1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (User *U : llvm::make_early_inc_range(GV->users())) { 212 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 213 Value *V = SI->getValueOperand(); 214 if (isa<Constant>(V)) { 215 Changed = true; 216 SI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, SI)); 220 } 221 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 222 if (isa<Constant>(MSI->getValue())) { 223 Changed = true; 224 MSI->eraseFromParent(); 225 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 226 if (I->hasOneUse()) 227 Dead.push_back(std::make_pair(I, MSI)); 228 } 229 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 230 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 231 if (MemSrc && MemSrc->isConstant()) { 232 Changed = true; 233 MTI->eraseFromParent(); 234 } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) { 235 if (I->hasOneUse()) 236 Dead.push_back(std::make_pair(I, MTI)); 237 } 238 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 239 if (CE->use_empty()) { 240 CE->destroyConstant(); 241 Changed = true; 242 } 243 } else if (Constant *C = dyn_cast<Constant>(U)) { 244 if (isSafeToDestroyConstant(C)) { 245 C->destroyConstant(); 246 // This could have invalidated UI, start over from scratch. 247 Dead.clear(); 248 CleanupPointerRootUsers(GV, GetTLI); 249 return true; 250 } 251 } 252 } 253 254 for (int i = 0, e = Dead.size(); i != e; ++i) { 255 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 256 Dead[i].second->eraseFromParent(); 257 Instruction *I = Dead[i].first; 258 do { 259 if (isAllocationFn(I, GetTLI)) 260 break; 261 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 262 if (!J) 263 break; 264 I->eraseFromParent(); 265 I = J; 266 } while (true); 267 I->eraseFromParent(); 268 Changed = true; 269 } 270 } 271 272 return Changed; 273 } 274 275 /// We just marked GV constant. Loop over all users of the global, cleaning up 276 /// the obvious ones. This is largely just a quick scan over the use list to 277 /// clean up the easy and obvious cruft. This returns true if it made a change. 278 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 279 const DataLayout &DL) { 280 Constant *Init = GV->getInitializer(); 281 SmallVector<User *, 8> WorkList(GV->users()); 282 SmallPtrSet<User *, 8> Visited; 283 bool Changed = false; 284 285 SmallVector<WeakTrackingVH> MaybeDeadInsts; 286 auto EraseFromParent = [&](Instruction *I) { 287 for (Value *Op : I->operands()) 288 if (auto *OpI = dyn_cast<Instruction>(Op)) 289 MaybeDeadInsts.push_back(OpI); 290 I->eraseFromParent(); 291 Changed = true; 292 }; 293 while (!WorkList.empty()) { 294 User *U = WorkList.pop_back_val(); 295 if (!Visited.insert(U).second) 296 continue; 297 298 if (auto *BO = dyn_cast<BitCastOperator>(U)) 299 append_range(WorkList, BO->users()); 300 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 301 append_range(WorkList, ASC->users()); 302 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 303 append_range(WorkList, GEP->users()); 304 else if (auto *LI = dyn_cast<LoadInst>(U)) { 305 // A load from a uniform value is always the same, regardless of any 306 // applied offset. 307 Type *Ty = LI->getType(); 308 if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { 309 LI->replaceAllUsesWith(Res); 310 EraseFromParent(LI); 311 continue; 312 } 313 314 Value *PtrOp = LI->getPointerOperand(); 315 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 316 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 317 DL, Offset, /* AllowNonInbounds */ true); 318 if (PtrOp == GV) { 319 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 320 LI->replaceAllUsesWith(Value); 321 EraseFromParent(LI); 322 } 323 } 324 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 325 // Store must be unreachable or storing Init into the global. 326 EraseFromParent(SI); 327 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 328 if (getUnderlyingObject(MI->getRawDest()) == GV) 329 EraseFromParent(MI); 330 } 331 } 332 333 Changed |= 334 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 335 GV->removeDeadConstantUsers(); 336 return Changed; 337 } 338 339 /// Look at all uses of the global and determine which (offset, type) pairs it 340 /// can be split into. 341 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV, 342 const DataLayout &DL) { 343 SmallVector<Use *, 16> Worklist; 344 SmallPtrSet<Use *, 16> Visited; 345 auto AppendUses = [&](Value *V) { 346 for (Use &U : V->uses()) 347 if (Visited.insert(&U).second) 348 Worklist.push_back(&U); 349 }; 350 AppendUses(GV); 351 while (!Worklist.empty()) { 352 Use *U = Worklist.pop_back_val(); 353 User *V = U->getUser(); 354 355 auto *GEP = dyn_cast<GEPOperator>(V); 356 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 357 (GEP && GEP->hasAllConstantIndices())) { 358 AppendUses(V); 359 continue; 360 } 361 362 if (Value *Ptr = getLoadStorePointerOperand(V)) { 363 // This is storing the global address into somewhere, not storing into 364 // the global. 365 if (isa<StoreInst>(V) && U->getOperandNo() == 0) 366 return false; 367 368 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 369 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 370 /* AllowNonInbounds */ true); 371 if (Ptr != GV || Offset.getActiveBits() >= 64) 372 return false; 373 374 // TODO: We currently require that all accesses at a given offset must 375 // use the same type. This could be relaxed. 376 Type *Ty = getLoadStoreType(V); 377 auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first; 378 if (Ty != It->second) 379 return false; 380 continue; 381 } 382 383 // Ignore dead constant users. 384 if (auto *C = dyn_cast<Constant>(V)) { 385 if (!isSafeToDestroyConstant(C)) 386 return false; 387 continue; 388 } 389 390 // Unknown user. 391 return false; 392 } 393 394 return true; 395 } 396 397 /// Copy over the debug info for a variable to its SRA replacements. 398 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 399 uint64_t FragmentOffsetInBits, 400 uint64_t FragmentSizeInBits, 401 uint64_t VarSize) { 402 SmallVector<DIGlobalVariableExpression *, 1> GVs; 403 GV->getDebugInfo(GVs); 404 for (auto *GVE : GVs) { 405 DIVariable *Var = GVE->getVariable(); 406 DIExpression *Expr = GVE->getExpression(); 407 int64_t CurVarOffsetInBytes = 0; 408 uint64_t CurVarOffsetInBits = 0; 409 410 // Calculate the offset (Bytes), Continue if unknown. 411 if (!Expr->extractIfOffset(CurVarOffsetInBytes)) 412 continue; 413 414 // Ignore negative offset. 415 if (CurVarOffsetInBytes < 0) 416 continue; 417 418 // Convert offset to bits. 419 CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes; 420 421 // Current var starts after the fragment, ignore. 422 if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits)) 423 continue; 424 425 uint64_t CurVarSize = Var->getType()->getSizeInBits(); 426 // Current variable ends before start of fragment, ignore. 427 if (CurVarSize != 0 && 428 (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits) 429 continue; 430 431 // Current variable fits in the fragment. 432 if (CurVarOffsetInBits == FragmentOffsetInBits && 433 CurVarSize == FragmentSizeInBits) 434 Expr = DIExpression::get(Expr->getContext(), {}); 435 // If the FragmentSize is smaller than the variable, 436 // emit a fragment expression. 437 else if (FragmentSizeInBits < VarSize) { 438 if (auto E = DIExpression::createFragmentExpression( 439 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 440 Expr = *E; 441 else 442 return; 443 } 444 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 445 NGV->addDebugInfo(NGVE); 446 } 447 } 448 449 /// Perform scalar replacement of aggregates on the specified global variable. 450 /// This opens the door for other optimizations by exposing the behavior of the 451 /// program in a more fine-grained way. We have determined that this 452 /// transformation is safe already. We return the first global variable we 453 /// insert so that the caller can reprocess it. 454 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 455 assert(GV->hasLocalLinkage()); 456 457 // Collect types to split into. 458 DenseMap<uint64_t, Type *> Types; 459 if (!collectSRATypes(Types, GV, DL) || Types.empty()) 460 return nullptr; 461 462 // Make sure we don't SRA back to the same type. 463 if (Types.size() == 1 && Types.begin()->second == GV->getValueType()) 464 return nullptr; 465 466 // Don't perform SRA if we would have to split into many globals. 467 if (Types.size() > 16) 468 return nullptr; 469 470 // Sort by offset. 471 SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector; 472 append_range(TypesVector, Types); 473 sort(TypesVector, llvm::less_first()); 474 475 // Check that the types are non-overlapping. 476 uint64_t Offset = 0; 477 for (const auto &Pair : TypesVector) { 478 // Overlaps with previous type. 479 if (Pair.first < Offset) 480 return nullptr; 481 482 Offset = Pair.first + DL.getTypeAllocSize(Pair.second); 483 } 484 485 // Some accesses go beyond the end of the global, don't bother. 486 if (Offset > DL.getTypeAllocSize(GV->getValueType())) 487 return nullptr; 488 489 // Collect initializers for new globals. 490 Constant *OrigInit = GV->getInitializer(); 491 DenseMap<uint64_t, Constant *> Initializers; 492 for (const auto &Pair : Types) { 493 Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second, 494 APInt(64, Pair.first), DL); 495 if (!NewInit) { 496 LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " 497 << *GV << " with type " << *Pair.second << " at offset " 498 << Pair.first << "\n"); 499 return nullptr; 500 } 501 Initializers.insert({Pair.first, NewInit}); 502 } 503 504 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 505 506 // Get the alignment of the global, either explicit or target-specific. 507 Align StartAlignment = 508 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 509 uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType()); 510 511 // Create replacement globals. 512 DenseMap<uint64_t, GlobalVariable *> NewGlobals; 513 unsigned NameSuffix = 0; 514 for (auto &Pair : TypesVector) { 515 uint64_t Offset = Pair.first; 516 Type *Ty = Pair.second; 517 GlobalVariable *NGV = new GlobalVariable( 518 *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, 519 Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV, 520 GV->getThreadLocalMode(), GV->getAddressSpace()); 521 NGV->copyAttributesFrom(GV); 522 NewGlobals.insert({Offset, NGV}); 523 524 // Calculate the known alignment of the field. If the original aggregate 525 // had 256 byte alignment for example, something might depend on that: 526 // propagate info to each field. 