xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2),
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (User *U : llvm::make_early_inc_range(GV->users())) {
212     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
213       Value *V = SI->getValueOperand();
214       if (isa<Constant>(V)) {
215         Changed = true;
216         SI->eraseFromParent();
217       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
218         if (I->hasOneUse())
219           Dead.push_back(std::make_pair(I, SI));
220       }
221     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
222       if (isa<Constant>(MSI->getValue())) {
223         Changed = true;
224         MSI->eraseFromParent();
225       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
226         if (I->hasOneUse())
227           Dead.push_back(std::make_pair(I, MSI));
228       }
229     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
230       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
231       if (MemSrc && MemSrc->isConstant()) {
232         Changed = true;
233         MTI->eraseFromParent();
234       } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) {
235         if (I->hasOneUse())
236           Dead.push_back(std::make_pair(I, MTI));
237       }
238     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
239       if (CE->use_empty()) {
240         CE->destroyConstant();
241         Changed = true;
242       }
243     } else if (Constant *C = dyn_cast<Constant>(U)) {
244       if (isSafeToDestroyConstant(C)) {
245         C->destroyConstant();
246         // This could have invalidated UI, start over from scratch.
247         Dead.clear();
248         CleanupPointerRootUsers(GV, GetTLI);
249         return true;
250       }
251     }
252   }
253 
254   for (int i = 0, e = Dead.size(); i != e; ++i) {
255     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
256       Dead[i].second->eraseFromParent();
257       Instruction *I = Dead[i].first;
258       do {
259         if (isAllocationFn(I, GetTLI))
260           break;
261         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
262         if (!J)
263           break;
264         I->eraseFromParent();
265         I = J;
266       } while (true);
267       I->eraseFromParent();
268       Changed = true;
269     }
270   }
271 
272   return Changed;
273 }
274 
275 /// We just marked GV constant.  Loop over all users of the global, cleaning up
276 /// the obvious ones.  This is largely just a quick scan over the use list to
277 /// clean up the easy and obvious cruft.  This returns true if it made a change.
278 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
279                                        const DataLayout &DL) {
280   Constant *Init = GV->getInitializer();
281   SmallVector<User *, 8> WorkList(GV->users());
282   SmallPtrSet<User *, 8> Visited;
283   bool Changed = false;
284 
285   SmallVector<WeakTrackingVH> MaybeDeadInsts;
286   auto EraseFromParent = [&](Instruction *I) {
287     for (Value *Op : I->operands())
288       if (auto *OpI = dyn_cast<Instruction>(Op))
289         MaybeDeadInsts.push_back(OpI);
290     I->eraseFromParent();
291     Changed = true;
292   };
293   while (!WorkList.empty()) {
294     User *U = WorkList.pop_back_val();
295     if (!Visited.insert(U).second)
296       continue;
297 
298     if (auto *BO = dyn_cast<BitCastOperator>(U))
299       append_range(WorkList, BO->users());
300     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
301       append_range(WorkList, ASC->users());
302     else if (auto *GEP = dyn_cast<GEPOperator>(U))
303       append_range(WorkList, GEP->users());
304     else if (auto *LI = dyn_cast<LoadInst>(U)) {
305       // A load from a uniform value is always the same, regardless of any
306       // applied offset.
307       Type *Ty = LI->getType();
308       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
309         LI->replaceAllUsesWith(Res);
310         EraseFromParent(LI);
311         continue;
312       }
313 
314       Value *PtrOp = LI->getPointerOperand();
315       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
316       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
317           DL, Offset, /* AllowNonInbounds */ true);
318       if (PtrOp == GV) {
319         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
320           LI->replaceAllUsesWith(Value);
321           EraseFromParent(LI);
322         }
323       }
324     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325       // Store must be unreachable or storing Init into the global.
326       EraseFromParent(SI);
327     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
328       if (getUnderlyingObject(MI->getRawDest()) == GV)
329         EraseFromParent(MI);
330     }
331   }
332 
333   Changed |=
334       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
335   GV->removeDeadConstantUsers();
336   return Changed;
337 }
338 
339 /// Look at all uses of the global and determine which (offset, type) pairs it
340 /// can be split into.
341 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
342                             const DataLayout &DL) {
343   SmallVector<Use *, 16> Worklist;
344   SmallPtrSet<Use *, 16> Visited;
345   auto AppendUses = [&](Value *V) {
346     for (Use &U : V->uses())
347       if (Visited.insert(&U).second)
348         Worklist.push_back(&U);
349   };
350   AppendUses(GV);
351   while (!Worklist.empty()) {
352     Use *U = Worklist.pop_back_val();
353     User *V = U->getUser();
354 
355     auto *GEP = dyn_cast<GEPOperator>(V);
356     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
357         (GEP && GEP->hasAllConstantIndices())) {
358       AppendUses(V);
359       continue;
360     }
361 
362     if (Value *Ptr = getLoadStorePointerOperand(V)) {
363       // This is storing the global address into somewhere, not storing into
364       // the global.
365       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
366         return false;
367 
368       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
369       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
370                                                    /* AllowNonInbounds */ true);
371       if (Ptr != GV || Offset.getActiveBits() >= 64)
372         return false;
373 
374       // TODO: We currently require that all accesses at a given offset must
375       // use the same type. This could be relaxed.
376       Type *Ty = getLoadStoreType(V);
377       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
378       if (Ty != It->second)
379         return false;
380       continue;
381     }
382 
383     // Ignore dead constant users.
384     if (auto *C = dyn_cast<Constant>(V)) {
385       if (!isSafeToDestroyConstant(C))
386         return false;
387       continue;
388     }
389 
390     // Unknown user.
391     return false;
392   }
393 
394   return true;
395 }
396 
397 /// Copy over the debug info for a variable to its SRA replacements.
398 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
399                                  uint64_t FragmentOffsetInBits,
400                                  uint64_t FragmentSizeInBits,
401                                  uint64_t VarSize) {
402   SmallVector<DIGlobalVariableExpression *, 1> GVs;
403   GV->getDebugInfo(GVs);
404   for (auto *GVE : GVs) {
405     DIVariable *Var = GVE->getVariable();
406     DIExpression *Expr = GVE->getExpression();
407     int64_t CurVarOffsetInBytes = 0;
408     uint64_t CurVarOffsetInBits = 0;
409 
410     // Calculate the offset (Bytes), Continue if unknown.
411     if (!Expr->extractIfOffset(CurVarOffsetInBytes))
412       continue;
413 
414     // Ignore negative offset.
415     if (CurVarOffsetInBytes < 0)
416       continue;
417 
418     // Convert offset to bits.
419     CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes;
420 
421     // Current var starts after the fragment, ignore.
422     if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits))
423       continue;
424 
425     uint64_t CurVarSize = Var->getType()->getSizeInBits();
426     // Current variable ends before start of fragment, ignore.
427     if (CurVarSize != 0 &&
428         (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits)
429       continue;
430 
431     // Current variable fits in the fragment.
432     if (CurVarOffsetInBits == FragmentOffsetInBits &&
433         CurVarSize == FragmentSizeInBits)
434       Expr = DIExpression::get(Expr->getContext(), {});
435     // If the FragmentSize is smaller than the variable,
436     // emit a fragment expression.
437     else if (FragmentSizeInBits < VarSize) {
438       if (auto E = DIExpression::createFragmentExpression(
439               Expr, FragmentOffsetInBits, FragmentSizeInBits))
440         Expr = *E;
441       else
442         return;
443     }
444     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
445     NGV->addDebugInfo(NGVE);
446   }
447 }
448 
449 /// Perform scalar replacement of aggregates on the specified global variable.
450 /// This opens the door for other optimizations by exposing the behavior of the
451 /// program in a more fine-grained way.  We have determined that this
452 /// transformation is safe already.  We return the first global variable we
453 /// insert so that the caller can reprocess it.
454 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
455   assert(GV->hasLocalLinkage());
456 
457   // Collect types to split into.
458   DenseMap<uint64_t, Type *> Types;
459   if (!collectSRATypes(Types, GV, DL) || Types.empty())
460     return nullptr;
461 
462   // Make sure we don't SRA back to the same type.
463   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
464     return nullptr;
465 
466   // Don't perform SRA if we would have to split into many globals.
467   if (Types.size() > 16)
468     return nullptr;
469 
470   // Sort by offset.
471   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
472   append_range(TypesVector, Types);
473   sort(TypesVector, llvm::less_first());
474 
475   // Check that the types are non-overlapping.
476   uint64_t Offset = 0;
477   for (const auto &Pair : TypesVector) {
478     // Overlaps with previous type.
479     if (Pair.first < Offset)
480       return nullptr;
481 
482     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
483   }
484 
485   // Some accesses go beyond the end of the global, don't bother.
486   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
487     return nullptr;
488 
489   // Collect initializers for new globals.
490   Constant *OrigInit = GV->getInitializer();
491   DenseMap<uint64_t, Constant *> Initializers;
492   for (const auto &Pair : Types) {
493     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
494                                                   APInt(64, Pair.first), DL);
495     if (!NewInit) {
496       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
497                         << *GV << " with type " << *Pair.second << " at offset "
498                         << Pair.first << "\n");
499       return nullptr;
500     }
501     Initializers.insert({Pair.first, NewInit});
502   }
503 
504   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
505 
506   // Get the alignment of the global, either explicit or target-specific.
507   Align StartAlignment =
508       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
509   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
510 
511   // Create replacement globals.
512   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
513   unsigned NameSuffix = 0;
514   for (auto &Pair : TypesVector) {
515     uint64_t Offset = Pair.first;
516     Type *Ty = Pair.second;
517     GlobalVariable *NGV = new GlobalVariable(
518         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
519         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
520         GV->getThreadLocalMode(), GV->getAddressSpace());
521     NGV->copyAttributesFrom(GV);
522     NewGlobals.insert({Offset, NGV});
523 
524     // Calculate the known alignment of the field.  If the original aggregate
525     // had 256 byte alignment for example, something might depend on that:
526     // propagate info to each field.
