace() == 0 &&
1474       !GV->isExternallyInitialized() &&
1475       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1476       GS.AccessingFunction->doesNotRecurse() &&
1477       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1478                                           LookupDomTree)) {
1479     const DataLayout &DL = GV->getParent()->getDataLayout();
1480 
1481     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1482     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1483                                                    ->getEntryBlock().begin());
1484     Type *ElemTy = GV->getValueType();
1485     // FIXME: Pass Global's alignment when globals have alignment
1486     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1487                                         GV->getName(), &FirstI);
1488     if (!isa<UndefValue>(GV->getInitializer()))
1489       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1490 
1491     makeAllConstantUsesInstructions(GV);
1492 
1493     GV->replaceAllUsesWith(Alloca);
1494     GV->eraseFromParent();
1495     ++NumLocalized;
1496     return true;
1497   }
1498 
1499   bool Changed = false;
1500 
1501   // If the global is never loaded (but may be stored to), it is dead.
1502   // Delete it now.
1503   if (!GS.IsLoaded) {
1504     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1505 
1506     if (isLeakCheckerRoot(GV)) {
1507       // Delete any constant stores to the global.
1508       Changed = CleanupPointerRootUsers(GV, GetTLI);
1509     } else {
1510       // Delete any stores we can find to the global.  We may not be able to
1511       // make it completely dead though.
1512       Changed =
1513           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1514     }
1515 
1516     // If the global is dead now, delete it.
1517     if (GV->use_empty()) {
1518       GV->eraseFromParent();
1519       ++NumDeleted;
1520       Changed = true;
1521     }
1522     return Changed;
1523 
1524   }
1525   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1526     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1527 
1528     // Don't actually mark a global constant if it's atomic because atomic loads
1529     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1530     // requires write access to the variable even if it's not actually changed.
1531     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1532       assert(!GV->isConstant() && "Expected a non-constant global");
1533       GV->setConstant(true);
1534       Changed = true;
1535     }
1536 
1537     // Clean up any obviously simplifiable users now.
1538     Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1539 
1540     // If the global is dead now, just nuke it.
1541     if (GV->use_empty()) {
1542       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1543                         << "all users and delete global!\n");
1544       GV->eraseFromParent();
1545       ++NumDeleted;
1546       return true;
1547     }
1548 
1549     // Fall through to the next check; see if we can optimize further.
1550     ++NumMarked;
1551   }
1552   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1553     const DataLayout &DL = GV->getParent()->getDataLayout();
1554     if (SRAGlobal(GV, DL))
1555       return true;
1556   }
1557   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1558     // If the initial value for the global was an undef value, and if only
1559     // one other value was stored into it, we can just change the
1560     // initializer to be the stored value, then delete all stores to the
1561     // global.  This allows us to mark it constant.
1562     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1563       if (isa<UndefValue>(GV->getInitializer())) {
1564         // Change the initial value here.
1565         GV->setInitializer(SOVConstant);
1566 
1567         // Clean up any obviously simplifiable users now.
1568         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1569 
1570         if (GV->use_empty()) {
1571           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1572                             << "simplify all users and delete global!\n");
1573           GV->eraseFromParent();
1574           ++NumDeleted;
1575         }
1576         ++NumSubstitute;
1577         return true;
1578       }
1579 
1580     // Try to optimize globals based on the knowledge that only one value
1581     // (besides its initializer) is ever stored to the global.
1582     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
1583                                  GetTLI))
1584       return true;
1585 
1586     // Otherwise, if the global was not a boolean, we can shrink it to be a
1587     // boolean.
1588     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1589       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1590         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1591           ++NumShrunkToBool;
1592           return true;
1593         }
1594       }
1595     }
1596   }
1597 
1598   return Changed;
1599 }
1600 
1601 /// Analyze the specified global variable and optimize it if possible.  If we
1602 /// make a change, return true.
1603 static bool
1604 processGlobal(GlobalValue &GV,
1605               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1606               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1607   if (GV.getName().startswith("llvm."))
1608     return false;
1609 
1610   GlobalStatus GS;
1611 
1612   if (GlobalStatus::analyzeGlobal(&GV, GS))
1613     return false;
1614 
1615   bool Changed = false;
1616   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1617     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1618                                                : GlobalValue::UnnamedAddr::Local;
1619     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1620       GV.setUnnamedAddr(NewUnnamedAddr);
1621       NumUnnamed++;
1622       Changed = true;
1623     }
1624   }
1625 
1626   // Do more involved optimizations if the global is internal.
1627   if (!GV.hasLocalLinkage())
1628     return Changed;
1629 
1630   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1631   if (!GVar)
1632     return Changed;
1633 
1634   if (GVar->isConstant() || !GVar->hasInitializer())
1635     return Changed;
1636 
1637   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
1638 }
1639 
1640 /// Walk all of the direct calls of the specified function, changing them to
1641 /// FastCC.