527 Align NewAlign = commonAlignment(StartAlignment, Offset); 528 if (NewAlign > DL.getABITypeAlign(Ty)) 529 NGV->setAlignment(NewAlign); 530 531 // Copy over the debug info for the variable. 532 transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty), 533 VarSize); 534 } 535 536 // Replace uses of the original global with uses of the new global. 537 SmallVector<Value *, 16> Worklist; 538 SmallPtrSet<Value *, 16> Visited; 539 SmallVector<WeakTrackingVH, 16> DeadInsts; 540 auto AppendUsers = [&](Value *V) { 541 for (User *U : V->users()) 542 if (Visited.insert(U).second) 543 Worklist.push_back(U); 544 }; 545 AppendUsers(GV); 546 while (!Worklist.empty()) { 547 Value *V = Worklist.pop_back_val(); 548 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 549 isa<GEPOperator>(V)) { 550 AppendUsers(V); 551 if (isa<Instruction>(V)) 552 DeadInsts.push_back(V); 553 continue; 554 } 555 556 if (Value *Ptr = getLoadStorePointerOperand(V)) { 557 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 558 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 559 /* AllowNonInbounds */ true); 560 assert(Ptr == GV && "Load/store must be from/to global"); 561 GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; 562 assert(NGV && "Must have replacement global for this offset"); 563 564 // Update the pointer operand and recalculate alignment. 565 Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V)); 566 Align NewAlign = 567 getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V)); 568 569 if (auto *LI = dyn_cast<LoadInst>(V)) { 570 LI->setOperand(0, NGV); 571 LI->setAlignment(NewAlign); 572 } else { 573 auto *SI = cast<StoreInst>(V); 574 SI->setOperand(1, NGV); 575 SI->setAlignment(NewAlign); 576 } 577 continue; 578 } 579 580 assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) && 581 "Other users can only be dead constants"); 582 } 583 584 // Delete old instructions and global. 585 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 586 GV->removeDeadConstantUsers(); 587 GV->eraseFromParent(); 588 ++NumSRA; 589 590 assert(NewGlobals.size() > 0); 591 return NewGlobals.begin()->second; 592 } 593 594 /// Return true if all users of the specified value will trap if the value is 595 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 596 /// reprocessing them. 597 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 598 SmallPtrSetImpl<const PHINode*> &PHIs) { 599 for (const User *U : V->users()) { 600 if (const Instruction *I = dyn_cast<Instruction>(U)) { 601 // If null pointer is considered valid, then all uses are non-trapping. 602 // Non address-space 0 globals have already been pruned by the caller. 603 if (NullPointerIsDefined(I->getFunction())) 604 return false; 605 } 606 if (isa<LoadInst>(U)) { 607 // Will trap. 608 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 609 if (SI->getOperand(0) == V) { 610 return false; // Storing the value. 611 } 612 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 613 if (CI->getCalledOperand() != V) { 614 return false; // Not calling the ptr 615 } 616 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 617 if (II->getCalledOperand() != V) { 618 return false; // Not calling the ptr 619 } 620 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 621 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 622 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 623 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 624 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 625 // If we've already seen this phi node, ignore it, it has already been 626 // checked. 627 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 628 return false; 629 } else if (isa<ICmpInst>(U) && 630 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 631 isa<LoadInst>(U->getOperand(0)) && 632 isa<ConstantPointerNull>(U->getOperand(1))) { 633 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 634 ->getPointerOperand() 635 ->stripPointerCasts()) && 636 "Should be GlobalVariable"); 637 // This and only this kind of non-signed ICmpInst is to be replaced with 638 // the comparing of the value of the created global init bool later in 639 // optimizeGlobalAddressOfAllocation for the global variable. 640 } else { 641 return false; 642 } 643 } 644 return true; 645 } 646 647 /// Return true if all uses of any loads from GV will trap if the loaded value 648 /// is null. Note that this also permits comparisons of the loaded value 649 /// against null, as a special case. 650 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 651 SmallVector<const Value *, 4> Worklist; 652 Worklist.push_back(GV); 653 while (!Worklist.empty()) { 654 const Value *P = Worklist.pop_back_val(); 655 for (auto *U : P->users()) { 656 if (auto *LI = dyn_cast<LoadInst>(U)) { 657 SmallPtrSet<const PHINode *, 8> PHIs; 658 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 659 return false; 660 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 661 // Ignore stores to the global. 662 if (SI->getPointerOperand() != P) 663 return false; 664 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 665 if (CE->stripPointerCasts() != GV) 666 return false; 667 // Check further the ConstantExpr. 668 Worklist.push_back(CE); 669 } else { 670 // We don't know or understand this user, bail out. 671 return false; 672 } 673 } 674 } 675 676 return true; 677 } 678 679 /// Get all the loads/store uses for global variable \p GV. 680 static void allUsesOfLoadAndStores(GlobalVariable *GV, 681 SmallVector<Value *, 4> &Uses) { 682 SmallVector<Value *, 4> Worklist; 683 Worklist.push_back(GV); 684 while (!Worklist.empty()) { 685 auto *P = Worklist.pop_back_val(); 686 for (auto *U : P->users()) { 687 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 688 Worklist.push_back(CE); 689 continue; 690 } 691 692 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 693 "Expect only load or store instructions"); 694 Uses.push_back(U); 695 } 696 } 697 } 698 699 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 700 bool Changed = false; 701 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 702 Instruction *I = cast<Instruction>(*UI++); 703 // Uses are non-trapping if null pointer is considered valid. 704 // Non address-space 0 globals are already pruned by the caller. 705 if (NullPointerIsDefined(I->getFunction())) 706 return false; 707 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 708 LI->setOperand(0, NewV); 709 Changed = true; 710 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 711 if (SI->getOperand(1) == V) { 712 SI->setOperand(1, NewV); 713 Changed = true; 714 } 715 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 716 CallBase *CB = cast<CallBase>(I); 717 if (CB->getCalledOperand() == V) { 718 // Calling through the pointer! Turn into a direct call, but be careful 719 // that the pointer is not also being passed as an argument. 720 CB->setCalledOperand(NewV); 721 Changed = true; 722 bool PassedAsArg = false; 723 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 724 if (CB->getArgOperand(i) == V) { 725 PassedAsArg = true; 726 CB->setArgOperand(i, NewV); 727 } 728 729 if (PassedAsArg) { 730 // Being passed as an argument also. Be careful to not invalidate UI! 731 UI = V->user_begin(); 732 } 733 } 734 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 735 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 736 ConstantExpr::getCast(CI->getOpcode(), 737 NewV, CI->getType())); 738 if (CI->use_empty()) { 739 Changed = true; 740 CI->eraseFromParent(); 741 } 742 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 743 // Should handle GEP here. 744 SmallVector<Constant*, 8> Idxs; 745 Idxs.reserve(GEPI->getNumOperands()-1); 746 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 747 i != e; ++i) 748 if (Constant *C = dyn_cast<Constant>(*i)) 749 Idxs.push_back(C); 750 else 751 break; 752 if (Idxs.size() == GEPI->getNumOperands()-1) 753 Changed |= OptimizeAwayTrappingUsesOfValue( 754 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 755 NewV, Idxs)); 756 if (GEPI->use_empty()) { 757 Changed = true; 758 GEPI->eraseFromParent(); 759 } 760 } 761 } 762 763 return Changed; 764 } 765 766 /// The specified global has only one non-null value stored into it. If there 767 /// are uses of the loaded value that would trap if the loaded value is 768 /// dynamically null, then we know that they cannot be reachable with a null 769 /// optimize away the load. 770 static bool OptimizeAwayTrappingUsesOfLoads( 771 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 772 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 773 bool Changed = false; 774 775 // Keep track of whether we are able to remove all the uses of the global 776 // other than the store that defines it. 777 bool AllNonStoreUsesGone = true; 778 779 // Replace all uses of loads with uses of uses of the stored value. 780 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 781 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 782 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 783 // If we were able to delete all uses of the loads 784 if (LI->use_empty()) { 785 LI->eraseFromParent(); 786 Changed = true; 787 } else { 788 AllNonStoreUsesGone = false; 789 } 790 } else if (isa<StoreInst>(GlobalUser)) { 791 // Ignore the store that stores "LV" to the global. 792 assert(GlobalUser->getOperand(1) == GV && 793 "Must be storing *to* the global"); 794 } else { 795 AllNonStoreUsesGone = false; 796 797 // If we get here we could have other crazy uses that are transitively 798 // loaded. 799 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 800 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 801 isa<BitCastInst>(GlobalUser) || 802 isa<GetElementPtrInst>(GlobalUser)) && 803 "Only expect load and stores!"); 804 } 805 } 806 807 if (Changed) { 808 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 809 << "\n"); 810 ++NumGlobUses; 811 } 812 813 // If we nuked all of the loads, then none of the stores are needed either, 814 // nor is the global. 815 if (AllNonStoreUsesGone) { 816 if (isLeakCheckerRoot(GV)) { 817 Changed |= CleanupPointerRootUsers(GV, GetTLI); 818 } else { 819 Changed = true; 820 CleanupConstantGlobalUsers(GV, DL); 821 } 822 if (GV->use_empty()) { 823 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 824 Changed = true; 825 GV->eraseFromParent(); 826 ++NumDeleted; 827 } 828 } 829 return Changed; 830 } 831 832 /// Walk the use list of V, constant folding all of the instructions that are 833 /// foldable. 