527     Align NewAlign = commonAlignment(StartAlignment, Offset);
528     if (NewAlign > DL.getABITypeAlign(Ty))
529       NGV->setAlignment(NewAlign);
530 
531     // Copy over the debug info for the variable.
532     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
533                          VarSize);
534   }
535 
536   // Replace uses of the original global with uses of the new global.
537   SmallVector<Value *, 16> Worklist;
538   SmallPtrSet<Value *, 16> Visited;
539   SmallVector<WeakTrackingVH, 16> DeadInsts;
540   auto AppendUsers = [&](Value *V) {
541     for (User *U : V->users())
542       if (Visited.insert(U).second)
543         Worklist.push_back(U);
544   };
545   AppendUsers(GV);
546   while (!Worklist.empty()) {
547     Value *V = Worklist.pop_back_val();
548     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
549         isa<GEPOperator>(V)) {
550       AppendUsers(V);
551       if (isa<Instruction>(V))
552         DeadInsts.push_back(V);
553       continue;
554     }
555 
556     if (Value *Ptr = getLoadStorePointerOperand(V)) {
557       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
558       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
559                                                    /* AllowNonInbounds */ true);
560       assert(Ptr == GV && "Load/store must be from/to global");
561       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
562       assert(NGV && "Must have replacement global for this offset");
563 
564       // Update the pointer operand and recalculate alignment.
565       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
566       Align NewAlign =
567           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
568 
569       if (auto *LI = dyn_cast<LoadInst>(V)) {
570         LI->setOperand(0, NGV);
571         LI->setAlignment(NewAlign);
572       } else {
573         auto *SI = cast<StoreInst>(V);
574         SI->setOperand(1, NGV);
575         SI->setAlignment(NewAlign);
576       }
577       continue;
578     }
579 
580     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
581            "Other users can only be dead constants");
582   }
583 
584   // Delete old instructions and global.
585   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
586   GV->removeDeadConstantUsers();
587   GV->eraseFromParent();
588   ++NumSRA;
589 
590   assert(NewGlobals.size() > 0);
591   return NewGlobals.begin()->second;
592 }
593 
594 /// Return true if all users of the specified value will trap if the value is
595 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
596 /// reprocessing them.
597 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
598                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
599   for (const User *U : V->users()) {
600     if (const Instruction *I = dyn_cast<Instruction>(U)) {
601       // If null pointer is considered valid, then all uses are non-trapping.
602       // Non address-space 0 globals have already been pruned by the caller.
603       if (NullPointerIsDefined(I->getFunction()))
604         return false;
605     }
606     if (isa<LoadInst>(U)) {
607       // Will trap.
608     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
609       if (SI->getOperand(0) == V) {
610         return false;  // Storing the value.
611       }
612     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
613       if (CI->getCalledOperand() != V) {
614         return false;  // Not calling the ptr
615       }
616     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
617       if (II->getCalledOperand() != V) {
618         return false;  // Not calling the ptr
619       }
620     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
621       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
622     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
623       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
624     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
625       // If we've already seen this phi node, ignore it, it has already been
626       // checked.
627       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
628         return false;
629     } else if (isa<ICmpInst>(U) &&
630                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
631                isa<LoadInst>(U->getOperand(0)) &&
632                isa<ConstantPointerNull>(U->getOperand(1))) {
633       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
634                                   ->getPointerOperand()
635                                   ->stripPointerCasts()) &&
636              "Should be GlobalVariable");
637       // This and only this kind of non-signed ICmpInst is to be replaced with
638       // the comparing of the value of the created global init bool later in
639       // optimizeGlobalAddressOfAllocation for the global variable.
640     } else {
641       return false;
642     }
643   }
644   return true;
645 }
646 
647 /// Return true if all uses of any loads from GV will trap if the loaded value
648 /// is null.  Note that this also permits comparisons of the loaded value
649 /// against null, as a special case.
650 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
651   SmallVector<const Value *, 4> Worklist;
652   Worklist.push_back(GV);
653   while (!Worklist.empty()) {
654     const Value *P = Worklist.pop_back_val();
655     for (auto *U : P->users()) {
656       if (auto *LI = dyn_cast<LoadInst>(U)) {
657         SmallPtrSet<const PHINode *, 8> PHIs;
658         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
659           return false;
660       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
661         // Ignore stores to the global.
662         if (SI->getPointerOperand() != P)
663           return false;
664       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
665         if (CE->stripPointerCasts() != GV)
666           return false;
667         // Check further the ConstantExpr.
668         Worklist.push_back(CE);
669       } else {
670         // We don't know or understand this user, bail out.
671         return false;
672       }
673     }
674   }
675 
676   return true;
677 }
678 
679 /// Get all the loads/store uses for global variable \p GV.
680 static void allUsesOfLoadAndStores(GlobalVariable *GV,
681                                    SmallVector<Value *, 4> &Uses) {
682   SmallVector<Value *, 4> Worklist;
683   Worklist.push_back(GV);
684   while (!Worklist.empty()) {
685     auto *P = Worklist.pop_back_val();
686     for (auto *U : P->users()) {
687       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
688         Worklist.push_back(CE);
689         continue;
690       }
691 
692       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
693              "Expect only load or store instructions");
694       Uses.push_back(U);
695     }
696   }
697 }
698 
699 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
700   bool Changed = false;
701   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
702     Instruction *I = cast<Instruction>(*UI++);
703     // Uses are non-trapping if null pointer is considered valid.
704     // Non address-space 0 globals are already pruned by the caller.
705     if (NullPointerIsDefined(I->getFunction()))
706       return false;
707     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
708       LI->setOperand(0, NewV);
709       Changed = true;
710     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
711       if (SI->getOperand(1) == V) {
712         SI->setOperand(1, NewV);
713         Changed = true;
714       }
715     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
716       CallBase *CB = cast<CallBase>(I);
717       if (CB->getCalledOperand() == V) {
718         // Calling through the pointer!  Turn into a direct call, but be careful
719         // that the pointer is not also being passed as an argument.
720         CB->setCalledOperand(NewV);
721         Changed = true;
722         bool PassedAsArg = false;
723         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
724           if (CB->getArgOperand(i) == V) {
725             PassedAsArg = true;
726             CB->setArgOperand(i, NewV);
727           }
728 
729         if (PassedAsArg) {
730           // Being passed as an argument also.  Be careful to not invalidate UI!
731           UI = V->user_begin();
732         }
733       }
734     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
735       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
736                                 ConstantExpr::getCast(CI->getOpcode(),
737                                                       NewV, CI->getType()));
738       if (CI->use_empty()) {
739         Changed = true;
740         CI->eraseFromParent();
741       }
742     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
743       // Should handle GEP here.
744       SmallVector<Constant*, 8> Idxs;
745       Idxs.reserve(GEPI->getNumOperands()-1);
746       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
747            i != e; ++i)
748         if (Constant *C = dyn_cast<Constant>(*i))
749           Idxs.push_back(C);
750         else
751           break;
752       if (Idxs.size() == GEPI->getNumOperands()-1)
753         Changed |= OptimizeAwayTrappingUsesOfValue(
754             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
755                                                  NewV, Idxs));
756       if (GEPI->use_empty()) {
757         Changed = true;
758         GEPI->eraseFromParent();
759       }
760     }
761   }
762 
763   return Changed;
764 }
765 
766 /// The specified global has only one non-null value stored into it.  If there
767 /// are uses of the loaded value that would trap if the loaded value is
768 /// dynamically null, then we know that they cannot be reachable with a null
769 /// optimize away the load.
770 static bool OptimizeAwayTrappingUsesOfLoads(
771     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
772     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
773   bool Changed = false;
774 
775   // Keep track of whether we are able to remove all the uses of the global
776   // other than the store that defines it.
777   bool AllNonStoreUsesGone = true;
778 
779   // Replace all uses of loads with uses of uses of the stored value.
780   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
781     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
782       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
783       // If we were able to delete all uses of the loads
784       if (LI->use_empty()) {
785         LI->eraseFromParent();
786         Changed = true;
787       } else {
788         AllNonStoreUsesGone = false;
789       }
790     } else if (isa<StoreInst>(GlobalUser)) {
791       // Ignore the store that stores "LV" to the global.
792       assert(GlobalUser->getOperand(1) == GV &&
793              "Must be storing *to* the global");
794     } else {
795       AllNonStoreUsesGone = false;
796 
797       // If we get here we could have other crazy uses that are transitively
798       // loaded.
799       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
800               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
801               isa<BitCastInst>(GlobalUser) ||
802               isa<GetElementPtrInst>(GlobalUser)) &&
803              "Only expect load and stores!");
804     }
805   }
806 
807   if (Changed) {
808     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
809                       << "\n");
810     ++NumGlobUses;
811   }
812 
813   // If we nuked all of the loads, then none of the stores are needed either,
814   // nor is the global.
815   if (AllNonStoreUsesGone) {
816     if (isLeakCheckerRoot(GV)) {
817       Changed |= CleanupPointerRootUsers(GV, GetTLI);
818     } else {
819       Changed = true;
820       CleanupConstantGlobalUsers(GV, DL);
821     }
822     if (GV->use_empty()) {
823       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
824       Changed = true;
825       GV->eraseFromParent();
826       ++NumDeleted;
827     }
828   }
829   return Changed;
830 }
831 
832 /// Walk the use list of V, constant folding all of the instructions that are
833 /// foldable.