1642 static void ChangeCalleesToFastCall(Function *F) {
1643   for (User *U : F->users()) {
1644     if (isa<BlockAddress>(U))
1645       continue;
1646     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1647   }
1648 }
1649 
1650 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1651                                Attribute::AttrKind A) {
1652   unsigned AttrIndex;
1653   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1654     return Attrs.removeAttribute(C, AttrIndex, A);
1655   return Attrs;
1656 }
1657 
1658 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1659   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1660   for (User *U : F->users()) {
1661     if (isa<BlockAddress>(U))
1662       continue;
1663     CallBase *CB = cast<CallBase>(U);
1664     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1665   }
1666 }
1667 
1668 /// Return true if this is a calling convention that we'd like to change.  The
1669 /// idea here is that we don't want to mess with the convention if the user
1670 /// explicitly requested something with performance implications like coldcc,
1671 /// GHC, or anyregcc.
1672 static bool hasChangeableCC(Function *F) {
1673   CallingConv::ID CC = F->getCallingConv();
1674 
1675   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1676   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1677     return false;
1678 
1679   // FIXME: Change CC for the whole chain of musttail calls when possible.
1680   //
1681   // Can't change CC of the function that either has musttail calls, or is a
1682   // musttail callee itself
1683   for (User *U : F->users()) {
1684     if (isa<BlockAddress>(U))
1685       continue;
1686     CallInst* CI = dyn_cast<CallInst>(U);
1687     if (!CI)
1688       continue;
1689 
1690     if (CI->isMustTailCall())
1691       return false;
1692   }
1693 
1694   for (BasicBlock &BB : *F)
1695     if (BB.getTerminatingMustTailCall())
1696       return false;
1697 
1698   return true;
1699 }
1700 
1701 /// Return true if the block containing the call site has a BlockFrequency of
1702 /// less than ColdCCRelFreq% of the entry block.
1703 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1704   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1705   auto *CallSiteBB = CB.getParent();
1706   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1707   auto CallerEntryFreq =
1708       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1709   return CallSiteFreq < CallerEntryFreq * ColdProb;
1710 }
1711 
1712 // This function checks if the input function F is cold at all call sites. It
1713 // also looks each call site's containing function, returning false if the
1714 // caller function contains other non cold calls. The input vector AllCallsCold
1715 // contains a list of functions that only have call sites in cold blocks.
1716 static bool
1717 isValidCandidateForColdCC(Function &F,
1718                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1719                           const std::vector<Function *> &AllCallsCold) {
1720 
1721   if (F.user_empty())
1722     return false;
1723 
1724   for (User *U : F.users()) {
1725     if (isa<BlockAddress>(U))
1726       continue;
1727 
1728     CallBase &CB = cast<CallBase>(*U);
1729     Function *CallerFunc = CB.getParent()->getParent();
1730     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1731     if (!isColdCallSite(CB, CallerBFI))
1732       return false;
1733     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1734       return false;
1735   }
1736   return true;
1737 }
1738 
1739 static void changeCallSitesToColdCC(Function *F) {
1740   for (User *U : F->users()) {
1741     if (isa<BlockAddress>(U))
1742       continue;
1743     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1744   }
1745 }
1746 
1747 // This function iterates over all the call instructions in the input Function
1748 // and checks that all call sites are in cold blocks and are allowed to use the
1749 // coldcc calling convention.
1750 static bool
1751 hasOnlyColdCalls(Function &F,
1752                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1753   for (BasicBlock &BB : F) {
1754     for (Instruction &I : BB) {
1755       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1756         // Skip over isline asm instructions since they aren't function calls.
1757         if (CI->isInlineAsm())
1758           continue;
1759         Function *CalledFn = CI->getCalledFunction();
1760         if (!CalledFn)
1761           return false;
1762         if (!CalledFn->hasLocalLinkage())
1763           return false;
1764         // Skip over instrinsics since they won't remain as function calls.
1765         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1766           continue;
1767         // Check if it's valid to use coldcc calling convention.
1768         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1769             CalledFn->hasAddressTaken())
1770           return false;
1771         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1772         if (!isColdCallSite(*CI, CallerBFI))
1773           return false;
1774       }
1775     }
1776   }
1777   return true;
1778 }
1779 
1780 static bool hasMustTailCallers(Function *F) {
1781   for (User *U : F->users()) {
1782     CallBase *CB = dyn_cast<CallBase>(U);
1783     if (!CB) {
1784       assert(isa<BlockAddress>(U) &&
1785              "Expected either CallBase or BlockAddress");
1786       continue;
1787     }
1788     if (CB->isMustTailCall())
1789       return true;
1790   }
1791   return false;
1792 }
1793 
1794 static bool hasInvokeCallers(Function *F) {
1795   for (User *U : F->users())
1796     if (isa<InvokeInst>(U))
1797       return true;
1798   return false;
1799 }
1800 
1801 static void RemovePreallocated(Function *F) {
1802   RemoveAttribute(F, Attribute::Preallocated);
1803 
1804   auto *M = F->getParent();
1805 
1806   IRBuilder<> Builder(M->getContext());
1807 
1808   // Cannot modify users() while iterating over it, so make a copy.