834 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 835 TargetLibraryInfo *TLI) { 836 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 837 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 838 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 839 I->replaceAllUsesWith(NewC); 840 841 // Advance UI to the next non-I use to avoid invalidating it! 842 // Instructions could multiply use V. 843 while (UI != E && *UI == I) 844 ++UI; 845 if (isInstructionTriviallyDead(I, TLI)) 846 I->eraseFromParent(); 847 } 848 } 849 850 /// This function takes the specified global variable, and transforms the 851 /// program as if it always contained the result of the specified malloc. 852 /// Because it is always the result of the specified malloc, there is no reason 853 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 854 /// loads of GV as uses of the new global. 855 static GlobalVariable * 856 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, 857 uint64_t AllocSize, Constant *InitVal, 858 const DataLayout &DL, 859 TargetLibraryInfo *TLI) { 860 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 861 << '\n'); 862 863 // Create global of type [AllocSize x i8]. 864 Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()), 865 AllocSize); 866 867 // Create the new global variable. The contents of the allocated memory is 868 // undefined initially, so initialize with an undef value. 869 GlobalVariable *NewGV = new GlobalVariable( 870 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 871 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 872 GV->getThreadLocalMode()); 873 874 // Initialize the global at the point of the original call. Note that this 875 // is a different point from the initialization referred to below for the 876 // nullability handling. Sublety: We have not proven the original global was 877 // only initialized once. As such, we can not fold this into the initializer 878 // of the new global as may need to re-init the storage multiple times. 879 if (!isa<UndefValue>(InitVal)) { 880 IRBuilder<> Builder(CI->getNextNode()); 881 // TODO: Use alignment above if align!=1 882 Builder.CreateMemSet(NewGV, InitVal, AllocSize, None); 883 } 884 885 // Update users of the allocation to use the new global instead. 886 BitCastInst *TheBC = nullptr; 887 while (!CI->use_empty()) { 888 Instruction *User = cast<Instruction>(CI->user_back()); 889 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 890 if (BCI->getType() == NewGV->getType()) { 891 BCI->replaceAllUsesWith(NewGV); 892 BCI->eraseFromParent(); 893 } else { 894 BCI->setOperand(0, NewGV); 895 } 896 } else { 897 if (!TheBC) 898 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 899 User->replaceUsesOfWith(CI, TheBC); 900 } 901 } 902 903 SmallSetVector<Constant *, 1> RepValues; 904 RepValues.insert(NewGV); 905 906 // If there is a comparison against null, we will insert a global bool to 907 // keep track of whether the global was initialized yet or not. 908 GlobalVariable *InitBool = 909 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 910 GlobalValue::InternalLinkage, 911 ConstantInt::getFalse(GV->getContext()), 912 GV->getName()+".init", GV->getThreadLocalMode()); 913 bool InitBoolUsed = false; 914 915 // Loop over all instruction uses of GV, processing them in turn. 916 SmallVector<Value *, 4> Guses; 917 allUsesOfLoadAndStores(GV, Guses); 918 for (auto *U : Guses) { 919 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 920 // The global is initialized when the store to it occurs. If the stored 921 // value is null value, the global bool is set to false, otherwise true. 922 new StoreInst(ConstantInt::getBool( 923 GV->getContext(), 924 !isa<ConstantPointerNull>(SI->getValueOperand())), 925 InitBool, false, Align(1), SI->getOrdering(), 926 SI->getSyncScopeID(), SI); 927 SI->eraseFromParent(); 928 continue; 929 } 930 931 LoadInst *LI = cast<LoadInst>(U); 932 while (!LI->use_empty()) { 933 Use &LoadUse = *LI->use_begin(); 934 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 935 if (!ICI) { 936 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 937 RepValues.insert(CE); 938 LoadUse.set(CE); 939 continue; 940 } 941 942 // Replace the cmp X, 0 with a use of the bool value. 943 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 944 InitBool->getName() + ".val", false, Align(1), 945 LI->getOrdering(), LI->getSyncScopeID(), LI); 946 InitBoolUsed = true; 947 switch (ICI->getPredicate()) { 948 default: llvm_unreachable("Unknown ICmp Predicate!"); 949 case ICmpInst::ICMP_ULT: // X < null -> always false 950 LV = ConstantInt::getFalse(GV->getContext()); 951 break; 952 case ICmpInst::ICMP_UGE: // X >= null -> always true 953 LV = ConstantInt::getTrue(GV->getContext()); 954 break; 955 case ICmpInst::ICMP_ULE: 956 case ICmpInst::ICMP_EQ: 957 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 958 break; 959 case ICmpInst::ICMP_NE: 960 case ICmpInst::ICMP_UGT: 961 break; // no change. 962 } 963 ICI->replaceAllUsesWith(LV); 964 ICI->eraseFromParent(); 965 } 966 LI->eraseFromParent(); 967 } 968 969 // If the initialization boolean was used, insert it, otherwise delete it. 970 if (!InitBoolUsed) { 971 while (!InitBool->use_empty()) // Delete initializations 972 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 973 delete InitBool; 974 } else 975 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 976 977 // Now the GV is dead, nuke it and the allocation.. 978 GV->eraseFromParent(); 979 CI->eraseFromParent(); 980 981 // To further other optimizations, loop over all users of NewGV and try to 982 // constant prop them. This will promote GEP instructions with constant 983 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 984 for (auto *CE : RepValues) 985 ConstantPropUsersOf(CE, DL, TLI); 986 987 return NewGV; 988 } 989 990 /// Scan the use-list of GV checking to make sure that there are no complex uses 991 /// of GV. We permit simple things like dereferencing the pointer, but not 992 /// storing through the address, unless it is to the specified global. 993 static bool 994 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 995 const GlobalVariable *GV) { 996 SmallPtrSet<const Value *, 4> Visited; 997 SmallVector<const Value *, 4> Worklist; 998 Worklist.push_back(CI); 999 1000 while (!Worklist.empty()) { 1001 const Value *V = Worklist.pop_back_val(); 1002 if (!Visited.insert(V).second) 1003 continue; 1004 1005 for (const Use &VUse : V->uses()) { 1006 const User *U = VUse.getUser(); 1007 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1008 continue; // Fine, ignore. 1009 1010 if (auto *SI = dyn_cast<StoreInst>(U)) { 1011 if (SI->getValueOperand() == V && 1012 SI->getPointerOperand()->stripPointerCasts() != GV) 1013 return false; // Storing the pointer not into GV... bad. 1014 continue; // Otherwise, storing through it, or storing into GV... fine. 1015 } 1016 1017 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1018 Worklist.push_back(BCI); 1019 continue; 1020 } 1021 1022 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1023 Worklist.push_back(GEPI); 1024 continue; 1025 } 1026 1027 return false; 1028 } 1029 } 1030 1031 return true; 1032 } 1033 1034 /// If we have a global that is only initialized with a fixed size allocation 1035 /// try to transform the program to use global memory instead of heap 1036 /// allocated memory. This eliminates dynamic allocation, avoids an indirection 1037 /// accessing the data, and exposes the resultant global to further GlobalOpt. 1038 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, 1039 CallInst *CI, 1040 const DataLayout &DL, 1041 TargetLibraryInfo *TLI) { 1042 if (!isRemovableAlloc(CI, TLI)) 1043 // Must be able to remove the call when we get done.. 1044 return false; 1045 1046 Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext()); 1047 Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty); 1048 if (!InitVal) 1049 // Must be able to emit a memset for initialization 1050 return false; 1051 1052 uint64_t AllocSize; 1053 if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts())) 1054 return false; 1055 1056 // Restrict this transformation to only working on small allocations 1057 // (2048 bytes currently), as we don't want to introduce a 16M global or 1058 // something. 1059 if (AllocSize >= 2048) 1060 return false; 1061 1062 // We can't optimize this global unless all uses of it are *known* to be 1063 // of the malloc value, not of the null initializer value (consider a use 1064 // that compares the global's value against zero to see if the malloc has 1065 // been reached). To do this, we check to see if all uses of the global 1066 // would trap if the global were null: this proves that they must all 1067 // happen after the malloc. 1068 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1069 return false; 1070 1071 // We can't optimize this if the malloc itself is used in a complex way, 1072 // for example, being stored into multiple globals. This allows the 1073 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1074 // These are all things we could transform to using the global for. 1075 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1076 return false; 1077 1078 OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); 1079 return true; 1080 } 1081 1082 // Try to optimize globals based on the knowledge that only one value (besides 1083 // its initializer) is ever stored to the global. 1084 static bool 1085 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1086 const DataLayout &DL, 1087 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1088 // Ignore no-op GEPs and bitcasts. 1089 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1090 1091 // If we are dealing with a pointer global that is initialized to null and 1092 // only has one (non-null) value stored into it, then we can optimize any 1093 // users of the loaded value (often calls and loads) that would trap if the 1094 // value was null. 1095 if (GV->getInitializer()->getType()->isPointerTy() && 1096 GV->getInitializer()->isNullValue() && 1097 StoredOnceVal->getType()->isPointerTy() && 1098 !NullPointerIsDefined( 1099 nullptr /* F */, 1100 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1101 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1102 if (GV->getInitializer()->getType() != SOVC->getType()) 1103 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1104 1105 // Optimize away any trapping uses of the loaded value. 1106 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1107 return true; 1108 } else if (isAllocationFn(StoredOnceVal, GetTLI)) { 1109 if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) { 1110 auto *TLI = &GetTLI(*CI->getFunction()); 1111 if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI)) 1112 return true; 1113 } 1114 } 1115 } 1116 1117 return false; 1118 } 1119 1120 /// At this point, we have learned that the only two values ever stored into GV 1121 /// are its initializer and OtherVal. See if we can shrink the global into a 1122 /// boolean and select between the two values whenever it is used. This exposes 1123 /// the values to other scalar optimizations. 