834 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
835                                 TargetLibraryInfo *TLI) {
836   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
837     if (Instruction *I = dyn_cast<Instruction>(*UI++))
838       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
839         I->replaceAllUsesWith(NewC);
840 
841         // Advance UI to the next non-I use to avoid invalidating it!
842         // Instructions could multiply use V.
843         while (UI != E && *UI == I)
844           ++UI;
845         if (isInstructionTriviallyDead(I, TLI))
846           I->eraseFromParent();
847       }
848 }
849 
850 /// This function takes the specified global variable, and transforms the
851 /// program as if it always contained the result of the specified malloc.
852 /// Because it is always the result of the specified malloc, there is no reason
853 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
854 /// loads of GV as uses of the new global.
855 static GlobalVariable *
856 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
857                                   uint64_t AllocSize, Constant *InitVal,
858                                   const DataLayout &DL,
859                                   TargetLibraryInfo *TLI) {
860   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
861                     << '\n');
862 
863   // Create global of type [AllocSize x i8].
864   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
865                                     AllocSize);
866 
867   // Create the new global variable.  The contents of the allocated memory is
868   // undefined initially, so initialize with an undef value.
869   GlobalVariable *NewGV = new GlobalVariable(
870       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
871       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
872       GV->getThreadLocalMode());
873 
874   // Initialize the global at the point of the original call.  Note that this
875   // is a different point from the initialization referred to below for the
876   // nullability handling.  Sublety: We have not proven the original global was
877   // only initialized once.  As such, we can not fold this into the initializer
878   // of the new global as may need to re-init the storage multiple times.
879   if (!isa<UndefValue>(InitVal)) {
880     IRBuilder<> Builder(CI->getNextNode());
881     // TODO: Use alignment above if align!=1
882     Builder.CreateMemSet(NewGV, InitVal, AllocSize, None);
883   }
884 
885   // Update users of the allocation to use the new global instead.
886   BitCastInst *TheBC = nullptr;
887   while (!CI->use_empty()) {
888     Instruction *User = cast<Instruction>(CI->user_back());
889     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
890       if (BCI->getType() == NewGV->getType()) {
891         BCI->replaceAllUsesWith(NewGV);
892         BCI->eraseFromParent();
893       } else {
894         BCI->setOperand(0, NewGV);
895       }
896     } else {
897       if (!TheBC)
898         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
899       User->replaceUsesOfWith(CI, TheBC);
900     }
901   }
902 
903   SmallSetVector<Constant *, 1> RepValues;
904   RepValues.insert(NewGV);
905 
906   // If there is a comparison against null, we will insert a global bool to
907   // keep track of whether the global was initialized yet or not.
908   GlobalVariable *InitBool =
909     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
910                        GlobalValue::InternalLinkage,
911                        ConstantInt::getFalse(GV->getContext()),
912                        GV->getName()+".init", GV->getThreadLocalMode());
913   bool InitBoolUsed = false;
914 
915   // Loop over all instruction uses of GV, processing them in turn.
916   SmallVector<Value *, 4> Guses;
917   allUsesOfLoadAndStores(GV, Guses);
918   for (auto *U : Guses) {
919     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
920       // The global is initialized when the store to it occurs. If the stored
921       // value is null value, the global bool is set to false, otherwise true.
922       new StoreInst(ConstantInt::getBool(
923                         GV->getContext(),
924                         !isa<ConstantPointerNull>(SI->getValueOperand())),
925                     InitBool, false, Align(1), SI->getOrdering(),
926                     SI->getSyncScopeID(), SI);
927       SI->eraseFromParent();
928       continue;
929     }
930 
931     LoadInst *LI = cast<LoadInst>(U);
932     while (!LI->use_empty()) {
933       Use &LoadUse = *LI->use_begin();
934       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
935       if (!ICI) {
936         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
937         RepValues.insert(CE);
938         LoadUse.set(CE);
939         continue;
940       }
941 
942       // Replace the cmp X, 0 with a use of the bool value.
943       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
944                                InitBool->getName() + ".val", false, Align(1),
945                                LI->getOrdering(), LI->getSyncScopeID(), LI);
946       InitBoolUsed = true;
947       switch (ICI->getPredicate()) {
948       default: llvm_unreachable("Unknown ICmp Predicate!");
949       case ICmpInst::ICMP_ULT: // X < null -> always false
950         LV = ConstantInt::getFalse(GV->getContext());
951         break;
952       case ICmpInst::ICMP_UGE: // X >= null -> always true
953         LV = ConstantInt::getTrue(GV->getContext());
954         break;
955       case ICmpInst::ICMP_ULE:
956       case ICmpInst::ICMP_EQ:
957         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
958         break;
959       case ICmpInst::ICMP_NE:
960       case ICmpInst::ICMP_UGT:
961         break;  // no change.
962       }
963       ICI->replaceAllUsesWith(LV);
964       ICI->eraseFromParent();
965     }
966     LI->eraseFromParent();
967   }
968 
969   // If the initialization boolean was used, insert it, otherwise delete it.
970   if (!InitBoolUsed) {
971     while (!InitBool->use_empty())  // Delete initializations
972       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
973     delete InitBool;
974   } else
975     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
976 
977   // Now the GV is dead, nuke it and the allocation..
978   GV->eraseFromParent();
979   CI->eraseFromParent();
980 
981   // To further other optimizations, loop over all users of NewGV and try to
982   // constant prop them.  This will promote GEP instructions with constant
983   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
984   for (auto *CE : RepValues)
985     ConstantPropUsersOf(CE, DL, TLI);
986 
987   return NewGV;
988 }
989 
990 /// Scan the use-list of GV checking to make sure that there are no complex uses
991 /// of GV.  We permit simple things like dereferencing the pointer, but not
992 /// storing through the address, unless it is to the specified global.
993 static bool
994 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
995                                           const GlobalVariable *GV) {
996   SmallPtrSet<const Value *, 4> Visited;
997   SmallVector<const Value *, 4> Worklist;
998   Worklist.push_back(CI);
999 
1000   while (!Worklist.empty()) {
1001     const Value *V = Worklist.pop_back_val();
1002     if (!Visited.insert(V).second)
1003       continue;
1004 
1005     for (const Use &VUse : V->uses()) {
1006       const User *U = VUse.getUser();
1007       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1008         continue; // Fine, ignore.
1009 
1010       if (auto *SI = dyn_cast<StoreInst>(U)) {
1011         if (SI->getValueOperand() == V &&
1012             SI->getPointerOperand()->stripPointerCasts() != GV)
1013           return false; // Storing the pointer not into GV... bad.
1014         continue; // Otherwise, storing through it, or storing into GV... fine.
1015       }
1016 
1017       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1018         Worklist.push_back(BCI);
1019         continue;
1020       }
1021 
1022       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1023         Worklist.push_back(GEPI);
1024         continue;
1025       }
1026 
1027       return false;
1028     }
1029   }
1030 
1031   return true;
1032 }
1033 
1034 /// If we have a global that is only initialized with a fixed size allocation
1035 /// try to transform the program to use global memory instead of heap
1036 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1037 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1038 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1039                                                    CallInst *CI,
1040                                                    const DataLayout &DL,
1041                                                    TargetLibraryInfo *TLI) {
1042   if (!isRemovableAlloc(CI, TLI))
1043     // Must be able to remove the call when we get done..
1044     return false;
1045 
1046   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1047   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1048   if (!InitVal)
1049     // Must be able to emit a memset for initialization
1050     return false;
1051 
1052   uint64_t AllocSize;
1053   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1054     return false;
1055 
1056   // Restrict this transformation to only working on small allocations
1057   // (2048 bytes currently), as we don't want to introduce a 16M global or
1058   // something.
1059   if (AllocSize >= 2048)
1060     return false;
1061 
1062   // We can't optimize this global unless all uses of it are *known* to be
1063   // of the malloc value, not of the null initializer value (consider a use
1064   // that compares the global's value against zero to see if the malloc has
1065   // been reached).  To do this, we check to see if all uses of the global
1066   // would trap if the global were null: this proves that they must all
1067   // happen after the malloc.
1068   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1069     return false;
1070 
1071   // We can't optimize this if the malloc itself is used in a complex way,
1072   // for example, being stored into multiple globals.  This allows the
1073   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1074   // These are all things we could transform to using the global for.
1075   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1076     return false;
1077 
1078   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1079   return true;
1080 }
1081 
1082 // Try to optimize globals based on the knowledge that only one value (besides
1083 // its initializer) is ever stored to the global.
1084 static bool
1085 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1086                          const DataLayout &DL,
1087                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1088   // Ignore no-op GEPs and bitcasts.
1089   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1090 
1091   // If we are dealing with a pointer global that is initialized to null and
1092   // only has one (non-null) value stored into it, then we can optimize any
1093   // users of the loaded value (often calls and loads) that would trap if the
1094   // value was null.
1095   if (GV->getInitializer()->getType()->isPointerTy() &&
1096       GV->getInitializer()->isNullValue() &&
1097       StoredOnceVal->getType()->isPointerTy() &&
1098       !NullPointerIsDefined(
1099           nullptr /* F */,
1100           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1101     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1102       if (GV->getInitializer()->getType() != SOVC->getType())
1103         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1104 
1105       // Optimize away any trapping uses of the loaded value.
1106       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1107         return true;
1108     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1109       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1110         auto *TLI = &GetTLI(*CI->getFunction());
1111         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI))
1112           return true;
1113       }
1114     }
1115   }
1116 
1117   return false;
1118 }
1119 
1120 /// At this point, we have learned that the only two values ever stored into GV
1121 /// are its initializer and OtherVal.  See if we can shrink the global into a
1122 /// boolean and select between the two values whenever it is used.  This exposes
1123 /// the values to other scalar optimizations.