1809   SmallVector<User *, 4> PreallocatedCalls(F->users());
1810   for (User *U : PreallocatedCalls) {
1811     CallBase *CB = dyn_cast<CallBase>(U);
1812     if (!CB)
1813       continue;
1814 
1815     assert(
1816         !CB->isMustTailCall() &&
1817         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1818     // Create copy of call without "preallocated" operand bundle.
1819     SmallVector<OperandBundleDef, 1> OpBundles;
1820     CB->getOperandBundlesAsDefs(OpBundles);
1821     CallBase *PreallocatedSetup = nullptr;
1822     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1823       if (It->getTag() == "preallocated") {
1824         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1825         OpBundles.erase(It);
1826         break;
1827       }
1828     }
1829     assert(PreallocatedSetup && "Did not find preallocated bundle");
1830     uint64_t ArgCount =
1831         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1832 
1833     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1834            "Unknown indirect call type");
1835     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1836     CB->replaceAllUsesWith(NewCB);
1837     NewCB->takeName(CB);
1838     CB->eraseFromParent();
1839 
1840     Builder.SetInsertPoint(PreallocatedSetup);
1841     auto *StackSave =
1842         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1843 
1844     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1845     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1846                        StackSave);
1847 
1848     // Replace @llvm.call.preallocated.arg() with alloca.
1849     // Cannot modify users() while iterating over it, so make a copy.
1850     // @llvm.call.preallocated.arg() can be called with the same index multiple
1851     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1852     // already created a Value* for the index, and if not, create an alloca and
1853     // bitcast right after the @llvm.call.preallocated.setup() so that it
1854     // dominates all uses.
1855     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1856     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1857     for (auto *User : PreallocatedArgs) {
1858       auto *UseCall = cast<CallBase>(User);
1859       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1860                  Intrinsic::call_preallocated_arg &&
1861              "preallocated token use was not a llvm.call.preallocated.arg");
1862       uint64_t AllocArgIndex =
1863           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1864       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1865       if (!AllocaReplacement) {
1866         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1867         auto *ArgType = UseCall
1868                             ->getAttribute(AttributeList::FunctionIndex,
1869                                            Attribute::Preallocated)
1870                             .getValueAsType();
1871         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1872         Builder.SetInsertPoint(InsertBefore);
1873         auto *Alloca =
1874             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1875         auto *BitCast = Builder.CreateBitCast(
1876             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1877         ArgAllocas[AllocArgIndex] = BitCast;
1878         AllocaReplacement = BitCast;
1879       }
1880 
1881       UseCall->replaceAllUsesWith(AllocaReplacement);
1882       UseCall->eraseFromParent();
1883     }
1884     // Remove @llvm.call.preallocated.setup().
1885     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1886   }
1887 }
1888 
1889 static bool
1890 OptimizeFunctions(Module &M,
1891                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1892                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1893                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1894                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1895                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1896 
1897   bool Changed = false;
1898 
1899   std::vector<Function *> AllCallsCold;
1900   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
1901     Function *F = &*FI++;
1902     if (hasOnlyColdCalls(*F, GetBFI))
1903       AllCallsCold.push_back(F);
1904   }
1905 
1906   // Optimize functions.
1907   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1908     Function *F = &*FI++;
1909 
1910     // Don't perform global opt pass on naked functions; we don't want fast
1911     // calling conventions for naked functions.
1912     if (F->hasFnAttribute(Attribute::Naked))
1913       continue;
1914 
1915     // Functions without names cannot be referenced outside this module.
1916     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1917       F->setLinkage(GlobalValue::InternalLinkage);
1918 
1919     if (deleteIfDead(*F, NotDiscardableComdats)) {
1920       Changed = true;
1921       continue;
1922     }
1923 
1924     // LLVM's definition of dominance allows instructions that are cyclic
1925     // in unreachable blocks, e.g.:
1926     // %pat = select i1 %condition, @global, i16* %pat
1927     // because any instruction dominates an instruction in a block that's
1928     // not reachable from entry.
1929     // So, remove unreachable blocks from the function, because a) there's
1930     // no point in analyzing them and b) GlobalOpt should otherwise grow
1931     // some more complicated logic to break these cycles.
1932     // Removing unreachable blocks might invalidate the dominator so we
1933     // recalculate it.