1124 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1125 Type *GVElType = GV->getValueType(); 1126 1127 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1128 // an FP value, pointer or vector, don't do this optimization because a select 1129 // between them is very expensive and unlikely to lead to later 1130 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1131 // where v1 and v2 both require constant pool loads, a big loss. 1132 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1133 GVElType->isFloatingPointTy() || 1134 GVElType->isPointerTy() || GVElType->isVectorTy()) 1135 return false; 1136 1137 // Walk the use list of the global seeing if all the uses are load or store. 1138 // If there is anything else, bail out. 1139 for (User *U : GV->users()) { 1140 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1141 return false; 1142 if (getLoadStoreType(U) != GVElType) 1143 return false; 1144 } 1145 1146 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1147 1148 // Create the new global, initializing it to false. 1149 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1150 false, 1151 GlobalValue::InternalLinkage, 1152 ConstantInt::getFalse(GV->getContext()), 1153 GV->getName()+".b", 1154 GV->getThreadLocalMode(), 1155 GV->getType()->getAddressSpace()); 1156 NewGV->copyAttributesFrom(GV); 1157 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1158 1159 Constant *InitVal = GV->getInitializer(); 1160 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1161 "No reason to shrink to bool!"); 1162 1163 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1164 GV->getDebugInfo(GVs); 1165 1166 // If initialized to zero and storing one into the global, we can use a cast 1167 // instead of a select to synthesize the desired value. 1168 bool IsOneZero = false; 1169 bool EmitOneOrZero = true; 1170 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1171 if (CI && CI->getValue().getActiveBits() <= 64) { 1172 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1173 1174 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1175 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1176 uint64_t ValInit = CIInit->getZExtValue(); 1177 uint64_t ValOther = CI->getZExtValue(); 1178 uint64_t ValMinus = ValOther - ValInit; 1179 1180 for(auto *GVe : GVs){ 1181 DIGlobalVariable *DGV = GVe->getVariable(); 1182 DIExpression *E = GVe->getExpression(); 1183 const DataLayout &DL = GV->getParent()->getDataLayout(); 1184 unsigned SizeInOctets = 1185 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1186 1187 // It is expected that the address of global optimized variable is on 1188 // top of the stack. After optimization, value of that variable will 1189 // be ether 0 for initial value or 1 for other value. The following 1190 // expression should return constant integer value depending on the 1191 // value at global object address: 1192 // val * (ValOther - ValInit) + ValInit: 1193 // DW_OP_deref DW_OP_constu <ValMinus> 1194 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1195 SmallVector<uint64_t, 12> Ops = { 1196 dwarf::DW_OP_deref_size, SizeInOctets, 1197 dwarf::DW_OP_constu, ValMinus, 1198 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1199 dwarf::DW_OP_plus}; 1200 bool WithStackValue = true; 1201 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1202 DIGlobalVariableExpression *DGVE = 1203 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1204 NewGV->addDebugInfo(DGVE); 1205 } 1206 EmitOneOrZero = false; 1207 } 1208 } 1209 1210 if (EmitOneOrZero) { 1211 // FIXME: This will only emit address for debugger on which will 1212 // be written only 0 or 1. 1213 for(auto *GV : GVs) 1214 NewGV->addDebugInfo(GV); 1215 } 1216 1217 while (!GV->use_empty()) { 1218 Instruction *UI = cast<Instruction>(GV->user_back()); 1219 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1220 // Change the store into a boolean store. 1221 bool StoringOther = SI->getOperand(0) == OtherVal; 1222 // Only do this if we weren't storing a loaded value. 1223 Value *StoreVal; 1224 if (StoringOther || SI->getOperand(0) == InitVal) { 1225 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1226 StoringOther); 1227 } else { 1228 // Otherwise, we are storing a previously loaded copy. To do this, 1229 // change the copy from copying the original value to just copying the 1230 // bool. 1231 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1232 1233 // If we've already replaced the input, StoredVal will be a cast or 1234 // select instruction. If not, it will be a load of the original 1235 // global. 1236 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1237 assert(LI->getOperand(0) == GV && "Not a copy!"); 1238 // Insert a new load, to preserve the saved value. 1239 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1240 LI->getName() + ".b", false, Align(1), 1241 LI->getOrdering(), LI->getSyncScopeID(), LI); 1242 } else { 1243 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1244 "This is not a form that we understand!"); 1245 StoreVal = StoredVal->getOperand(0); 1246 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1247 } 1248 } 1249 StoreInst *NSI = 1250 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1251 SI->getSyncScopeID(), SI); 1252 NSI->setDebugLoc(SI->getDebugLoc()); 1253 } else { 1254 // Change the load into a load of bool then a select. 1255 LoadInst *LI = cast<LoadInst>(UI); 1256 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1257 LI->getName() + ".b", false, Align(1), 1258 LI->getOrdering(), LI->getSyncScopeID(), LI); 1259 Instruction *NSI; 1260 if (IsOneZero) 1261 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1262 else 1263 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1264 NSI->takeName(LI); 1265 // Since LI is split into two instructions, NLI and NSI both inherit the 1266 // same DebugLoc 1267 NLI->setDebugLoc(LI->getDebugLoc()); 1268 NSI->setDebugLoc(LI->getDebugLoc()); 1269 LI->replaceAllUsesWith(NSI); 1270 } 1271 UI->eraseFromParent(); 1272 } 1273 1274 // Retain the name of the old global variable. People who are debugging their 1275 // programs may expect these variables to be named the same. 1276 NewGV->takeName(GV); 1277 GV->eraseFromParent(); 1278 return true; 1279 } 1280 1281 static bool 1282 deleteIfDead(GlobalValue &GV, 1283 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, 1284 function_ref<void(Function &)> DeleteFnCallback = nullptr) { 1285 GV.removeDeadConstantUsers(); 1286 1287 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1288 return false; 1289 1290 if (const Comdat *C = GV.getComdat()) 1291 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1292 return false; 1293 1294 bool Dead; 1295 if (auto *F = dyn_cast<Function>(&GV)) 1296 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1297 else 1298 Dead = GV.use_empty(); 1299 if (!Dead) 1300 return false; 1301 1302 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1303 if (auto *F = dyn_cast<Function>(&GV)) { 1304 if (DeleteFnCallback) 1305 DeleteFnCallback(*F); 1306 } 1307 GV.eraseFromParent(); 1308 ++NumDeleted; 1309 return true; 1310 } 1311 1312 static bool isPointerValueDeadOnEntryToFunction( 1313 const Function *F, GlobalValue *GV, 1314 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1315 // Find all uses of GV. We expect them all to be in F, and if we can't 1316 // identify any of the uses we bail out. 1317 // 1318 // On each of these uses, identify if the memory that GV points to is 1319 // used/required/live at the start of the function. If it is not, for example 1320 // if the first thing the function does is store to the GV, the GV can 1321 // possibly be demoted. 1322 // 1323 // We don't do an exhaustive search for memory operations - simply look 1324 // through bitcasts as they're quite common and benign. 1325 const DataLayout &DL = GV->getParent()->getDataLayout(); 1326 SmallVector<LoadInst *, 4> Loads; 1327 SmallVector<StoreInst *, 4> Stores; 1328 for (auto *U : GV->users()) { 1329 if (Operator::getOpcode(U) == Instruction::BitCast) { 1330 for (auto *UU : U->users()) { 1331 if (auto *LI = dyn_cast<LoadInst>(UU)) 1332 Loads.push_back(LI); 1333 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1334 Stores.push_back(SI); 1335 else 1336 return false; 1337 } 1338 continue; 1339 } 1340 1341 Instruction *I = dyn_cast<Instruction>(U); 1342 if (!I) 1343 return false; 1344 assert(I->getParent()->getParent() == F); 1345 1346 if (auto *LI = dyn_cast<LoadInst>(I)) 1347 Loads.push_back(LI); 1348 else if (auto *SI = dyn_cast<StoreInst>(I)) 1349 Stores.push_back(SI); 1350 else 1351 return false; 1352 } 1353 1354 // We have identified all uses of GV into loads and stores. Now check if all 1355 // of them are known not to depend on the value of the global at the function 1356 // entry point. We do this by ensuring that every load is dominated by at 1357 // least one store. 1358 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1359 1360 // The below check is quadratic. Check we're not going to do too many tests. 1361 // FIXME: Even though this will always have worst-case quadratic time, we 1362 // could put effort into minimizing the average time by putting stores that 1363 // have been shown to dominate at least one load at the beginning of the 1364 // Stores array, making subsequent dominance checks more likely to succeed 1365 // early. 1366 // 1367 // The threshold here is fairly large because global->local demotion is a 1368 // very powerful optimization should it fire. 1369 const unsigned Threshold = 100; 1370 if (Loads.size() * Stores.size() > Threshold) 1371 return false; 1372 1373 for (auto *L : Loads) { 1374 auto *LTy = L->getType(); 1375 if (none_of(Stores, [&](const StoreInst *S) { 1376 auto *STy = S->getValueOperand()->getType(); 1377 // The load is only dominated by the store if DomTree says so 1378 // and the number of bits loaded in L is less than or equal to 1379 // the number of bits stored in S. 1380 return DT.dominates(S, L) && 1381 DL.getTypeStoreSize(LTy).getFixedSize() <= 1382 DL.getTypeStoreSize(STy).getFixedSize(); 1383 })) 1384 return false; 1385 } 1386 // All loads have known dependences inside F, so the global can be localized. 1387 return true; 1388 } 1389 1390 /// C may have non-instruction users. Can all of those users be turned into 1391 /// instructions? 1392 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1393 // We don't do this exhaustively. The most common pattern that we really need 1394 // to care about is a constant GEP or constant bitcast - so just looking 1395 // through one single ConstantExpr. 