1124 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1125   Type *GVElType = GV->getValueType();
1126 
1127   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1128   // an FP value, pointer or vector, don't do this optimization because a select
1129   // between them is very expensive and unlikely to lead to later
1130   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1131   // where v1 and v2 both require constant pool loads, a big loss.
1132   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1133       GVElType->isFloatingPointTy() ||
1134       GVElType->isPointerTy() || GVElType->isVectorTy())
1135     return false;
1136 
1137   // Walk the use list of the global seeing if all the uses are load or store.
1138   // If there is anything else, bail out.
1139   for (User *U : GV->users()) {
1140     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1141       return false;
1142     if (getLoadStoreType(U) != GVElType)
1143       return false;
1144   }
1145 
1146   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1147 
1148   // Create the new global, initializing it to false.
1149   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1150                                              false,
1151                                              GlobalValue::InternalLinkage,
1152                                         ConstantInt::getFalse(GV->getContext()),
1153                                              GV->getName()+".b",
1154                                              GV->getThreadLocalMode(),
1155                                              GV->getType()->getAddressSpace());
1156   NewGV->copyAttributesFrom(GV);
1157   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1158 
1159   Constant *InitVal = GV->getInitializer();
1160   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1161          "No reason to shrink to bool!");
1162 
1163   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1164   GV->getDebugInfo(GVs);
1165 
1166   // If initialized to zero and storing one into the global, we can use a cast
1167   // instead of a select to synthesize the desired value.
1168   bool IsOneZero = false;
1169   bool EmitOneOrZero = true;
1170   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1171   if (CI && CI->getValue().getActiveBits() <= 64) {
1172     IsOneZero = InitVal->isNullValue() && CI->isOne();
1173 
1174     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1175     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1176       uint64_t ValInit = CIInit->getZExtValue();
1177       uint64_t ValOther = CI->getZExtValue();
1178       uint64_t ValMinus = ValOther - ValInit;
1179 
1180       for(auto *GVe : GVs){
1181         DIGlobalVariable *DGV = GVe->getVariable();
1182         DIExpression *E = GVe->getExpression();
1183         const DataLayout &DL = GV->getParent()->getDataLayout();
1184         unsigned SizeInOctets =
1185             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1186 
1187         // It is expected that the address of global optimized variable is on
1188         // top of the stack. After optimization, value of that variable will
1189         // be ether 0 for initial value or 1 for other value. The following
1190         // expression should return constant integer value depending on the
1191         // value at global object address:
1192         // val * (ValOther - ValInit) + ValInit:
1193         // DW_OP_deref DW_OP_constu <ValMinus>
1194         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1195         SmallVector<uint64_t, 12> Ops = {
1196             dwarf::DW_OP_deref_size, SizeInOctets,
1197             dwarf::DW_OP_constu, ValMinus,
1198             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1199             dwarf::DW_OP_plus};
1200         bool WithStackValue = true;
1201         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1202         DIGlobalVariableExpression *DGVE =
1203           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1204         NewGV->addDebugInfo(DGVE);
1205      }
1206      EmitOneOrZero = false;
1207     }
1208   }
1209 
1210   if (EmitOneOrZero) {
1211      // FIXME: This will only emit address for debugger on which will
1212      // be written only 0 or 1.
1213      for(auto *GV : GVs)
1214        NewGV->addDebugInfo(GV);
1215    }
1216 
1217   while (!GV->use_empty()) {
1218     Instruction *UI = cast<Instruction>(GV->user_back());
1219     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1220       // Change the store into a boolean store.
1221       bool StoringOther = SI->getOperand(0) == OtherVal;
1222       // Only do this if we weren't storing a loaded value.
1223       Value *StoreVal;
1224       if (StoringOther || SI->getOperand(0) == InitVal) {
1225         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1226                                     StoringOther);
1227       } else {
1228         // Otherwise, we are storing a previously loaded copy.  To do this,
1229         // change the copy from copying the original value to just copying the
1230         // bool.
1231         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1232 
1233         // If we've already replaced the input, StoredVal will be a cast or
1234         // select instruction.  If not, it will be a load of the original
1235         // global.
1236         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1237           assert(LI->getOperand(0) == GV && "Not a copy!");
1238           // Insert a new load, to preserve the saved value.
1239           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1240                                   LI->getName() + ".b", false, Align(1),
1241                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1242         } else {
1243           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1244                  "This is not a form that we understand!");
1245           StoreVal = StoredVal->getOperand(0);
1246           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1247         }
1248       }
1249       StoreInst *NSI =
1250           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1251                         SI->getSyncScopeID(), SI);
1252       NSI->setDebugLoc(SI->getDebugLoc());
1253     } else {
1254       // Change the load into a load of bool then a select.
1255       LoadInst *LI = cast<LoadInst>(UI);
1256       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1257                                    LI->getName() + ".b", false, Align(1),
1258                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1259       Instruction *NSI;
1260       if (IsOneZero)
1261         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1262       else
1263         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1264       NSI->takeName(LI);
1265       // Since LI is split into two instructions, NLI and NSI both inherit the
1266       // same DebugLoc
1267       NLI->setDebugLoc(LI->getDebugLoc());
1268       NSI->setDebugLoc(LI->getDebugLoc());
1269       LI->replaceAllUsesWith(NSI);
1270     }
1271     UI->eraseFromParent();
1272   }
1273 
1274   // Retain the name of the old global variable. People who are debugging their
1275   // programs may expect these variables to be named the same.
1276   NewGV->takeName(GV);
1277   GV->eraseFromParent();
1278   return true;
1279 }
1280 
1281 static bool
1282 deleteIfDead(GlobalValue &GV,
1283              SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1284              function_ref<void(Function &)> DeleteFnCallback = nullptr) {
1285   GV.removeDeadConstantUsers();
1286 
1287   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1288     return false;
1289 
1290   if (const Comdat *C = GV.getComdat())
1291     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1292       return false;
1293 
1294   bool Dead;
1295   if (auto *F = dyn_cast<Function>(&GV))
1296     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1297   else
1298     Dead = GV.use_empty();
1299   if (!Dead)
1300     return false;
1301 
1302   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1303   if (auto *F = dyn_cast<Function>(&GV)) {
1304     if (DeleteFnCallback)
1305       DeleteFnCallback(*F);
1306   }
1307   GV.eraseFromParent();
1308   ++NumDeleted;
1309   return true;
1310 }
1311 
1312 static bool isPointerValueDeadOnEntryToFunction(
1313     const Function *F, GlobalValue *GV,
1314     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1315   // Find all uses of GV. We expect them all to be in F, and if we can't
1316   // identify any of the uses we bail out.
1317   //
1318   // On each of these uses, identify if the memory that GV points to is
1319   // used/required/live at the start of the function. If it is not, for example
1320   // if the first thing the function does is store to the GV, the GV can
1321   // possibly be demoted.
1322   //
1323   // We don't do an exhaustive search for memory operations - simply look
1324   // through bitcasts as they're quite common and benign.
1325   const DataLayout &DL = GV->getParent()->getDataLayout();
1326   SmallVector<LoadInst *, 4> Loads;
1327   SmallVector<StoreInst *, 4> Stores;
1328   for (auto *U : GV->users()) {
1329     if (Operator::getOpcode(U) == Instruction::BitCast) {
1330       for (auto *UU : U->users()) {
1331         if (auto *LI = dyn_cast<LoadInst>(UU))
1332           Loads.push_back(LI);
1333         else if (auto *SI = dyn_cast<StoreInst>(UU))
1334           Stores.push_back(SI);
1335         else
1336           return false;
1337       }
1338       continue;
1339     }
1340 
1341     Instruction *I = dyn_cast<Instruction>(U);
1342     if (!I)
1343       return false;
1344     assert(I->getParent()->getParent() == F);
1345 
1346     if (auto *LI = dyn_cast<LoadInst>(I))
1347       Loads.push_back(LI);
1348     else if (auto *SI = dyn_cast<StoreInst>(I))
1349       Stores.push_back(SI);
1350     else
1351       return false;
1352   }
1353 
1354   // We have identified all uses of GV into loads and stores. Now check if all
1355   // of them are known not to depend on the value of the global at the function
1356   // entry point. We do this by ensuring that every load is dominated by at
1357   // least one store.
1358   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1359 
1360   // The below check is quadratic. Check we're not going to do too many tests.
1361   // FIXME: Even though this will always have worst-case quadratic time, we
1362   // could put effort into minimizing the average time by putting stores that
1363   // have been shown to dominate at least one load at the beginning of the
1364   // Stores array, making subsequent dominance checks more likely to succeed
1365   // early.
1366   //
1367   // The threshold here is fairly large because global->local demotion is a
1368   // very powerful optimization should it fire.
1369   const unsigned Threshold = 100;
1370   if (Loads.size() * Stores.size() > Threshold)
1371     return false;
1372 
1373   for (auto *L : Loads) {
1374     auto *LTy = L->getType();
1375     if (none_of(Stores, [&](const StoreInst *S) {
1376           auto *STy = S->getValueOperand()->getType();
1377           // The load is only dominated by the store if DomTree says so
1378           // and the number of bits loaded in L is less than or equal to
1379           // the number of bits stored in S.
1380           return DT.dominates(S, L) &&
1381                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1382                      DL.getTypeStoreSize(STy).getFixedSize();
1383         }))
1384       return false;
1385   }
1386   // All loads have known dependences inside F, so the global can be localized.
1387   return true;
1388 }
1389 
1390 /// C may have non-instruction users. Can all of those users be turned into
1391 /// instructions?
1392 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1393   // We don't do this exhaustively. The most common pattern that we really need
1394   // to care about is a constant GEP or constant bitcast - so just looking
1395   // through one single ConstantExpr.
1396   //
1397   // The set of constants that this function returns true for must be able to be
1398   // handled by makeAllConstantUsesInstructions.