1934     if (!F->isDeclaration()) {
1935       if (removeUnreachableBlocks(*F)) {
1936         auto &DT = LookupDomTree(*F);
1937         DT.recalculate(*F);
1938         Changed = true;
1939       }
1940     }
1941 
1942     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
1943 
1944     if (!F->hasLocalLinkage())
1945       continue;
1946 
1947     // If we have an inalloca parameter that we can safely remove the
1948     // inalloca attribute from, do so. This unlocks optimizations that
1949     // wouldn't be safe in the presence of inalloca.
1950     // FIXME: We should also hoist alloca affected by this to the entry
1951     // block if possible.
1952     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1953         !F->hasAddressTaken() && !hasMustTailCallers(F)) {
1954       RemoveAttribute(F, Attribute::InAlloca);
1955       Changed = true;
1956     }
1957 
1958     // FIXME: handle invokes
1959     // FIXME: handle musttail
1960     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1961       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
1962           !hasInvokeCallers(F)) {
1963         RemovePreallocated(F);
1964         Changed = true;
1965       }
1966       continue;
1967     }
1968 
1969     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
1970       NumInternalFunc++;
1971       TargetTransformInfo &TTI = GetTTI(*F);
1972       // Change the calling convention to coldcc if either stress testing is
1973       // enabled or the target would like to use coldcc on functions which are
1974       // cold at all call sites and the callers contain no other non coldcc
1975       // calls.
1976       if (EnableColdCCStressTest ||
1977           (TTI.useColdCCForColdCall(*F) &&
1978            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
1979         F->setCallingConv(CallingConv::Cold);
1980         changeCallSitesToColdCC(F);
1981         Changed = true;
1982         NumColdCC++;
1983       }
1984     }
1985 
1986     if (hasChangeableCC(F) && !F->isVarArg() &&
1987         !F->hasAddressTaken()) {
1988       // If this function has a calling convention worth changing, is not a
1989       // varargs function, and is only called directly, promote it to use the
1990       // Fast calling convention.
1991       F->setCallingConv(CallingConv::Fast);
1992       ChangeCalleesToFastCall(F);
1993       ++NumFastCallFns;
1994       Changed = true;
1995     }
1996 
1997     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1998         !F->hasAddressTaken()) {
1999       // The function is not used by a trampoline intrinsic, so it is safe
2000       // to remove the 'nest' attribute.
2001       RemoveAttribute(F, Attribute::Nest);
2002       ++NumNestRemoved;
2003       Changed = true;
2004     }
2005   }
2006   return Changed;
2007 }
2008 
2009 static bool
2010 OptimizeGlobalVars(Module &M,
2011                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2012                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2013                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2014   bool Changed = false;
2015 
2016   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2017        GVI != E; ) {
2018     GlobalVariable *GV = &*GVI++;
2019     // Global variables without names cannot be referenced outside this module.
2020     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2021       GV->setLinkage(GlobalValue::InternalLinkage);
2022     // Simplify the initializer.
2023     if (GV->hasInitializer())
2024       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2025         auto &DL = M.getDataLayout();
2026         // TLI is not used in the case of a Constant, so use default nullptr
2027         // for that optional parameter, since we don't have a Function to
2028         // provide GetTLI anyway.
2029         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2030         if (New != C)
2031           GV->setInitializer(New);
2032       }
2033 
2034     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2035       Changed = true;
2036       continue;
2037     }
2038 
2039     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2040   }
2041   return Changed;
2042 }
2043 
2044 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2045 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2046 /// GEP operands of Addr [0, OpNo) have been stepped into.
2047 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2048                                    ConstantExpr *Addr, unsigned OpNo) {
2049   // Base case of the recursion.
2050   if (OpNo == Addr->getNumOperands()) {
2051     assert(Val->getType() == Init->getType() && "Type mismatch!");
2052     return Val;
2053   }
2054 
2055   SmallVector<Constant*, 32> Elts;
2056   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2057     // Break up the constant into its elements.
2058     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2059       Elts.push_back(Init->getAggregateElement(i));
2060 
2061     // Replace the element that we are supposed to.
2062     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2063     unsigned Idx = CU->getZExtValue();
2064     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2065     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2066 
2067     // Return the modified struct.
2068     return ConstantStruct::get(STy, Elts);
2069   }
2070 
2071   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2072   uint64_t NumElts;
2073   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2074     NumElts = ATy->getNumElements();
2075   else
2076     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2077 
2078   // Break up the array into elements.