1396 // 1397 // The set of constants that this function returns true for must be able to be 1398 // handled by makeAllConstantUsesInstructions. 1399 for (auto *U : C->users()) { 1400 if (isa<Instruction>(U)) 1401 continue; 1402 if (!isa<ConstantExpr>(U)) 1403 // Non instruction, non-constantexpr user; cannot convert this. 1404 return false; 1405 for (auto *UU : U->users()) 1406 if (!isa<Instruction>(UU)) 1407 // A constantexpr used by another constant. We don't try and recurse any 1408 // further but just bail out at this point. 1409 return false; 1410 } 1411 1412 return true; 1413 } 1414 1415 /// C may have non-instruction users, and 1416 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1417 /// non-instruction users to instructions. 1418 static void makeAllConstantUsesInstructions(Constant *C) { 1419 SmallVector<ConstantExpr*,4> Users; 1420 for (auto *U : C->users()) { 1421 if (isa<ConstantExpr>(U)) 1422 Users.push_back(cast<ConstantExpr>(U)); 1423 else 1424 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1425 // should not have returned true for C. 1426 assert( 1427 isa<Instruction>(U) && 1428 "Can't transform non-constantexpr non-instruction to instruction!"); 1429 } 1430 1431 SmallVector<Value*,4> UUsers; 1432 for (auto *U : Users) { 1433 UUsers.clear(); 1434 append_range(UUsers, U->users()); 1435 for (auto *UU : UUsers) { 1436 Instruction *UI = cast<Instruction>(UU); 1437 Instruction *NewU = U->getAsInstruction(UI); 1438 UI->replaceUsesOfWith(U, NewU); 1439 } 1440 // We've replaced all the uses, so destroy the constant. (destroyConstant 1441 // will update value handles and metadata.) 1442 U->destroyConstant(); 1443 } 1444 } 1445 1446 // For a global variable with one store, if the store dominates any loads, 1447 // those loads will always load the stored value (as opposed to the 1448 // initializer), even in the presence of recursion. 1449 static bool forwardStoredOnceStore( 1450 GlobalVariable *GV, const StoreInst *StoredOnceStore, 1451 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1452 const Value *StoredOnceValue = StoredOnceStore->getValueOperand(); 1453 // We can do this optimization for non-constants in nosync + norecurse 1454 // functions, but globals used in exactly one norecurse functions are already 1455 // promoted to an alloca. 1456 if (!isa<Constant>(StoredOnceValue)) 1457 return false; 1458 const Function *F = StoredOnceStore->getFunction(); 1459 SmallVector<LoadInst *> Loads; 1460 for (User *U : GV->users()) { 1461 if (auto *LI = dyn_cast<LoadInst>(U)) { 1462 if (LI->getFunction() == F && 1463 LI->getType() == StoredOnceValue->getType() && LI->isSimple()) 1464 Loads.push_back(LI); 1465 } 1466 } 1467 // Only compute DT if we have any loads to examine. 1468 bool MadeChange = false; 1469 if (!Loads.empty()) { 1470 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1471 for (auto *LI : Loads) { 1472 if (DT.dominates(StoredOnceStore, LI)) { 1473 LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue)); 1474 LI->eraseFromParent(); 1475 MadeChange = true; 1476 } 1477 } 1478 } 1479 return MadeChange; 1480 } 1481 1482 /// Analyze the specified global variable and optimize 1483 /// it if possible. If we make a change, return true. 1484 static bool 1485 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1486 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1487 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1488 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1489 auto &DL = GV->getParent()->getDataLayout(); 1490 // If this is a first class global and has only one accessing function and 1491 // this function is non-recursive, we replace the global with a local alloca 1492 // in this function. 1493 // 1494 // NOTE: It doesn't make sense to promote non-single-value types since we 1495 // are just replacing static memory to stack memory. 1496 // 1497 // If the global is in different address space, don't bring it to stack. 1498 if (!GS.HasMultipleAccessingFunctions && 1499 GS.AccessingFunction && 1500 GV->getValueType()->isSingleValueType() && 1501 GV->getType()->getAddressSpace() == 0 && 1502 !GV->isExternallyInitialized() && 1503 allNonInstructionUsersCanBeMadeInstructions(GV) && 1504 GS.AccessingFunction->doesNotRecurse() && 1505 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1506 LookupDomTree)) { 1507 const DataLayout &DL = GV->getParent()->getDataLayout(); 1508 1509 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1510 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1511 ->getEntryBlock().begin()); 1512 Type *ElemTy = GV->getValueType(); 1513 // FIXME: Pass Global's alignment when globals have alignment 1514 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1515 GV->getName(), &FirstI); 1516 if (!isa<UndefValue>(GV->getInitializer())) 1517 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1518 1519 makeAllConstantUsesInstructions(GV); 1520 1521 GV->replaceAllUsesWith(Alloca); 1522 GV->eraseFromParent(); 1523 ++NumLocalized; 1524 return true; 1525 } 1526 1527 bool Changed = false; 1528 1529 // If the global is never loaded (but may be stored to), it is dead. 1530 // Delete it now. 1531 if (!GS.IsLoaded) { 1532 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1533 1534 if (isLeakCheckerRoot(GV)) { 1535 // Delete any constant stores to the global. 1536 Changed = CleanupPointerRootUsers(GV, GetTLI); 1537 } else { 1538 // Delete any stores we can find to the global. We may not be able to 1539 // make it completely dead though. 1540 Changed = CleanupConstantGlobalUsers(GV, DL); 1541 } 1542 1543 // If the global is dead now, delete it. 1544 if (GV->use_empty()) { 1545 GV->eraseFromParent(); 1546 ++NumDeleted; 1547 Changed = true; 1548 } 1549 return Changed; 1550 1551 } 1552 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1553 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1554 1555 // Don't actually mark a global constant if it's atomic because atomic loads 1556 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1557 // requires write access to the variable even if it's not actually changed. 1558 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1559 assert(!GV->isConstant() && "Expected a non-constant global"); 1560 GV->setConstant(true); 1561 Changed = true; 1562 } 1563 1564 // Clean up any obviously simplifiable users now. 1565 Changed |= CleanupConstantGlobalUsers(GV, DL); 1566 1567 // If the global is dead now, just nuke it. 1568 if (GV->use_empty()) { 1569 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1570 << "all users and delete global!\n"); 1571 GV->eraseFromParent(); 1572 ++NumDeleted; 1573 return true; 1574 } 1575 1576 // Fall through to the next check; see if we can optimize further. 1577 ++NumMarked; 1578 } 1579 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1580 const DataLayout &DL = GV->getParent()->getDataLayout(); 1581 if (SRAGlobal(GV, DL)) 1582 return true; 1583 } 1584 Value *StoredOnceValue = GS.getStoredOnceValue(); 1585 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1586 Function &StoreFn = 1587 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1588 bool CanHaveNonUndefGlobalInitializer = 1589 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1590 GV->getType()->getAddressSpace()); 1591 // If the initial value for the global was an undef value, and if only 1592 // one other value was stored into it, we can just change the 1593 // initializer to be the stored value, then delete all stores to the 1594 // global. This allows us to mark it constant. 1595 // This is restricted to address spaces that allow globals to have 1596 // initializers. NVPTX, for example, does not support initializers for 1597 // shared memory (AS 3). 1598 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1599 if (SOVConstant && isa<UndefValue>(GV->getInitializer()) && 1600 DL.getTypeAllocSize(SOVConstant->getType()) == 1601 DL.getTypeAllocSize(GV->getValueType()) && 1602 CanHaveNonUndefGlobalInitializer) { 1603 if (SOVConstant->getType() == GV->getValueType()) { 1604 // Change the initializer in place. 1605 GV->setInitializer(SOVConstant); 1606 } else { 1607 // Create a new global with adjusted type. 1608 auto *NGV = new GlobalVariable( 1609 *GV->getParent(), SOVConstant->getType(), GV->isConstant(), 1610 GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), 1611 GV->getAddressSpace()); 1612 NGV->takeName(GV); 1613 NGV->copyAttributesFrom(GV); 1614 GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); 1615 GV->eraseFromParent(); 1616 GV = NGV; 1617 } 1618 1619 // Clean up any obviously simplifiable users now. 1620 CleanupConstantGlobalUsers(GV, DL); 1621 1622 if (GV->use_empty()) { 1623 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1624 << "simplify all users and delete global!\n"); 1625 GV->eraseFromParent(); 1626 ++NumDeleted; 1627 } 1628 ++NumSubstitute; 1629 return true; 1630 } 1631 1632 // Try to optimize globals based on the knowledge that only one value 1633 // (besides its initializer) is ever stored to the global. 1634 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI)) 1635 return true; 1636 1637 // Try to forward the store to any loads. If we have more than one store, we 1638 // may have a store of the initializer between StoredOnceStore and a load. 1639 if (GS.NumStores == 1) 1640 if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree)) 1641 return true; 1642 1643 // Otherwise, if the global was not a boolean, we can shrink it to be a 1644 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1645 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1646 (!isa<UndefValue>(GV->getInitializer()) || 1647 CanHaveNonUndefGlobalInitializer)) { 1648 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1649 ++NumShrunkToBool; 1650 return true; 1651 } 1652 } 1653 } 1654 1655 return Changed; 1656 } 1657 1658 /// Analyze the specified global variable and optimize it if possible. If we 1659 /// make a change, return true. 1660 static bool 1661 processGlobal(GlobalValue &GV, 1662 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1663 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1664 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1665 if (GV.getName().startswith("llvm.")) 1666 return false; 1667 1668 GlobalStatus GS; 1669 1670 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1671 return false; 1672 1673 bool Changed = false; 1674 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1675 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1676 : GlobalValue::UnnamedAddr::Local; 1677 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1678 GV.setUnnamedAddr(NewUnnamedAddr); 1679 NumUnnamed++; 1680 Changed = true; 1681 } 1682 } 1683 1684 // Do more involved optimizations if the global is internal. 