1399   for (auto *U : C->users()) {
1400     if (isa<Instruction>(U))
1401       continue;
1402     if (!isa<ConstantExpr>(U))
1403       // Non instruction, non-constantexpr user; cannot convert this.
1404       return false;
1405     for (auto *UU : U->users())
1406       if (!isa<Instruction>(UU))
1407         // A constantexpr used by another constant. We don't try and recurse any
1408         // further but just bail out at this point.
1409         return false;
1410   }
1411 
1412   return true;
1413 }
1414 
1415 /// C may have non-instruction users, and
1416 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1417 /// non-instruction users to instructions.
1418 static void makeAllConstantUsesInstructions(Constant *C) {
1419   SmallVector<ConstantExpr*,4> Users;
1420   for (auto *U : C->users()) {
1421     if (isa<ConstantExpr>(U))
1422       Users.push_back(cast<ConstantExpr>(U));
1423     else
1424       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1425       // should not have returned true for C.
1426       assert(
1427           isa<Instruction>(U) &&
1428           "Can't transform non-constantexpr non-instruction to instruction!");
1429   }
1430 
1431   SmallVector<Value*,4> UUsers;
1432   for (auto *U : Users) {
1433     UUsers.clear();
1434     append_range(UUsers, U->users());
1435     for (auto *UU : UUsers) {
1436       Instruction *UI = cast<Instruction>(UU);
1437       Instruction *NewU = U->getAsInstruction(UI);
1438       UI->replaceUsesOfWith(U, NewU);
1439     }
1440     // We've replaced all the uses, so destroy the constant. (destroyConstant
1441     // will update value handles and metadata.)
1442     U->destroyConstant();
1443   }
1444 }
1445 
1446 // For a global variable with one store, if the store dominates any loads,
1447 // those loads will always load the stored value (as opposed to the
1448 // initializer), even in the presence of recursion.
1449 static bool forwardStoredOnceStore(
1450     GlobalVariable *GV, const StoreInst *StoredOnceStore,
1451     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1452   const Value *StoredOnceValue = StoredOnceStore->getValueOperand();
1453   // We can do this optimization for non-constants in nosync + norecurse
1454   // functions, but globals used in exactly one norecurse functions are already
1455   // promoted to an alloca.
1456   if (!isa<Constant>(StoredOnceValue))
1457     return false;
1458   const Function *F = StoredOnceStore->getFunction();
1459   SmallVector<LoadInst *> Loads;
1460   for (User *U : GV->users()) {
1461     if (auto *LI = dyn_cast<LoadInst>(U)) {
1462       if (LI->getFunction() == F &&
1463           LI->getType() == StoredOnceValue->getType() && LI->isSimple())
1464         Loads.push_back(LI);
1465     }
1466   }
1467   // Only compute DT if we have any loads to examine.
1468   bool MadeChange = false;
1469   if (!Loads.empty()) {
1470     auto &DT = LookupDomTree(*const_cast<Function *>(F));
1471     for (auto *LI : Loads) {
1472       if (DT.dominates(StoredOnceStore, LI)) {
1473         LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue));
1474         LI->eraseFromParent();
1475         MadeChange = true;
1476       }
1477     }
1478   }
1479   return MadeChange;
1480 }
1481 
1482 /// Analyze the specified global variable and optimize
1483 /// it if possible.  If we make a change, return true.
1484 static bool
1485 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1486                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1487                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1488                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1489   auto &DL = GV->getParent()->getDataLayout();
1490   // If this is a first class global and has only one accessing function and
1491   // this function is non-recursive, we replace the global with a local alloca
1492   // in this function.
1493   //
1494   // NOTE: It doesn't make sense to promote non-single-value types since we
1495   // are just replacing static memory to stack memory.
1496   //
1497   // If the global is in different address space, don't bring it to stack.
1498   if (!GS.HasMultipleAccessingFunctions &&
1499       GS.AccessingFunction &&
1500       GV->getValueType()->isSingleValueType() &&
1501       GV->getType()->getAddressSpace() == 0 &&
1502       !GV->isExternallyInitialized() &&
1503       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1504       GS.AccessingFunction->doesNotRecurse() &&
1505       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1506                                           LookupDomTree)) {
1507     const DataLayout &DL = GV->getParent()->getDataLayout();
1508 
1509     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1510     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1511                                                    ->getEntryBlock().begin());
1512     Type *ElemTy = GV->getValueType();
1513     // FIXME: Pass Global's alignment when globals have alignment
1514     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1515                                         GV->getName(), &FirstI);
1516     if (!isa<UndefValue>(GV->getInitializer()))
1517       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1518 
1519     makeAllConstantUsesInstructions(GV);
1520 
1521     GV->replaceAllUsesWith(Alloca);
1522     GV->eraseFromParent();
1523     ++NumLocalized;
1524     return true;
1525   }
1526 
1527   bool Changed = false;
1528 
1529   // If the global is never loaded (but may be stored to), it is dead.
1530   // Delete it now.
1531   if (!GS.IsLoaded) {
1532     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1533 
1534     if (isLeakCheckerRoot(GV)) {
1535       // Delete any constant stores to the global.
1536       Changed = CleanupPointerRootUsers(GV, GetTLI);
1537     } else {
1538       // Delete any stores we can find to the global.  We may not be able to
1539       // make it completely dead though.
1540       Changed = CleanupConstantGlobalUsers(GV, DL);
1541     }
1542 
1543     // If the global is dead now, delete it.
1544     if (GV->use_empty()) {
1545       GV->eraseFromParent();
1546       ++NumDeleted;
1547       Changed = true;
1548     }
1549     return Changed;
1550 
1551   }
1552   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1553     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1554 
1555     // Don't actually mark a global constant if it's atomic because atomic loads
1556     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1557     // requires write access to the variable even if it's not actually changed.
1558     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1559       assert(!GV->isConstant() && "Expected a non-constant global");
1560       GV->setConstant(true);
1561       Changed = true;
1562     }
1563 
1564     // Clean up any obviously simplifiable users now.
1565     Changed |= CleanupConstantGlobalUsers(GV, DL);
1566 
1567     // If the global is dead now, just nuke it.
1568     if (GV->use_empty()) {
1569       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1570                         << "all users and delete global!\n");
1571       GV->eraseFromParent();
1572       ++NumDeleted;
1573       return true;
1574     }
1575 
1576     // Fall through to the next check; see if we can optimize further.
1577     ++NumMarked;
1578   }
1579   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1580     const DataLayout &DL = GV->getParent()->getDataLayout();
1581     if (SRAGlobal(GV, DL))
1582       return true;
1583   }
1584   Value *StoredOnceValue = GS.getStoredOnceValue();
1585   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1586     Function &StoreFn =
1587         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1588     bool CanHaveNonUndefGlobalInitializer =
1589         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1590             GV->getType()->getAddressSpace());
1591     // If the initial value for the global was an undef value, and if only
1592     // one other value was stored into it, we can just change the
1593     // initializer to be the stored value, then delete all stores to the
1594     // global.  This allows us to mark it constant.
1595     // This is restricted to address spaces that allow globals to have
1596     // initializers. NVPTX, for example, does not support initializers for
1597     // shared memory (AS 3).
1598     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1599     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1600         DL.getTypeAllocSize(SOVConstant->getType()) ==
1601             DL.getTypeAllocSize(GV->getValueType()) &&
1602         CanHaveNonUndefGlobalInitializer) {
1603       if (SOVConstant->getType() == GV->getValueType()) {
1604         // Change the initializer in place.
1605         GV->setInitializer(SOVConstant);
1606       } else {
1607         // Create a new global with adjusted type.
1608         auto *NGV = new GlobalVariable(
1609             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1610             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1611             GV->getAddressSpace());
1612         NGV->takeName(GV);
1613         NGV->copyAttributesFrom(GV);
1614         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1615         GV->eraseFromParent();
1616         GV = NGV;
1617       }
1618 
1619       // Clean up any obviously simplifiable users now.
1620       CleanupConstantGlobalUsers(GV, DL);
1621 
1622       if (GV->use_empty()) {
1623         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1624                           << "simplify all users and delete global!\n");
1625         GV->eraseFromParent();
1626         ++NumDeleted;
1627       }
1628       ++NumSubstitute;
1629       return true;
1630     }
1631 
1632     // Try to optimize globals based on the knowledge that only one value
1633     // (besides its initializer) is ever stored to the global.
1634     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI))
1635       return true;
1636 
1637     // Try to forward the store to any loads. If we have more than one store, we
1638     // may have a store of the initializer between StoredOnceStore and a load.
1639     if (GS.NumStores == 1)
1640       if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree))
1641         return true;
1642 
1643     // Otherwise, if the global was not a boolean, we can shrink it to be a
1644     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1645     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1646         (!isa<UndefValue>(GV->getInitializer()) ||
1647          CanHaveNonUndefGlobalInitializer)) {
1648       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1649         ++NumShrunkToBool;
1650         return true;
1651       }
1652     }
1653   }
1654 
1655   return Changed;
1656 }
1657 
1658 /// Analyze the specified global variable and optimize it if possible.  If we
1659 /// make a change, return true.
1660 static bool
1661 processGlobal(GlobalValue &GV,
1662               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1663               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1664               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1665   if (GV.getName().startswith("llvm."))
1666     return false;
1667 
1668   GlobalStatus GS;
1669 
1670   if (GlobalStatus::analyzeGlobal(&GV, GS))
1671     return false;
1672 
1673   bool Changed = false;
1674   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1675     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1676                                                : GlobalValue::UnnamedAddr::Local;
1677     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1678       GV.setUnnamedAddr(NewUnnamedAddr);
1679       NumUnnamed++;
1680       Changed = true;
1681     }
1682   }
1683 
1684   // Do more involved optimizations if the global is internal.