2079   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2080     Elts.push_back(Init->getAggregateElement(i));
2081 
2082   assert(CI->getZExtValue() < NumElts);
2083   Elts[CI->getZExtValue()] =
2084     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2085 
2086   if (Init->getType()->isArrayTy())
2087     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2088   return ConstantVector::get(Elts);
2089 }
2090 
2091 /// We have decided that Addr (which satisfies the predicate
2092 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2093 static void CommitValueTo(Constant *Val, Constant *Addr) {
2094   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2095     assert(GV->hasInitializer());
2096     GV->setInitializer(Val);
2097     return;
2098   }
2099 
2100   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2101   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2102   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2103 }
2104 
2105 /// Given a map of address -> value, where addresses are expected to be some form
2106 /// of either a global or a constant GEP, set the initializer for the address to
2107 /// be the value. This performs mostly the same function as CommitValueTo()
2108 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2109 /// case where the set of addresses are GEPs sharing the same underlying global,
2110 /// processing the GEPs in batches rather than individually.
2111 ///
2112 /// To give an example, consider the following C++ code adapted from the clang
2113 /// regression tests:
2114 /// struct S {
2115 ///  int n = 10;
2116 ///  int m = 2 * n;
2117 ///  S(int a) : n(a) {}
2118 /// };
2119 ///
2120 /// template<typename T>
2121 /// struct U {
2122 ///  T *r = &q;
2123 ///  T q = 42;
2124 ///  U *p = this;
2125 /// };
2126 ///
2127 /// U<S> e;
2128 ///
2129 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2130 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2131 /// members. This batch algorithm will simply use general CommitValueTo() method
2132 /// to handle the complex nested S struct initialization of 'q', before
2133 /// processing the outermost members in a single batch. Using CommitValueTo() to
2134 /// handle member in the outer struct is inefficient when the struct/array is
2135 /// very large as we end up creating and destroy constant arrays for each
2136 /// initialization.
2137 /// For the above case, we expect the following IR to be generated:
2138 ///
2139 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2140 /// %struct.S = type { i32, i32 }
2141 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2142 ///                                                  i64 0, i32 1),
2143 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2144 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2145 /// constant expression, while the other two elements of @e are "simple".
2146 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2147   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2148   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2149   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2150   SimpleCEs.reserve(Mem.size());
2151 
2152   for (const auto &I : Mem) {
2153     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2154       GVs.push_back(std::make_pair(GV, I.second));
2155     } else {
2156       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2157       // We don't handle the deeply recursive case using the batch method.
2158       if (GEP->getNumOperands() > 3)
2159         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2160       else
2161         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2162     }
2163   }
2164 
2165   // The algorithm below doesn't handle cases like nested structs, so use the
2166   // slower fully general method if we have to.
2167   for (auto ComplexCE : ComplexCEs)
2168     CommitValueTo(ComplexCE.second, ComplexCE.first);
2169 
2170   for (auto GVPair : GVs) {
2171     assert(GVPair.first->hasInitializer());
2172     GVPair.first->setInitializer(GVPair.second);
2173   }
2174 
2175   if (SimpleCEs.empty())
2176     return;
2177 
2178   // We cache a single global's initializer elements in the case where the
2179   // subsequent address/val pair uses the same one. This avoids throwing away and
2180   // rebuilding the constant struct/vector/array just because one element is
2181   // modified at a time.
2182   SmallVector<Constant *, 32> Elts;
2183   Elts.reserve(SimpleCEs.size());
2184   GlobalVariable *CurrentGV = nullptr;
2185 
2186   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2187     Constant *Init = GV->getInitializer();
2188     Type *Ty = Init->getType();
2189     if (Update) {
2190       if (CurrentGV) {
2191         assert(CurrentGV && "Expected a GV to commit to!");
2192         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2193         // We have a valid cache that needs to be committed.
2194         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2195           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2196         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2197           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2198         else
2199           CurrentGV->setInitializer(ConstantVector::get(Elts));
2200       }
2201       if (CurrentGV == GV)
2202         return;
2203       // Need to clear and set up cache for new initializer.
2204       CurrentGV = GV;
2205       Elts.clear();
2206       unsigned NumElts;
2207       if (auto *STy = dyn_cast<StructType>(Ty))
2208         NumElts = STy->getNumElements();
2209       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2210         NumElts = ATy->getNumElements();
2211       else
2212         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2213       for (unsigned i = 0, e = NumElts; i != e; ++i)
2214         Elts.push_back(Init->getAggregateElement(i));
2215     }
2216   };
2217 
2218   for (auto CEPair : SimpleCEs) {
2219     ConstantExpr *GEP = CEPair.first;
2220     Constant *Val = CEPair.second;
2221 
2222     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2223     commitAndSetupCache(GV, GV != CurrentGV);
2224     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2225     Elts[CI->getZExtValue()] = Val;
2226   }
2227   // The last initializer in the list needs to be committed, others
2228   // will be committed on a new initializer being processed.
2229   commitAndSetupCache(CurrentGV, true);
2230 }
2231 
2232 /// Evaluate static constructors in the function, if we can.  Return true if we
2233 /// can, false otherwise.