1685 if (!GV.hasLocalLinkage()) 1686 return Changed; 1687 1688 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1689 if (!GVar) 1690 return Changed; 1691 1692 if (GVar->isConstant() || !GVar->hasInitializer()) 1693 return Changed; 1694 1695 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1696 Changed; 1697 } 1698 1699 /// Walk all of the direct calls of the specified function, changing them to 1700 /// FastCC. 1701 static void ChangeCalleesToFastCall(Function *F) { 1702 for (User *U : F->users()) { 1703 if (isa<BlockAddress>(U)) 1704 continue; 1705 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1706 } 1707 } 1708 1709 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1710 Attribute::AttrKind A) { 1711 unsigned AttrIndex; 1712 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1713 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1714 return Attrs; 1715 } 1716 1717 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1718 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1719 for (User *U : F->users()) { 1720 if (isa<BlockAddress>(U)) 1721 continue; 1722 CallBase *CB = cast<CallBase>(U); 1723 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1724 } 1725 } 1726 1727 /// Return true if this is a calling convention that we'd like to change. The 1728 /// idea here is that we don't want to mess with the convention if the user 1729 /// explicitly requested something with performance implications like coldcc, 1730 /// GHC, or anyregcc. 1731 static bool hasChangeableCC(Function *F) { 1732 CallingConv::ID CC = F->getCallingConv(); 1733 1734 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1735 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1736 return false; 1737 1738 // FIXME: Change CC for the whole chain of musttail calls when possible. 1739 // 1740 // Can't change CC of the function that either has musttail calls, or is a 1741 // musttail callee itself 1742 for (User *U : F->users()) { 1743 if (isa<BlockAddress>(U)) 1744 continue; 1745 CallInst* CI = dyn_cast<CallInst>(U); 1746 if (!CI) 1747 continue; 1748 1749 if (CI->isMustTailCall()) 1750 return false; 1751 } 1752 1753 for (BasicBlock &BB : *F) 1754 if (BB.getTerminatingMustTailCall()) 1755 return false; 1756 1757 return true; 1758 } 1759 1760 /// Return true if the block containing the call site has a BlockFrequency of 1761 /// less than ColdCCRelFreq% of the entry block. 1762 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1763 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1764 auto *CallSiteBB = CB.getParent(); 1765 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1766 auto CallerEntryFreq = 1767 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1768 return CallSiteFreq < CallerEntryFreq * ColdProb; 1769 } 1770 1771 // This function checks if the input function F is cold at all call sites. It 1772 // also looks each call site's containing function, returning false if the 1773 // caller function contains other non cold calls. The input vector AllCallsCold 1774 // contains a list of functions that only have call sites in cold blocks. 1775 static bool 1776 isValidCandidateForColdCC(Function &F, 1777 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1778 const std::vector<Function *> &AllCallsCold) { 1779 1780 if (F.user_empty()) 1781 return false; 1782 1783 for (User *U : F.users()) { 1784 if (isa<BlockAddress>(U)) 1785 continue; 1786 1787 CallBase &CB = cast<CallBase>(*U); 1788 Function *CallerFunc = CB.getParent()->getParent(); 1789 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1790 if (!isColdCallSite(CB, CallerBFI)) 1791 return false; 1792 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1793 return false; 1794 } 1795 return true; 1796 } 1797 1798 static void changeCallSitesToColdCC(Function *F) { 1799 for (User *U : F->users()) { 1800 if (isa<BlockAddress>(U)) 1801 continue; 1802 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1803 } 1804 } 1805 1806 // This function iterates over all the call instructions in the input Function 1807 // and checks that all call sites are in cold blocks and are allowed to use the 1808 // coldcc calling convention. 1809 static bool 1810 hasOnlyColdCalls(Function &F, 1811 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1812 for (BasicBlock &BB : F) { 1813 for (Instruction &I : BB) { 1814 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1815 // Skip over isline asm instructions since they aren't function calls. 1816 if (CI->isInlineAsm()) 1817 continue; 1818 Function *CalledFn = CI->getCalledFunction(); 1819 if (!CalledFn) 1820 return false; 1821 if (!CalledFn->hasLocalLinkage()) 1822 return false; 1823 // Skip over intrinsics since they won't remain as function calls. 1824 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1825 continue; 1826 // Check if it's valid to use coldcc calling convention. 1827 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1828 CalledFn->hasAddressTaken()) 1829 return false; 1830 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1831 if (!isColdCallSite(*CI, CallerBFI)) 1832 return false; 1833 } 1834 } 1835 } 1836 return true; 1837 } 1838 1839 static bool hasMustTailCallers(Function *F) { 1840 for (User *U : F->users()) { 1841 CallBase *CB = dyn_cast<CallBase>(U); 1842 if (!CB) { 1843 assert(isa<BlockAddress>(U) && 1844 "Expected either CallBase or BlockAddress"); 1845 continue; 1846 } 1847 if (CB->isMustTailCall()) 1848 return true; 1849 } 1850 return false; 1851 } 1852 1853 static bool hasInvokeCallers(Function *F) { 1854 for (User *U : F->users()) 1855 if (isa<InvokeInst>(U)) 1856 return true; 1857 return false; 1858 } 1859 1860 static void RemovePreallocated(Function *F) { 1861 RemoveAttribute(F, Attribute::Preallocated); 1862 1863 auto *M = F->getParent(); 1864 1865 IRBuilder<> Builder(M->getContext()); 1866 1867 // Cannot modify users() while iterating over it, so make a copy. 1868 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1869 for (User *U : PreallocatedCalls) { 1870 CallBase *CB = dyn_cast<CallBase>(U); 1871 if (!CB) 1872 continue; 1873 1874 assert( 1875 !CB->isMustTailCall() && 1876 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1877 // Create copy of call without "preallocated" operand bundle. 1878 SmallVector<OperandBundleDef, 1> OpBundles; 1879 CB->getOperandBundlesAsDefs(OpBundles); 1880 CallBase *PreallocatedSetup = nullptr; 1881 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1882 if (It->getTag() == "preallocated") { 1883 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1884 OpBundles.erase(It); 1885 break; 1886 } 1887 } 1888 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1889 uint64_t ArgCount = 1890 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1891 1892 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1893 "Unknown indirect call type"); 1894 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1895 CB->replaceAllUsesWith(NewCB); 1896 NewCB->takeName(CB); 1897 CB->eraseFromParent(); 1898 1899 Builder.SetInsertPoint(PreallocatedSetup); 1900 auto *StackSave = 1901 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1902 1903 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1904 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1905 StackSave); 1906 1907 // Replace @llvm.call.preallocated.arg() with alloca. 1908 // Cannot modify users() while iterating over it, so make a copy. 1909 // @llvm.call.preallocated.arg() can be called with the same index multiple 1910 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1911 // already created a Value* for the index, and if not, create an alloca and 1912 // bitcast right after the @llvm.call.preallocated.setup() so that it 1913 // dominates all uses. 1914 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1915 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1916 for (auto *User : PreallocatedArgs) { 1917 auto *UseCall = cast<CallBase>(User); 1918 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1919 Intrinsic::call_preallocated_arg && 1920 "preallocated token use was not a llvm.call.preallocated.arg"); 1921 uint64_t AllocArgIndex = 1922 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1923 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1924 if (!AllocaReplacement) { 1925 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1926 auto *ArgType = 1927 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1928 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1929 Builder.SetInsertPoint(InsertBefore); 1930 auto *Alloca = 1931 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1932 auto *BitCast = Builder.CreateBitCast( 1933 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1934 ArgAllocas[AllocArgIndex] = BitCast; 1935 AllocaReplacement = BitCast; 1936 } 1937 1938 UseCall->replaceAllUsesWith(AllocaReplacement); 1939 UseCall->eraseFromParent(); 1940 } 1941 // Remove @llvm.call.preallocated.setup(). 1942 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1943 } 1944 } 1945 1946 static bool 1947 OptimizeFunctions(Module &M, 1948 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1949 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1950 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1951 function_ref<DominatorTree &(Function &)> LookupDomTree, 1952 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, 1953 function_ref<void(Function &F)> ChangedCFGCallback, 1954 function_ref<void(Function &F)> DeleteFnCallback) { 1955 1956 bool Changed = false; 1957 1958 std::vector<Function *> AllCallsCold; 1959 for (Function &F : llvm::make_early_inc_range(M)) 1960 if (hasOnlyColdCalls(F, GetBFI)) 1961 AllCallsCold.push_back(&F); 1962 1963 // Optimize functions. 1964 for (Function &F : llvm::make_early_inc_range(M)) { 1965 // Don't perform global opt pass on naked functions; we don't want fast 1966 // calling conventions for naked functions. 1967 if (F.hasFnAttribute(Attribute::Naked)) 1968 continue; 1969 1970 // Functions without names cannot be referenced outside this module. 1971 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1972 F.setLinkage(GlobalValue::InternalLinkage); 1973 1974 if (deleteIfDead(F, NotDiscardableComdats, DeleteFnCallback)) { 1975 Changed = true; 1976 continue; 1977 } 1978 1979 // LLVM's definition of dominance allows instructions that are cyclic 1980 // in unreachable blocks, e.g.: 1981 // %pat = select i1 %condition, @global, i16* %pat 1982 // because any instruction dominates an instruction in a block that's 1983 // not reachable from entry. 