1685   if (!GV.hasLocalLinkage())
1686     return Changed;
1687 
1688   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1689   if (!GVar)
1690     return Changed;
1691 
1692   if (GVar->isConstant() || !GVar->hasInitializer())
1693     return Changed;
1694 
1695   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1696          Changed;
1697 }
1698 
1699 /// Walk all of the direct calls of the specified function, changing them to
1700 /// FastCC.
1701 static void ChangeCalleesToFastCall(Function *F) {
1702   for (User *U : F->users()) {
1703     if (isa<BlockAddress>(U))
1704       continue;
1705     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1706   }
1707 }
1708 
1709 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1710                                Attribute::AttrKind A) {
1711   unsigned AttrIndex;
1712   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1713     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1714   return Attrs;
1715 }
1716 
1717 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1718   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1719   for (User *U : F->users()) {
1720     if (isa<BlockAddress>(U))
1721       continue;
1722     CallBase *CB = cast<CallBase>(U);
1723     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1724   }
1725 }
1726 
1727 /// Return true if this is a calling convention that we'd like to change.  The
1728 /// idea here is that we don't want to mess with the convention if the user
1729 /// explicitly requested something with performance implications like coldcc,
1730 /// GHC, or anyregcc.
1731 static bool hasChangeableCC(Function *F) {
1732   CallingConv::ID CC = F->getCallingConv();
1733 
1734   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1735   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1736     return false;
1737 
1738   // FIXME: Change CC for the whole chain of musttail calls when possible.
1739   //
1740   // Can't change CC of the function that either has musttail calls, or is a
1741   // musttail callee itself
1742   for (User *U : F->users()) {
1743     if (isa<BlockAddress>(U))
1744       continue;
1745     CallInst* CI = dyn_cast<CallInst>(U);
1746     if (!CI)
1747       continue;
1748 
1749     if (CI->isMustTailCall())
1750       return false;
1751   }
1752 
1753   for (BasicBlock &BB : *F)
1754     if (BB.getTerminatingMustTailCall())
1755       return false;
1756 
1757   return true;
1758 }
1759 
1760 /// Return true if the block containing the call site has a BlockFrequency of
1761 /// less than ColdCCRelFreq% of the entry block.
1762 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1763   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1764   auto *CallSiteBB = CB.getParent();
1765   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1766   auto CallerEntryFreq =
1767       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1768   return CallSiteFreq < CallerEntryFreq * ColdProb;
1769 }
1770 
1771 // This function checks if the input function F is cold at all call sites. It
1772 // also looks each call site's containing function, returning false if the
1773 // caller function contains other non cold calls. The input vector AllCallsCold
1774 // contains a list of functions that only have call sites in cold blocks.
1775 static bool
1776 isValidCandidateForColdCC(Function &F,
1777                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1778                           const std::vector<Function *> &AllCallsCold) {
1779 
1780   if (F.user_empty())
1781     return false;
1782 
1783   for (User *U : F.users()) {
1784     if (isa<BlockAddress>(U))
1785       continue;
1786 
1787     CallBase &CB = cast<CallBase>(*U);
1788     Function *CallerFunc = CB.getParent()->getParent();
1789     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1790     if (!isColdCallSite(CB, CallerBFI))
1791       return false;
1792     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1793       return false;
1794   }
1795   return true;
1796 }
1797 
1798 static void changeCallSitesToColdCC(Function *F) {
1799   for (User *U : F->users()) {
1800     if (isa<BlockAddress>(U))
1801       continue;
1802     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1803   }
1804 }
1805 
1806 // This function iterates over all the call instructions in the input Function
1807 // and checks that all call sites are in cold blocks and are allowed to use the
1808 // coldcc calling convention.
1809 static bool
1810 hasOnlyColdCalls(Function &F,
1811                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1812   for (BasicBlock &BB : F) {
1813     for (Instruction &I : BB) {
1814       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1815         // Skip over isline asm instructions since they aren't function calls.
1816         if (CI->isInlineAsm())
1817           continue;
1818         Function *CalledFn = CI->getCalledFunction();
1819         if (!CalledFn)
1820           return false;
1821         if (!CalledFn->hasLocalLinkage())
1822           return false;
1823         // Skip over intrinsics since they won't remain as function calls.
1824         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1825           continue;
1826         // Check if it's valid to use coldcc calling convention.
1827         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1828             CalledFn->hasAddressTaken())
1829           return false;
1830         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1831         if (!isColdCallSite(*CI, CallerBFI))
1832           return false;
1833       }
1834     }
1835   }
1836   return true;
1837 }
1838 
1839 static bool hasMustTailCallers(Function *F) {
1840   for (User *U : F->users()) {
1841     CallBase *CB = dyn_cast<CallBase>(U);
1842     if (!CB) {
1843       assert(isa<BlockAddress>(U) &&
1844              "Expected either CallBase or BlockAddress");
1845       continue;
1846     }
1847     if (CB->isMustTailCall())
1848       return true;
1849   }
1850   return false;
1851 }
1852 
1853 static bool hasInvokeCallers(Function *F) {
1854   for (User *U : F->users())
1855     if (isa<InvokeInst>(U))
1856       return true;
1857   return false;
1858 }
1859 
1860 static void RemovePreallocated(Function *F) {
1861   RemoveAttribute(F, Attribute::Preallocated);
1862 
1863   auto *M = F->getParent();
1864 
1865   IRBuilder<> Builder(M->getContext());
1866 
1867   // Cannot modify users() while iterating over it, so make a copy.
1868   SmallVector<User *, 4> PreallocatedCalls(F->users());
1869   for (User *U : PreallocatedCalls) {
1870     CallBase *CB = dyn_cast<CallBase>(U);
1871     if (!CB)
1872       continue;
1873 
1874     assert(
1875         !CB->isMustTailCall() &&
1876         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1877     // Create copy of call without "preallocated" operand bundle.
1878     SmallVector<OperandBundleDef, 1> OpBundles;
1879     CB->getOperandBundlesAsDefs(OpBundles);
1880     CallBase *PreallocatedSetup = nullptr;
1881     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1882       if (It->getTag() == "preallocated") {
1883         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1884         OpBundles.erase(It);
1885         break;
1886       }
1887     }
1888     assert(PreallocatedSetup && "Did not find preallocated bundle");
1889     uint64_t ArgCount =
1890         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1891 
1892     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1893            "Unknown indirect call type");
1894     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1895     CB->replaceAllUsesWith(NewCB);
1896     NewCB->takeName(CB);
1897     CB->eraseFromParent();
1898 
1899     Builder.SetInsertPoint(PreallocatedSetup);
1900     auto *StackSave =
1901         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1902 
1903     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1904     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1905                        StackSave);
1906 
1907     // Replace @llvm.call.preallocated.arg() with alloca.
1908     // Cannot modify users() while iterating over it, so make a copy.
1909     // @llvm.call.preallocated.arg() can be called with the same index multiple
1910     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1911     // already created a Value* for the index, and if not, create an alloca and
1912     // bitcast right after the @llvm.call.preallocated.setup() so that it
1913     // dominates all uses.
1914     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1915     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1916     for (auto *User : PreallocatedArgs) {
1917       auto *UseCall = cast<CallBase>(User);
1918       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1919                  Intrinsic::call_preallocated_arg &&
1920              "preallocated token use was not a llvm.call.preallocated.arg");
1921       uint64_t AllocArgIndex =
1922           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1923       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1924       if (!AllocaReplacement) {
1925         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1926         auto *ArgType =
1927             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1928         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1929         Builder.SetInsertPoint(InsertBefore);
1930         auto *Alloca =
1931             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1932         auto *BitCast = Builder.CreateBitCast(
1933             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1934         ArgAllocas[AllocArgIndex] = BitCast;
1935         AllocaReplacement = BitCast;
1936       }
1937 
1938       UseCall->replaceAllUsesWith(AllocaReplacement);
1939       UseCall->eraseFromParent();
1940     }
1941     // Remove @llvm.call.preallocated.setup().
1942     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1943   }
1944 }
1945 
1946 static bool
1947 OptimizeFunctions(Module &M,
1948                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1949                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1950                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1951                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1952                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1953                   function_ref<void(Function &F)> ChangedCFGCallback,
1954                   function_ref<void(Function &F)> DeleteFnCallback) {
1955 
1956   bool Changed = false;
1957 
1958   std::vector<Function *> AllCallsCold;
1959   for (Function &F : llvm::make_early_inc_range(M))
1960     if (hasOnlyColdCalls(F, GetBFI))
1961       AllCallsCold.push_back(&F);
1962 
1963   // Optimize functions.
1964   for (Function &F : llvm::make_early_inc_range(M)) {
1965     // Don't perform global opt pass on naked functions; we don't want fast
1966     // calling conventions for naked functions.
1967     if (F.hasFnAttribute(Attribute::Naked))
1968       continue;
1969 
1970     // Functions without names cannot be referenced outside this module.
1971     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1972       F.setLinkage(GlobalValue::InternalLinkage);
1973 
1974     if (deleteIfDead(F, NotDiscardableComdats, DeleteFnCallback)) {
1975       Changed = true;
1976       continue;
1977     }
1978 
1979     // LLVM's definition of dominance allows instructions that are cyclic
1980     // in unreachable blocks, e.g.:
1981     // %pat = select i1 %condition, @global, i16* %pat
1982     // because any instruction dominates an instruction in a block that's
1983     // not reachable from entry.
1984     // So, remove unreachable blocks from the function, because a) there's
1985     // no point in analyzing them and b) GlobalOpt should otherwise grow
1986     // some more complicated logic to break these cycles.
1987     // Notify the analysis manager that we've modified the function's CFG.