2234 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2235                                       TargetLibraryInfo *TLI) {
2236   // Call the function.
2237   Evaluator Eval(DL, TLI);
2238   Constant *RetValDummy;
2239   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2240                                            SmallVector<Constant*, 0>());
2241 
2242   if (EvalSuccess) {
2243     ++NumCtorsEvaluated;
2244 
2245     // We succeeded at evaluation: commit the result.
2246     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2247                       << F->getName() << "' to "
2248                       << Eval.getMutatedMemory().size() << " stores.\n");
2249     BatchCommitValueTo(Eval.getMutatedMemory());
2250     for (GlobalVariable *GV : Eval.getInvariants())
2251       GV->setConstant(true);
2252   }
2253 
2254   return EvalSuccess;
2255 }
2256 
2257 static int compareNames(Constant *const *A, Constant *const *B) {
2258   Value *AStripped = (*A)->stripPointerCasts();
2259   Value *BStripped = (*B)->stripPointerCasts();
2260   return AStripped->getName().compare(BStripped->getName());
2261 }
2262 
2263 static void setUsedInitializer(GlobalVariable &V,
2264                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2265   if (Init.empty()) {
2266     V.eraseFromParent();
2267     return;
2268   }
2269 
2270   // Type of pointer to the array of pointers.
2271   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2272 
2273   SmallVector<Constant *, 8> UsedArray;
2274   for (GlobalValue *GV : Init) {
2275     Constant *Cast
2276       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2277     UsedArray.push_back(Cast);
2278   }
2279   // Sort to get deterministic order.
2280   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2281   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2282 
2283   Module *M = V.getParent();
2284   V.removeFromParent();
2285   GlobalVariable *NV =
2286       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2287                          ConstantArray::get(ATy, UsedArray), "");
2288   NV->takeName(&V);
2289   NV->setSection("llvm.metadata");
2290   delete &V;
2291 }
2292 
2293 namespace {
2294 
2295 /// An easy to access representation of llvm.used and llvm.compiler.used.
2296 class LLVMUsed {
2297   SmallPtrSet<GlobalValue *, 4> Used;
2298   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2299   GlobalVariable *UsedV;
2300   GlobalVariable *CompilerUsedV;
2301 
2302 public:
2303   LLVMUsed(Module &M) {
2304     SmallVector<GlobalValue *, 4> Vec;
2305     UsedV = collectUsedGlobalVariables(M, Vec, false);
2306     Used = {Vec.begin(), Vec.end()};
2307     Vec.clear();
2308     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2309     CompilerUsed = {Vec.begin(), Vec.end()};
2310   }
2311 
2312   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2313   using used_iterator_range = iterator_range<iterator>;
2314 
2315   iterator usedBegin() { return Used.begin(); }
2316   iterator usedEnd() { return Used.end(); }
2317 
2318   used_iterator_range used() {
2319     return used_iterator_range(usedBegin(), usedEnd());
2320   }
2321 
2322   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2323   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2324 
2325   used_iterator_range compilerUsed() {
2326     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2327   }
2328 
2329   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2330 
2331   bool compilerUsedCount(GlobalValue *GV) const {
2332     return CompilerUsed.count(GV);
2333   }
2334 
2335   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2336   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2337   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2338 
2339   bool compilerUsedInsert(GlobalValue *GV) {
2340     return CompilerUsed.insert(GV).second;
2341   }
2342 
2343   void syncVariablesAndSets() {
2344     if (UsedV)
2345       setUsedInitializer(*UsedV, Used);
2346     if (CompilerUsedV)
2347       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2348   }
2349 };
2350 
2351 } // end anonymous namespace
2352 
2353 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2354   if (GA.use_empty()) // No use at all.
2355     return false;
2356 
2357   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2358          "We should have removed the duplicated "
2359          "element from llvm.compiler.used");
2360   if (!GA.hasOneUse())
2361     // Strictly more than one use. So at least one is not in llvm.used and
2362     // llvm.compiler.used.
2363     return true;
2364 
2365   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2366   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2367 }
2368 
2369 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2370                                                const LLVMUsed &U) {
2371   unsigned N = 2;
2372   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2373          "We should have removed the duplicated "
2374          "element from llvm.compiler.used");
2375   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2376     ++N;
2377   return V.hasNUsesOrMore(N);
2378 }
2379 
2380 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2381   if (!GA.hasLocalLinkage())
2382     return true;
2383 
2384   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2385 }
2386 
2387 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2388                              bool &RenameTarget) {
2389   RenameTarget = false;
2390   bool Ret = false;
2391   if (hasUseOtherThanLLVMUsed(GA, U))
2392     Ret = true;
2393 
2394   // If the alias is externally visible, we may still be able to simplify it.