1984 // So, remove unreachable blocks from the function, because a) there's 1985 // no point in analyzing them and b) GlobalOpt should otherwise grow 1986 // some more complicated logic to break these cycles. 1987 // Notify the analysis manager that we've modified the function's CFG. 1988 if (!F.isDeclaration()) { 1989 if (removeUnreachableBlocks(F)) { 1990 Changed = true; 1991 ChangedCFGCallback(F); 1992 } 1993 } 1994 1995 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1996 1997 if (!F.hasLocalLinkage()) 1998 continue; 1999 2000 // If we have an inalloca parameter that we can safely remove the 2001 // inalloca attribute from, do so. This unlocks optimizations that 2002 // wouldn't be safe in the presence of inalloca. 2003 // FIXME: We should also hoist alloca affected by this to the entry 2004 // block if possible. 2005 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2006 !F.hasAddressTaken() && !hasMustTailCallers(&F) && !F.isVarArg()) { 2007 RemoveAttribute(&F, Attribute::InAlloca); 2008 Changed = true; 2009 } 2010 2011 // FIXME: handle invokes 2012 // FIXME: handle musttail 2013 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 2014 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 2015 !hasInvokeCallers(&F)) { 2016 RemovePreallocated(&F); 2017 Changed = true; 2018 } 2019 continue; 2020 } 2021 2022 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2023 NumInternalFunc++; 2024 TargetTransformInfo &TTI = GetTTI(F); 2025 // Change the calling convention to coldcc if either stress testing is 2026 // enabled or the target would like to use coldcc on functions which are 2027 // cold at all call sites and the callers contain no other non coldcc 2028 // calls. 2029 if (EnableColdCCStressTest || 2030 (TTI.useColdCCForColdCall(F) && 2031 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 2032 F.setCallingConv(CallingConv::Cold); 2033 changeCallSitesToColdCC(&F); 2034 Changed = true; 2035 NumColdCC++; 2036 } 2037 } 2038 2039 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2040 // If this function has a calling convention worth changing, is not a 2041 // varargs function, and is only called directly, promote it to use the 2042 // Fast calling convention. 2043 F.setCallingConv(CallingConv::Fast); 2044 ChangeCalleesToFastCall(&F); 2045 ++NumFastCallFns; 2046 Changed = true; 2047 } 2048 2049 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2050 !F.hasAddressTaken()) { 2051 // The function is not used by a trampoline intrinsic, so it is safe 2052 // to remove the 'nest' attribute. 2053 RemoveAttribute(&F, Attribute::Nest); 2054 ++NumNestRemoved; 2055 Changed = true; 2056 } 2057 } 2058 return Changed; 2059 } 2060 2061 static bool 2062 OptimizeGlobalVars(Module &M, 2063 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2064 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2065 function_ref<DominatorTree &(Function &)> LookupDomTree, 2066 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2067 bool Changed = false; 2068 2069 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2070 // Global variables without names cannot be referenced outside this module. 2071 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2072 GV.setLinkage(GlobalValue::InternalLinkage); 2073 // Simplify the initializer. 2074 if (GV.hasInitializer()) 2075 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2076 auto &DL = M.getDataLayout(); 2077 // TLI is not used in the case of a Constant, so use default nullptr 2078 // for that optional parameter, since we don't have a Function to 2079 // provide GetTLI anyway. 2080 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2081 if (New != C) 2082 GV.setInitializer(New); 2083 } 2084 2085 if (deleteIfDead(GV, NotDiscardableComdats)) { 2086 Changed = true; 2087 continue; 2088 } 2089 2090 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2091 } 2092 return Changed; 2093 } 2094 2095 /// Evaluate static constructors in the function, if we can. Return true if we 2096 /// can, false otherwise. 2097 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2098 TargetLibraryInfo *TLI) { 2099 // Skip external functions. 2100 if (F->isDeclaration()) 2101 return false; 2102 // Call the function. 2103 Evaluator Eval(DL, TLI); 2104 Constant *RetValDummy; 2105 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2106 SmallVector<Constant*, 0>()); 2107 2108 if (EvalSuccess) { 2109 ++NumCtorsEvaluated; 2110 2111 // We succeeded at evaluation: commit the result. 2112 auto NewInitializers = Eval.getMutatedInitializers(); 2113 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2114 << F->getName() << "' to " << NewInitializers.size() 2115 << " stores.\n"); 2116 for (const auto &Pair : NewInitializers) 2117 Pair.first->setInitializer(Pair.second); 2118 for (GlobalVariable *GV : Eval.getInvariants()) 2119 GV->setConstant(true); 2120 } 2121 2122 return EvalSuccess; 2123 } 2124 2125 static int compareNames(Constant *const *A, Constant *const *B) { 2126 Value *AStripped = (*A)->stripPointerCasts(); 2127 Value *BStripped = (*B)->stripPointerCasts(); 2128 return AStripped->getName().compare(BStripped->getName()); 2129 } 2130 2131 static void setUsedInitializer(GlobalVariable &V, 2132 const SmallPtrSetImpl<GlobalValue *> &Init) { 2133 if (Init.empty()) { 2134 V.eraseFromParent(); 2135 return; 2136 } 2137 2138 // Type of pointer to the array of pointers. 2139 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2140 2141 SmallVector<Constant *, 8> UsedArray; 2142 for (GlobalValue *GV : Init) { 2143 Constant *Cast 2144 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2145 UsedArray.push_back(Cast); 2146 } 2147 // Sort to get deterministic order. 2148 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2149 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2150 2151 Module *M = V.getParent(); 2152 V.removeFromParent(); 2153 GlobalVariable *NV = 2154 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2155 ConstantArray::get(ATy, UsedArray), ""); 2156 NV->takeName(&V); 2157 NV->setSection("llvm.metadata"); 2158 delete &V; 2159 } 2160 2161 namespace { 2162 2163 /// An easy to access representation of llvm.used and llvm.compiler.used. 2164 class LLVMUsed { 2165 SmallPtrSet<GlobalValue *, 4> Used; 2166 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2167 GlobalVariable *UsedV; 2168 GlobalVariable *CompilerUsedV; 2169 2170 public: 2171 LLVMUsed(Module &M) { 2172 SmallVector<GlobalValue *, 4> Vec; 2173 UsedV = collectUsedGlobalVariables(M, Vec, false); 2174 Used = {Vec.begin(), Vec.end()}; 2175 Vec.clear(); 2176 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2177 CompilerUsed = {Vec.begin(), Vec.end()}; 2178 } 2179 2180 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2181 using used_iterator_range = iterator_range<iterator>; 2182 2183 iterator usedBegin() { return Used.begin(); } 2184 iterator usedEnd() { return Used.end(); } 2185 2186 used_iterator_range used() { 2187 return used_iterator_range(usedBegin(), usedEnd()); 2188 } 2189 2190 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2191 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2192 2193 used_iterator_range compilerUsed() { 2194 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2195 } 2196 2197 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2198 2199 bool compilerUsedCount(GlobalValue *GV) const { 2200 return CompilerUsed.count(GV); 2201 } 2202 2203 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2204 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2205 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2206 2207 bool compilerUsedInsert(GlobalValue *GV) { 2208 return CompilerUsed.insert(GV).second; 2209 } 2210 2211 void syncVariablesAndSets() { 2212 if (UsedV) 2213 setUsedInitializer(*UsedV, Used); 2214 if (CompilerUsedV) 2215 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2216 } 2217 }; 2218 2219 } // end anonymous namespace 2220 2221 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2222 if (GA.use_empty()) // No use at all. 2223 return false; 2224 2225 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2226 "We should have removed the duplicated " 2227 "element from llvm.compiler.used"); 2228 if (!GA.hasOneUse()) 2229 // Strictly more than one use. So at least one is not in llvm.used and 2230 // llvm.compiler.used. 2231 return true; 2232 2233 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2234 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2235 } 2236 2237 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2238 const LLVMUsed &U) { 2239 unsigned N = 2; 2240 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2241 "We should have removed the duplicated " 2242 "element from llvm.compiler.used"); 2243 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2244 ++N; 2245 return V.hasNUsesOrMore(N); 2246 } 2247 2248 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2249 if (!GA.hasLocalLinkage()) 2250 return true; 2251 2252 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2253 } 2254 2255 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2256 bool &RenameTarget) { 2257 RenameTarget = false; 2258 bool Ret = false; 2259 if (hasUseOtherThanLLVMUsed(GA, U)) 2260 Ret = true; 2261 2262 // If the alias is externally visible, we may still be able to simplify it. 2263 if (!mayHaveOtherReferences(GA, U)) 2264 return Ret; 2265 2266 // If the aliasee has internal linkage, give it the name and linkage 2267 // of the alias, and delete the alias. This turns: 2268 // define internal ... @f(...) 2269 // @a = alias ... @f 2270 // into: 2271 // define ... @a(...) 2272 Constant *Aliasee = GA.getAliasee(); 2273 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2274 if (!Target->hasLocalLinkage()) 2275 return Ret; 2276 2277 // Do not perform the transform if multiple aliases potentially target the 2278 // aliasee. This check also ensures that it is safe to replace the section 2279 // and other attributes of the aliasee with those of the alias. 2280 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2281 return Ret; 2282 2283 RenameTarget = true; 2284 return true; 2285 } 2286 2287 static bool 2288 OptimizeGlobalAliases(Module &M, 2289 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2290 bool Changed = false; 2291 LLVMUsed Used(M); 2292 2293 for (GlobalValue *GV : Used.used()) 2294 Used.compilerUsedErase(GV); 2295 2296 // Return whether GV is explicitly or implicitly dso_local and not replaceable 2297 // by another definition in the current linkage unit. 2298 auto IsModuleLocal = [](GlobalValue &GV) { 2299 return !GlobalValue::isInterposableLinkage(GV.getLinkage()) && 2300 (GV.isDSOLocal() || GV.isImplicitDSOLocal()); 2301 }; 2302 2303 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2304 // Aliases without names cannot be referenced outside this module. 