1988     if (!F.isDeclaration()) {
1989       if (removeUnreachableBlocks(F)) {
1990         Changed = true;
1991         ChangedCFGCallback(F);
1992       }
1993     }
1994 
1995     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1996 
1997     if (!F.hasLocalLinkage())
1998       continue;
1999 
2000     // If we have an inalloca parameter that we can safely remove the
2001     // inalloca attribute from, do so. This unlocks optimizations that
2002     // wouldn't be safe in the presence of inalloca.
2003     // FIXME: We should also hoist alloca affected by this to the entry
2004     // block if possible.
2005     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2006         !F.hasAddressTaken() && !hasMustTailCallers(&F) && !F.isVarArg()) {
2007       RemoveAttribute(&F, Attribute::InAlloca);
2008       Changed = true;
2009     }
2010 
2011     // FIXME: handle invokes
2012     // FIXME: handle musttail
2013     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2014       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
2015           !hasInvokeCallers(&F)) {
2016         RemovePreallocated(&F);
2017         Changed = true;
2018       }
2019       continue;
2020     }
2021 
2022     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2023       NumInternalFunc++;
2024       TargetTransformInfo &TTI = GetTTI(F);
2025       // Change the calling convention to coldcc if either stress testing is
2026       // enabled or the target would like to use coldcc on functions which are
2027       // cold at all call sites and the callers contain no other non coldcc
2028       // calls.
2029       if (EnableColdCCStressTest ||
2030           (TTI.useColdCCForColdCall(F) &&
2031            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2032         F.setCallingConv(CallingConv::Cold);
2033         changeCallSitesToColdCC(&F);
2034         Changed = true;
2035         NumColdCC++;
2036       }
2037     }
2038 
2039     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2040       // If this function has a calling convention worth changing, is not a
2041       // varargs function, and is only called directly, promote it to use the
2042       // Fast calling convention.
2043       F.setCallingConv(CallingConv::Fast);
2044       ChangeCalleesToFastCall(&F);
2045       ++NumFastCallFns;
2046       Changed = true;
2047     }
2048 
2049     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2050         !F.hasAddressTaken()) {
2051       // The function is not used by a trampoline intrinsic, so it is safe
2052       // to remove the 'nest' attribute.
2053       RemoveAttribute(&F, Attribute::Nest);
2054       ++NumNestRemoved;
2055       Changed = true;
2056     }
2057   }
2058   return Changed;
2059 }
2060 
2061 static bool
2062 OptimizeGlobalVars(Module &M,
2063                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2064                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2065                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2066                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2067   bool Changed = false;
2068 
2069   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2070     // Global variables without names cannot be referenced outside this module.
2071     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2072       GV.setLinkage(GlobalValue::InternalLinkage);
2073     // Simplify the initializer.
2074     if (GV.hasInitializer())
2075       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2076         auto &DL = M.getDataLayout();
2077         // TLI is not used in the case of a Constant, so use default nullptr
2078         // for that optional parameter, since we don't have a Function to
2079         // provide GetTLI anyway.
2080         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2081         if (New != C)
2082           GV.setInitializer(New);
2083       }
2084 
2085     if (deleteIfDead(GV, NotDiscardableComdats)) {
2086       Changed = true;
2087       continue;
2088     }
2089 
2090     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2091   }
2092   return Changed;
2093 }
2094 
2095 /// Evaluate static constructors in the function, if we can.  Return true if we
2096 /// can, false otherwise.
2097 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2098                                       TargetLibraryInfo *TLI) {
2099   // Skip external functions.
2100   if (F->isDeclaration())
2101     return false;
2102   // Call the function.
2103   Evaluator Eval(DL, TLI);
2104   Constant *RetValDummy;
2105   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2106                                            SmallVector<Constant*, 0>());
2107 
2108   if (EvalSuccess) {
2109     ++NumCtorsEvaluated;
2110 
2111     // We succeeded at evaluation: commit the result.
2112     auto NewInitializers = Eval.getMutatedInitializers();
2113     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2114                       << F->getName() << "' to " << NewInitializers.size()
2115                       << " stores.\n");
2116     for (const auto &Pair : NewInitializers)
2117       Pair.first->setInitializer(Pair.second);
2118     for (GlobalVariable *GV : Eval.getInvariants())
2119       GV->setConstant(true);
2120   }
2121 
2122   return EvalSuccess;
2123 }
2124 
2125 static int compareNames(Constant *const *A, Constant *const *B) {
2126   Value *AStripped = (*A)->stripPointerCasts();
2127   Value *BStripped = (*B)->stripPointerCasts();
2128   return AStripped->getName().compare(BStripped->getName());
2129 }
2130 
2131 static void setUsedInitializer(GlobalVariable &V,
2132                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2133   if (Init.empty()) {
2134     V.eraseFromParent();
2135     return;
2136   }
2137 
2138   // Type of pointer to the array of pointers.
2139   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2140 
2141   SmallVector<Constant *, 8> UsedArray;
2142   for (GlobalValue *GV : Init) {
2143     Constant *Cast
2144       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2145     UsedArray.push_back(Cast);
2146   }
2147   // Sort to get deterministic order.
2148   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2149   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2150 
2151   Module *M = V.getParent();
2152   V.removeFromParent();
2153   GlobalVariable *NV =
2154       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2155                          ConstantArray::get(ATy, UsedArray), "");
2156   NV->takeName(&V);
2157   NV->setSection("llvm.metadata");
2158   delete &V;
2159 }
2160 
2161 namespace {
2162 
2163 /// An easy to access representation of llvm.used and llvm.compiler.used.
2164 class LLVMUsed {
2165   SmallPtrSet<GlobalValue *, 4> Used;
2166   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2167   GlobalVariable *UsedV;
2168   GlobalVariable *CompilerUsedV;
2169 
2170 public:
2171   LLVMUsed(Module &M) {
2172     SmallVector<GlobalValue *, 4> Vec;
2173     UsedV = collectUsedGlobalVariables(M, Vec, false);
2174     Used = {Vec.begin(), Vec.end()};
2175     Vec.clear();
2176     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2177     CompilerUsed = {Vec.begin(), Vec.end()};
2178   }
2179 
2180   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2181   using used_iterator_range = iterator_range<iterator>;
2182 
2183   iterator usedBegin() { return Used.begin(); }
2184   iterator usedEnd() { return Used.end(); }
2185 
2186   used_iterator_range used() {
2187     return used_iterator_range(usedBegin(), usedEnd());
2188   }
2189 
2190   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2191   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2192 
2193   used_iterator_range compilerUsed() {
2194     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2195   }
2196 
2197   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2198 
2199   bool compilerUsedCount(GlobalValue *GV) const {
2200     return CompilerUsed.count(GV);
2201   }
2202 
2203   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2204   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2205   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2206 
2207   bool compilerUsedInsert(GlobalValue *GV) {
2208     return CompilerUsed.insert(GV).second;
2209   }
2210 
2211   void syncVariablesAndSets() {
2212     if (UsedV)
2213       setUsedInitializer(*UsedV, Used);
2214     if (CompilerUsedV)
2215       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2216   }
2217 };
2218 
2219 } // end anonymous namespace
2220 
2221 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2222   if (GA.use_empty()) // No use at all.
2223     return false;
2224 
2225   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2226          "We should have removed the duplicated "
2227          "element from llvm.compiler.used");
2228   if (!GA.hasOneUse())
2229     // Strictly more than one use. So at least one is not in llvm.used and
2230     // llvm.compiler.used.
2231     return true;
2232 
2233   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2234   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2235 }
2236 
2237 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2238                                                const LLVMUsed &U) {
2239   unsigned N = 2;
2240   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2241          "We should have removed the duplicated "
2242          "element from llvm.compiler.used");
2243   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2244     ++N;
2245   return V.hasNUsesOrMore(N);
2246 }
2247 
2248 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2249   if (!GA.hasLocalLinkage())
2250     return true;
2251 
2252   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2253 }
2254 
2255 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2256                              bool &RenameTarget) {
2257   RenameTarget = false;
2258   bool Ret = false;
2259   if (hasUseOtherThanLLVMUsed(GA, U))
2260     Ret = true;
2261 
2262   // If the alias is externally visible, we may still be able to simplify it.
2263   if (!mayHaveOtherReferences(GA, U))
2264     return Ret;
2265 
2266   // If the aliasee has internal linkage, give it the name and linkage
2267   // of the alias, and delete the alias.  This turns:
2268   //   define internal ... @f(...)
2269   //   @a = alias ... @f
2270   // into:
2271   //   define ... @a(...)
2272   Constant *Aliasee = GA.getAliasee();
2273   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2274   if (!Target->hasLocalLinkage())
2275     return Ret;
2276 
2277   // Do not perform the transform if multiple aliases potentially target the
2278   // aliasee. This check also ensures that it is safe to replace the section
2279   // and other attributes of the aliasee with those of the alias.
2280   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2281     return Ret;
2282 
2283   RenameTarget = true;
2284   return true;
2285 }
2286 
2287 static bool
2288 OptimizeGlobalAliases(Module &M,
2289                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2290   bool Changed = false;
2291   LLVMUsed Used(M);
2292 
2293   for (GlobalValue *GV : Used.used())
2294     Used.compilerUsedErase(GV);
2295 
2296   // Return whether GV is explicitly or implicitly dso_local and not replaceable
2297   // by another definition in the current linkage unit.
2298   auto IsModuleLocal = [](GlobalValue &GV) {
2299     return !GlobalValue::isInterposableLinkage(GV.getLinkage()) &&
2300            (GV.isDSOLocal() || GV.isImplicitDSOLocal());
2301   };
2302 
2303   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2304     // Aliases without names cannot be referenced outside this module.
2305     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2306       J.setLinkage(GlobalValue::InternalLinkage);
2307 
2308     if (deleteIfDead(J, NotDiscardableComdats)) {
2309       Changed = true;
2310       continue;
2311     }
2312 
2313     // If the alias can change at link time, nothing can be done - bail out.