2395   if (!mayHaveOtherReferences(GA, U))
2396     return Ret;
2397 
2398   // If the aliasee has internal linkage, give it the name and linkage
2399   // of the alias, and delete the alias.  This turns:
2400   //   define internal ... @f(...)
2401   //   @a = alias ... @f
2402   // into:
2403   //   define ... @a(...)
2404   Constant *Aliasee = GA.getAliasee();
2405   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2406   if (!Target->hasLocalLinkage())
2407     return Ret;
2408 
2409   // Do not perform the transform if multiple aliases potentially target the
2410   // aliasee. This check also ensures that it is safe to replace the section
2411   // and other attributes of the aliasee with those of the alias.
2412   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2413     return Ret;
2414 
2415   RenameTarget = true;
2416   return true;
2417 }
2418 
2419 static bool
2420 OptimizeGlobalAliases(Module &M,
2421                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2422   bool Changed = false;
2423   LLVMUsed Used(M);
2424 
2425   for (GlobalValue *GV : Used.used())
2426     Used.compilerUsedErase(GV);
2427 
2428   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2429        I != E;) {
2430     GlobalAlias *J = &*I++;
2431 
2432     // Aliases without names cannot be referenced outside this module.
2433     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2434       J->setLinkage(GlobalValue::InternalLinkage);
2435 
2436     if (deleteIfDead(*J, NotDiscardableComdats)) {
2437       Changed = true;
2438       continue;
2439     }
2440 
2441     // If the alias can change at link time, nothing can be done - bail out.
2442     if (J->isInterposable())
2443       continue;
2444 
2445     Constant *Aliasee = J->getAliasee();
2446     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2447     // We can't trivially replace the alias with the aliasee if the aliasee is
2448     // non-trivial in some way. We also can't replace the alias with the aliasee
2449     // if the aliasee is interposable because aliases point to the local
2450     // definition.
2451     // TODO: Try to handle non-zero GEPs of local aliasees.
2452     if (!Target || Target->isInterposable())
2453       continue;
2454     Target->removeDeadConstantUsers();
2455 
2456     // Make all users of the alias use the aliasee instead.
2457     bool RenameTarget;
2458     if (!hasUsesToReplace(*J, Used, RenameTarget))
2459       continue;
2460 
2461     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2462     ++NumAliasesResolved;
2463     Changed = true;
2464 
2465     if (RenameTarget) {
2466       // Give the aliasee the name, linkage and other attributes of the alias.
2467       Target->takeName(&*J);
2468       Target->setLinkage(J->getLinkage());
2469       Target->setDSOLocal(J->isDSOLocal());
2470       Target->setVisibility(J->getVisibility());
2471       Target->setDLLStorageClass(J->getDLLStorageClass());
2472 
2473       if (Used.usedErase(&*J))
2474         Used.usedInsert(Target);
2475 
2476       if (Used.compilerUsedErase(&*J))
2477         Used.compilerUsedInsert(Target);
2478     } else if (mayHaveOtherReferences(*J, Used))
2479       continue;
2480 
2481     // Delete the alias.
2482     M.getAliasList().erase(J);
2483     ++NumAliasesRemoved;
2484     Changed = true;
2485   }
2486 
2487   Used.syncVariablesAndSets();
2488 
2489   return Changed;
2490 }
2491 
2492 static Function *
2493 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2494   // Hack to get a default TLI before we have actual Function.
2495   auto FuncIter = M.begin();
2496   if (FuncIter == M.end())
2497     return nullptr;
2498   auto *TLI = &GetTLI(*FuncIter);
2499 
2500   LibFunc F = LibFunc_cxa_atexit;
2501   if (!TLI->has(F))
2502     return nullptr;
2503 
2504   Function *Fn = M.getFunction(TLI->getName(F));
2505   if (!Fn)
2506     return nullptr;
2507 
2508   // Now get the actual TLI for Fn.
2509   TLI = &GetTLI(*Fn);
2510 
2511   // Make sure that the function has the correct prototype.
2512   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2513     return nullptr;
2514 
2515   return Fn;
2516 }
2517 
2518 /// Returns whether the given function is an empty C++ destructor and can
2519 /// therefore be eliminated.
2520 /// Note that we assume that other optimization passes have already simplified
2521 /// the code so we simply check for 'ret'.
2522 static bool cxxDtorIsEmpty(const Function &Fn) {
2523   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2524   // nounwind, but that doesn't seem worth doing.
2525   if (Fn.isDeclaration())
2526     return false;
2527 
2528   for (auto &I : Fn.getEntryBlock()) {
2529     if (isa<DbgInfoIntrinsic>(I))
2530       continue;
2531     if (isa<ReturnInst>(I))
2532       return true;
2533     break;
2534   }
2535   return false;
2536 }
2537 
2538 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2539   /// Itanium C++ ABI p3.3.5:
2540   ///
2541   ///   After constructing a global (or local static) object, that will require
2542   ///   destruction on exit, a termination function is registered as follows:
2543   ///
2544   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2545   ///
2546   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2547   ///   call f(p) when DSO d is unloaded, before all such termination calls
2548   ///   registered before this one. It returns zero if registration is
2549   ///   successful, nonzero on failure.