2305 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2306 J.setLinkage(GlobalValue::InternalLinkage); 2307 2308 if (deleteIfDead(J, NotDiscardableComdats)) { 2309 Changed = true; 2310 continue; 2311 } 2312 2313 // If the alias can change at link time, nothing can be done - bail out. 2314 if (!IsModuleLocal(J)) 2315 continue; 2316 2317 Constant *Aliasee = J.getAliasee(); 2318 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2319 // We can't trivially replace the alias with the aliasee if the aliasee is 2320 // non-trivial in some way. We also can't replace the alias with the aliasee 2321 // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible 2322 // alias can be used to access the definition as if preemption did not 2323 // happen. 2324 // TODO: Try to handle non-zero GEPs of local aliasees. 2325 if (!Target || !IsModuleLocal(*Target)) 2326 continue; 2327 2328 Target->removeDeadConstantUsers(); 2329 2330 // Make all users of the alias use the aliasee instead. 2331 bool RenameTarget; 2332 if (!hasUsesToReplace(J, Used, RenameTarget)) 2333 continue; 2334 2335 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2336 ++NumAliasesResolved; 2337 Changed = true; 2338 2339 if (RenameTarget) { 2340 // Give the aliasee the name, linkage and other attributes of the alias. 2341 Target->takeName(&J); 2342 Target->setLinkage(J.getLinkage()); 2343 Target->setDSOLocal(J.isDSOLocal()); 2344 Target->setVisibility(J.getVisibility()); 2345 Target->setDLLStorageClass(J.getDLLStorageClass()); 2346 2347 if (Used.usedErase(&J)) 2348 Used.usedInsert(Target); 2349 2350 if (Used.compilerUsedErase(&J)) 2351 Used.compilerUsedInsert(Target); 2352 } else if (mayHaveOtherReferences(J, Used)) 2353 continue; 2354 2355 // Delete the alias. 2356 M.getAliasList().erase(&J); 2357 ++NumAliasesRemoved; 2358 Changed = true; 2359 } 2360 2361 Used.syncVariablesAndSets(); 2362 2363 return Changed; 2364 } 2365 2366 static Function * 2367 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2368 // Hack to get a default TLI before we have actual Function. 2369 auto FuncIter = M.begin(); 2370 if (FuncIter == M.end()) 2371 return nullptr; 2372 auto *TLI = &GetTLI(*FuncIter); 2373 2374 LibFunc F = LibFunc_cxa_atexit; 2375 if (!TLI->has(F)) 2376 return nullptr; 2377 2378 Function *Fn = M.getFunction(TLI->getName(F)); 2379 if (!Fn) 2380 return nullptr; 2381 2382 // Now get the actual TLI for Fn. 2383 TLI = &GetTLI(*Fn); 2384 2385 // Make sure that the function has the correct prototype. 2386 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2387 return nullptr; 2388 2389 return Fn; 2390 } 2391 2392 /// Returns whether the given function is an empty C++ destructor and can 2393 /// therefore be eliminated. 2394 /// Note that we assume that other optimization passes have already simplified 2395 /// the code so we simply check for 'ret'. 2396 static bool cxxDtorIsEmpty(const Function &Fn) { 2397 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2398 // nounwind, but that doesn't seem worth doing. 2399 if (Fn.isDeclaration()) 2400 return false; 2401 2402 for (auto &I : Fn.getEntryBlock()) { 2403 if (I.isDebugOrPseudoInst()) 2404 continue; 2405 if (isa<ReturnInst>(I)) 2406 return true; 2407 break; 2408 } 2409 return false; 2410 } 2411 2412 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2413 /// Itanium C++ ABI p3.3.5: 2414 /// 2415 /// After constructing a global (or local static) object, that will require 2416 /// destruction on exit, a termination function is registered as follows: 2417 /// 2418 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2419 /// 2420 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2421 /// call f(p) when DSO d is unloaded, before all such termination calls 2422 /// registered before this one. It returns zero if registration is 2423 /// successful, nonzero on failure. 2424 2425 // This pass will look for calls to __cxa_atexit where the function is trivial 2426 // and remove them. 2427 bool Changed = false; 2428 2429 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2430 // We're only interested in calls. Theoretically, we could handle invoke 2431 // instructions as well, but neither llvm-gcc nor clang generate invokes 2432 // to __cxa_atexit. 2433 CallInst *CI = dyn_cast<CallInst>(U); 2434 if (!CI) 2435 continue; 2436 2437 Function *DtorFn = 2438 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2439 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2440 continue; 2441 2442 // Just remove the call. 2443 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2444 CI->eraseFromParent(); 2445 2446 ++NumCXXDtorsRemoved; 2447 2448 Changed |= true; 2449 } 2450 2451 return Changed; 2452 } 2453 2454 static bool 2455 optimizeGlobalsInModule(Module &M, const DataLayout &DL, 2456 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2457 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2458 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2459 function_ref<DominatorTree &(Function &)> LookupDomTree, 2460 function_ref<void(Function &F)> ChangedCFGCallback, 2461 function_ref<void(Function &F)> DeleteFnCallback) { 2462 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2463 bool Changed = false; 2464 bool LocalChange = true; 2465 Optional<uint32_t> FirstNotFullyEvaluatedPriority; 2466 2467 while (LocalChange) { 2468 LocalChange = false; 2469 2470 NotDiscardableComdats.clear(); 2471 for (const GlobalVariable &GV : M.globals()) 2472 if (const Comdat *C = GV.getComdat()) 2473 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2474 NotDiscardableComdats.insert(C); 2475 for (Function &F : M) 2476 if (const Comdat *C = F.getComdat()) 2477 if (!F.isDefTriviallyDead()) 2478 NotDiscardableComdats.insert(C); 2479 for (GlobalAlias &GA : M.aliases()) 2480 if (const Comdat *C = GA.getComdat()) 2481 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2482 NotDiscardableComdats.insert(C); 2483 2484 // Delete functions that are trivially dead, ccc -> fastcc 2485 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2486 NotDiscardableComdats, ChangedCFGCallback, 2487 DeleteFnCallback); 2488 2489 // Optimize global_ctors list. 2490 LocalChange |= 2491 optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) { 2492 if (FirstNotFullyEvaluatedPriority && 2493 *FirstNotFullyEvaluatedPriority != Priority) 2494 return false; 2495 bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2496 if (!Evaluated) 2497 FirstNotFullyEvaluatedPriority = Priority; 2498 return Evaluated; 2499 }); 2500 2501 // Optimize non-address-taken globals. 2502 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2503 NotDiscardableComdats); 2504 2505 // Resolve aliases, when possible. 2506 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2507 2508 // Try to remove trivial global destructors if they are not removed 2509 // already. 2510 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2511 if (CXAAtExitFn) 2512 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2513 2514 Changed |= LocalChange; 2515 } 2516 2517 // TODO: Move all global ctors functions to the end of the module for code 2518 // layout. 2519 2520 return Changed; 2521 } 2522 2523 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2524 auto &DL = M.getDataLayout(); 2525 auto &FAM = 2526 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2527 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2528 return FAM.getResult<DominatorTreeAnalysis>(F); 2529 }; 2530 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2531 return FAM.getResult<TargetLibraryAnalysis>(F); 2532 }; 2533 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2534 return FAM.getResult<TargetIRAnalysis>(F); 2535 }; 2536 2537 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2538 return FAM.getResult<BlockFrequencyAnalysis>(F); 2539 }; 2540 auto ChangedCFGCallback = [&FAM](Function &F) { 2541 FAM.invalidate(F, PreservedAnalyses::none()); 2542 }; 2543 auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(F, F.getName()); }; 2544 2545 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree, 2546 ChangedCFGCallback, DeleteFnCallback)) 2547 return PreservedAnalyses::all(); 2548 2549 PreservedAnalyses PA = PreservedAnalyses::none(); 2550 // We made sure to clear analyses for deleted functions. 2551 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 2552 // The only place we modify the CFG is when calling 2553 // removeUnreachableBlocks(), but there we make sure to invalidate analyses 2554 // for modified functions. 2555 PA.preserveSet<CFGAnalyses>(); 2556 return PA; 2557 } 2558 2559 namespace { 2560 2561 struct GlobalOptLegacyPass : public ModulePass { 2562 static char ID; // Pass identification, replacement for typeid 2563 2564 GlobalOptLegacyPass() : ModulePass(ID) { 2565 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2566 } 2567 2568 bool runOnModule(Module &M) override { 2569 if (skipModule(M)) 2570 return false; 2571 2572 auto &DL = M.getDataLayout(); 2573 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2574 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2575 }; 2576 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2577 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2578 }; 2579 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2580 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2581 }; 2582 2583 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2584 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2585 }; 2586 2587 auto ChangedCFGCallback = [&LookupDomTree](Function &F) { 2588 auto &DT = LookupDomTree(F); 2589 DT.recalculate(F); 2590 }; 2591 2592 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree, 2593 ChangedCFGCallback, nullptr); 2594 } 2595 2596 void getAnalysisUsage(AnalysisUsage &AU) const override { 2597 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2598 AU.addRequired<TargetTransformInfoWrapperPass>(); 2599 AU.addRequired<DominatorTreeWrapperPass>(); 2600 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2601 } 2602 }; 2603 2604 } // end anonymous namespace 2605 2606 char GlobalOptLegacyPass::ID = 0; 2607 2608 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2609 "Global Variable Optimizer", false, false) 2610 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2611 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2612 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2613 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2614 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2615 "Global Variable Optimizer", false, false) 2616 2617 ModulePass *llvm::createGlobalOptimizerPass() { 2618 return new GlobalOptLegacyPass(); 2619 } 2620