2314     if (!IsModuleLocal(J))
2315       continue;
2316 
2317     Constant *Aliasee = J.getAliasee();
2318     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2319     // We can't trivially replace the alias with the aliasee if the aliasee is
2320     // non-trivial in some way. We also can't replace the alias with the aliasee
2321     // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible
2322     // alias can be used to access the definition as if preemption did not
2323     // happen.
2324     // TODO: Try to handle non-zero GEPs of local aliasees.
2325     if (!Target || !IsModuleLocal(*Target))
2326       continue;
2327 
2328     Target->removeDeadConstantUsers();
2329 
2330     // Make all users of the alias use the aliasee instead.
2331     bool RenameTarget;
2332     if (!hasUsesToReplace(J, Used, RenameTarget))
2333       continue;
2334 
2335     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2336     ++NumAliasesResolved;
2337     Changed = true;
2338 
2339     if (RenameTarget) {
2340       // Give the aliasee the name, linkage and other attributes of the alias.
2341       Target->takeName(&J);
2342       Target->setLinkage(J.getLinkage());
2343       Target->setDSOLocal(J.isDSOLocal());
2344       Target->setVisibility(J.getVisibility());
2345       Target->setDLLStorageClass(J.getDLLStorageClass());
2346 
2347       if (Used.usedErase(&J))
2348         Used.usedInsert(Target);
2349 
2350       if (Used.compilerUsedErase(&J))
2351         Used.compilerUsedInsert(Target);
2352     } else if (mayHaveOtherReferences(J, Used))
2353       continue;
2354 
2355     // Delete the alias.
2356     M.getAliasList().erase(&J);
2357     ++NumAliasesRemoved;
2358     Changed = true;
2359   }
2360 
2361   Used.syncVariablesAndSets();
2362 
2363   return Changed;
2364 }
2365 
2366 static Function *
2367 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2368   // Hack to get a default TLI before we have actual Function.
2369   auto FuncIter = M.begin();
2370   if (FuncIter == M.end())
2371     return nullptr;
2372   auto *TLI = &GetTLI(*FuncIter);
2373 
2374   LibFunc F = LibFunc_cxa_atexit;
2375   if (!TLI->has(F))
2376     return nullptr;
2377 
2378   Function *Fn = M.getFunction(TLI->getName(F));
2379   if (!Fn)
2380     return nullptr;
2381 
2382   // Now get the actual TLI for Fn.
2383   TLI = &GetTLI(*Fn);
2384 
2385   // Make sure that the function has the correct prototype.
2386   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2387     return nullptr;
2388 
2389   return Fn;
2390 }
2391 
2392 /// Returns whether the given function is an empty C++ destructor and can
2393 /// therefore be eliminated.
2394 /// Note that we assume that other optimization passes have already simplified
2395 /// the code so we simply check for 'ret'.
2396 static bool cxxDtorIsEmpty(const Function &Fn) {
2397   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2398   // nounwind, but that doesn't seem worth doing.
2399   if (Fn.isDeclaration())
2400     return false;
2401 
2402   for (auto &I : Fn.getEntryBlock()) {
2403     if (I.isDebugOrPseudoInst())
2404       continue;
2405     if (isa<ReturnInst>(I))
2406       return true;
2407     break;
2408   }
2409   return false;
2410 }
2411 
2412 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2413   /// Itanium C++ ABI p3.3.5:
2414   ///
2415   ///   After constructing a global (or local static) object, that will require
2416   ///   destruction on exit, a termination function is registered as follows:
2417   ///
2418   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2419   ///
2420   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2421   ///   call f(p) when DSO d is unloaded, before all such termination calls
2422   ///   registered before this one. It returns zero if registration is
2423   ///   successful, nonzero on failure.
2424 
2425   // This pass will look for calls to __cxa_atexit where the function is trivial
2426   // and remove them.
2427   bool Changed = false;
2428 
2429   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2430     // We're only interested in calls. Theoretically, we could handle invoke
2431     // instructions as well, but neither llvm-gcc nor clang generate invokes
2432     // to __cxa_atexit.
2433     CallInst *CI = dyn_cast<CallInst>(U);
2434     if (!CI)
2435       continue;
2436 
2437     Function *DtorFn =
2438       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2439     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2440       continue;
2441 
2442     // Just remove the call.
2443     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2444     CI->eraseFromParent();
2445 
2446     ++NumCXXDtorsRemoved;
2447 
2448     Changed |= true;
2449   }
2450 
2451   return Changed;
2452 }
2453 
2454 static bool
2455 optimizeGlobalsInModule(Module &M, const DataLayout &DL,
2456                         function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2457                         function_ref<TargetTransformInfo &(Function &)> GetTTI,
2458                         function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2459                         function_ref<DominatorTree &(Function &)> LookupDomTree,
2460                         function_ref<void(Function &F)> ChangedCFGCallback,
2461                         function_ref<void(Function &F)> DeleteFnCallback) {
2462   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2463   bool Changed = false;
2464   bool LocalChange = true;
2465   Optional<uint32_t> FirstNotFullyEvaluatedPriority;
2466 
2467   while (LocalChange) {
2468     LocalChange = false;
2469 
2470     NotDiscardableComdats.clear();
2471     for (const GlobalVariable &GV : M.globals())
2472       if (const Comdat *C = GV.getComdat())
2473         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2474           NotDiscardableComdats.insert(C);
2475     for (Function &F : M)
2476       if (const Comdat *C = F.getComdat())
2477         if (!F.isDefTriviallyDead())
2478           NotDiscardableComdats.insert(C);
2479     for (GlobalAlias &GA : M.aliases())
2480       if (const Comdat *C = GA.getComdat())
2481         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2482           NotDiscardableComdats.insert(C);
2483 
2484     // Delete functions that are trivially dead, ccc -> fastcc
2485     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2486                                      NotDiscardableComdats, ChangedCFGCallback,
2487                                      DeleteFnCallback);
2488 
2489     // Optimize global_ctors list.
2490     LocalChange |=
2491         optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) {
2492           if (FirstNotFullyEvaluatedPriority &&
2493               *FirstNotFullyEvaluatedPriority != Priority)
2494             return false;
2495           bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2496           if (!Evaluated)
2497             FirstNotFullyEvaluatedPriority = Priority;
2498           return Evaluated;
2499         });
2500 
2501     // Optimize non-address-taken globals.
2502     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2503                                       NotDiscardableComdats);
2504 
2505     // Resolve aliases, when possible.
2506     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2507 
2508     // Try to remove trivial global destructors if they are not removed
2509     // already.
2510     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2511     if (CXAAtExitFn)
2512       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2513 
2514     Changed |= LocalChange;
2515   }
2516 
2517   // TODO: Move all global ctors functions to the end of the module for code
2518   // layout.
2519 
2520   return Changed;
2521 }
2522 
2523 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2524     auto &DL = M.getDataLayout();
2525     auto &FAM =
2526         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2527     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2528       return FAM.getResult<DominatorTreeAnalysis>(F);
2529     };
2530     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2531       return FAM.getResult<TargetLibraryAnalysis>(F);
2532     };
2533     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2534       return FAM.getResult<TargetIRAnalysis>(F);
2535     };
2536 
2537     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2538       return FAM.getResult<BlockFrequencyAnalysis>(F);
2539     };
2540     auto ChangedCFGCallback = [&FAM](Function &F) {
2541       FAM.invalidate(F, PreservedAnalyses::none());
2542     };
2543     auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(F, F.getName()); };
2544 
2545     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2546                                  ChangedCFGCallback, DeleteFnCallback))
2547       return PreservedAnalyses::all();
2548 
2549     PreservedAnalyses PA = PreservedAnalyses::none();
2550     // We made sure to clear analyses for deleted functions.
2551     PA.preserve<FunctionAnalysisManagerModuleProxy>();
2552     // The only place we modify the CFG is when calling
2553     // removeUnreachableBlocks(), but there we make sure to invalidate analyses
2554     // for modified functions.
2555     PA.preserveSet<CFGAnalyses>();
2556     return PA;
2557 }
2558 
2559 namespace {
2560 
2561 struct GlobalOptLegacyPass : public ModulePass {
2562   static char ID; // Pass identification, replacement for typeid
2563 
2564   GlobalOptLegacyPass() : ModulePass(ID) {
2565     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2566   }
2567 
2568   bool runOnModule(Module &M) override {
2569     if (skipModule(M))
2570       return false;
2571 
2572     auto &DL = M.getDataLayout();
2573     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2574       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2575     };
2576     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2577       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2578     };
2579     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2580       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2581     };
2582 
2583     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2584       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2585     };
2586 
2587     auto ChangedCFGCallback = [&LookupDomTree](Function &F) {
2588       auto &DT = LookupDomTree(F);
2589       DT.recalculate(F);
2590     };
2591 
2592     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2593                                    ChangedCFGCallback, nullptr);
2594   }
2595 
2596   void getAnalysisUsage(AnalysisUsage &AU) const override {
2597     AU.addRequired<TargetLibraryInfoWrapperPass>();
2598     AU.addRequired<TargetTransformInfoWrapperPass>();
2599     AU.addRequired<DominatorTreeWrapperPass>();
2600     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2601   }
2602 };
2603 
2604 } // end anonymous namespace
2605 
2606 char GlobalOptLegacyPass::ID = 0;
2607 
2608 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2609                       "Global Variable Optimizer", false, false)
2610 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2611 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2612 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2613 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2614 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2615                     "Global Variable Optimizer", false, false)
2616 
2617 ModulePass *llvm::createGlobalOptimizerPass() {
2618   return new GlobalOptLegacyPass();
2619 }
2620