2550 
2551   // This pass will look for calls to __cxa_atexit where the function is trivial
2552   // and remove them.
2553   bool Changed = false;
2554 
2555   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2556        I != E;) {
2557     // We're only interested in calls. Theoretically, we could handle invoke
2558     // instructions as well, but neither llvm-gcc nor clang generate invokes
2559     // to __cxa_atexit.
2560     CallInst *CI = dyn_cast<CallInst>(*I++);
2561     if (!CI)
2562       continue;
2563 
2564     Function *DtorFn =
2565       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2566     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2567       continue;
2568 
2569     // Just remove the call.
2570     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2571     CI->eraseFromParent();
2572 
2573     ++NumCXXDtorsRemoved;
2574 
2575     Changed |= true;
2576   }
2577 
2578   return Changed;
2579 }
2580 
2581 static bool optimizeGlobalsInModule(
2582     Module &M, const DataLayout &DL,
2583     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2584     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2585     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2586     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2587   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2588   bool Changed = false;
2589   bool LocalChange = true;
2590   while (LocalChange) {
2591     LocalChange = false;
2592 
2593     NotDiscardableComdats.clear();
2594     for (const GlobalVariable &GV : M.globals())
2595       if (const Comdat *C = GV.getComdat())
2596         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2597           NotDiscardableComdats.insert(C);
2598     for (Function &F : M)
2599       if (const Comdat *C = F.getComdat())
2600         if (!F.isDefTriviallyDead())
2601           NotDiscardableComdats.insert(C);
2602     for (GlobalAlias &GA : M.aliases())
2603       if (const Comdat *C = GA.getComdat())
2604         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2605           NotDiscardableComdats.insert(C);
2606 
2607     // Delete functions that are trivially dead, ccc -> fastcc
2608     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2609                                      NotDiscardableComdats);
2610 
2611     // Optimize global_ctors list.
2612     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2613       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2614     });
2615 
2616     // Optimize non-address-taken globals.
2617     LocalChange |=
2618         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2619 
2620     // Resolve aliases, when possible.
2621     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2622 
2623     // Try to remove trivial global destructors if they are not removed
2624     // already.
2625     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2626     if (CXAAtExitFn)
2627       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2628 
2629     Changed |= LocalChange;
2630   }
2631 
2632   // TODO: Move all global ctors functions to the end of the module for code
2633   // layout.
2634 
2635   return Changed;
2636 }
2637 
2638 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2639     auto &DL = M.getDataLayout();
2640     auto &FAM =
2641         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2642     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2643       return FAM.getResult<DominatorTreeAnalysis>(F);
2644     };
2645     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2646       return FAM.getResult<TargetLibraryAnalysis>(F);
2647     };
2648     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2649       return FAM.getResult<TargetIRAnalysis>(F);
2650     };
2651 
2652     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2653       return FAM.getResult<BlockFrequencyAnalysis>(F);
2654     };
2655 
2656     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2657       return PreservedAnalyses::all();
2658     return PreservedAnalyses::none();
2659 }
2660 
2661 namespace {
2662 
2663 struct GlobalOptLegacyPass : public ModulePass {
2664   static char ID; // Pass identification, replacement for typeid
2665 
2666   GlobalOptLegacyPass() : ModulePass(ID) {
2667     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2668   }
2669 
2670   bool runOnModule(Module &M) override {
2671     if (skipModule(M))
2672       return false;
2673 
2674     auto &DL = M.getDataLayout();
2675     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2676       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2677     };
2678     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2679       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2680     };
2681     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2682       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2683     };
2684 
2685     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2686       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2687     };
2688 
2689     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2690                                    LookupDomTree);
2691   }
2692 
2693   void getAnalysisUsage(AnalysisUsage &AU) const override {
2694     AU.addRequired<TargetLibraryInfoWrapperPass>();
2695     AU.addRequired<TargetTransformInfoWrapperPass>();
2696     AU.addRequired<DominatorTreeWrapperPass>();
2697     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2698   }
2699 };
2700 
2701 } // end anonymous namespace
2702 
2703 char GlobalOptLegacyPass::ID = 0;
2704 
2705 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2706                       "Global Variable Optimizer", false, false)
2707 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2708 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2709 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2710 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2711 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2712                     "Global Variable Optimizer", false, false)
2713 
2714 ModulePass *llvm::createGlobalOptimizerPass() {
2715   return new GlobalOptLegacyPass();
2716 }
2717